linux-sg2042/drivers/uio/uio_pruss.c

273 lines
7.1 KiB
C
Raw Normal View History

/*
* Programmable Real-Time Unit Sub System (PRUSS) UIO driver (uio_pruss)
*
* This driver exports PRUSS host event out interrupts and PRUSS, L3 RAM,
* and DDR RAM to user space for applications interacting with PRUSS firmware
*
* Copyright (C) 2010-11 Texas Instruments Incorporated - http://www.ti.com/
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/device.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/platform_device.h>
#include <linux/uio_driver.h>
#include <linux/platform_data/uio_pruss.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include <linux/genalloc.h>
#define DRV_NAME "pruss_uio"
#define DRV_VERSION "1.0"
static int sram_pool_sz = SZ_16K;
module_param(sram_pool_sz, int, 0);
MODULE_PARM_DESC(sram_pool_sz, "sram pool size to allocate ");
static int extram_pool_sz = SZ_256K;
module_param(extram_pool_sz, int, 0);
MODULE_PARM_DESC(extram_pool_sz, "external ram pool size to allocate");
/*
* Host event IRQ numbers from PRUSS - PRUSS can generate up to 8 interrupt
* events to AINTC of ARM host processor - which can be used for IPC b/w PRUSS
* firmware and user space application, async notification from PRU firmware
* to user space application
* 3 PRU_EVTOUT0
* 4 PRU_EVTOUT1
* 5 PRU_EVTOUT2
* 6 PRU_EVTOUT3
* 7 PRU_EVTOUT4
* 8 PRU_EVTOUT5
* 9 PRU_EVTOUT6
* 10 PRU_EVTOUT7
*/
#define MAX_PRUSS_EVT 8
#define PINTC_HIDISR 0x0038
#define PINTC_HIPIR 0x0900
#define HIPIR_NOPEND 0x80000000
#define PINTC_HIER 0x1500
struct uio_pruss_dev {
struct uio_info *info;
struct clk *pruss_clk;
dma_addr_t sram_paddr;
dma_addr_t ddr_paddr;
void __iomem *prussio_vaddr;
unsigned long sram_vaddr;
void *ddr_vaddr;
unsigned int hostirq_start;
unsigned int pintc_base;
struct gen_pool *sram_pool;
};
static irqreturn_t pruss_handler(int irq, struct uio_info *info)
{
struct uio_pruss_dev *gdev = info->priv;
int intr_bit = (irq - gdev->hostirq_start + 2);
int val, intr_mask = (1 << intr_bit);
void __iomem *base = gdev->prussio_vaddr + gdev->pintc_base;
void __iomem *intren_reg = base + PINTC_HIER;
void __iomem *intrdis_reg = base + PINTC_HIDISR;
void __iomem *intrstat_reg = base + PINTC_HIPIR + (intr_bit << 2);
val = ioread32(intren_reg);
/* Is interrupt enabled and active ? */
if (!(val & intr_mask) && (ioread32(intrstat_reg) & HIPIR_NOPEND))
return IRQ_NONE;
/* Disable interrupt */
iowrite32(intr_bit, intrdis_reg);
return IRQ_HANDLED;
}
static void pruss_cleanup(struct device *dev, struct uio_pruss_dev *gdev)
{
int cnt;
struct uio_info *p = gdev->info;
for (cnt = 0; cnt < MAX_PRUSS_EVT; cnt++, p++) {
uio_unregister_device(p);
kfree(p->name);
}
iounmap(gdev->prussio_vaddr);
if (gdev->ddr_vaddr) {
dma_free_coherent(dev, extram_pool_sz, gdev->ddr_vaddr,
gdev->ddr_paddr);
}
if (gdev->sram_vaddr)
gen_pool_free(gdev->sram_pool,
gdev->sram_vaddr,
sram_pool_sz);
kfree(gdev->info);
clk_disable(gdev->pruss_clk);
clk_put(gdev->pruss_clk);
kfree(gdev);
}
static int pruss_probe(struct platform_device *pdev)
{
struct uio_info *p;
struct uio_pruss_dev *gdev;
struct resource *regs_prussio;
struct device *dev = &pdev->dev;
int ret, cnt, i, len;
struct uio_pruss_pdata *pdata = dev_get_platdata(dev);
gdev = kzalloc(sizeof(struct uio_pruss_dev), GFP_KERNEL);
if (!gdev)
return -ENOMEM;
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 05:03:40 +08:00
gdev->info = kcalloc(MAX_PRUSS_EVT, sizeof(*p), GFP_KERNEL);
if (!gdev->info) {
ret = -ENOMEM;
goto err_free_gdev;
}
/* Power on PRU in case its not done as part of boot-loader */
gdev->pruss_clk = clk_get(dev, "pruss");
if (IS_ERR(gdev->pruss_clk)) {
dev_err(dev, "Failed to get clock\n");
ret = PTR_ERR(gdev->pruss_clk);
goto err_free_info;
}
ret = clk_enable(gdev->pruss_clk);
if (ret) {
dev_err(dev, "Failed to enable clock\n");
goto err_clk_put;
}
regs_prussio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!regs_prussio) {
dev_err(dev, "No PRUSS I/O resource specified\n");
ret = -EIO;
goto err_clk_disable;
}
if (!regs_prussio->start) {
dev_err(dev, "Invalid memory resource\n");
ret = -EIO;
goto err_clk_disable;
}
if (pdata->sram_pool) {
gdev->sram_pool = pdata->sram_pool;
gdev->sram_vaddr =
(unsigned long)gen_pool_dma_alloc(gdev->sram_pool,
sram_pool_sz, &gdev->sram_paddr);
if (!gdev->sram_vaddr) {
dev_err(dev, "Could not allocate SRAM pool\n");
ret = -ENOMEM;
goto err_clk_disable;
}
}
gdev->ddr_vaddr = dma_alloc_coherent(dev, extram_pool_sz,
&(gdev->ddr_paddr), GFP_KERNEL | GFP_DMA);
if (!gdev->ddr_vaddr) {
dev_err(dev, "Could not allocate external memory\n");
ret = -ENOMEM;
goto err_free_sram;
}
len = resource_size(regs_prussio);
gdev->prussio_vaddr = ioremap(regs_prussio->start, len);
if (!gdev->prussio_vaddr) {
dev_err(dev, "Can't remap PRUSS I/O address range\n");
ret = -ENOMEM;
goto err_free_ddr_vaddr;
}
gdev->pintc_base = pdata->pintc_base;
gdev->hostirq_start = platform_get_irq(pdev, 0);
for (cnt = 0, p = gdev->info; cnt < MAX_PRUSS_EVT; cnt++, p++) {
p->mem[0].addr = regs_prussio->start;
p->mem[0].size = resource_size(regs_prussio);
p->mem[0].memtype = UIO_MEM_PHYS;
p->mem[1].addr = gdev->sram_paddr;
p->mem[1].size = sram_pool_sz;
p->mem[1].memtype = UIO_MEM_PHYS;
p->mem[2].addr = gdev->ddr_paddr;
p->mem[2].size = extram_pool_sz;
p->mem[2].memtype = UIO_MEM_PHYS;
p->name = kasprintf(GFP_KERNEL, "pruss_evt%d", cnt);
p->version = DRV_VERSION;
/* Register PRUSS IRQ lines */
p->irq = gdev->hostirq_start + cnt;
p->handler = pruss_handler;
p->priv = gdev;
ret = uio_register_device(dev, p);
if (ret < 0) {
kfree(p->name);
goto err_unloop;
}
}
platform_set_drvdata(pdev, gdev);
return 0;
err_unloop:
for (i = 0, p = gdev->info; i < cnt; i++, p++) {
uio_unregister_device(p);
kfree(p->name);
}
iounmap(gdev->prussio_vaddr);
err_free_ddr_vaddr:
dma_free_coherent(dev, extram_pool_sz, gdev->ddr_vaddr,
gdev->ddr_paddr);
err_free_sram:
if (pdata->sram_pool)
gen_pool_free(gdev->sram_pool, gdev->sram_vaddr, sram_pool_sz);
err_clk_disable:
clk_disable(gdev->pruss_clk);
err_clk_put:
clk_put(gdev->pruss_clk);
err_free_info:
kfree(gdev->info);
err_free_gdev:
kfree(gdev);
return ret;
}
static int pruss_remove(struct platform_device *dev)
{
struct uio_pruss_dev *gdev = platform_get_drvdata(dev);
pruss_cleanup(&dev->dev, gdev);
return 0;
}
static struct platform_driver pruss_driver = {
.probe = pruss_probe,
.remove = pruss_remove,
.driver = {
.name = DRV_NAME,
},
};
module_platform_driver(pruss_driver);
MODULE_LICENSE("GPL v2");
MODULE_VERSION(DRV_VERSION);
MODULE_AUTHOR("Amit Chatterjee <amit.chatterjee@ti.com>");
MODULE_AUTHOR("Pratheesh Gangadhar <pratheesh@ti.com>");