2018-11-29 02:22:31 +08:00
|
|
|
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
|
|
|
|
/*
|
|
|
|
* Copyright(c) 2018 Intel Corporation.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "hfi.h"
|
2019-02-06 06:13:13 +08:00
|
|
|
#include "qp.h"
|
2019-01-24 11:30:40 +08:00
|
|
|
#include "rc.h"
|
2018-11-29 02:22:31 +08:00
|
|
|
#include "verbs.h"
|
|
|
|
#include "tid_rdma.h"
|
2019-01-24 11:30:07 +08:00
|
|
|
#include "exp_rcv.h"
|
2019-01-24 22:10:09 +08:00
|
|
|
#include "trace.h"
|
2018-11-29 02:22:31 +08:00
|
|
|
|
2019-01-24 11:30:40 +08:00
|
|
|
/**
|
|
|
|
* DOC: TID RDMA READ protocol
|
|
|
|
*
|
|
|
|
* This is an end-to-end protocol at the hfi1 level between two nodes that
|
|
|
|
* improves performance by avoiding data copy on the requester side. It
|
|
|
|
* converts a qualified RDMA READ request into a TID RDMA READ request on
|
|
|
|
* the requester side and thereafter handles the request and response
|
|
|
|
* differently. To be qualified, the RDMA READ request should meet the
|
|
|
|
* following:
|
|
|
|
* -- The total data length should be greater than 256K;
|
|
|
|
* -- The total data length should be a multiple of 4K page size;
|
|
|
|
* -- Each local scatter-gather entry should be 4K page aligned;
|
|
|
|
* -- Each local scatter-gather entry should be a multiple of 4K page size;
|
|
|
|
*/
|
|
|
|
|
2019-02-06 06:13:13 +08:00
|
|
|
#define RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK BIT_ULL(32)
|
|
|
|
#define RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK BIT_ULL(33)
|
|
|
|
#define RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK BIT_ULL(34)
|
|
|
|
#define RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK BIT_ULL(35)
|
|
|
|
#define RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK BIT_ULL(37)
|
|
|
|
#define RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK BIT_ULL(38)
|
|
|
|
|
2019-01-24 11:30:40 +08:00
|
|
|
/* Maximum number of packets within a flow generation. */
|
|
|
|
#define MAX_TID_FLOW_PSN BIT(HFI1_KDETH_BTH_SEQ_SHIFT)
|
|
|
|
|
2019-02-06 06:13:13 +08:00
|
|
|
#define GENERATION_MASK 0xFFFFF
|
|
|
|
|
|
|
|
static u32 mask_generation(u32 a)
|
|
|
|
{
|
|
|
|
return a & GENERATION_MASK;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Reserved generation value to set to unused flows for kernel contexts */
|
|
|
|
#define KERN_GENERATION_RESERVED mask_generation(U32_MAX)
|
|
|
|
|
2019-01-24 11:20:42 +08:00
|
|
|
/*
|
|
|
|
* J_KEY for kernel contexts when TID RDMA is used.
|
|
|
|
* See generate_jkey() in hfi.h for more information.
|
|
|
|
*/
|
|
|
|
#define TID_RDMA_JKEY 32
|
|
|
|
#define HFI1_KERNEL_MIN_JKEY HFI1_ADMIN_JKEY_RANGE
|
|
|
|
#define HFI1_KERNEL_MAX_JKEY (2 * HFI1_ADMIN_JKEY_RANGE - 1)
|
|
|
|
|
2019-01-24 11:30:07 +08:00
|
|
|
/* Maximum number of segments in flight per QP request. */
|
2019-01-24 11:20:42 +08:00
|
|
|
#define TID_RDMA_MAX_READ_SEGS_PER_REQ 6
|
|
|
|
#define TID_RDMA_MAX_WRITE_SEGS_PER_REQ 4
|
2019-01-24 11:30:07 +08:00
|
|
|
#define MAX_REQ max_t(u16, TID_RDMA_MAX_READ_SEGS_PER_REQ, \
|
|
|
|
TID_RDMA_MAX_WRITE_SEGS_PER_REQ)
|
|
|
|
#define MAX_FLOWS roundup_pow_of_two(MAX_REQ + 1)
|
|
|
|
|
|
|
|
#define MAX_EXPECTED_PAGES (MAX_EXPECTED_BUFFER / PAGE_SIZE)
|
2019-01-24 11:20:42 +08:00
|
|
|
|
2019-01-24 11:30:40 +08:00
|
|
|
#define TID_RDMA_DESTQP_FLOW_SHIFT 11
|
|
|
|
#define TID_RDMA_DESTQP_FLOW_MASK 0x1f
|
|
|
|
|
2019-01-24 11:20:42 +08:00
|
|
|
#define TID_OPFN_QP_CTXT_MASK 0xff
|
|
|
|
#define TID_OPFN_QP_CTXT_SHIFT 56
|
|
|
|
#define TID_OPFN_QP_KDETH_MASK 0xff
|
|
|
|
#define TID_OPFN_QP_KDETH_SHIFT 48
|
|
|
|
#define TID_OPFN_MAX_LEN_MASK 0x7ff
|
|
|
|
#define TID_OPFN_MAX_LEN_SHIFT 37
|
|
|
|
#define TID_OPFN_TIMEOUT_MASK 0x1f
|
|
|
|
#define TID_OPFN_TIMEOUT_SHIFT 32
|
|
|
|
#define TID_OPFN_RESERVED_MASK 0x3f
|
|
|
|
#define TID_OPFN_RESERVED_SHIFT 26
|
|
|
|
#define TID_OPFN_URG_MASK 0x1
|
|
|
|
#define TID_OPFN_URG_SHIFT 25
|
|
|
|
#define TID_OPFN_VER_MASK 0x7
|
|
|
|
#define TID_OPFN_VER_SHIFT 22
|
|
|
|
#define TID_OPFN_JKEY_MASK 0x3f
|
|
|
|
#define TID_OPFN_JKEY_SHIFT 16
|
|
|
|
#define TID_OPFN_MAX_READ_MASK 0x3f
|
|
|
|
#define TID_OPFN_MAX_READ_SHIFT 10
|
|
|
|
#define TID_OPFN_MAX_WRITE_MASK 0x3f
|
|
|
|
#define TID_OPFN_MAX_WRITE_SHIFT 4
|
|
|
|
|
|
|
|
/*
|
|
|
|
* OPFN TID layout
|
|
|
|
*
|
|
|
|
* 63 47 31 15
|
|
|
|
* NNNNNNNNKKKKKKKK MMMMMMMMMMMTTTTT DDDDDDUVVVJJJJJJ RRRRRRWWWWWWCCCC
|
|
|
|
* 3210987654321098 7654321098765432 1098765432109876 5432109876543210
|
|
|
|
* N - the context Number
|
|
|
|
* K - the Kdeth_qp
|
|
|
|
* M - Max_len
|
|
|
|
* T - Timeout
|
|
|
|
* D - reserveD
|
|
|
|
* V - version
|
|
|
|
* U - Urg capable
|
|
|
|
* J - Jkey
|
|
|
|
* R - max_Read
|
|
|
|
* W - max_Write
|
|
|
|
* C - Capcode
|
|
|
|
*/
|
|
|
|
|
2019-02-06 06:13:13 +08:00
|
|
|
static void tid_rdma_trigger_resume(struct work_struct *work);
|
2019-01-24 11:30:07 +08:00
|
|
|
static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req);
|
|
|
|
static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
|
|
|
|
gfp_t gfp);
|
|
|
|
static void hfi1_init_trdma_req(struct rvt_qp *qp,
|
|
|
|
struct tid_rdma_request *req);
|
2019-02-06 06:13:13 +08:00
|
|
|
|
2019-01-24 11:20:42 +08:00
|
|
|
static u64 tid_rdma_opfn_encode(struct tid_rdma_params *p)
|
|
|
|
{
|
|
|
|
return
|
|
|
|
(((u64)p->qp & TID_OPFN_QP_CTXT_MASK) <<
|
|
|
|
TID_OPFN_QP_CTXT_SHIFT) |
|
|
|
|
((((u64)p->qp >> 16) & TID_OPFN_QP_KDETH_MASK) <<
|
|
|
|
TID_OPFN_QP_KDETH_SHIFT) |
|
|
|
|
(((u64)((p->max_len >> PAGE_SHIFT) - 1) &
|
|
|
|
TID_OPFN_MAX_LEN_MASK) << TID_OPFN_MAX_LEN_SHIFT) |
|
|
|
|
(((u64)p->timeout & TID_OPFN_TIMEOUT_MASK) <<
|
|
|
|
TID_OPFN_TIMEOUT_SHIFT) |
|
|
|
|
(((u64)p->urg & TID_OPFN_URG_MASK) << TID_OPFN_URG_SHIFT) |
|
|
|
|
(((u64)p->jkey & TID_OPFN_JKEY_MASK) << TID_OPFN_JKEY_SHIFT) |
|
|
|
|
(((u64)p->max_read & TID_OPFN_MAX_READ_MASK) <<
|
|
|
|
TID_OPFN_MAX_READ_SHIFT) |
|
|
|
|
(((u64)p->max_write & TID_OPFN_MAX_WRITE_MASK) <<
|
|
|
|
TID_OPFN_MAX_WRITE_SHIFT);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void tid_rdma_opfn_decode(struct tid_rdma_params *p, u64 data)
|
|
|
|
{
|
|
|
|
p->max_len = (((data >> TID_OPFN_MAX_LEN_SHIFT) &
|
|
|
|
TID_OPFN_MAX_LEN_MASK) + 1) << PAGE_SHIFT;
|
|
|
|
p->jkey = (data >> TID_OPFN_JKEY_SHIFT) & TID_OPFN_JKEY_MASK;
|
|
|
|
p->max_write = (data >> TID_OPFN_MAX_WRITE_SHIFT) &
|
|
|
|
TID_OPFN_MAX_WRITE_MASK;
|
|
|
|
p->max_read = (data >> TID_OPFN_MAX_READ_SHIFT) &
|
|
|
|
TID_OPFN_MAX_READ_MASK;
|
|
|
|
p->qp =
|
|
|
|
((((data >> TID_OPFN_QP_KDETH_SHIFT) & TID_OPFN_QP_KDETH_MASK)
|
|
|
|
<< 16) |
|
|
|
|
((data >> TID_OPFN_QP_CTXT_SHIFT) & TID_OPFN_QP_CTXT_MASK));
|
|
|
|
p->urg = (data >> TID_OPFN_URG_SHIFT) & TID_OPFN_URG_MASK;
|
|
|
|
p->timeout = (data >> TID_OPFN_TIMEOUT_SHIFT) & TID_OPFN_TIMEOUT_MASK;
|
|
|
|
}
|
|
|
|
|
|
|
|
void tid_rdma_opfn_init(struct rvt_qp *qp, struct tid_rdma_params *p)
|
|
|
|
{
|
|
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
|
|
|
|
|
|
p->qp = (kdeth_qp << 16) | priv->rcd->ctxt;
|
|
|
|
p->max_len = TID_RDMA_MAX_SEGMENT_SIZE;
|
|
|
|
p->jkey = priv->rcd->jkey;
|
|
|
|
p->max_read = TID_RDMA_MAX_READ_SEGS_PER_REQ;
|
|
|
|
p->max_write = TID_RDMA_MAX_WRITE_SEGS_PER_REQ;
|
|
|
|
p->timeout = qp->timeout;
|
|
|
|
p->urg = is_urg_masked(priv->rcd);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool tid_rdma_conn_req(struct rvt_qp *qp, u64 *data)
|
|
|
|
{
|
|
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
|
|
|
|
|
|
*data = tid_rdma_opfn_encode(&priv->tid_rdma.local);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool tid_rdma_conn_reply(struct rvt_qp *qp, u64 data)
|
|
|
|
{
|
|
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
|
|
struct tid_rdma_params *remote, *old;
|
|
|
|
bool ret = true;
|
|
|
|
|
|
|
|
old = rcu_dereference_protected(priv->tid_rdma.remote,
|
|
|
|
lockdep_is_held(&priv->opfn.lock));
|
|
|
|
data &= ~0xfULL;
|
|
|
|
/*
|
|
|
|
* If data passed in is zero, return true so as not to continue the
|
|
|
|
* negotiation process
|
|
|
|
*/
|
|
|
|
if (!data || !HFI1_CAP_IS_KSET(TID_RDMA))
|
|
|
|
goto null;
|
|
|
|
/*
|
|
|
|
* If kzalloc fails, return false. This will result in:
|
|
|
|
* * at the requester a new OPFN request being generated to retry
|
|
|
|
* the negotiation
|
|
|
|
* * at the responder, 0 being returned to the requester so as to
|
|
|
|
* disable TID RDMA at both the requester and the responder
|
|
|
|
*/
|
|
|
|
remote = kzalloc(sizeof(*remote), GFP_ATOMIC);
|
|
|
|
if (!remote) {
|
|
|
|
ret = false;
|
|
|
|
goto null;
|
|
|
|
}
|
|
|
|
|
|
|
|
tid_rdma_opfn_decode(remote, data);
|
|
|
|
priv->tid_timer_timeout_jiffies =
|
|
|
|
usecs_to_jiffies((((4096UL * (1UL << remote->timeout)) /
|
|
|
|
1000UL) << 3) * 7);
|
2019-01-24 22:10:09 +08:00
|
|
|
trace_hfi1_opfn_param(qp, 0, &priv->tid_rdma.local);
|
|
|
|
trace_hfi1_opfn_param(qp, 1, remote);
|
2019-01-24 11:20:42 +08:00
|
|
|
rcu_assign_pointer(priv->tid_rdma.remote, remote);
|
|
|
|
/*
|
|
|
|
* A TID RDMA READ request's segment size is not equal to
|
|
|
|
* remote->max_len only when the request's data length is smaller
|
|
|
|
* than remote->max_len. In that case, there will be only one segment.
|
|
|
|
* Therefore, when priv->pkts_ps is used to calculate req->cur_seg
|
|
|
|
* during retry, it will lead to req->cur_seg = 0, which is exactly
|
|
|
|
* what is expected.
|
|
|
|
*/
|
|
|
|
priv->pkts_ps = (u16)rvt_div_mtu(qp, remote->max_len);
|
|
|
|
priv->timeout_shift = ilog2(priv->pkts_ps - 1) + 1;
|
|
|
|
goto free;
|
|
|
|
null:
|
|
|
|
RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
|
|
|
|
priv->timeout_shift = 0;
|
|
|
|
free:
|
|
|
|
if (old)
|
|
|
|
kfree_rcu(old, rcu_head);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool tid_rdma_conn_resp(struct rvt_qp *qp, u64 *data)
|
|
|
|
{
|
|
|
|
bool ret;
|
|
|
|
|
|
|
|
ret = tid_rdma_conn_reply(qp, *data);
|
|
|
|
*data = 0;
|
|
|
|
/*
|
|
|
|
* If tid_rdma_conn_reply() returns error, set *data as 0 to indicate
|
|
|
|
* TID RDMA could not be enabled. This will result in TID RDMA being
|
|
|
|
* disabled at the requester too.
|
|
|
|
*/
|
|
|
|
if (ret)
|
|
|
|
(void)tid_rdma_conn_req(qp, data);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
void tid_rdma_conn_error(struct rvt_qp *qp)
|
|
|
|
{
|
|
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
|
|
struct tid_rdma_params *old;
|
|
|
|
|
|
|
|
old = rcu_dereference_protected(priv->tid_rdma.remote,
|
|
|
|
lockdep_is_held(&priv->opfn.lock));
|
|
|
|
RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
|
|
|
|
if (old)
|
|
|
|
kfree_rcu(old, rcu_head);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* This is called at context initialization time */
|
|
|
|
int hfi1_kern_exp_rcv_init(struct hfi1_ctxtdata *rcd, int reinit)
|
|
|
|
{
|
|
|
|
if (reinit)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
BUILD_BUG_ON(TID_RDMA_JKEY < HFI1_KERNEL_MIN_JKEY);
|
|
|
|
BUILD_BUG_ON(TID_RDMA_JKEY > HFI1_KERNEL_MAX_JKEY);
|
|
|
|
rcd->jkey = TID_RDMA_JKEY;
|
|
|
|
hfi1_set_ctxt_jkey(rcd->dd, rcd, rcd->jkey);
|
2019-01-24 11:30:07 +08:00
|
|
|
return hfi1_alloc_ctxt_rcv_groups(rcd);
|
2019-01-24 11:20:42 +08:00
|
|
|
}
|
|
|
|
|
2018-11-29 02:22:31 +08:00
|
|
|
/**
|
|
|
|
* qp_to_rcd - determine the receive context used by a qp
|
|
|
|
* @qp - the qp
|
|
|
|
*
|
|
|
|
* This routine returns the receive context associated
|
|
|
|
* with a a qp's qpn.
|
|
|
|
*
|
|
|
|
* Returns the context.
|
|
|
|
*/
|
|
|
|
static struct hfi1_ctxtdata *qp_to_rcd(struct rvt_dev_info *rdi,
|
|
|
|
struct rvt_qp *qp)
|
|
|
|
{
|
|
|
|
struct hfi1_ibdev *verbs_dev = container_of(rdi,
|
|
|
|
struct hfi1_ibdev,
|
|
|
|
rdi);
|
|
|
|
struct hfi1_devdata *dd = container_of(verbs_dev,
|
|
|
|
struct hfi1_devdata,
|
|
|
|
verbs_dev);
|
|
|
|
unsigned int ctxt;
|
|
|
|
|
|
|
|
if (qp->ibqp.qp_num == 0)
|
|
|
|
ctxt = 0;
|
|
|
|
else
|
|
|
|
ctxt = ((qp->ibqp.qp_num >> dd->qos_shift) %
|
|
|
|
(dd->n_krcv_queues - 1)) + 1;
|
|
|
|
|
|
|
|
return dd->rcd[ctxt];
|
|
|
|
}
|
|
|
|
|
|
|
|
int hfi1_qp_priv_init(struct rvt_dev_info *rdi, struct rvt_qp *qp,
|
|
|
|
struct ib_qp_init_attr *init_attr)
|
|
|
|
{
|
|
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
2019-01-24 11:30:07 +08:00
|
|
|
int i, ret;
|
2018-11-29 02:22:31 +08:00
|
|
|
|
|
|
|
qpriv->rcd = qp_to_rcd(rdi, qp);
|
|
|
|
|
2019-01-24 11:21:11 +08:00
|
|
|
spin_lock_init(&qpriv->opfn.lock);
|
|
|
|
INIT_WORK(&qpriv->opfn.opfn_work, opfn_send_conn_request);
|
2019-02-06 06:13:13 +08:00
|
|
|
INIT_WORK(&qpriv->tid_rdma.trigger_work, tid_rdma_trigger_resume);
|
|
|
|
qpriv->flow_state.psn = 0;
|
|
|
|
qpriv->flow_state.index = RXE_NUM_TID_FLOWS;
|
|
|
|
qpriv->flow_state.last_index = RXE_NUM_TID_FLOWS;
|
|
|
|
qpriv->flow_state.generation = KERN_GENERATION_RESERVED;
|
|
|
|
INIT_LIST_HEAD(&qpriv->tid_wait);
|
2019-01-24 11:21:11 +08:00
|
|
|
|
2019-01-24 11:30:07 +08:00
|
|
|
if (init_attr->qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
|
|
|
|
struct hfi1_devdata *dd = qpriv->rcd->dd;
|
|
|
|
|
|
|
|
qpriv->pages = kzalloc_node(TID_RDMA_MAX_PAGES *
|
|
|
|
sizeof(*qpriv->pages),
|
|
|
|
GFP_KERNEL, dd->node);
|
|
|
|
if (!qpriv->pages)
|
|
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < qp->s_size; i++) {
|
|
|
|
struct hfi1_swqe_priv *priv;
|
|
|
|
struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i);
|
|
|
|
|
|
|
|
priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
|
|
|
|
dd->node);
|
|
|
|
if (!priv)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
hfi1_init_trdma_req(qp, &priv->tid_req);
|
|
|
|
priv->tid_req.e.swqe = wqe;
|
|
|
|
wqe->priv = priv;
|
|
|
|
}
|
|
|
|
for (i = 0; i < rvt_max_atomic(rdi); i++) {
|
|
|
|
struct hfi1_ack_priv *priv;
|
|
|
|
|
|
|
|
priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
|
|
|
|
dd->node);
|
|
|
|
if (!priv)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
hfi1_init_trdma_req(qp, &priv->tid_req);
|
|
|
|
priv->tid_req.e.ack = &qp->s_ack_queue[i];
|
|
|
|
|
|
|
|
ret = hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req,
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (ret) {
|
|
|
|
kfree(priv);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
qp->s_ack_queue[i].priv = priv;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-11-29 02:22:31 +08:00
|
|
|
return 0;
|
|
|
|
}
|
2019-01-24 11:21:11 +08:00
|
|
|
|
|
|
|
void hfi1_qp_priv_tid_free(struct rvt_dev_info *rdi, struct rvt_qp *qp)
|
|
|
|
{
|
2019-01-24 11:30:07 +08:00
|
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
|
|
struct rvt_swqe *wqe;
|
|
|
|
u32 i;
|
|
|
|
|
|
|
|
if (qp->ibqp.qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
|
|
|
|
for (i = 0; i < qp->s_size; i++) {
|
|
|
|
wqe = rvt_get_swqe_ptr(qp, i);
|
|
|
|
kfree(wqe->priv);
|
|
|
|
wqe->priv = NULL;
|
|
|
|
}
|
|
|
|
for (i = 0; i < rvt_max_atomic(rdi); i++) {
|
|
|
|
struct hfi1_ack_priv *priv = qp->s_ack_queue[i].priv;
|
|
|
|
|
|
|
|
if (priv)
|
|
|
|
hfi1_kern_exp_rcv_free_flows(&priv->tid_req);
|
|
|
|
kfree(priv);
|
|
|
|
qp->s_ack_queue[i].priv = NULL;
|
|
|
|
}
|
|
|
|
cancel_work_sync(&qpriv->opfn.opfn_work);
|
|
|
|
kfree(qpriv->pages);
|
|
|
|
qpriv->pages = NULL;
|
|
|
|
}
|
2019-01-24 11:21:11 +08:00
|
|
|
}
|
2019-02-06 06:13:13 +08:00
|
|
|
|
|
|
|
/* Flow and tid waiter functions */
|
|
|
|
/**
|
|
|
|
* DOC: lock ordering
|
|
|
|
*
|
|
|
|
* There are two locks involved with the queuing
|
|
|
|
* routines: the qp s_lock and the exp_lock.
|
|
|
|
*
|
|
|
|
* Since the tid space allocation is called from
|
|
|
|
* the send engine, the qp s_lock is already held.
|
|
|
|
*
|
|
|
|
* The allocation routines will get the exp_lock.
|
|
|
|
*
|
|
|
|
* The first_qp() call is provided to allow the head of
|
|
|
|
* the rcd wait queue to be fetched under the exp_lock and
|
|
|
|
* followed by a drop of the exp_lock.
|
|
|
|
*
|
|
|
|
* Any qp in the wait list will have the qp reference count held
|
|
|
|
* to hold the qp in memory.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* return head of rcd wait list
|
|
|
|
*
|
|
|
|
* Must hold the exp_lock.
|
|
|
|
*
|
|
|
|
* Get a reference to the QP to hold the QP in memory.
|
|
|
|
*
|
|
|
|
* The caller must release the reference when the local
|
|
|
|
* is no longer being used.
|
|
|
|
*/
|
|
|
|
static struct rvt_qp *first_qp(struct hfi1_ctxtdata *rcd,
|
|
|
|
struct tid_queue *queue)
|
|
|
|
__must_hold(&rcd->exp_lock)
|
|
|
|
{
|
|
|
|
struct hfi1_qp_priv *priv;
|
|
|
|
|
|
|
|
lockdep_assert_held(&rcd->exp_lock);
|
|
|
|
priv = list_first_entry_or_null(&queue->queue_head,
|
|
|
|
struct hfi1_qp_priv,
|
|
|
|
tid_wait);
|
|
|
|
if (!priv)
|
|
|
|
return NULL;
|
|
|
|
rvt_get_qp(priv->owner);
|
|
|
|
return priv->owner;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* kernel_tid_waiters - determine rcd wait
|
|
|
|
* @rcd: the receive context
|
|
|
|
* @qp: the head of the qp being processed
|
|
|
|
*
|
|
|
|
* This routine will return false IFF
|
|
|
|
* the list is NULL or the head of the
|
|
|
|
* list is the indicated qp.
|
|
|
|
*
|
|
|
|
* Must hold the qp s_lock and the exp_lock.
|
|
|
|
*
|
|
|
|
* Return:
|
|
|
|
* false if either of the conditions below are statisfied:
|
|
|
|
* 1. The list is empty or
|
|
|
|
* 2. The indicated qp is at the head of the list and the
|
|
|
|
* HFI1_S_WAIT_TID_SPACE bit is set in qp->s_flags.
|
|
|
|
* true is returned otherwise.
|
|
|
|
*/
|
|
|
|
static bool kernel_tid_waiters(struct hfi1_ctxtdata *rcd,
|
|
|
|
struct tid_queue *queue, struct rvt_qp *qp)
|
|
|
|
__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
|
|
|
|
{
|
|
|
|
struct rvt_qp *fqp;
|
|
|
|
bool ret = true;
|
|
|
|
|
|
|
|
lockdep_assert_held(&qp->s_lock);
|
|
|
|
lockdep_assert_held(&rcd->exp_lock);
|
|
|
|
fqp = first_qp(rcd, queue);
|
|
|
|
if (!fqp || (fqp == qp && (qp->s_flags & HFI1_S_WAIT_TID_SPACE)))
|
|
|
|
ret = false;
|
|
|
|
rvt_put_qp(fqp);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* dequeue_tid_waiter - dequeue the qp from the list
|
|
|
|
* @qp - the qp to remove the wait list
|
|
|
|
*
|
|
|
|
* This routine removes the indicated qp from the
|
|
|
|
* wait list if it is there.
|
|
|
|
*
|
|
|
|
* This should be done after the hardware flow and
|
|
|
|
* tid array resources have been allocated.
|
|
|
|
*
|
|
|
|
* Must hold the qp s_lock and the rcd exp_lock.
|
|
|
|
*
|
|
|
|
* It assumes the s_lock to protect the s_flags
|
|
|
|
* field and to reliably test the HFI1_S_WAIT_TID_SPACE flag.
|
|
|
|
*/
|
|
|
|
static void dequeue_tid_waiter(struct hfi1_ctxtdata *rcd,
|
|
|
|
struct tid_queue *queue, struct rvt_qp *qp)
|
|
|
|
__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
|
|
|
|
{
|
|
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
|
|
|
|
|
|
lockdep_assert_held(&qp->s_lock);
|
|
|
|
lockdep_assert_held(&rcd->exp_lock);
|
|
|
|
if (list_empty(&priv->tid_wait))
|
|
|
|
return;
|
|
|
|
list_del_init(&priv->tid_wait);
|
|
|
|
qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
|
|
|
|
queue->dequeue++;
|
|
|
|
rvt_put_qp(qp);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* queue_qp_for_tid_wait - suspend QP on tid space
|
|
|
|
* @rcd: the receive context
|
|
|
|
* @qp: the qp
|
|
|
|
*
|
|
|
|
* The qp is inserted at the tail of the rcd
|
|
|
|
* wait queue and the HFI1_S_WAIT_TID_SPACE s_flag is set.
|
|
|
|
*
|
|
|
|
* Must hold the qp s_lock and the exp_lock.
|
|
|
|
*/
|
|
|
|
static void queue_qp_for_tid_wait(struct hfi1_ctxtdata *rcd,
|
|
|
|
struct tid_queue *queue, struct rvt_qp *qp)
|
|
|
|
__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
|
|
|
|
{
|
|
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
|
|
|
|
|
|
lockdep_assert_held(&qp->s_lock);
|
|
|
|
lockdep_assert_held(&rcd->exp_lock);
|
|
|
|
if (list_empty(&priv->tid_wait)) {
|
|
|
|
qp->s_flags |= HFI1_S_WAIT_TID_SPACE;
|
|
|
|
list_add_tail(&priv->tid_wait, &queue->queue_head);
|
|
|
|
priv->tid_enqueue = ++queue->enqueue;
|
2019-01-24 11:30:18 +08:00
|
|
|
rcd->dd->verbs_dev.n_tidwait++;
|
2019-02-06 06:13:13 +08:00
|
|
|
trace_hfi1_qpsleep(qp, HFI1_S_WAIT_TID_SPACE);
|
|
|
|
rvt_get_qp(qp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* __trigger_tid_waiter - trigger tid waiter
|
|
|
|
* @qp: the qp
|
|
|
|
*
|
|
|
|
* This is a private entrance to schedule the qp
|
|
|
|
* assuming the caller is holding the qp->s_lock.
|
|
|
|
*/
|
|
|
|
static void __trigger_tid_waiter(struct rvt_qp *qp)
|
|
|
|
__must_hold(&qp->s_lock)
|
|
|
|
{
|
|
|
|
lockdep_assert_held(&qp->s_lock);
|
|
|
|
if (!(qp->s_flags & HFI1_S_WAIT_TID_SPACE))
|
|
|
|
return;
|
|
|
|
trace_hfi1_qpwakeup(qp, HFI1_S_WAIT_TID_SPACE);
|
|
|
|
hfi1_schedule_send(qp);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tid_rdma_schedule_tid_wakeup - schedule wakeup for a qp
|
|
|
|
* @qp - the qp
|
|
|
|
*
|
|
|
|
* trigger a schedule or a waiting qp in a deadlock
|
|
|
|
* safe manner. The qp reference is held prior
|
|
|
|
* to this call via first_qp().
|
|
|
|
*
|
|
|
|
* If the qp trigger was already scheduled (!rval)
|
|
|
|
* the the reference is dropped, otherwise the resume
|
|
|
|
* or the destroy cancel will dispatch the reference.
|
|
|
|
*/
|
|
|
|
static void tid_rdma_schedule_tid_wakeup(struct rvt_qp *qp)
|
|
|
|
{
|
|
|
|
struct hfi1_qp_priv *priv;
|
|
|
|
struct hfi1_ibport *ibp;
|
|
|
|
struct hfi1_pportdata *ppd;
|
|
|
|
struct hfi1_devdata *dd;
|
|
|
|
bool rval;
|
|
|
|
|
|
|
|
if (!qp)
|
|
|
|
return;
|
|
|
|
|
|
|
|
priv = qp->priv;
|
|
|
|
ibp = to_iport(qp->ibqp.device, qp->port_num);
|
|
|
|
ppd = ppd_from_ibp(ibp);
|
|
|
|
dd = dd_from_ibdev(qp->ibqp.device);
|
|
|
|
|
|
|
|
rval = queue_work_on(priv->s_sde ?
|
|
|
|
priv->s_sde->cpu :
|
|
|
|
cpumask_first(cpumask_of_node(dd->node)),
|
|
|
|
ppd->hfi1_wq,
|
|
|
|
&priv->tid_rdma.trigger_work);
|
|
|
|
if (!rval)
|
|
|
|
rvt_put_qp(qp);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tid_rdma_trigger_resume - field a trigger work request
|
|
|
|
* @work - the work item
|
|
|
|
*
|
|
|
|
* Complete the off qp trigger processing by directly
|
|
|
|
* calling the progress routine.
|
|
|
|
*/
|
|
|
|
static void tid_rdma_trigger_resume(struct work_struct *work)
|
|
|
|
{
|
|
|
|
struct tid_rdma_qp_params *tr;
|
|
|
|
struct hfi1_qp_priv *priv;
|
|
|
|
struct rvt_qp *qp;
|
|
|
|
|
|
|
|
tr = container_of(work, struct tid_rdma_qp_params, trigger_work);
|
|
|
|
priv = container_of(tr, struct hfi1_qp_priv, tid_rdma);
|
|
|
|
qp = priv->owner;
|
|
|
|
spin_lock_irq(&qp->s_lock);
|
|
|
|
if (qp->s_flags & HFI1_S_WAIT_TID_SPACE) {
|
|
|
|
spin_unlock_irq(&qp->s_lock);
|
|
|
|
hfi1_do_send(priv->owner, true);
|
|
|
|
} else {
|
|
|
|
spin_unlock_irq(&qp->s_lock);
|
|
|
|
}
|
|
|
|
rvt_put_qp(qp);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tid_rdma_flush_wait - unwind any tid space wait
|
|
|
|
*
|
|
|
|
* This is called when resetting a qp to
|
|
|
|
* allow a destroy or reset to get rid
|
|
|
|
* of any tid space linkage and reference counts.
|
|
|
|
*/
|
|
|
|
static void _tid_rdma_flush_wait(struct rvt_qp *qp, struct tid_queue *queue)
|
|
|
|
__must_hold(&qp->s_lock)
|
|
|
|
{
|
|
|
|
struct hfi1_qp_priv *priv;
|
|
|
|
|
|
|
|
if (!qp)
|
|
|
|
return;
|
|
|
|
lockdep_assert_held(&qp->s_lock);
|
|
|
|
priv = qp->priv;
|
|
|
|
qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
|
|
|
|
spin_lock(&priv->rcd->exp_lock);
|
|
|
|
if (!list_empty(&priv->tid_wait)) {
|
|
|
|
list_del_init(&priv->tid_wait);
|
|
|
|
qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
|
|
|
|
queue->dequeue++;
|
|
|
|
rvt_put_qp(qp);
|
|
|
|
}
|
|
|
|
spin_unlock(&priv->rcd->exp_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
void hfi1_tid_rdma_flush_wait(struct rvt_qp *qp)
|
|
|
|
__must_hold(&qp->s_lock)
|
|
|
|
{
|
|
|
|
struct hfi1_qp_priv *priv = qp->priv;
|
|
|
|
|
|
|
|
_tid_rdma_flush_wait(qp, &priv->rcd->flow_queue);
|
2019-01-24 11:30:07 +08:00
|
|
|
_tid_rdma_flush_wait(qp, &priv->rcd->rarr_queue);
|
2019-02-06 06:13:13 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Flow functions */
|
|
|
|
/**
|
|
|
|
* kern_reserve_flow - allocate a hardware flow
|
|
|
|
* @rcd - the context to use for allocation
|
|
|
|
* @last - the index of the preferred flow. Use RXE_NUM_TID_FLOWS to
|
|
|
|
* signify "don't care".
|
|
|
|
*
|
|
|
|
* Use a bit mask based allocation to reserve a hardware
|
|
|
|
* flow for use in receiving KDETH data packets. If a preferred flow is
|
|
|
|
* specified the function will attempt to reserve that flow again, if
|
|
|
|
* available.
|
|
|
|
*
|
|
|
|
* The exp_lock must be held.
|
|
|
|
*
|
|
|
|
* Return:
|
|
|
|
* On success: a value postive value between 0 and RXE_NUM_TID_FLOWS - 1
|
|
|
|
* On failure: -EAGAIN
|
|
|
|
*/
|
|
|
|
static int kern_reserve_flow(struct hfi1_ctxtdata *rcd, int last)
|
|
|
|
__must_hold(&rcd->exp_lock)
|
|
|
|
{
|
|
|
|
int nr;
|
|
|
|
|
|
|
|
/* Attempt to reserve the preferred flow index */
|
|
|
|
if (last >= 0 && last < RXE_NUM_TID_FLOWS &&
|
|
|
|
!test_and_set_bit(last, &rcd->flow_mask))
|
|
|
|
return last;
|
|
|
|
|
|
|
|
nr = ffz(rcd->flow_mask);
|
|
|
|
BUILD_BUG_ON(RXE_NUM_TID_FLOWS >=
|
|
|
|
(sizeof(rcd->flow_mask) * BITS_PER_BYTE));
|
|
|
|
if (nr > (RXE_NUM_TID_FLOWS - 1))
|
|
|
|
return -EAGAIN;
|
|
|
|
set_bit(nr, &rcd->flow_mask);
|
|
|
|
return nr;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void kern_set_hw_flow(struct hfi1_ctxtdata *rcd, u32 generation,
|
|
|
|
u32 flow_idx)
|
|
|
|
{
|
|
|
|
u64 reg;
|
|
|
|
|
|
|
|
reg = ((u64)generation << HFI1_KDETH_BTH_SEQ_SHIFT) |
|
|
|
|
RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK |
|
|
|
|
RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK |
|
|
|
|
RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK |
|
|
|
|
RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK |
|
|
|
|
RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK;
|
|
|
|
|
|
|
|
if (generation != KERN_GENERATION_RESERVED)
|
|
|
|
reg |= RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK;
|
|
|
|
|
|
|
|
write_uctxt_csr(rcd->dd, rcd->ctxt,
|
|
|
|
RCV_TID_FLOW_TABLE + 8 * flow_idx, reg);
|
|
|
|
}
|
|
|
|
|
|
|
|
static u32 kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
|
|
|
|
__must_hold(&rcd->exp_lock)
|
|
|
|
{
|
|
|
|
u32 generation = rcd->flows[flow_idx].generation;
|
|
|
|
|
|
|
|
kern_set_hw_flow(rcd, generation, flow_idx);
|
|
|
|
return generation;
|
|
|
|
}
|
|
|
|
|
|
|
|
static u32 kern_flow_generation_next(u32 gen)
|
|
|
|
{
|
|
|
|
u32 generation = mask_generation(gen + 1);
|
|
|
|
|
|
|
|
if (generation == KERN_GENERATION_RESERVED)
|
|
|
|
generation = mask_generation(generation + 1);
|
|
|
|
return generation;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
|
|
|
|
__must_hold(&rcd->exp_lock)
|
|
|
|
{
|
|
|
|
rcd->flows[flow_idx].generation =
|
|
|
|
kern_flow_generation_next(rcd->flows[flow_idx].generation);
|
|
|
|
kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, flow_idx);
|
|
|
|
}
|
|
|
|
|
|
|
|
int hfi1_kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
|
|
|
|
{
|
|
|
|
struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
|
|
|
|
struct tid_flow_state *fs = &qpriv->flow_state;
|
|
|
|
struct rvt_qp *fqp;
|
|
|
|
unsigned long flags;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
/* The QP already has an allocated flow */
|
|
|
|
if (fs->index != RXE_NUM_TID_FLOWS)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&rcd->exp_lock, flags);
|
|
|
|
if (kernel_tid_waiters(rcd, &rcd->flow_queue, qp))
|
|
|
|
goto queue;
|
|
|
|
|
|
|
|
ret = kern_reserve_flow(rcd, fs->last_index);
|
|
|
|
if (ret < 0)
|
|
|
|
goto queue;
|
|
|
|
fs->index = ret;
|
|
|
|
fs->last_index = fs->index;
|
|
|
|
|
|
|
|
/* Generation received in a RESYNC overrides default flow generation */
|
|
|
|
if (fs->generation != KERN_GENERATION_RESERVED)
|
|
|
|
rcd->flows[fs->index].generation = fs->generation;
|
|
|
|
fs->generation = kern_setup_hw_flow(rcd, fs->index);
|
|
|
|
fs->psn = 0;
|
|
|
|
fs->flags = 0;
|
|
|
|
dequeue_tid_waiter(rcd, &rcd->flow_queue, qp);
|
|
|
|
/* get head before dropping lock */
|
|
|
|
fqp = first_qp(rcd, &rcd->flow_queue);
|
|
|
|
spin_unlock_irqrestore(&rcd->exp_lock, flags);
|
|
|
|
|
|
|
|
tid_rdma_schedule_tid_wakeup(fqp);
|
|
|
|
return 0;
|
|
|
|
queue:
|
|
|
|
queue_qp_for_tid_wait(rcd, &rcd->flow_queue, qp);
|
|
|
|
spin_unlock_irqrestore(&rcd->exp_lock, flags);
|
|
|
|
return -EAGAIN;
|
|
|
|
}
|
|
|
|
|
|
|
|
void hfi1_kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
|
|
|
|
{
|
|
|
|
struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
|
|
|
|
struct tid_flow_state *fs = &qpriv->flow_state;
|
|
|
|
struct rvt_qp *fqp;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
if (fs->index >= RXE_NUM_TID_FLOWS)
|
|
|
|
return;
|
|
|
|
spin_lock_irqsave(&rcd->exp_lock, flags);
|
|
|
|
kern_clear_hw_flow(rcd, fs->index);
|
|
|
|
clear_bit(fs->index, &rcd->flow_mask);
|
|
|
|
fs->index = RXE_NUM_TID_FLOWS;
|
|
|
|
fs->psn = 0;
|
|
|
|
fs->generation = KERN_GENERATION_RESERVED;
|
|
|
|
|
|
|
|
/* get head before dropping lock */
|
|
|
|
fqp = first_qp(rcd, &rcd->flow_queue);
|
|
|
|
spin_unlock_irqrestore(&rcd->exp_lock, flags);
|
|
|
|
|
|
|
|
if (fqp == qp) {
|
|
|
|
__trigger_tid_waiter(fqp);
|
|
|
|
rvt_put_qp(fqp);
|
|
|
|
} else {
|
|
|
|
tid_rdma_schedule_tid_wakeup(fqp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void hfi1_kern_init_ctxt_generations(struct hfi1_ctxtdata *rcd)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < RXE_NUM_TID_FLOWS; i++) {
|
|
|
|
rcd->flows[i].generation = mask_generation(prandom_u32());
|
|
|
|
kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, i);
|
|
|
|
}
|
|
|
|
}
|
2019-01-24 11:30:07 +08:00
|
|
|
|
|
|
|
/* TID allocation functions */
|
|
|
|
static u8 trdma_pset_order(struct tid_rdma_pageset *s)
|
|
|
|
{
|
|
|
|
u8 count = s->count;
|
|
|
|
|
|
|
|
return ilog2(count) + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tid_rdma_find_phys_blocks_4k - get groups base on mr info
|
|
|
|
* @npages - number of pages
|
|
|
|
* @pages - pointer to an array of page structs
|
|
|
|
* @list - page set array to return
|
|
|
|
*
|
|
|
|
* This routine returns the number of groups associated with
|
|
|
|
* the current sge information. This implementation is based
|
|
|
|
* on the expected receive find_phys_blocks() adjusted to
|
|
|
|
* use the MR information vs. the pfn.
|
|
|
|
*
|
|
|
|
* Return:
|
|
|
|
* the number of RcvArray entries
|
|
|
|
*/
|
|
|
|
static u32 tid_rdma_find_phys_blocks_4k(struct tid_rdma_flow *flow,
|
|
|
|
struct page **pages,
|
|
|
|
u32 npages,
|
|
|
|
struct tid_rdma_pageset *list)
|
|
|
|
{
|
|
|
|
u32 pagecount, pageidx, setcount = 0, i;
|
|
|
|
void *vaddr, *this_vaddr;
|
|
|
|
|
|
|
|
if (!npages)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Look for sets of physically contiguous pages in the user buffer.
|
|
|
|
* This will allow us to optimize Expected RcvArray entry usage by
|
|
|
|
* using the bigger supported sizes.
|
|
|
|
*/
|
|
|
|
vaddr = page_address(pages[0]);
|
2019-01-24 11:30:28 +08:00
|
|
|
trace_hfi1_tid_flow_page(flow->req->qp, flow, 0, 0, 0, vaddr);
|
2019-01-24 11:30:07 +08:00
|
|
|
for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
|
|
|
|
this_vaddr = i < npages ? page_address(pages[i]) : NULL;
|
2019-01-24 11:30:28 +08:00
|
|
|
trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 0, 0,
|
|
|
|
this_vaddr);
|
2019-01-24 11:30:07 +08:00
|
|
|
/*
|
|
|
|
* If the vaddr's are not sequential, pages are not physically
|
|
|
|
* contiguous.
|
|
|
|
*/
|
|
|
|
if (this_vaddr != (vaddr + PAGE_SIZE)) {
|
|
|
|
/*
|
|
|
|
* At this point we have to loop over the set of
|
|
|
|
* physically contiguous pages and break them down it
|
|
|
|
* sizes supported by the HW.
|
|
|
|
* There are two main constraints:
|
|
|
|
* 1. The max buffer size is MAX_EXPECTED_BUFFER.
|
|
|
|
* If the total set size is bigger than that
|
|
|
|
* program only a MAX_EXPECTED_BUFFER chunk.
|
|
|
|
* 2. The buffer size has to be a power of two. If
|
|
|
|
* it is not, round down to the closes power of
|
|
|
|
* 2 and program that size.
|
|
|
|
*/
|
|
|
|
while (pagecount) {
|
|
|
|
int maxpages = pagecount;
|
|
|
|
u32 bufsize = pagecount * PAGE_SIZE;
|
|
|
|
|
|
|
|
if (bufsize > MAX_EXPECTED_BUFFER)
|
|
|
|
maxpages =
|
|
|
|
MAX_EXPECTED_BUFFER >>
|
|
|
|
PAGE_SHIFT;
|
|
|
|
else if (!is_power_of_2(bufsize))
|
|
|
|
maxpages =
|
|
|
|
rounddown_pow_of_two(bufsize) >>
|
|
|
|
PAGE_SHIFT;
|
|
|
|
|
|
|
|
list[setcount].idx = pageidx;
|
|
|
|
list[setcount].count = maxpages;
|
2019-01-24 11:30:28 +08:00
|
|
|
trace_hfi1_tid_pageset(flow->req->qp, setcount,
|
|
|
|
list[setcount].idx,
|
|
|
|
list[setcount].count);
|
2019-01-24 11:30:07 +08:00
|
|
|
pagecount -= maxpages;
|
|
|
|
pageidx += maxpages;
|
|
|
|
setcount++;
|
|
|
|
}
|
|
|
|
pageidx = i;
|
|
|
|
pagecount = 1;
|
|
|
|
vaddr = this_vaddr;
|
|
|
|
} else {
|
|
|
|
vaddr += PAGE_SIZE;
|
|
|
|
pagecount++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* insure we always return an even number of sets */
|
|
|
|
if (setcount & 1)
|
|
|
|
list[setcount++].count = 0;
|
|
|
|
return setcount;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tid_flush_pages - dump out pages into pagesets
|
|
|
|
* @list - list of pagesets
|
|
|
|
* @idx - pointer to current page index
|
|
|
|
* @pages - number of pages to dump
|
|
|
|
* @sets - current number of pagesset
|
|
|
|
*
|
|
|
|
* This routine flushes out accumuated pages.
|
|
|
|
*
|
|
|
|
* To insure an even number of sets the
|
|
|
|
* code may add a filler.
|
|
|
|
*
|
|
|
|
* This can happen with when pages is not
|
|
|
|
* a power of 2 or pages is a power of 2
|
|
|
|
* less than the maximum pages.
|
|
|
|
*
|
|
|
|
* Return:
|
|
|
|
* The new number of sets
|
|
|
|
*/
|
|
|
|
|
|
|
|
static u32 tid_flush_pages(struct tid_rdma_pageset *list,
|
|
|
|
u32 *idx, u32 pages, u32 sets)
|
|
|
|
{
|
|
|
|
while (pages) {
|
|
|
|
u32 maxpages = pages;
|
|
|
|
|
|
|
|
if (maxpages > MAX_EXPECTED_PAGES)
|
|
|
|
maxpages = MAX_EXPECTED_PAGES;
|
|
|
|
else if (!is_power_of_2(maxpages))
|
|
|
|
maxpages = rounddown_pow_of_two(maxpages);
|
|
|
|
list[sets].idx = *idx;
|
|
|
|
list[sets++].count = maxpages;
|
|
|
|
*idx += maxpages;
|
|
|
|
pages -= maxpages;
|
|
|
|
}
|
|
|
|
/* might need a filler */
|
|
|
|
if (sets & 1)
|
|
|
|
list[sets++].count = 0;
|
|
|
|
return sets;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* tid_rdma_find_phys_blocks_8k - get groups base on mr info
|
|
|
|
* @pages - pointer to an array of page structs
|
|
|
|
* @npages - number of pages
|
|
|
|
* @list - page set array to return
|
|
|
|
*
|
|
|
|
* This routine parses an array of pages to compute pagesets
|
|
|
|
* in an 8k compatible way.
|
|
|
|
*
|
|
|
|
* pages are tested two at a time, i, i + 1 for contiguous
|
|
|
|
* pages and i - 1 and i contiguous pages.
|
|
|
|
*
|
|
|
|
* If any condition is false, any accumlated pages are flushed and
|
|
|
|
* v0,v1 are emitted as separate PAGE_SIZE pagesets
|
|
|
|
*
|
|
|
|
* Otherwise, the current 8k is totaled for a future flush.
|
|
|
|
*
|
|
|
|
* Return:
|
|
|
|
* The number of pagesets
|
|
|
|
* list set with the returned number of pagesets
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
static u32 tid_rdma_find_phys_blocks_8k(struct tid_rdma_flow *flow,
|
|
|
|
struct page **pages,
|
|
|
|
u32 npages,
|
|
|
|
struct tid_rdma_pageset *list)
|
|
|
|
{
|
|
|
|
u32 idx, sets = 0, i;
|
|
|
|
u32 pagecnt = 0;
|
|
|
|
void *v0, *v1, *vm1;
|
|
|
|
|
|
|
|
if (!npages)
|
|
|
|
return 0;
|
|
|
|
for (idx = 0, i = 0, vm1 = NULL; i < npages; i += 2) {
|
|
|
|
/* get a new v0 */
|
|
|
|
v0 = page_address(pages[i]);
|
2019-01-24 11:30:28 +08:00
|
|
|
trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 0, v0);
|
2019-01-24 11:30:07 +08:00
|
|
|
v1 = i + 1 < npages ?
|
|
|
|
page_address(pages[i + 1]) : NULL;
|
2019-01-24 11:30:28 +08:00
|
|
|
trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 1, v1);
|
2019-01-24 11:30:07 +08:00
|
|
|
/* compare i, i + 1 vaddr */
|
|
|
|
if (v1 != (v0 + PAGE_SIZE)) {
|
|
|
|
/* flush out pages */
|
|
|
|
sets = tid_flush_pages(list, &idx, pagecnt, sets);
|
|
|
|
/* output v0,v1 as two pagesets */
|
|
|
|
list[sets].idx = idx++;
|
|
|
|
list[sets++].count = 1;
|
|
|
|
if (v1) {
|
|
|
|
list[sets].count = 1;
|
|
|
|
list[sets++].idx = idx++;
|
|
|
|
} else {
|
|
|
|
list[sets++].count = 0;
|
|
|
|
}
|
|
|
|
vm1 = NULL;
|
|
|
|
pagecnt = 0;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
/* i,i+1 consecutive, look at i-1,i */
|
|
|
|
if (vm1 && v0 != (vm1 + PAGE_SIZE)) {
|
|
|
|
/* flush out pages */
|
|
|
|
sets = tid_flush_pages(list, &idx, pagecnt, sets);
|
|
|
|
pagecnt = 0;
|
|
|
|
}
|
|
|
|
/* pages will always be a multiple of 8k */
|
|
|
|
pagecnt += 2;
|
|
|
|
/* save i-1 */
|
|
|
|
vm1 = v1;
|
|
|
|
/* move to next pair */
|
|
|
|
}
|
|
|
|
/* dump residual pages at end */
|
|
|
|
sets = tid_flush_pages(list, &idx, npages - idx, sets);
|
|
|
|
/* by design cannot be odd sets */
|
|
|
|
WARN_ON(sets & 1);
|
|
|
|
return sets;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Find pages for one segment of a sge array represented by @ss. The function
|
|
|
|
* does not check the sge, the sge must have been checked for alignment with a
|
|
|
|
* prior call to hfi1_kern_trdma_ok. Other sge checking is done as part of
|
|
|
|
* rvt_lkey_ok and rvt_rkey_ok. Also, the function only modifies the local sge
|
|
|
|
* copy maintained in @ss->sge, the original sge is not modified.
|
|
|
|
*
|
|
|
|
* Unlike IB RDMA WRITE, we can't decrement ss->num_sge here because we are not
|
|
|
|
* releasing the MR reference count at the same time. Otherwise, we'll "leak"
|
|
|
|
* references to the MR. This difference requires that we keep track of progress
|
|
|
|
* into the sg_list. This is done by the cur_seg cursor in the tid_rdma_request
|
|
|
|
* structure.
|
|
|
|
*/
|
|
|
|
static u32 kern_find_pages(struct tid_rdma_flow *flow,
|
|
|
|
struct page **pages,
|
|
|
|
struct rvt_sge_state *ss, bool *last)
|
|
|
|
{
|
|
|
|
struct tid_rdma_request *req = flow->req;
|
|
|
|
struct rvt_sge *sge = &ss->sge;
|
|
|
|
u32 length = flow->req->seg_len;
|
|
|
|
u32 len = PAGE_SIZE;
|
|
|
|
u32 i = 0;
|
|
|
|
|
|
|
|
while (length && req->isge < ss->num_sge) {
|
|
|
|
pages[i++] = virt_to_page(sge->vaddr);
|
|
|
|
|
|
|
|
sge->vaddr += len;
|
|
|
|
sge->length -= len;
|
|
|
|
sge->sge_length -= len;
|
|
|
|
if (!sge->sge_length) {
|
|
|
|
if (++req->isge < ss->num_sge)
|
|
|
|
*sge = ss->sg_list[req->isge - 1];
|
|
|
|
} else if (sge->length == 0 && sge->mr->lkey) {
|
|
|
|
if (++sge->n >= RVT_SEGSZ) {
|
|
|
|
++sge->m;
|
|
|
|
sge->n = 0;
|
|
|
|
}
|
|
|
|
sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
|
|
|
|
sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
|
|
|
|
}
|
|
|
|
length -= len;
|
|
|
|
}
|
|
|
|
|
|
|
|
flow->length = flow->req->seg_len - length;
|
|
|
|
*last = req->isge == ss->num_sge ? false : true;
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void dma_unmap_flow(struct tid_rdma_flow *flow)
|
|
|
|
{
|
|
|
|
struct hfi1_devdata *dd;
|
|
|
|
int i;
|
|
|
|
struct tid_rdma_pageset *pset;
|
|
|
|
|
|
|
|
dd = flow->req->rcd->dd;
|
|
|
|
for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
|
|
|
|
i++, pset++) {
|
|
|
|
if (pset->count && pset->addr) {
|
|
|
|
dma_unmap_page(&dd->pcidev->dev,
|
|
|
|
pset->addr,
|
|
|
|
PAGE_SIZE * pset->count,
|
|
|
|
DMA_FROM_DEVICE);
|
|
|
|
pset->mapped = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int dma_map_flow(struct tid_rdma_flow *flow, struct page **pages)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
struct hfi1_devdata *dd = flow->req->rcd->dd;
|
|
|
|
struct tid_rdma_pageset *pset;
|
|
|
|
|
|
|
|
for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
|
|
|
|
i++, pset++) {
|
|
|
|
if (pset->count) {
|
|
|
|
pset->addr = dma_map_page(&dd->pcidev->dev,
|
|
|
|
pages[pset->idx],
|
|
|
|
0,
|
|
|
|
PAGE_SIZE * pset->count,
|
|
|
|
DMA_FROM_DEVICE);
|
|
|
|
|
|
|
|
if (dma_mapping_error(&dd->pcidev->dev, pset->addr)) {
|
|
|
|
dma_unmap_flow(flow);
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
pset->mapped = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool dma_mapped(struct tid_rdma_flow *flow)
|
|
|
|
{
|
|
|
|
return !!flow->pagesets[0].mapped;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Get pages pointers and identify contiguous physical memory chunks for a
|
|
|
|
* segment. All segments are of length flow->req->seg_len.
|
|
|
|
*/
|
|
|
|
static int kern_get_phys_blocks(struct tid_rdma_flow *flow,
|
|
|
|
struct page **pages,
|
|
|
|
struct rvt_sge_state *ss, bool *last)
|
|
|
|
{
|
|
|
|
u8 npages;
|
|
|
|
|
|
|
|
/* Reuse previously computed pagesets, if any */
|
|
|
|
if (flow->npagesets) {
|
2019-01-24 11:30:28 +08:00
|
|
|
trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head,
|
|
|
|
flow);
|
2019-01-24 11:30:07 +08:00
|
|
|
if (!dma_mapped(flow))
|
|
|
|
return dma_map_flow(flow, pages);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
npages = kern_find_pages(flow, pages, ss, last);
|
|
|
|
|
|
|
|
if (flow->req->qp->pmtu == enum_to_mtu(OPA_MTU_4096))
|
|
|
|
flow->npagesets =
|
|
|
|
tid_rdma_find_phys_blocks_4k(flow, pages, npages,
|
|
|
|
flow->pagesets);
|
|
|
|
else
|
|
|
|
flow->npagesets =
|
|
|
|
tid_rdma_find_phys_blocks_8k(flow, pages, npages,
|
|
|
|
flow->pagesets);
|
|
|
|
|
|
|
|
return dma_map_flow(flow, pages);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void kern_add_tid_node(struct tid_rdma_flow *flow,
|
|
|
|
struct hfi1_ctxtdata *rcd, char *s,
|
|
|
|
struct tid_group *grp, u8 cnt)
|
|
|
|
{
|
|
|
|
struct kern_tid_node *node = &flow->tnode[flow->tnode_cnt++];
|
|
|
|
|
|
|
|
WARN_ON_ONCE(flow->tnode_cnt >=
|
|
|
|
(TID_RDMA_MAX_SEGMENT_SIZE >> PAGE_SHIFT));
|
|
|
|
if (WARN_ON_ONCE(cnt & 1))
|
|
|
|
dd_dev_err(rcd->dd,
|
|
|
|
"unexpected odd allocation cnt %u map 0x%x used %u",
|
|
|
|
cnt, grp->map, grp->used);
|
|
|
|
|
|
|
|
node->grp = grp;
|
|
|
|
node->map = grp->map;
|
|
|
|
node->cnt = cnt;
|
2019-01-24 11:30:28 +08:00
|
|
|
trace_hfi1_tid_node_add(flow->req->qp, s, flow->tnode_cnt - 1,
|
|
|
|
grp->base, grp->map, grp->used, cnt);
|
2019-01-24 11:30:07 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Try to allocate pageset_count TID's from TID groups for a context
|
|
|
|
*
|
|
|
|
* This function allocates TID's without moving groups between lists or
|
|
|
|
* modifying grp->map. This is done as follows, being cogizant of the lists
|
|
|
|
* between which the TID groups will move:
|
|
|
|
* 1. First allocate complete groups of 8 TID's since this is more efficient,
|
|
|
|
* these groups will move from group->full without affecting used
|
|
|
|
* 2. If more TID's are needed allocate from used (will move from used->full or
|
|
|
|
* stay in used)
|
|
|
|
* 3. If we still don't have the required number of TID's go back and look again
|
|
|
|
* at a complete group (will move from group->used)
|
|
|
|
*/
|
|
|
|
static int kern_alloc_tids(struct tid_rdma_flow *flow)
|
|
|
|
{
|
|
|
|
struct hfi1_ctxtdata *rcd = flow->req->rcd;
|
|
|
|
struct hfi1_devdata *dd = rcd->dd;
|
|
|
|
u32 ngroups, pageidx = 0;
|
|
|
|
struct tid_group *group = NULL, *used;
|
|
|
|
u8 use;
|
|
|
|
|
|
|
|
flow->tnode_cnt = 0;
|
|
|
|
ngroups = flow->npagesets / dd->rcv_entries.group_size;
|
|
|
|
if (!ngroups)
|
|
|
|
goto used_list;
|
|
|
|
|
|
|
|
/* First look at complete groups */
|
|
|
|
list_for_each_entry(group, &rcd->tid_group_list.list, list) {
|
|
|
|
kern_add_tid_node(flow, rcd, "complete groups", group,
|
|
|
|
group->size);
|
|
|
|
|
|
|
|
pageidx += group->size;
|
|
|
|
if (!--ngroups)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (pageidx >= flow->npagesets)
|
|
|
|
goto ok;
|
|
|
|
|
|
|
|
used_list:
|
|
|
|
/* Now look at partially used groups */
|
|
|
|
list_for_each_entry(used, &rcd->tid_used_list.list, list) {
|
|
|
|
use = min_t(u32, flow->npagesets - pageidx,
|
|
|
|
used->size - used->used);
|
|
|
|
kern_add_tid_node(flow, rcd, "used groups", used, use);
|
|
|
|
|
|
|
|
pageidx += use;
|
|
|
|
if (pageidx >= flow->npagesets)
|
|
|
|
goto ok;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Look again at a complete group, continuing from where we left.
|
|
|
|
* However, if we are at the head, we have reached the end of the
|
|
|
|
* complete groups list from the first loop above
|
|
|
|
*/
|
|
|
|
if (group && &group->list == &rcd->tid_group_list.list)
|
|
|
|
goto bail_eagain;
|
|
|
|
group = list_prepare_entry(group, &rcd->tid_group_list.list,
|
|
|
|
list);
|
|
|
|
if (list_is_last(&group->list, &rcd->tid_group_list.list))
|
|
|
|
goto bail_eagain;
|
|
|
|
group = list_next_entry(group, list);
|
|
|
|
use = min_t(u32, flow->npagesets - pageidx, group->size);
|
|
|
|
kern_add_tid_node(flow, rcd, "complete continue", group, use);
|
|
|
|
pageidx += use;
|
|
|
|
if (pageidx >= flow->npagesets)
|
|
|
|
goto ok;
|
|
|
|
bail_eagain:
|
2019-01-24 11:30:28 +08:00
|
|
|
trace_hfi1_msg_alloc_tids(flow->req->qp, " insufficient tids: needed ",
|
|
|
|
(u64)flow->npagesets);
|
2019-01-24 11:30:07 +08:00
|
|
|
return -EAGAIN;
|
|
|
|
ok:
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void kern_program_rcv_group(struct tid_rdma_flow *flow, int grp_num,
|
|
|
|
u32 *pset_idx)
|
|
|
|
{
|
|
|
|
struct hfi1_ctxtdata *rcd = flow->req->rcd;
|
|
|
|
struct hfi1_devdata *dd = rcd->dd;
|
|
|
|
struct kern_tid_node *node = &flow->tnode[grp_num];
|
|
|
|
struct tid_group *grp = node->grp;
|
|
|
|
struct tid_rdma_pageset *pset;
|
|
|
|
u32 pmtu_pg = flow->req->qp->pmtu >> PAGE_SHIFT;
|
|
|
|
u32 rcventry, npages = 0, pair = 0, tidctrl;
|
|
|
|
u8 i, cnt = 0;
|
|
|
|
|
|
|
|
for (i = 0; i < grp->size; i++) {
|
|
|
|
rcventry = grp->base + i;
|
|
|
|
|
|
|
|
if (node->map & BIT(i) || cnt >= node->cnt) {
|
|
|
|
rcv_array_wc_fill(dd, rcventry);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
pset = &flow->pagesets[(*pset_idx)++];
|
|
|
|
if (pset->count) {
|
|
|
|
hfi1_put_tid(dd, rcventry, PT_EXPECTED,
|
|
|
|
pset->addr, trdma_pset_order(pset));
|
|
|
|
} else {
|
|
|
|
hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);
|
|
|
|
}
|
|
|
|
npages += pset->count;
|
|
|
|
|
|
|
|
rcventry -= rcd->expected_base;
|
|
|
|
tidctrl = pair ? 0x3 : rcventry & 0x1 ? 0x2 : 0x1;
|
|
|
|
/*
|
|
|
|
* A single TID entry will be used to use a rcvarr pair (with
|
|
|
|
* tidctrl 0x3), if ALL these are true (a) the bit pos is even
|
|
|
|
* (b) the group map shows current and the next bits as free
|
|
|
|
* indicating two consecutive rcvarry entries are available (c)
|
|
|
|
* we actually need 2 more entries
|
|
|
|
*/
|
|
|
|
pair = !(i & 0x1) && !((node->map >> i) & 0x3) &&
|
|
|
|
node->cnt >= cnt + 2;
|
|
|
|
if (!pair) {
|
|
|
|
if (!pset->count)
|
|
|
|
tidctrl = 0x1;
|
|
|
|
flow->tid_entry[flow->tidcnt++] =
|
|
|
|
EXP_TID_SET(IDX, rcventry >> 1) |
|
|
|
|
EXP_TID_SET(CTRL, tidctrl) |
|
|
|
|
EXP_TID_SET(LEN, npages);
|
2019-01-24 11:30:28 +08:00
|
|
|
trace_hfi1_tid_entry_alloc(/* entry */
|
|
|
|
flow->req->qp, flow->tidcnt - 1,
|
|
|
|
flow->tid_entry[flow->tidcnt - 1]);
|
|
|
|
|
2019-01-24 11:30:07 +08:00
|
|
|
/* Efficient DIV_ROUND_UP(npages, pmtu_pg) */
|
|
|
|
flow->npkts += (npages + pmtu_pg - 1) >> ilog2(pmtu_pg);
|
|
|
|
npages = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (grp->used == grp->size - 1)
|
|
|
|
tid_group_move(grp, &rcd->tid_used_list,
|
|
|
|
&rcd->tid_full_list);
|
|
|
|
else if (!grp->used)
|
|
|
|
tid_group_move(grp, &rcd->tid_group_list,
|
|
|
|
&rcd->tid_used_list);
|
|
|
|
|
|
|
|
grp->used++;
|
|
|
|
grp->map |= BIT(i);
|
|
|
|
cnt++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void kern_unprogram_rcv_group(struct tid_rdma_flow *flow, int grp_num)
|
|
|
|
{
|
|
|
|
struct hfi1_ctxtdata *rcd = flow->req->rcd;
|
|
|
|
struct hfi1_devdata *dd = rcd->dd;
|
|
|
|
struct kern_tid_node *node = &flow->tnode[grp_num];
|
|
|
|
struct tid_group *grp = node->grp;
|
|
|
|
u32 rcventry;
|
|
|
|
u8 i, cnt = 0;
|
|
|
|
|
|
|
|
for (i = 0; i < grp->size; i++) {
|
|
|
|
rcventry = grp->base + i;
|
|
|
|
|
|
|
|
if (node->map & BIT(i) || cnt >= node->cnt) {
|
|
|
|
rcv_array_wc_fill(dd, rcventry);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);
|
|
|
|
|
|
|
|
grp->used--;
|
|
|
|
grp->map &= ~BIT(i);
|
|
|
|
cnt++;
|
|
|
|
|
|
|
|
if (grp->used == grp->size - 1)
|
|
|
|
tid_group_move(grp, &rcd->tid_full_list,
|
|
|
|
&rcd->tid_used_list);
|
|
|
|
else if (!grp->used)
|
|
|
|
tid_group_move(grp, &rcd->tid_used_list,
|
|
|
|
&rcd->tid_group_list);
|
|
|
|
}
|
|
|
|
if (WARN_ON_ONCE(cnt & 1)) {
|
|
|
|
struct hfi1_ctxtdata *rcd = flow->req->rcd;
|
|
|
|
struct hfi1_devdata *dd = rcd->dd;
|
|
|
|
|
|
|
|
dd_dev_err(dd, "unexpected odd free cnt %u map 0x%x used %u",
|
|
|
|
cnt, grp->map, grp->used);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void kern_program_rcvarray(struct tid_rdma_flow *flow)
|
|
|
|
{
|
|
|
|
u32 pset_idx = 0;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
flow->npkts = 0;
|
|
|
|
flow->tidcnt = 0;
|
|
|
|
for (i = 0; i < flow->tnode_cnt; i++)
|
|
|
|
kern_program_rcv_group(flow, i, &pset_idx);
|
2019-01-24 11:30:28 +08:00
|
|
|
trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head, flow);
|
2019-01-24 11:30:07 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* hfi1_kern_exp_rcv_setup() - setup TID's and flow for one segment of a
|
|
|
|
* TID RDMA request
|
|
|
|
*
|
|
|
|
* @req: TID RDMA request for which the segment/flow is being set up
|
|
|
|
* @ss: sge state, maintains state across successive segments of a sge
|
|
|
|
* @last: set to true after the last sge segment has been processed
|
|
|
|
*
|
|
|
|
* This function
|
|
|
|
* (1) finds a free flow entry in the flow circular buffer
|
|
|
|
* (2) finds pages and continuous physical chunks constituing one segment
|
|
|
|
* of an sge
|
|
|
|
* (3) allocates TID group entries for those chunks
|
|
|
|
* (4) programs rcvarray entries in the hardware corresponding to those
|
|
|
|
* TID's
|
|
|
|
* (5) computes a tidarray with formatted TID entries which can be sent
|
|
|
|
* to the sender
|
|
|
|
* (6) Reserves and programs HW flows.
|
|
|
|
* (7) It also manages queing the QP when TID/flow resources are not
|
|
|
|
* available.
|
|
|
|
*
|
|
|
|
* @req points to struct tid_rdma_request of which the segments are a part. The
|
|
|
|
* function uses qp, rcd and seg_len members of @req. In the absence of errors,
|
|
|
|
* req->flow_idx is the index of the flow which has been prepared in this
|
|
|
|
* invocation of function call. With flow = &req->flows[req->flow_idx],
|
|
|
|
* flow->tid_entry contains the TID array which the sender can use for TID RDMA
|
|
|
|
* sends and flow->npkts contains number of packets required to send the
|
|
|
|
* segment.
|
|
|
|
*
|
|
|
|
* hfi1_check_sge_align should be called prior to calling this function and if
|
|
|
|
* it signals error TID RDMA cannot be used for this sge and this function
|
|
|
|
* should not be called.
|
|
|
|
*
|
|
|
|
* For the queuing, caller must hold the flow->req->qp s_lock from the send
|
|
|
|
* engine and the function will procure the exp_lock.
|
|
|
|
*
|
|
|
|
* Return:
|
|
|
|
* The function returns -EAGAIN if sufficient number of TID/flow resources to
|
|
|
|
* map the segment could not be allocated. In this case the function should be
|
|
|
|
* called again with previous arguments to retry the TID allocation. There are
|
|
|
|
* no other error returns. The function returns 0 on success.
|
|
|
|
*/
|
|
|
|
int hfi1_kern_exp_rcv_setup(struct tid_rdma_request *req,
|
|
|
|
struct rvt_sge_state *ss, bool *last)
|
|
|
|
__must_hold(&req->qp->s_lock)
|
|
|
|
{
|
|
|
|
struct tid_rdma_flow *flow = &req->flows[req->setup_head];
|
|
|
|
struct hfi1_ctxtdata *rcd = req->rcd;
|
|
|
|
struct hfi1_qp_priv *qpriv = req->qp->priv;
|
|
|
|
unsigned long flags;
|
|
|
|
struct rvt_qp *fqp;
|
|
|
|
u16 clear_tail = req->clear_tail;
|
|
|
|
|
|
|
|
lockdep_assert_held(&req->qp->s_lock);
|
|
|
|
/*
|
|
|
|
* We return error if either (a) we don't have space in the flow
|
|
|
|
* circular buffer, or (b) we already have max entries in the buffer.
|
|
|
|
* Max entries depend on the type of request we are processing and the
|
|
|
|
* negotiated TID RDMA parameters.
|
|
|
|
*/
|
|
|
|
if (!CIRC_SPACE(req->setup_head, clear_tail, MAX_FLOWS) ||
|
|
|
|
CIRC_CNT(req->setup_head, clear_tail, MAX_FLOWS) >=
|
|
|
|
req->n_flows)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Get pages, identify contiguous physical memory chunks for the segment
|
|
|
|
* If we can not determine a DMA address mapping we will treat it just
|
|
|
|
* like if we ran out of space above.
|
|
|
|
*/
|
|
|
|
if (kern_get_phys_blocks(flow, qpriv->pages, ss, last)) {
|
|
|
|
hfi1_wait_kmem(flow->req->qp);
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_lock_irqsave(&rcd->exp_lock, flags);
|
|
|
|
if (kernel_tid_waiters(rcd, &rcd->rarr_queue, flow->req->qp))
|
|
|
|
goto queue;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* At this point we know the number of pagesets and hence the number of
|
|
|
|
* TID's to map the segment. Allocate the TID's from the TID groups. If
|
|
|
|
* we cannot allocate the required number we exit and try again later
|
|
|
|
*/
|
|
|
|
if (kern_alloc_tids(flow))
|
|
|
|
goto queue;
|
|
|
|
/*
|
|
|
|
* Finally program the TID entries with the pagesets, compute the
|
|
|
|
* tidarray and enable the HW flow
|
|
|
|
*/
|
|
|
|
kern_program_rcvarray(flow);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Setup the flow state with relevant information.
|
|
|
|
* This information is used for tracking the sequence of data packets
|
|
|
|
* for the segment.
|
|
|
|
* The flow is setup here as this is the most accurate time and place
|
|
|
|
* to do so. Doing at a later time runs the risk of the flow data in
|
|
|
|
* qpriv getting out of sync.
|
|
|
|
*/
|
|
|
|
memset(&flow->flow_state, 0x0, sizeof(flow->flow_state));
|
|
|
|
flow->idx = qpriv->flow_state.index;
|
|
|
|
flow->flow_state.generation = qpriv->flow_state.generation;
|
|
|
|
flow->flow_state.spsn = qpriv->flow_state.psn;
|
|
|
|
flow->flow_state.lpsn = flow->flow_state.spsn + flow->npkts - 1;
|
|
|
|
flow->flow_state.r_next_psn =
|
|
|
|
full_flow_psn(flow, flow->flow_state.spsn);
|
|
|
|
qpriv->flow_state.psn += flow->npkts;
|
|
|
|
|
|
|
|
dequeue_tid_waiter(rcd, &rcd->rarr_queue, flow->req->qp);
|
|
|
|
/* get head before dropping lock */
|
|
|
|
fqp = first_qp(rcd, &rcd->rarr_queue);
|
|
|
|
spin_unlock_irqrestore(&rcd->exp_lock, flags);
|
|
|
|
tid_rdma_schedule_tid_wakeup(fqp);
|
|
|
|
|
|
|
|
req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);
|
|
|
|
return 0;
|
|
|
|
queue:
|
|
|
|
queue_qp_for_tid_wait(rcd, &rcd->rarr_queue, flow->req->qp);
|
|
|
|
spin_unlock_irqrestore(&rcd->exp_lock, flags);
|
|
|
|
return -EAGAIN;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hfi1_tid_rdma_reset_flow(struct tid_rdma_flow *flow)
|
|
|
|
{
|
|
|
|
flow->npagesets = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This function is called after one segment has been successfully sent to
|
|
|
|
* release the flow and TID HW/SW resources for that segment. The segments for a
|
|
|
|
* TID RDMA request are setup and cleared in FIFO order which is managed using a
|
|
|
|
* circular buffer.
|
|
|
|
*/
|
|
|
|
int hfi1_kern_exp_rcv_clear(struct tid_rdma_request *req)
|
|
|
|
__must_hold(&req->qp->s_lock)
|
|
|
|
{
|
|
|
|
struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
|
|
|
|
struct hfi1_ctxtdata *rcd = req->rcd;
|
|
|
|
unsigned long flags;
|
|
|
|
int i;
|
|
|
|
struct rvt_qp *fqp;
|
|
|
|
|
|
|
|
lockdep_assert_held(&req->qp->s_lock);
|
|
|
|
/* Exit if we have nothing in the flow circular buffer */
|
|
|
|
if (!CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&rcd->exp_lock, flags);
|
|
|
|
|
|
|
|
for (i = 0; i < flow->tnode_cnt; i++)
|
|
|
|
kern_unprogram_rcv_group(flow, i);
|
|
|
|
/* To prevent double unprogramming */
|
|
|
|
flow->tnode_cnt = 0;
|
|
|
|
/* get head before dropping lock */
|
|
|
|
fqp = first_qp(rcd, &rcd->rarr_queue);
|
|
|
|
spin_unlock_irqrestore(&rcd->exp_lock, flags);
|
|
|
|
|
|
|
|
dma_unmap_flow(flow);
|
|
|
|
|
|
|
|
hfi1_tid_rdma_reset_flow(flow);
|
|
|
|
req->clear_tail = (req->clear_tail + 1) & (MAX_FLOWS - 1);
|
|
|
|
|
|
|
|
if (fqp == req->qp) {
|
|
|
|
__trigger_tid_waiter(fqp);
|
|
|
|
rvt_put_qp(fqp);
|
|
|
|
} else {
|
|
|
|
tid_rdma_schedule_tid_wakeup(fqp);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This function is called to release all the tid entries for
|
|
|
|
* a request.
|
|
|
|
*/
|
|
|
|
void hfi1_kern_exp_rcv_clear_all(struct tid_rdma_request *req)
|
|
|
|
__must_hold(&req->qp->s_lock)
|
|
|
|
{
|
|
|
|
/* Use memory barrier for proper ordering */
|
|
|
|
while (CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS)) {
|
|
|
|
if (hfi1_kern_exp_rcv_clear(req))
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* hfi1_kern_exp_rcv_free_flows - free priviously allocated flow information
|
|
|
|
* @req - the tid rdma request to be cleaned
|
|
|
|
*/
|
|
|
|
static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req)
|
|
|
|
{
|
|
|
|
kfree(req->flows);
|
|
|
|
req->flows = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* __trdma_clean_swqe - clean up for large sized QPs
|
|
|
|
* @qp: the queue patch
|
|
|
|
* @wqe: the send wqe
|
|
|
|
*/
|
|
|
|
void __trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
|
|
|
|
{
|
|
|
|
struct hfi1_swqe_priv *p = wqe->priv;
|
|
|
|
|
|
|
|
hfi1_kern_exp_rcv_free_flows(&p->tid_req);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This can be called at QP create time or in the data path.
|
|
|
|
*/
|
|
|
|
static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
|
|
|
|
gfp_t gfp)
|
|
|
|
{
|
|
|
|
struct tid_rdma_flow *flows;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (likely(req->flows))
|
|
|
|
return 0;
|
|
|
|
flows = kmalloc_node(MAX_FLOWS * sizeof(*flows), gfp,
|
|
|
|
req->rcd->numa_id);
|
|
|
|
if (!flows)
|
|
|
|
return -ENOMEM;
|
|
|
|
/* mini init */
|
|
|
|
for (i = 0; i < MAX_FLOWS; i++) {
|
|
|
|
flows[i].req = req;
|
|
|
|
flows[i].npagesets = 0;
|
|
|
|
flows[i].pagesets[0].mapped = 0;
|
|
|
|
}
|
|
|
|
req->flows = flows;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hfi1_init_trdma_req(struct rvt_qp *qp,
|
|
|
|
struct tid_rdma_request *req)
|
|
|
|
{
|
|
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize various TID RDMA request variables.
|
|
|
|
* These variables are "static", which is why they
|
|
|
|
* can be pre-initialized here before the WRs has
|
|
|
|
* even been submitted.
|
|
|
|
* However, non-NULL values for these variables do not
|
|
|
|
* imply that this WQE has been enabled for TID RDMA.
|
|
|
|
* Drivers should check the WQE's opcode to determine
|
|
|
|
* if a request is a TID RDMA one or not.
|
|
|
|
*/
|
|
|
|
req->qp = qp;
|
|
|
|
req->rcd = qpriv->rcd;
|
|
|
|
}
|
2019-01-24 11:30:18 +08:00
|
|
|
|
|
|
|
u64 hfi1_access_sw_tid_wait(const struct cntr_entry *entry,
|
|
|
|
void *context, int vl, int mode, u64 data)
|
|
|
|
{
|
|
|
|
struct hfi1_devdata *dd = context;
|
|
|
|
|
|
|
|
return dd->verbs_dev.n_tidwait;
|
|
|
|
}
|
2019-01-24 11:30:40 +08:00
|
|
|
|
|
|
|
/* TID RDMA READ functions */
|
|
|
|
u32 hfi1_build_tid_rdma_read_packet(struct rvt_swqe *wqe,
|
|
|
|
struct ib_other_headers *ohdr, u32 *bth1,
|
|
|
|
u32 *bth2, u32 *len)
|
|
|
|
{
|
|
|
|
struct tid_rdma_request *req = wqe_to_tid_req(wqe);
|
|
|
|
struct tid_rdma_flow *flow = &req->flows[req->flow_idx];
|
|
|
|
struct rvt_qp *qp = req->qp;
|
|
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
|
|
struct hfi1_swqe_priv *wpriv = wqe->priv;
|
|
|
|
struct tid_rdma_read_req *rreq = &ohdr->u.tid_rdma.r_req;
|
|
|
|
struct tid_rdma_params *remote;
|
|
|
|
u32 req_len = 0;
|
|
|
|
void *req_addr = NULL;
|
|
|
|
|
|
|
|
/* This is the IB psn used to send the request */
|
|
|
|
*bth2 = mask_psn(flow->flow_state.ib_spsn + flow->pkt);
|
|
|
|
|
|
|
|
/* TID Entries for TID RDMA READ payload */
|
|
|
|
req_addr = &flow->tid_entry[flow->tid_idx];
|
|
|
|
req_len = sizeof(*flow->tid_entry) *
|
|
|
|
(flow->tidcnt - flow->tid_idx);
|
|
|
|
|
|
|
|
memset(&ohdr->u.tid_rdma.r_req, 0, sizeof(ohdr->u.tid_rdma.r_req));
|
|
|
|
wpriv->ss.sge.vaddr = req_addr;
|
|
|
|
wpriv->ss.sge.sge_length = req_len;
|
|
|
|
wpriv->ss.sge.length = wpriv->ss.sge.sge_length;
|
|
|
|
/*
|
|
|
|
* We can safely zero these out. Since the first SGE covers the
|
|
|
|
* entire packet, nothing else should even look at the MR.
|
|
|
|
*/
|
|
|
|
wpriv->ss.sge.mr = NULL;
|
|
|
|
wpriv->ss.sge.m = 0;
|
|
|
|
wpriv->ss.sge.n = 0;
|
|
|
|
|
|
|
|
wpriv->ss.sg_list = NULL;
|
|
|
|
wpriv->ss.total_len = wpriv->ss.sge.sge_length;
|
|
|
|
wpriv->ss.num_sge = 1;
|
|
|
|
|
|
|
|
/* Construct the TID RDMA READ REQ packet header */
|
|
|
|
rcu_read_lock();
|
|
|
|
remote = rcu_dereference(qpriv->tid_rdma.remote);
|
|
|
|
|
|
|
|
KDETH_RESET(rreq->kdeth0, KVER, 0x1);
|
|
|
|
KDETH_RESET(rreq->kdeth1, JKEY, remote->jkey);
|
|
|
|
rreq->reth.vaddr = cpu_to_be64(wqe->rdma_wr.remote_addr +
|
|
|
|
req->cur_seg * req->seg_len + flow->sent);
|
|
|
|
rreq->reth.rkey = cpu_to_be32(wqe->rdma_wr.rkey);
|
|
|
|
rreq->reth.length = cpu_to_be32(*len);
|
|
|
|
rreq->tid_flow_psn =
|
|
|
|
cpu_to_be32((flow->flow_state.generation <<
|
|
|
|
HFI1_KDETH_BTH_SEQ_SHIFT) |
|
|
|
|
((flow->flow_state.spsn + flow->pkt) &
|
|
|
|
HFI1_KDETH_BTH_SEQ_MASK));
|
|
|
|
rreq->tid_flow_qp =
|
|
|
|
cpu_to_be32(qpriv->tid_rdma.local.qp |
|
|
|
|
((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
|
|
|
|
TID_RDMA_DESTQP_FLOW_SHIFT) |
|
|
|
|
qpriv->rcd->ctxt);
|
|
|
|
rreq->verbs_qp = cpu_to_be32(qp->remote_qpn);
|
|
|
|
*bth1 &= ~RVT_QPN_MASK;
|
|
|
|
*bth1 |= remote->qp;
|
|
|
|
*bth2 |= IB_BTH_REQ_ACK;
|
|
|
|
rcu_read_unlock();
|
|
|
|
|
|
|
|
/* We are done with this segment */
|
|
|
|
flow->sent += *len;
|
|
|
|
req->cur_seg++;
|
|
|
|
qp->s_state = TID_OP(READ_REQ);
|
|
|
|
req->ack_pending++;
|
|
|
|
req->flow_idx = (req->flow_idx + 1) & (MAX_FLOWS - 1);
|
|
|
|
qpriv->pending_tid_r_segs++;
|
|
|
|
qp->s_num_rd_atomic++;
|
|
|
|
|
|
|
|
/* Set the TID RDMA READ request payload size */
|
|
|
|
*len = req_len;
|
|
|
|
|
|
|
|
return sizeof(ohdr->u.tid_rdma.r_req) / sizeof(u32);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* @len: contains the data length to read upon entry and the read request
|
|
|
|
* payload length upon exit.
|
|
|
|
*/
|
|
|
|
u32 hfi1_build_tid_rdma_read_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
|
|
|
|
struct ib_other_headers *ohdr, u32 *bth1,
|
|
|
|
u32 *bth2, u32 *len)
|
|
|
|
__must_hold(&qp->s_lock)
|
|
|
|
{
|
|
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
|
|
struct tid_rdma_request *req = wqe_to_tid_req(wqe);
|
|
|
|
struct tid_rdma_flow *flow = NULL;
|
|
|
|
u32 hdwords = 0;
|
|
|
|
bool last;
|
|
|
|
bool retry = true;
|
|
|
|
u32 npkts = rvt_div_round_up_mtu(qp, *len);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check sync conditions. Make sure that there are no pending
|
|
|
|
* segments before freeing the flow.
|
|
|
|
*/
|
|
|
|
sync_check:
|
|
|
|
if (req->state == TID_REQUEST_SYNC) {
|
|
|
|
if (qpriv->pending_tid_r_segs)
|
|
|
|
goto done;
|
|
|
|
|
|
|
|
hfi1_kern_clear_hw_flow(req->rcd, qp);
|
|
|
|
req->state = TID_REQUEST_ACTIVE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the request for this segment is resent, the tid resources should
|
|
|
|
* have been allocated before. In this case, req->flow_idx should
|
|
|
|
* fall behind req->setup_head.
|
|
|
|
*/
|
|
|
|
if (req->flow_idx == req->setup_head) {
|
|
|
|
retry = false;
|
|
|
|
if (req->state == TID_REQUEST_RESEND) {
|
|
|
|
/*
|
|
|
|
* This is the first new segment for a request whose
|
|
|
|
* earlier segments have been re-sent. We need to
|
|
|
|
* set up the sge pointer correctly.
|
|
|
|
*/
|
|
|
|
restart_sge(&qp->s_sge, wqe, req->s_next_psn,
|
|
|
|
qp->pmtu);
|
|
|
|
req->isge = 0;
|
|
|
|
req->state = TID_REQUEST_ACTIVE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check sync. The last PSN of each generation is reserved for
|
|
|
|
* RESYNC.
|
|
|
|
*/
|
|
|
|
if ((qpriv->flow_state.psn + npkts) > MAX_TID_FLOW_PSN - 1) {
|
|
|
|
req->state = TID_REQUEST_SYNC;
|
|
|
|
goto sync_check;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Allocate the flow if not yet */
|
|
|
|
if (hfi1_kern_setup_hw_flow(qpriv->rcd, qp))
|
|
|
|
goto done;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The following call will advance req->setup_head after
|
|
|
|
* allocating the tid entries.
|
|
|
|
*/
|
|
|
|
if (hfi1_kern_exp_rcv_setup(req, &qp->s_sge, &last)) {
|
|
|
|
req->state = TID_REQUEST_QUEUED;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We don't have resources for this segment. The QP has
|
|
|
|
* already been queued.
|
|
|
|
*/
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* req->flow_idx should only be one slot behind req->setup_head */
|
|
|
|
flow = &req->flows[req->flow_idx];
|
|
|
|
flow->pkt = 0;
|
|
|
|
flow->tid_idx = 0;
|
|
|
|
flow->sent = 0;
|
|
|
|
if (!retry) {
|
|
|
|
/* Set the first and last IB PSN for the flow in use.*/
|
|
|
|
flow->flow_state.ib_spsn = req->s_next_psn;
|
|
|
|
flow->flow_state.ib_lpsn =
|
|
|
|
flow->flow_state.ib_spsn + flow->npkts - 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Calculate the next segment start psn.*/
|
|
|
|
req->s_next_psn += flow->npkts;
|
|
|
|
|
|
|
|
/* Build the packet header */
|
|
|
|
hdwords = hfi1_build_tid_rdma_read_packet(wqe, ohdr, bth1, bth2, len);
|
|
|
|
done:
|
|
|
|
return hdwords;
|
|
|
|
}
|
2019-01-24 11:31:02 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Validate and accept the TID RDMA READ request parameters.
|
|
|
|
* Return 0 if the request is accepted successfully;
|
|
|
|
* Return 1 otherwise.
|
|
|
|
*/
|
|
|
|
static int tid_rdma_rcv_read_request(struct rvt_qp *qp,
|
|
|
|
struct rvt_ack_entry *e,
|
|
|
|
struct hfi1_packet *packet,
|
|
|
|
struct ib_other_headers *ohdr,
|
|
|
|
u32 bth0, u32 psn, u64 vaddr, u32 len)
|
|
|
|
{
|
|
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
|
|
struct tid_rdma_request *req;
|
|
|
|
struct tid_rdma_flow *flow;
|
|
|
|
u32 flow_psn, i, tidlen = 0, pktlen, tlen;
|
|
|
|
|
|
|
|
req = ack_to_tid_req(e);
|
|
|
|
|
|
|
|
/* Validate the payload first */
|
|
|
|
flow = &req->flows[req->setup_head];
|
|
|
|
|
|
|
|
/* payload length = packet length - (header length + ICRC length) */
|
|
|
|
pktlen = packet->tlen - (packet->hlen + 4);
|
|
|
|
if (pktlen > sizeof(flow->tid_entry))
|
|
|
|
return 1;
|
|
|
|
memcpy(flow->tid_entry, packet->ebuf, pktlen);
|
|
|
|
flow->tidcnt = pktlen / sizeof(*flow->tid_entry);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Walk the TID_ENTRY list to make sure we have enough space for a
|
|
|
|
* complete segment. Also calculate the number of required packets.
|
|
|
|
*/
|
|
|
|
flow->npkts = rvt_div_round_up_mtu(qp, len);
|
|
|
|
for (i = 0; i < flow->tidcnt; i++) {
|
|
|
|
tlen = EXP_TID_GET(flow->tid_entry[i], LEN);
|
|
|
|
if (!tlen)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* For tid pair (tidctr == 3), the buffer size of the pair
|
|
|
|
* should be the sum of the buffer size described by each
|
|
|
|
* tid entry. However, only the first entry needs to be
|
|
|
|
* specified in the request (see WFR HAS Section 8.5.7.1).
|
|
|
|
*/
|
|
|
|
tidlen += tlen;
|
|
|
|
}
|
|
|
|
if (tidlen * PAGE_SIZE < len)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
/* Empty the flow array */
|
|
|
|
req->clear_tail = req->setup_head;
|
|
|
|
flow->pkt = 0;
|
|
|
|
flow->tid_idx = 0;
|
|
|
|
flow->tid_offset = 0;
|
|
|
|
flow->sent = 0;
|
|
|
|
flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_qp);
|
|
|
|
flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) &
|
|
|
|
TID_RDMA_DESTQP_FLOW_MASK;
|
|
|
|
flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_psn));
|
|
|
|
flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
|
|
|
|
flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK;
|
|
|
|
flow->length = len;
|
|
|
|
|
|
|
|
flow->flow_state.lpsn = flow->flow_state.spsn +
|
|
|
|
flow->npkts - 1;
|
|
|
|
flow->flow_state.ib_spsn = psn;
|
|
|
|
flow->flow_state.ib_lpsn = flow->flow_state.ib_spsn + flow->npkts - 1;
|
|
|
|
|
|
|
|
/* Set the initial flow index to the current flow. */
|
|
|
|
req->flow_idx = req->setup_head;
|
|
|
|
|
|
|
|
/* advance circular buffer head */
|
|
|
|
req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Compute last PSN for request.
|
|
|
|
*/
|
|
|
|
e->opcode = (bth0 >> 24) & 0xff;
|
|
|
|
e->psn = psn;
|
|
|
|
e->lpsn = psn + flow->npkts - 1;
|
|
|
|
e->sent = 0;
|
|
|
|
|
|
|
|
req->n_flows = qpriv->tid_rdma.local.max_read;
|
|
|
|
req->state = TID_REQUEST_ACTIVE;
|
|
|
|
req->cur_seg = 0;
|
|
|
|
req->comp_seg = 0;
|
|
|
|
req->ack_seg = 0;
|
|
|
|
req->isge = 0;
|
|
|
|
req->seg_len = qpriv->tid_rdma.local.max_len;
|
|
|
|
req->total_len = len;
|
|
|
|
req->total_segs = 1;
|
|
|
|
req->r_flow_psn = e->psn;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int tid_rdma_rcv_error(struct hfi1_packet *packet,
|
|
|
|
struct ib_other_headers *ohdr,
|
|
|
|
struct rvt_qp *qp, u32 psn, int diff)
|
|
|
|
{
|
|
|
|
struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
|
|
|
|
struct hfi1_ctxtdata *rcd = ((struct hfi1_qp_priv *)qp->priv)->rcd;
|
|
|
|
struct rvt_ack_entry *e;
|
|
|
|
struct tid_rdma_request *req;
|
|
|
|
unsigned long flags;
|
|
|
|
u8 prev;
|
|
|
|
bool old_req;
|
|
|
|
|
|
|
|
if (diff > 0) {
|
|
|
|
/* sequence error */
|
|
|
|
if (!qp->r_nak_state) {
|
|
|
|
ibp->rvp.n_rc_seqnak++;
|
|
|
|
qp->r_nak_state = IB_NAK_PSN_ERROR;
|
|
|
|
qp->r_ack_psn = qp->r_psn;
|
|
|
|
rc_defered_ack(rcd, qp);
|
|
|
|
}
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
|
|
|
|
ibp->rvp.n_rc_dupreq++;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&qp->s_lock, flags);
|
|
|
|
e = find_prev_entry(qp, psn, &prev, NULL, &old_req);
|
|
|
|
if (!e || e->opcode != TID_OP(READ_REQ))
|
|
|
|
goto unlock;
|
|
|
|
|
|
|
|
req = ack_to_tid_req(e);
|
|
|
|
req->r_flow_psn = psn;
|
|
|
|
|
|
|
|
if (e->opcode == TID_OP(READ_REQ)) {
|
|
|
|
struct ib_reth *reth;
|
|
|
|
u32 offset;
|
|
|
|
u32 len;
|
|
|
|
u32 rkey;
|
|
|
|
u64 vaddr;
|
|
|
|
int ok;
|
|
|
|
u32 bth0;
|
|
|
|
|
|
|
|
reth = &ohdr->u.tid_rdma.r_req.reth;
|
|
|
|
/*
|
|
|
|
* The requester always restarts from the start of the original
|
|
|
|
* request.
|
|
|
|
*/
|
|
|
|
offset = delta_psn(psn, e->psn) * qp->pmtu;
|
|
|
|
len = be32_to_cpu(reth->length);
|
|
|
|
if (psn != e->psn || len != req->total_len)
|
|
|
|
goto unlock;
|
|
|
|
|
|
|
|
if (e->rdma_sge.mr) {
|
|
|
|
rvt_put_mr(e->rdma_sge.mr);
|
|
|
|
e->rdma_sge.mr = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
rkey = be32_to_cpu(reth->rkey);
|
|
|
|
vaddr = get_ib_reth_vaddr(reth);
|
|
|
|
|
|
|
|
qp->r_len = len;
|
|
|
|
ok = rvt_rkey_ok(qp, &e->rdma_sge, len, vaddr, rkey,
|
|
|
|
IB_ACCESS_REMOTE_READ);
|
|
|
|
if (unlikely(!ok))
|
|
|
|
goto unlock;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If all the response packets for the current request have
|
|
|
|
* been sent out and this request is complete (old_request
|
|
|
|
* == false) and the TID flow may be unusable (the
|
|
|
|
* req->clear_tail is advanced). However, when an earlier
|
|
|
|
* request is received, this request will not be complete any
|
|
|
|
* more (qp->s_tail_ack_queue is moved back, see below).
|
|
|
|
* Consequently, we need to update the TID flow info everytime
|
|
|
|
* a duplicate request is received.
|
|
|
|
*/
|
|
|
|
bth0 = be32_to_cpu(ohdr->bth[0]);
|
|
|
|
if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn,
|
|
|
|
vaddr, len))
|
|
|
|
goto unlock;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* True if the request is already scheduled (between
|
|
|
|
* qp->s_tail_ack_queue and qp->r_head_ack_queue);
|
|
|
|
*/
|
|
|
|
if (old_req)
|
|
|
|
goto unlock;
|
|
|
|
}
|
|
|
|
/* Re-process old requests.*/
|
|
|
|
qp->s_tail_ack_queue = prev;
|
|
|
|
/*
|
|
|
|
* Since the qp->s_tail_ack_queue is modified, the
|
|
|
|
* qp->s_ack_state must be changed to re-initialize
|
|
|
|
* qp->s_ack_rdma_sge; Otherwise, we will end up in
|
|
|
|
* wrong memory region.
|
|
|
|
*/
|
|
|
|
qp->s_ack_state = OP(ACKNOWLEDGE);
|
|
|
|
qp->r_state = e->opcode;
|
|
|
|
qp->r_nak_state = 0;
|
|
|
|
qp->s_flags |= RVT_S_RESP_PENDING;
|
|
|
|
hfi1_schedule_send(qp);
|
|
|
|
unlock:
|
|
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
|
|
done:
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
void hfi1_rc_rcv_tid_rdma_read_req(struct hfi1_packet *packet)
|
|
|
|
{
|
|
|
|
/* HANDLER FOR TID RDMA READ REQUEST packet (Responder side)*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* 1. Verify TID RDMA READ REQ as per IB_OPCODE_RC_RDMA_READ
|
|
|
|
* (see hfi1_rc_rcv())
|
|
|
|
* 2. Put TID RDMA READ REQ into the response queueu (s_ack_queue)
|
|
|
|
* - Setup struct tid_rdma_req with request info
|
|
|
|
* - Initialize struct tid_rdma_flow info;
|
|
|
|
* - Copy TID entries;
|
|
|
|
* 3. Set the qp->s_ack_state.
|
|
|
|
* 4. Set RVT_S_RESP_PENDING in s_flags.
|
|
|
|
* 5. Kick the send engine (hfi1_schedule_send())
|
|
|
|
*/
|
|
|
|
struct hfi1_ctxtdata *rcd = packet->rcd;
|
|
|
|
struct rvt_qp *qp = packet->qp;
|
|
|
|
struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
|
|
|
|
struct ib_other_headers *ohdr = packet->ohdr;
|
|
|
|
struct rvt_ack_entry *e;
|
|
|
|
unsigned long flags;
|
|
|
|
struct ib_reth *reth;
|
|
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
|
|
u32 bth0, psn, len, rkey;
|
|
|
|
bool is_fecn;
|
|
|
|
u8 next;
|
|
|
|
u64 vaddr;
|
|
|
|
int diff;
|
|
|
|
u8 nack_state = IB_NAK_INVALID_REQUEST;
|
|
|
|
|
|
|
|
bth0 = be32_to_cpu(ohdr->bth[0]);
|
|
|
|
if (hfi1_ruc_check_hdr(ibp, packet))
|
|
|
|
return;
|
|
|
|
|
|
|
|
is_fecn = process_ecn(qp, packet);
|
|
|
|
psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
|
|
|
|
|
|
|
|
if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
|
|
|
|
rvt_comm_est(qp);
|
|
|
|
|
|
|
|
if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
|
|
|
|
goto nack_inv;
|
|
|
|
|
|
|
|
reth = &ohdr->u.tid_rdma.r_req.reth;
|
|
|
|
vaddr = be64_to_cpu(reth->vaddr);
|
|
|
|
len = be32_to_cpu(reth->length);
|
|
|
|
/* The length needs to be in multiples of PAGE_SIZE */
|
|
|
|
if (!len || len & ~PAGE_MASK || len > qpriv->tid_rdma.local.max_len)
|
|
|
|
goto nack_inv;
|
|
|
|
|
|
|
|
diff = delta_psn(psn, qp->r_psn);
|
|
|
|
if (unlikely(diff)) {
|
|
|
|
if (tid_rdma_rcv_error(packet, ohdr, qp, psn, diff))
|
|
|
|
return;
|
|
|
|
goto send_ack;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* We've verified the request, insert it into the ack queue. */
|
|
|
|
next = qp->r_head_ack_queue + 1;
|
|
|
|
if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
|
|
|
|
next = 0;
|
|
|
|
spin_lock_irqsave(&qp->s_lock, flags);
|
|
|
|
if (unlikely(next == qp->s_tail_ack_queue)) {
|
|
|
|
if (!qp->s_ack_queue[next].sent) {
|
|
|
|
nack_state = IB_NAK_REMOTE_OPERATIONAL_ERROR;
|
|
|
|
goto nack_inv_unlock;
|
|
|
|
}
|
|
|
|
update_ack_queue(qp, next);
|
|
|
|
}
|
|
|
|
e = &qp->s_ack_queue[qp->r_head_ack_queue];
|
|
|
|
if (e->rdma_sge.mr) {
|
|
|
|
rvt_put_mr(e->rdma_sge.mr);
|
|
|
|
e->rdma_sge.mr = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
rkey = be32_to_cpu(reth->rkey);
|
|
|
|
qp->r_len = len;
|
|
|
|
|
|
|
|
if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr,
|
|
|
|
rkey, IB_ACCESS_REMOTE_READ)))
|
|
|
|
goto nack_acc;
|
|
|
|
|
|
|
|
/* Accept the request parameters */
|
|
|
|
if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn, vaddr,
|
|
|
|
len))
|
|
|
|
goto nack_inv_unlock;
|
|
|
|
|
|
|
|
qp->r_state = e->opcode;
|
|
|
|
qp->r_nak_state = 0;
|
|
|
|
/*
|
|
|
|
* We need to increment the MSN here instead of when we
|
|
|
|
* finish sending the result since a duplicate request would
|
|
|
|
* increment it more than once.
|
|
|
|
*/
|
|
|
|
qp->r_msn++;
|
|
|
|
qp->r_psn += e->lpsn - e->psn + 1;
|
|
|
|
|
|
|
|
qp->r_head_ack_queue = next;
|
|
|
|
|
|
|
|
/* Schedule the send tasklet. */
|
|
|
|
qp->s_flags |= RVT_S_RESP_PENDING;
|
|
|
|
hfi1_schedule_send(qp);
|
|
|
|
|
|
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
|
|
if (is_fecn)
|
|
|
|
goto send_ack;
|
|
|
|
return;
|
|
|
|
|
|
|
|
nack_inv_unlock:
|
|
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
|
|
nack_inv:
|
|
|
|
rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
|
|
|
|
qp->r_nak_state = nack_state;
|
|
|
|
qp->r_ack_psn = qp->r_psn;
|
|
|
|
/* Queue NAK for later */
|
|
|
|
rc_defered_ack(rcd, qp);
|
|
|
|
return;
|
|
|
|
nack_acc:
|
|
|
|
spin_unlock_irqrestore(&qp->s_lock, flags);
|
|
|
|
rvt_rc_error(qp, IB_WC_LOC_PROT_ERR);
|
|
|
|
qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR;
|
|
|
|
qp->r_ack_psn = qp->r_psn;
|
|
|
|
send_ack:
|
|
|
|
hfi1_send_rc_ack(packet, is_fecn);
|
|
|
|
}
|
2019-01-24 11:31:12 +08:00
|
|
|
|
|
|
|
u32 hfi1_build_tid_rdma_read_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
|
|
|
|
struct ib_other_headers *ohdr, u32 *bth0,
|
|
|
|
u32 *bth1, u32 *bth2, u32 *len, bool *last)
|
|
|
|
{
|
|
|
|
struct hfi1_ack_priv *epriv = e->priv;
|
|
|
|
struct tid_rdma_request *req = &epriv->tid_req;
|
|
|
|
struct hfi1_qp_priv *qpriv = qp->priv;
|
|
|
|
struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
|
|
|
|
u32 tidentry = flow->tid_entry[flow->tid_idx];
|
|
|
|
u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT;
|
|
|
|
struct tid_rdma_read_resp *resp = &ohdr->u.tid_rdma.r_rsp;
|
|
|
|
u32 next_offset, om = KDETH_OM_LARGE;
|
|
|
|
bool last_pkt;
|
|
|
|
u32 hdwords = 0;
|
|
|
|
struct tid_rdma_params *remote;
|
|
|
|
|
|
|
|
*len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset);
|
|
|
|
flow->sent += *len;
|
|
|
|
next_offset = flow->tid_offset + *len;
|
|
|
|
last_pkt = (flow->sent >= flow->length);
|
|
|
|
|
|
|
|
rcu_read_lock();
|
|
|
|
remote = rcu_dereference(qpriv->tid_rdma.remote);
|
|
|
|
if (!remote) {
|
|
|
|
rcu_read_unlock();
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
KDETH_RESET(resp->kdeth0, KVER, 0x1);
|
|
|
|
KDETH_SET(resp->kdeth0, SH, !last_pkt);
|
|
|
|
KDETH_SET(resp->kdeth0, INTR, !!(!last_pkt && remote->urg));
|
|
|
|
KDETH_SET(resp->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL));
|
|
|
|
KDETH_SET(resp->kdeth0, TID, EXP_TID_GET(tidentry, IDX));
|
|
|
|
KDETH_SET(resp->kdeth0, OM, om == KDETH_OM_LARGE);
|
|
|
|
KDETH_SET(resp->kdeth0, OFFSET, flow->tid_offset / om);
|
|
|
|
KDETH_RESET(resp->kdeth1, JKEY, remote->jkey);
|
|
|
|
resp->verbs_qp = cpu_to_be32(qp->remote_qpn);
|
|
|
|
rcu_read_unlock();
|
|
|
|
|
|
|
|
resp->aeth = rvt_compute_aeth(qp);
|
|
|
|
resp->verbs_psn = cpu_to_be32(mask_psn(flow->flow_state.ib_spsn +
|
|
|
|
flow->pkt));
|
|
|
|
|
|
|
|
*bth0 = TID_OP(READ_RESP) << 24;
|
|
|
|
*bth1 = flow->tid_qpn;
|
|
|
|
*bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) &
|
|
|
|
HFI1_KDETH_BTH_SEQ_MASK) |
|
|
|
|
(flow->flow_state.generation <<
|
|
|
|
HFI1_KDETH_BTH_SEQ_SHIFT));
|
|
|
|
*last = last_pkt;
|
|
|
|
if (last_pkt)
|
|
|
|
/* Advance to next flow */
|
|
|
|
req->clear_tail = (req->clear_tail + 1) &
|
|
|
|
(MAX_FLOWS - 1);
|
|
|
|
|
|
|
|
if (next_offset >= tidlen) {
|
|
|
|
flow->tid_offset = 0;
|
|
|
|
flow->tid_idx++;
|
|
|
|
} else {
|
|
|
|
flow->tid_offset = next_offset;
|
|
|
|
}
|
|
|
|
|
|
|
|
hdwords = sizeof(ohdr->u.tid_rdma.r_rsp) / sizeof(u32);
|
|
|
|
|
|
|
|
done:
|
|
|
|
return hdwords;
|
|
|
|
}
|