linux-sg2042/mm/sparse.c

541 lines
13 KiB
C
Raw Normal View History

[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:07:54 +08:00
/*
* sparse memory mappings.
*/
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/bootmem.h>
#include <linux/highmem.h>
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:07:54 +08:00
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
#include "internal.h"
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:07:54 +08:00
#include <asm/dma.h>
Generic Virtual Memmap support for SPARSEMEM SPARSEMEM is a pretty nice framework that unifies quite a bit of code over all the arches. It would be great if it could be the default so that we can get rid of various forms of DISCONTIG and other variations on memory maps. So far what has hindered this are the additional lookups that SPARSEMEM introduces for virt_to_page and page_address. This goes so far that the code to do this has to be kept in a separate function and cannot be used inline. This patch introduces a virtual memmap mode for SPARSEMEM, in which the memmap is mapped into a virtually contigious area, only the active sections are physically backed. This allows virt_to_page page_address and cohorts become simple shift/add operations. No page flag fields, no table lookups, nothing involving memory is required. The two key operations pfn_to_page and page_to_page become: #define __pfn_to_page(pfn) (vmemmap + (pfn)) #define __page_to_pfn(page) ((page) - vmemmap) By having a virtual mapping for the memmap we allow simple access without wasting physical memory. As kernel memory is typically already mapped 1:1 this introduces no additional overhead. The virtual mapping must be big enough to allow a struct page to be allocated and mapped for all valid physical pages. This vill make a virtual memmap difficult to use on 32 bit platforms that support 36 address bits. However, if there is enough virtual space available and the arch already maps its 1-1 kernel space using TLBs (f.e. true of IA64 and x86_64) then this technique makes SPARSEMEM lookups even more efficient than CONFIG_FLATMEM. FLATMEM needs to read the contents of the mem_map variable to get the start of the memmap and then add the offset to the required entry. vmemmap is a constant to which we can simply add the offset. This patch has the potential to allow us to make SPARSMEM the default (and even the only) option for most systems. It should be optimal on UP, SMP and NUMA on most platforms. Then we may even be able to remove the other memory models: FLATMEM, DISCONTIG etc. [apw@shadowen.org: config cleanups, resplit code etc] [kamezawa.hiroyu@jp.fujitsu.com: Fix sparsemem_vmemmap init] [apw@shadowen.org: vmemmap: remove excess debugging] [apw@shadowen.org: simplify initialisation code and reduce duplication] [apw@shadowen.org: pull out the vmemmap code into its own file] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:24:13 +08:00
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:07:54 +08:00
/*
* Permanent SPARSEMEM data:
*
* 1) mem_section - memory sections, mem_map's for valid memory
*/
#ifdef CONFIG_SPARSEMEM_EXTREME
struct mem_section *mem_section[NR_SECTION_ROOTS]
____cacheline_internodealigned_in_smp;
#else
struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
____cacheline_internodealigned_in_smp;
#endif
EXPORT_SYMBOL(mem_section);
#ifdef NODE_NOT_IN_PAGE_FLAGS
/*
* If we did not store the node number in the page then we have to
* do a lookup in the section_to_node_table in order to find which
* node the page belongs to.
*/
#if MAX_NUMNODES <= 256
static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#else
static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#endif
int page_to_nid(struct page *page)
{
return section_to_node_table[page_to_section(page)];
}
EXPORT_SYMBOL(page_to_nid);
static void set_section_nid(unsigned long section_nr, int nid)
{
section_to_node_table[section_nr] = nid;
}
#else /* !NODE_NOT_IN_PAGE_FLAGS */
static inline void set_section_nid(unsigned long section_nr, int nid)
{
}
#endif
#ifdef CONFIG_SPARSEMEM_EXTREME
static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
{
struct mem_section *section = NULL;
unsigned long array_size = SECTIONS_PER_ROOT *
sizeof(struct mem_section);
if (slab_is_available())
section = kmalloc_node(array_size, GFP_KERNEL, nid);
else
section = alloc_bootmem_node(NODE_DATA(nid), array_size);
if (section)
memset(section, 0, array_size);
return section;
}
static int __meminit sparse_index_init(unsigned long section_nr, int nid)
{
static DEFINE_SPINLOCK(index_init_lock);
unsigned long root = SECTION_NR_TO_ROOT(section_nr);
struct mem_section *section;
int ret = 0;
if (mem_section[root])
return -EEXIST;
section = sparse_index_alloc(nid);
if (!section)
return -ENOMEM;
/*
* This lock keeps two different sections from
* reallocating for the same index
*/
spin_lock(&index_init_lock);
if (mem_section[root]) {
ret = -EEXIST;
goto out;
}
mem_section[root] = section;
out:
spin_unlock(&index_init_lock);
return ret;
}
#else /* !SPARSEMEM_EXTREME */
static inline int sparse_index_init(unsigned long section_nr, int nid)
{
return 0;
}
#endif
/*
* Although written for the SPARSEMEM_EXTREME case, this happens
sparsemem: clean up spelling error in comments SPARSEMEM is a pretty nice framework that unifies quite a bit of code over all the arches. It would be great if it could be the default so that we can get rid of various forms of DISCONTIG and other variations on memory maps. So far what has hindered this are the additional lookups that SPARSEMEM introduces for virt_to_page and page_address. This goes so far that the code to do this has to be kept in a separate function and cannot be used inline. This patch introduces a virtual memmap mode for SPARSEMEM, in which the memmap is mapped into a virtually contigious area, only the active sections are physically backed. This allows virt_to_page page_address and cohorts become simple shift/add operations. No page flag fields, no table lookups, nothing involving memory is required. The two key operations pfn_to_page and page_to_page become: #define __pfn_to_page(pfn) (vmemmap + (pfn)) #define __page_to_pfn(page) ((page) - vmemmap) By having a virtual mapping for the memmap we allow simple access without wasting physical memory. As kernel memory is typically already mapped 1:1 this introduces no additional overhead. The virtual mapping must be big enough to allow a struct page to be allocated and mapped for all valid physical pages. This vill make a virtual memmap difficult to use on 32 bit platforms that support 36 address bits. However, if there is enough virtual space available and the arch already maps its 1-1 kernel space using TLBs (f.e. true of IA64 and x86_64) then this technique makes SPARSEMEM lookups even more efficient than CONFIG_FLATMEM. FLATMEM needs to read the contents of the mem_map variable to get the start of the memmap and then add the offset to the required entry. vmemmap is a constant to which we can simply add the offset. This patch has the potential to allow us to make SPARSMEM the default (and even the only) option for most systems. It should be optimal on UP, SMP and NUMA on most platforms. Then we may even be able to remove the other memory models: FLATMEM, DISCONTIG etc. The current aim is to bring a common virtually mapped mem_map to all architectures. This should facilitate the removal of the bespoke implementations from the architectures. This also brings performance improvements for most architecture making sparsmem vmemmap the more desirable memory model. The ultimate aim of this work is to expand sparsemem support to encompass all the features of the other memory models. This could allow us to drop support for and remove the other models in the longer term. Below are some comparitive kernbench numbers for various architectures, comparing default memory model against SPARSEMEM VMEMMAP. All but ia64 show marginal improvement; we expect the ia64 figures to be sorted out when the larger mapping support returns. x86-64 non-NUMA Base VMEMAP % change (-ve good) User 85.07 84.84 -0.26 System 34.32 33.84 -1.39 Total 119.38 118.68 -0.59 ia64 Base VMEMAP % change (-ve good) User 1016.41 1016.93 0.05 System 50.83 51.02 0.36 Total 1067.25 1067.95 0.07 x86-64 NUMA Base VMEMAP % change (-ve good) User 30.77 431.73 0.22 System 45.39 43.98 -3.11 Total 476.17 475.71 -0.10 ppc64 Base VMEMAP % change (-ve good) User 488.77 488.35 -0.09 System 56.92 56.37 -0.97 Total 545.69 544.72 -0.18 Below are some AIM bencharks on IA64 and x86-64 (thank Bob). The seems pretty much flat as you would expect. ia64 results 2 cpu non-numa 4Gb SCSI disk Benchmark Version Machine Run Date AIM Multiuser Benchmark - Suite VII "1.1" extreme Jun 1 07:17:24 2007 Tasks Jobs/Min JTI Real CPU Jobs/sec/task 1 98.9 100 58.9 1.3 1.6482 101 5547.1 95 106.0 79.4 0.9154 201 6377.7 95 183.4 158.3 0.5288 301 6932.2 95 252.7 237.3 0.3838 401 7075.8 93 329.8 316.7 0.2941 501 7235.6 94 403.0 396.2 0.2407 600 7387.5 94 472.7 475.0 0.2052 Benchmark Version Machine Run Date AIM Multiuser Benchmark - Suite VII "1.1" vmemmap Jun 1 09:59:04 2007 Tasks Jobs/Min JTI Real CPU Jobs/sec/task 1 99.1 100 58.8 1.2 1.6509 101 5480.9 95 107.2 79.2 0.9044 201 6490.3 95 180.2 157.8 0.5382 301 6886.6 94 254.4 236.8 0.3813 401 7078.2 94 329.7 316.0 0.2942 501 7250.3 95 402.2 395.4 0.2412 600 7399.1 94 471.9 473.9 0.2055 open power 710 2 cpu, 4 Gb, SCSI and configured physically Benchmark Version Machine Run Date AIM Multiuser Benchmark - Suite VII "1.1" extreme May 29 15:42:53 2007 Tasks Jobs/Min JTI Real CPU Jobs/sec/task 1 25.7 100 226.3 4.3 0.4286 101 1096.0 97 536.4 199.8 0.1809 201 1236.4 96 946.1 389.1 0.1025 301 1280.5 96 1368.0 582.3 0.0709 401 1270.2 95 1837.4 771.0 0.0528 501 1251.4 96 2330.1 955.9 0.0416 601 1252.6 96 2792.4 1139.2 0.0347 701 1245.2 96 3276.5 1334.6 0.0296 918 1229.5 96 4345.4 1728.7 0.0223 Benchmark Version Machine Run Date AIM Multiuser Benchmark - Suite VII "1.1" vmemmap May 30 07:28:26 2007 Tasks Jobs/Min JTI Real CPU Jobs/sec/task 1 25.6 100 226.9 4.3 0.4275 101 1049.3 97 560.2 198.1 0.1731 201 1199.1 97 975.6 390.7 0.0994 301 1261.7 96 1388.5 591.5 0.0699 401 1256.1 96 1858.1 771.9 0.0522 501 1220.1 96 2389.7 955.3 0.0406 601 1224.6 96 2856.3 1133.4 0.0340 701 1252.0 96 3258.7 1314.1 0.0298 915 1232.8 96 4319.7 1704.0 0.0225 amd64 2 2-core, 4Gb and SATA Benchmark Version Machine Run Date AIM Multiuser Benchmark - Suite VII "1.1" extreme Jun 2 03:59:48 2007 Tasks Jobs/Min JTI Real CPU Jobs/sec/task 1 13.0 100 446.4 2.1 0.2173 101 533.4 97 1102.0 110.2 0.0880 201 578.3 97 2022.8 220.8 0.0480 301 583.8 97 3000.6 332.3 0.0323 401 580.5 97 4020.1 442.2 0.0241 501 574.8 98 5072.8 558.8 0.0191 600 566.5 98 6163.8 671.0 0.0157 Benchmark Version Machine Run Date AIM Multiuser Benchmark - Suite VII "1.1" vmemmap Jun 3 04:19:31 2007 Tasks Jobs/Min JTI Real CPU Jobs/sec/task 1 13.0 100 447.8 2.0 0.2166 101 536.5 97 1095.6 109.7 0.0885 201 567.7 97 2060.5 219.3 0.0471 301 582.1 96 3009.4 330.2 0.0322 401 578.2 96 4036.4 442.4 0.0240 501 585.1 98 4983.2 555.1 0.0195 600 565.5 98 6175.2 660.6 0.0157 This patch: Fix some spelling errors. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:24:10 +08:00
* to also work for the flat array case because
* NR_SECTION_ROOTS==NR_MEM_SECTIONS.
*/
int __section_nr(struct mem_section* ms)
{
unsigned long root_nr;
struct mem_section* root;
for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
if (!root)
continue;
if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
break;
}
return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
}
/*
* During early boot, before section_mem_map is used for an actual
* mem_map, we use section_mem_map to store the section's NUMA
* node. This keeps us from having to use another data structure. The
* node information is cleared just before we store the real mem_map.
*/
static inline unsigned long sparse_encode_early_nid(int nid)
{
return (nid << SECTION_NID_SHIFT);
}
static inline int sparse_early_nid(struct mem_section *section)
{
return (section->section_mem_map >> SECTION_NID_SHIFT);
}
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:07:54 +08:00
/* Record a memory area against a node. */
void __init memory_present(int nid, unsigned long start, unsigned long end)
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:07:54 +08:00
{
mm: sparsemem memory_present() fix Fix memory corruption and crash on 32-bit x86 systems. If a !PAE x86 kernel is booted on a 32-bit system with more than 4GB of RAM, then we call memory_present() with a start/end that goes outside the scope of MAX_PHYSMEM_BITS. That causes this loop to happily walk over the limit of the sparse memory section map: for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { unsigned long section = pfn_to_section_nr(pfn); struct mem_section *ms; sparse_index_init(section, nid); set_section_nid(section, nid); ms = __nr_to_section(section); if (!ms->section_mem_map) ms->section_mem_map = sparse_encode_early_nid(nid) | SECTION_MARKED_PRESENT; 'ms' will be out of bounds and we'll corrupt a small amount of memory by encoding the node ID and writing SECTION_MARKED_PRESENT (==0x1) over it. The corruption might happen when encoding a non-zero node ID, or due to the SECTION_MARKED_PRESENT which is 0x1: mmzone.h:#define SECTION_MARKED_PRESENT (1UL<<0) The fix is to sanity check anything the architecture passes to sparsemem. This bug seems to be rather old (as old as sparsemem support itself), but the exact incarnation depended on random details like configs, which made this bug more prominent in v2.6.25-to-be. An additional enhancement might be to print a warning about ignored or trimmed memory ranges. Signed-off-by: Ingo Molnar <mingo@elte.hu> Tested-by: Christoph Lameter <clameter@sgi.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Nick Piggin <npiggin@suse.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rafael J. Wysocki <rjw@sisk.pl> Cc: Yinghai Lu <Yinghai.Lu@sun.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-16 07:40:00 +08:00
unsigned long max_arch_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:07:54 +08:00
unsigned long pfn;
mm: sparsemem memory_present() fix Fix memory corruption and crash on 32-bit x86 systems. If a !PAE x86 kernel is booted on a 32-bit system with more than 4GB of RAM, then we call memory_present() with a start/end that goes outside the scope of MAX_PHYSMEM_BITS. That causes this loop to happily walk over the limit of the sparse memory section map: for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { unsigned long section = pfn_to_section_nr(pfn); struct mem_section *ms; sparse_index_init(section, nid); set_section_nid(section, nid); ms = __nr_to_section(section); if (!ms->section_mem_map) ms->section_mem_map = sparse_encode_early_nid(nid) | SECTION_MARKED_PRESENT; 'ms' will be out of bounds and we'll corrupt a small amount of memory by encoding the node ID and writing SECTION_MARKED_PRESENT (==0x1) over it. The corruption might happen when encoding a non-zero node ID, or due to the SECTION_MARKED_PRESENT which is 0x1: mmzone.h:#define SECTION_MARKED_PRESENT (1UL<<0) The fix is to sanity check anything the architecture passes to sparsemem. This bug seems to be rather old (as old as sparsemem support itself), but the exact incarnation depended on random details like configs, which made this bug more prominent in v2.6.25-to-be. An additional enhancement might be to print a warning about ignored or trimmed memory ranges. Signed-off-by: Ingo Molnar <mingo@elte.hu> Tested-by: Christoph Lameter <clameter@sgi.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Nick Piggin <npiggin@suse.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rafael J. Wysocki <rjw@sisk.pl> Cc: Yinghai Lu <Yinghai.Lu@sun.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-16 07:40:00 +08:00
/*
* Sanity checks - do not allow an architecture to pass
* in larger pfns than the maximum scope of sparsemem:
*/
if (start >= max_arch_pfn)
return;
if (end >= max_arch_pfn)
end = max_arch_pfn;
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:07:54 +08:00
start &= PAGE_SECTION_MASK;
for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
unsigned long section = pfn_to_section_nr(pfn);
struct mem_section *ms;
sparse_index_init(section, nid);
set_section_nid(section, nid);
ms = __nr_to_section(section);
if (!ms->section_mem_map)
ms->section_mem_map = sparse_encode_early_nid(nid) |
SECTION_MARKED_PRESENT;
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:07:54 +08:00
}
}
/*
* Only used by the i386 NUMA architecures, but relatively
* generic code.
*/
unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
unsigned long end_pfn)
{
unsigned long pfn;
unsigned long nr_pages = 0;
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
if (nid != early_pfn_to_nid(pfn))
continue;
if (pfn_present(pfn))
[PATCH] sparsemem memory model Sparsemem abstracts the use of discontiguous mem_maps[]. This kind of mem_map[] is needed by discontiguous memory machines (like in the old CONFIG_DISCONTIGMEM case) as well as memory hotplug systems. Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement. A significant advantage over DISCONTIGMEM is that it's completely separated from CONFIG_NUMA. When producing this patch, it became apparent in that NUMA and DISCONTIG are often confused. Another advantage is that sparse doesn't require each NUMA node's ranges to be contiguous. It can handle overlapping ranges between nodes with no problems, where DISCONTIGMEM currently throws away that memory. Sparsemem uses an array to provide different pfn_to_page() translations for each SECTION_SIZE area of physical memory. This is what allows the mem_map[] to be chopped up. In order to do quick pfn_to_page() operations, the section number of the page is encoded in page->flags. Part of the sparsemem infrastructure enables sharing of these bits more dynamically (at compile-time) between the page_zone() and sparsemem operations. However, on 32-bit architectures, the number of bits is quite limited, and may require growing the size of the page->flags type in certain conditions. Several things might force this to occur: a decrease in the SECTION_SIZE (if you want to hotplug smaller areas of memory), an increase in the physical address space, or an increase in the number of used page->flags. One thing to note is that, once sparsemem is present, the NUMA node information no longer needs to be stored in the page->flags. It might provide speed increases on certain platforms and will be stored there if there is room. But, if out of room, an alternate (theoretically slower) mechanism is used. This patch introduces CONFIG_FLATMEM. It is used in almost all cases where there used to be an #ifndef DISCONTIG, because SPARSEMEM and DISCONTIGMEM often have to compile out the same areas of code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Martin Bligh <mbligh@aracnet.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:07:54 +08:00
nr_pages += PAGES_PER_SECTION;
}
return nr_pages * sizeof(struct page);
}
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
/*
* Subtle, we encode the real pfn into the mem_map such that
* the identity pfn - section_mem_map will return the actual
* physical page frame number.
*/
static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
{
return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
}
/*
* Decode mem_map from the coded memmap
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
*/
struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
{
/* mask off the extra low bits of information */
coded_mem_map &= SECTION_MAP_MASK;
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
}
static int __meminit sparse_init_one_section(struct mem_section *ms,
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2 There are problems in the use of SPARSEMEM and pageblock flags that causes problems on ia64. The first part of the problem is that units are incorrect in SECTION_BLOCKFLAGS_BITS computation. This results in a map_section's section_mem_map being treated as part of a bitmap which isn't good. This was evident with an invalid virtual address when mem_init attempted to free bootmem pages while relinquishing control from the bootmem allocator. The second part of the problem occurs because the pageblock flags bitmap is be located with the mem_section. The SECTIONS_PER_ROOT computation using sizeof (mem_section) may not be a power of 2 depending on the size of the bitmap. This renders masks and other such things not power of 2 base. This issue was seen with SPARSEMEM_EXTREME on ia64. This patch moves the bitmap outside of mem_section and uses a pointer instead in the mem_section. The bitmaps are allocated when the section is being initialised. Note that sparse_early_usemap_alloc() does not use alloc_remap() like sparse_early_mem_map_alloc(). The allocation required for the bitmap on x86, the only architecture that uses alloc_remap is typically smaller than a cache line. alloc_remap() pads out allocations to the cache size which would be a needless waste. Credit to Bob Picco for identifying the original problem and effecting a fix for the SECTION_BLOCKFLAGS_BITS calculation. Credit to Andy Whitcroft for devising the best way of allocating the bitmaps only when required for the section. [wli@holomorphy.com: warning fix] Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: William Irwin <bill.irwin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:25:56 +08:00
unsigned long pnum, struct page *mem_map,
unsigned long *pageblock_bitmap)
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
{
if (!present_section(ms))
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
return -EINVAL;
ms->section_mem_map &= ~SECTION_MAP_MASK;
ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
SECTION_HAS_MEM_MAP;
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2 There are problems in the use of SPARSEMEM and pageblock flags that causes problems on ia64. The first part of the problem is that units are incorrect in SECTION_BLOCKFLAGS_BITS computation. This results in a map_section's section_mem_map being treated as part of a bitmap which isn't good. This was evident with an invalid virtual address when mem_init attempted to free bootmem pages while relinquishing control from the bootmem allocator. The second part of the problem occurs because the pageblock flags bitmap is be located with the mem_section. The SECTIONS_PER_ROOT computation using sizeof (mem_section) may not be a power of 2 depending on the size of the bitmap. This renders masks and other such things not power of 2 base. This issue was seen with SPARSEMEM_EXTREME on ia64. This patch moves the bitmap outside of mem_section and uses a pointer instead in the mem_section. The bitmaps are allocated when the section is being initialised. Note that sparse_early_usemap_alloc() does not use alloc_remap() like sparse_early_mem_map_alloc(). The allocation required for the bitmap on x86, the only architecture that uses alloc_remap is typically smaller than a cache line. alloc_remap() pads out allocations to the cache size which would be a needless waste. Credit to Bob Picco for identifying the original problem and effecting a fix for the SECTION_BLOCKFLAGS_BITS calculation. Credit to Andy Whitcroft for devising the best way of allocating the bitmaps only when required for the section. [wli@holomorphy.com: warning fix] Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: William Irwin <bill.irwin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:25:56 +08:00
ms->pageblock_flags = pageblock_bitmap;
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
return 1;
}
memory hotplug: register section/node id to free This patch set is to free pages which is allocated by bootmem for memory-hotremove. Some structures of memory management are allocated by bootmem. ex) memmap, etc. To remove memory physically, some of them must be freed according to circumstance. This patch set makes basis to free those pages, and free memmaps. Basic my idea is using remain members of struct page to remember information of users of bootmem (section number or node id). When the section is removing, kernel can confirm it. By this information, some issues can be solved. 1) When the memmap of removing section is allocated on other section by bootmem, it should/can be free. 2) When the memmap of removing section is allocated on the same section, it shouldn't be freed. Because the section has to be logical memory offlined already and all pages must be isolated against page allocater. If it is freed, page allocator may use it which will be removed physically soon. 3) When removing section has other section's memmap, kernel will be able to show easily which section should be removed before it for user. (Not implemented yet) 4) When the above case 2), the page isolation will be able to check and skip memmap's page when logical memory offline (offline_pages()). Current page isolation code fails in this case because this page is just reserved page and it can't distinguish this pages can be removed or not. But, it will be able to do by this patch. (Not implemented yet.) 5) The node information like pgdat has similar issues. But, this will be able to be solved too by this. (Not implemented yet, but, remembering node id in the pages.) Fortunately, current bootmem allocator just keeps PageReserved flags, and doesn't use any other members of page struct. The users of bootmem doesn't use them too. This patch: This is to register information which is node or section's id. Kernel can distinguish which node/section uses the pages allcated by bootmem. This is basis for hot-remove sections or nodes. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Yinghai Lu <yhlu.kernel@gmail.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 17:13:31 +08:00
unsigned long usemap_size(void)
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2 There are problems in the use of SPARSEMEM and pageblock flags that causes problems on ia64. The first part of the problem is that units are incorrect in SECTION_BLOCKFLAGS_BITS computation. This results in a map_section's section_mem_map being treated as part of a bitmap which isn't good. This was evident with an invalid virtual address when mem_init attempted to free bootmem pages while relinquishing control from the bootmem allocator. The second part of the problem occurs because the pageblock flags bitmap is be located with the mem_section. The SECTIONS_PER_ROOT computation using sizeof (mem_section) may not be a power of 2 depending on the size of the bitmap. This renders masks and other such things not power of 2 base. This issue was seen with SPARSEMEM_EXTREME on ia64. This patch moves the bitmap outside of mem_section and uses a pointer instead in the mem_section. The bitmaps are allocated when the section is being initialised. Note that sparse_early_usemap_alloc() does not use alloc_remap() like sparse_early_mem_map_alloc(). The allocation required for the bitmap on x86, the only architecture that uses alloc_remap is typically smaller than a cache line. alloc_remap() pads out allocations to the cache size which would be a needless waste. Credit to Bob Picco for identifying the original problem and effecting a fix for the SECTION_BLOCKFLAGS_BITS calculation. Credit to Andy Whitcroft for devising the best way of allocating the bitmaps only when required for the section. [wli@holomorphy.com: warning fix] Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: William Irwin <bill.irwin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:25:56 +08:00
{
unsigned long size_bytes;
size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
size_bytes = roundup(size_bytes, sizeof(unsigned long));
return size_bytes;
}
#ifdef CONFIG_MEMORY_HOTPLUG
static unsigned long *__kmalloc_section_usemap(void)
{
return kmalloc(usemap_size(), GFP_KERNEL);
}
#endif /* CONFIG_MEMORY_HOTPLUG */
static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum)
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2 There are problems in the use of SPARSEMEM and pageblock flags that causes problems on ia64. The first part of the problem is that units are incorrect in SECTION_BLOCKFLAGS_BITS computation. This results in a map_section's section_mem_map being treated as part of a bitmap which isn't good. This was evident with an invalid virtual address when mem_init attempted to free bootmem pages while relinquishing control from the bootmem allocator. The second part of the problem occurs because the pageblock flags bitmap is be located with the mem_section. The SECTIONS_PER_ROOT computation using sizeof (mem_section) may not be a power of 2 depending on the size of the bitmap. This renders masks and other such things not power of 2 base. This issue was seen with SPARSEMEM_EXTREME on ia64. This patch moves the bitmap outside of mem_section and uses a pointer instead in the mem_section. The bitmaps are allocated when the section is being initialised. Note that sparse_early_usemap_alloc() does not use alloc_remap() like sparse_early_mem_map_alloc(). The allocation required for the bitmap on x86, the only architecture that uses alloc_remap is typically smaller than a cache line. alloc_remap() pads out allocations to the cache size which would be a needless waste. Credit to Bob Picco for identifying the original problem and effecting a fix for the SECTION_BLOCKFLAGS_BITS calculation. Credit to Andy Whitcroft for devising the best way of allocating the bitmaps only when required for the section. [wli@holomorphy.com: warning fix] Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: William Irwin <bill.irwin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:25:56 +08:00
{
revert "memory hotplug: allocate usemap on the section with pgdat" This: commit 86f6dae1377523689bd8468fed2f2dd180fc0560 Author: Yasunori Goto <y-goto@jp.fujitsu.com> Date: Mon Apr 28 02:13:33 2008 -0700 memory hotplug: allocate usemap on the section with pgdat Usemaps are allocated on the section which has pgdat by this. Because usemap size is very small, many other sections usemaps are allocated on only one page. If a section has usemap, it can't be removed until removing other sections. This dependency is not desirable for memory removing. Pgdat has similar feature. When a section has pgdat area, it must be the last section for removing on the node. So, if section A has pgdat and section B has usemap for section A, Both sections can't be removed due to dependency each other. To solve this issue, this patch collects usemap on same section with pgdat. If other sections doesn't have any dependency, this section will be able to be removed finally. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Yinghai Lu <yhlu.kernel@gmail.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> broke davem's sparc64 bootup. Revert it while we work out what went wrong. Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Yinghai Lu <yhlu.kernel@gmail.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30 15:55:17 +08:00
unsigned long *usemap;
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2 There are problems in the use of SPARSEMEM and pageblock flags that causes problems on ia64. The first part of the problem is that units are incorrect in SECTION_BLOCKFLAGS_BITS computation. This results in a map_section's section_mem_map being treated as part of a bitmap which isn't good. This was evident with an invalid virtual address when mem_init attempted to free bootmem pages while relinquishing control from the bootmem allocator. The second part of the problem occurs because the pageblock flags bitmap is be located with the mem_section. The SECTIONS_PER_ROOT computation using sizeof (mem_section) may not be a power of 2 depending on the size of the bitmap. This renders masks and other such things not power of 2 base. This issue was seen with SPARSEMEM_EXTREME on ia64. This patch moves the bitmap outside of mem_section and uses a pointer instead in the mem_section. The bitmaps are allocated when the section is being initialised. Note that sparse_early_usemap_alloc() does not use alloc_remap() like sparse_early_mem_map_alloc(). The allocation required for the bitmap on x86, the only architecture that uses alloc_remap is typically smaller than a cache line. alloc_remap() pads out allocations to the cache size which would be a needless waste. Credit to Bob Picco for identifying the original problem and effecting a fix for the SECTION_BLOCKFLAGS_BITS calculation. Credit to Andy Whitcroft for devising the best way of allocating the bitmaps only when required for the section. [wli@holomorphy.com: warning fix] Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: William Irwin <bill.irwin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:25:56 +08:00
struct mem_section *ms = __nr_to_section(pnum);
int nid = sparse_early_nid(ms);
revert "memory hotplug: allocate usemap on the section with pgdat" This: commit 86f6dae1377523689bd8468fed2f2dd180fc0560 Author: Yasunori Goto <y-goto@jp.fujitsu.com> Date: Mon Apr 28 02:13:33 2008 -0700 memory hotplug: allocate usemap on the section with pgdat Usemaps are allocated on the section which has pgdat by this. Because usemap size is very small, many other sections usemaps are allocated on only one page. If a section has usemap, it can't be removed until removing other sections. This dependency is not desirable for memory removing. Pgdat has similar feature. When a section has pgdat area, it must be the last section for removing on the node. So, if section A has pgdat and section B has usemap for section A, Both sections can't be removed due to dependency each other. To solve this issue, this patch collects usemap on same section with pgdat. If other sections doesn't have any dependency, this section will be able to be removed finally. Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Yinghai Lu <yhlu.kernel@gmail.com> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> broke davem's sparc64 bootup. Revert it while we work out what went wrong. Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Yinghai Lu <yhlu.kernel@gmail.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30 15:55:17 +08:00
usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size());
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2 There are problems in the use of SPARSEMEM and pageblock flags that causes problems on ia64. The first part of the problem is that units are incorrect in SECTION_BLOCKFLAGS_BITS computation. This results in a map_section's section_mem_map being treated as part of a bitmap which isn't good. This was evident with an invalid virtual address when mem_init attempted to free bootmem pages while relinquishing control from the bootmem allocator. The second part of the problem occurs because the pageblock flags bitmap is be located with the mem_section. The SECTIONS_PER_ROOT computation using sizeof (mem_section) may not be a power of 2 depending on the size of the bitmap. This renders masks and other such things not power of 2 base. This issue was seen with SPARSEMEM_EXTREME on ia64. This patch moves the bitmap outside of mem_section and uses a pointer instead in the mem_section. The bitmaps are allocated when the section is being initialised. Note that sparse_early_usemap_alloc() does not use alloc_remap() like sparse_early_mem_map_alloc(). The allocation required for the bitmap on x86, the only architecture that uses alloc_remap is typically smaller than a cache line. alloc_remap() pads out allocations to the cache size which would be a needless waste. Credit to Bob Picco for identifying the original problem and effecting a fix for the SECTION_BLOCKFLAGS_BITS calculation. Credit to Andy Whitcroft for devising the best way of allocating the bitmaps only when required for the section. [wli@holomorphy.com: warning fix] Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: William Irwin <bill.irwin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:25:56 +08:00
if (usemap)
return usemap;
/* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
nid = 0;
printk(KERN_WARNING "%s: allocation failed\n", __func__);
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2 There are problems in the use of SPARSEMEM and pageblock flags that causes problems on ia64. The first part of the problem is that units are incorrect in SECTION_BLOCKFLAGS_BITS computation. This results in a map_section's section_mem_map being treated as part of a bitmap which isn't good. This was evident with an invalid virtual address when mem_init attempted to free bootmem pages while relinquishing control from the bootmem allocator. The second part of the problem occurs because the pageblock flags bitmap is be located with the mem_section. The SECTIONS_PER_ROOT computation using sizeof (mem_section) may not be a power of 2 depending on the size of the bitmap. This renders masks and other such things not power of 2 base. This issue was seen with SPARSEMEM_EXTREME on ia64. This patch moves the bitmap outside of mem_section and uses a pointer instead in the mem_section. The bitmaps are allocated when the section is being initialised. Note that sparse_early_usemap_alloc() does not use alloc_remap() like sparse_early_mem_map_alloc(). The allocation required for the bitmap on x86, the only architecture that uses alloc_remap is typically smaller than a cache line. alloc_remap() pads out allocations to the cache size which would be a needless waste. Credit to Bob Picco for identifying the original problem and effecting a fix for the SECTION_BLOCKFLAGS_BITS calculation. Credit to Andy Whitcroft for devising the best way of allocating the bitmaps only when required for the section. [wli@holomorphy.com: warning fix] Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: William Irwin <bill.irwin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:25:56 +08:00
return NULL;
}
Generic Virtual Memmap support for SPARSEMEM SPARSEMEM is a pretty nice framework that unifies quite a bit of code over all the arches. It would be great if it could be the default so that we can get rid of various forms of DISCONTIG and other variations on memory maps. So far what has hindered this are the additional lookups that SPARSEMEM introduces for virt_to_page and page_address. This goes so far that the code to do this has to be kept in a separate function and cannot be used inline. This patch introduces a virtual memmap mode for SPARSEMEM, in which the memmap is mapped into a virtually contigious area, only the active sections are physically backed. This allows virt_to_page page_address and cohorts become simple shift/add operations. No page flag fields, no table lookups, nothing involving memory is required. The two key operations pfn_to_page and page_to_page become: #define __pfn_to_page(pfn) (vmemmap + (pfn)) #define __page_to_pfn(page) ((page) - vmemmap) By having a virtual mapping for the memmap we allow simple access without wasting physical memory. As kernel memory is typically already mapped 1:1 this introduces no additional overhead. The virtual mapping must be big enough to allow a struct page to be allocated and mapped for all valid physical pages. This vill make a virtual memmap difficult to use on 32 bit platforms that support 36 address bits. However, if there is enough virtual space available and the arch already maps its 1-1 kernel space using TLBs (f.e. true of IA64 and x86_64) then this technique makes SPARSEMEM lookups even more efficient than CONFIG_FLATMEM. FLATMEM needs to read the contents of the mem_map variable to get the start of the memmap and then add the offset to the required entry. vmemmap is a constant to which we can simply add the offset. This patch has the potential to allow us to make SPARSMEM the default (and even the only) option for most systems. It should be optimal on UP, SMP and NUMA on most platforms. Then we may even be able to remove the other memory models: FLATMEM, DISCONTIG etc. [apw@shadowen.org: config cleanups, resplit code etc] [kamezawa.hiroyu@jp.fujitsu.com: Fix sparsemem_vmemmap init] [apw@shadowen.org: vmemmap: remove excess debugging] [apw@shadowen.org: simplify initialisation code and reduce duplication] [apw@shadowen.org: pull out the vmemmap code into its own file] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:24:13 +08:00
#ifndef CONFIG_SPARSEMEM_VMEMMAP
struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
{
struct page *map;
map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
if (map)
return map;
map = alloc_bootmem_pages_node(NODE_DATA(nid),
PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION));
Generic Virtual Memmap support for SPARSEMEM SPARSEMEM is a pretty nice framework that unifies quite a bit of code over all the arches. It would be great if it could be the default so that we can get rid of various forms of DISCONTIG and other variations on memory maps. So far what has hindered this are the additional lookups that SPARSEMEM introduces for virt_to_page and page_address. This goes so far that the code to do this has to be kept in a separate function and cannot be used inline. This patch introduces a virtual memmap mode for SPARSEMEM, in which the memmap is mapped into a virtually contigious area, only the active sections are physically backed. This allows virt_to_page page_address and cohorts become simple shift/add operations. No page flag fields, no table lookups, nothing involving memory is required. The two key operations pfn_to_page and page_to_page become: #define __pfn_to_page(pfn) (vmemmap + (pfn)) #define __page_to_pfn(page) ((page) - vmemmap) By having a virtual mapping for the memmap we allow simple access without wasting physical memory. As kernel memory is typically already mapped 1:1 this introduces no additional overhead. The virtual mapping must be big enough to allow a struct page to be allocated and mapped for all valid physical pages. This vill make a virtual memmap difficult to use on 32 bit platforms that support 36 address bits. However, if there is enough virtual space available and the arch already maps its 1-1 kernel space using TLBs (f.e. true of IA64 and x86_64) then this technique makes SPARSEMEM lookups even more efficient than CONFIG_FLATMEM. FLATMEM needs to read the contents of the mem_map variable to get the start of the memmap and then add the offset to the required entry. vmemmap is a constant to which we can simply add the offset. This patch has the potential to allow us to make SPARSMEM the default (and even the only) option for most systems. It should be optimal on UP, SMP and NUMA on most platforms. Then we may even be able to remove the other memory models: FLATMEM, DISCONTIG etc. [apw@shadowen.org: config cleanups, resplit code etc] [kamezawa.hiroyu@jp.fujitsu.com: Fix sparsemem_vmemmap init] [apw@shadowen.org: vmemmap: remove excess debugging] [apw@shadowen.org: simplify initialisation code and reduce duplication] [apw@shadowen.org: pull out the vmemmap code into its own file] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:24:13 +08:00
return map;
}
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
{
struct page *map;
struct mem_section *ms = __nr_to_section(pnum);
int nid = sparse_early_nid(ms);
map = sparse_mem_map_populate(pnum, nid);
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
if (map)
return map;
Generic Virtual Memmap support for SPARSEMEM SPARSEMEM is a pretty nice framework that unifies quite a bit of code over all the arches. It would be great if it could be the default so that we can get rid of various forms of DISCONTIG and other variations on memory maps. So far what has hindered this are the additional lookups that SPARSEMEM introduces for virt_to_page and page_address. This goes so far that the code to do this has to be kept in a separate function and cannot be used inline. This patch introduces a virtual memmap mode for SPARSEMEM, in which the memmap is mapped into a virtually contigious area, only the active sections are physically backed. This allows virt_to_page page_address and cohorts become simple shift/add operations. No page flag fields, no table lookups, nothing involving memory is required. The two key operations pfn_to_page and page_to_page become: #define __pfn_to_page(pfn) (vmemmap + (pfn)) #define __page_to_pfn(page) ((page) - vmemmap) By having a virtual mapping for the memmap we allow simple access without wasting physical memory. As kernel memory is typically already mapped 1:1 this introduces no additional overhead. The virtual mapping must be big enough to allow a struct page to be allocated and mapped for all valid physical pages. This vill make a virtual memmap difficult to use on 32 bit platforms that support 36 address bits. However, if there is enough virtual space available and the arch already maps its 1-1 kernel space using TLBs (f.e. true of IA64 and x86_64) then this technique makes SPARSEMEM lookups even more efficient than CONFIG_FLATMEM. FLATMEM needs to read the contents of the mem_map variable to get the start of the memmap and then add the offset to the required entry. vmemmap is a constant to which we can simply add the offset. This patch has the potential to allow us to make SPARSMEM the default (and even the only) option for most systems. It should be optimal on UP, SMP and NUMA on most platforms. Then we may even be able to remove the other memory models: FLATMEM, DISCONTIG etc. [apw@shadowen.org: config cleanups, resplit code etc] [kamezawa.hiroyu@jp.fujitsu.com: Fix sparsemem_vmemmap init] [apw@shadowen.org: vmemmap: remove excess debugging] [apw@shadowen.org: simplify initialisation code and reduce duplication] [apw@shadowen.org: pull out the vmemmap code into its own file] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Andi Kleen <ak@suse.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:24:13 +08:00
printk(KERN_ERR "%s: sparsemem memory map backing failed "
"some memory will not be available.\n", __func__);
ms->section_mem_map = 0;
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
return NULL;
}
x86_64/mm: check and print vmemmap allocation continuous On big systems with lots of memory, don't print out too much during bootup, and make it easy to find if it is continuous. on 256G 8 sockets system will get [ffffe20000000000-ffffe20002bfffff] PMD -> [ffff810001400000-ffff810003ffffff] on node 0 [ffffe2001c700000-ffffe2001c7fffff] potential offnode page_structs [ffffe20002c00000-ffffe2001c7fffff] PMD -> [ffff81000c000000-ffff8100255fffff] on node 0 [ffffe20038700000-ffffe200387fffff] potential offnode page_structs [ffffe2001c800000-ffffe200387fffff] PMD -> [ffff810820200000-ffff81083c1fffff] on node 1 [ffffe20040000000-ffffe2007fffffff] PUD ->ffff811027a00000 on node 2 [ffffe20038800000-ffffe2003fffffff] PMD -> [ffff811020200000-ffff8110279fffff] on node 2 [ffffe20054700000-ffffe200547fffff] potential offnode page_structs [ffffe20040000000-ffffe200547fffff] PMD -> [ffff811027c00000-ffff81103c3fffff] on node 2 [ffffe20070700000-ffffe200707fffff] potential offnode page_structs [ffffe20054800000-ffffe200707fffff] PMD -> [ffff811820200000-ffff81183c1fffff] on node 3 [ffffe20080000000-ffffe200bfffffff] PUD ->ffff81202fa00000 on node 4 [ffffe20070800000-ffffe2007fffffff] PMD -> [ffff812020200000-ffff81202f9fffff] on node 4 [ffffe2008c700000-ffffe2008c7fffff] potential offnode page_structs [ffffe20080000000-ffffe2008c7fffff] PMD -> [ffff81202fc00000-ffff81203c3fffff] on node 4 [ffffe200a8700000-ffffe200a87fffff] potential offnode page_structs [ffffe2008c800000-ffffe200a87fffff] PMD -> [ffff812820200000-ffff81283c1fffff] on node 5 [ffffe200c0000000-ffffe200ffffffff] PUD ->ffff813037a00000 on node 6 [ffffe200a8800000-ffffe200bfffffff] PMD -> [ffff813020200000-ffff8130379fffff] on node 6 [ffffe200c4700000-ffffe200c47fffff] potential offnode page_structs [ffffe200c0000000-ffffe200c47fffff] PMD -> [ffff813037c00000-ffff81303c3fffff] on node 6 [ffffe200c4800000-ffffe200e07fffff] PMD -> [ffff813820200000-ffff81383c1fffff] on node 7 instead of a very long print out... Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-04-12 16:19:24 +08:00
void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
{
}
/*
* Allocate the accumulated non-linear sections, allocate a mem_map
* for each and record the physical to section mapping.
*/
void __init sparse_init(void)
{
unsigned long pnum;
struct page *map;
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2 There are problems in the use of SPARSEMEM and pageblock flags that causes problems on ia64. The first part of the problem is that units are incorrect in SECTION_BLOCKFLAGS_BITS computation. This results in a map_section's section_mem_map being treated as part of a bitmap which isn't good. This was evident with an invalid virtual address when mem_init attempted to free bootmem pages while relinquishing control from the bootmem allocator. The second part of the problem occurs because the pageblock flags bitmap is be located with the mem_section. The SECTIONS_PER_ROOT computation using sizeof (mem_section) may not be a power of 2 depending on the size of the bitmap. This renders masks and other such things not power of 2 base. This issue was seen with SPARSEMEM_EXTREME on ia64. This patch moves the bitmap outside of mem_section and uses a pointer instead in the mem_section. The bitmaps are allocated when the section is being initialised. Note that sparse_early_usemap_alloc() does not use alloc_remap() like sparse_early_mem_map_alloc(). The allocation required for the bitmap on x86, the only architecture that uses alloc_remap is typically smaller than a cache line. alloc_remap() pads out allocations to the cache size which would be a needless waste. Credit to Bob Picco for identifying the original problem and effecting a fix for the SECTION_BLOCKFLAGS_BITS calculation. Credit to Andy Whitcroft for devising the best way of allocating the bitmaps only when required for the section. [wli@holomorphy.com: warning fix] Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: William Irwin <bill.irwin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:25:56 +08:00
unsigned long *usemap;
mm: make mem_map allocation continuous vmemmap allocation currently has this layout: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001800000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001c00000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810002000000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810002400000 on node 0 ... note that there is a 2M hole between them - not optimal. the root cause is that usemap (24 bytes) will be allocated after every 2M mem_map, and it will push next vmemmap (2M) to the next (2M) alignment. solution: try to allocate the mem_map continously. after the patch, we get: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001600000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001800000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810001a00000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810001c00000 on node 0 ... which is the ideal layout. and usemap will share a page because of they are allocated continuously too: sparse_early_usemap_alloc: usemap = ffff810024e00000 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00080 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00100 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00180 size = 24 ... so we make the bootmem allocation more compact and use less memory for usemap => mission accomplished ;-) Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-14 02:51:06 +08:00
unsigned long **usemap_map;
int size;
/*
* map is using big page (aka 2M in x86 64 bit)
* usemap is less one page (aka 24 bytes)
* so alloc 2M (with 2M align) and 24 bytes in turn will
* make next 2M slip to one more 2M later.
* then in big system, the memory will have a lot of holes...
* here try to allocate 2M pages continously.
*
* powerpc need to call sparse_init_one_section right after each
* sparse_early_mem_map_alloc, so allocate usemap_map at first.
*/
size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
usemap_map = alloc_bootmem(size);
if (!usemap_map)
panic("can not allocate usemap_map\n");
for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
if (!present_section_nr(pnum))
continue;
mm: make mem_map allocation continuous vmemmap allocation currently has this layout: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001800000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001c00000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810002000000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810002400000 on node 0 ... note that there is a 2M hole between them - not optimal. the root cause is that usemap (24 bytes) will be allocated after every 2M mem_map, and it will push next vmemmap (2M) to the next (2M) alignment. solution: try to allocate the mem_map continously. after the patch, we get: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001600000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001800000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810001a00000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810001c00000 on node 0 ... which is the ideal layout. and usemap will share a page because of they are allocated continuously too: sparse_early_usemap_alloc: usemap = ffff810024e00000 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00080 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00100 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00180 size = 24 ... so we make the bootmem allocation more compact and use less memory for usemap => mission accomplished ;-) Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-14 02:51:06 +08:00
usemap_map[pnum] = sparse_early_usemap_alloc(pnum);
}
mm: make mem_map allocation continuous vmemmap allocation currently has this layout: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001800000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001c00000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810002000000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810002400000 on node 0 ... note that there is a 2M hole between them - not optimal. the root cause is that usemap (24 bytes) will be allocated after every 2M mem_map, and it will push next vmemmap (2M) to the next (2M) alignment. solution: try to allocate the mem_map continously. after the patch, we get: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001600000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001800000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810001a00000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810001c00000 on node 0 ... which is the ideal layout. and usemap will share a page because of they are allocated continuously too: sparse_early_usemap_alloc: usemap = ffff810024e00000 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00080 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00100 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00180 size = 24 ... so we make the bootmem allocation more compact and use less memory for usemap => mission accomplished ;-) Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-14 02:51:06 +08:00
for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
if (!present_section_nr(pnum))
continue;
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2 There are problems in the use of SPARSEMEM and pageblock flags that causes problems on ia64. The first part of the problem is that units are incorrect in SECTION_BLOCKFLAGS_BITS computation. This results in a map_section's section_mem_map being treated as part of a bitmap which isn't good. This was evident with an invalid virtual address when mem_init attempted to free bootmem pages while relinquishing control from the bootmem allocator. The second part of the problem occurs because the pageblock flags bitmap is be located with the mem_section. The SECTIONS_PER_ROOT computation using sizeof (mem_section) may not be a power of 2 depending on the size of the bitmap. This renders masks and other such things not power of 2 base. This issue was seen with SPARSEMEM_EXTREME on ia64. This patch moves the bitmap outside of mem_section and uses a pointer instead in the mem_section. The bitmaps are allocated when the section is being initialised. Note that sparse_early_usemap_alloc() does not use alloc_remap() like sparse_early_mem_map_alloc(). The allocation required for the bitmap on x86, the only architecture that uses alloc_remap is typically smaller than a cache line. alloc_remap() pads out allocations to the cache size which would be a needless waste. Credit to Bob Picco for identifying the original problem and effecting a fix for the SECTION_BLOCKFLAGS_BITS calculation. Credit to Andy Whitcroft for devising the best way of allocating the bitmaps only when required for the section. [wli@holomorphy.com: warning fix] Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: William Irwin <bill.irwin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:25:56 +08:00
mm: make mem_map allocation continuous vmemmap allocation currently has this layout: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001800000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001c00000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810002000000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810002400000 on node 0 ... note that there is a 2M hole between them - not optimal. the root cause is that usemap (24 bytes) will be allocated after every 2M mem_map, and it will push next vmemmap (2M) to the next (2M) alignment. solution: try to allocate the mem_map continously. after the patch, we get: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001600000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001800000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810001a00000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810001c00000 on node 0 ... which is the ideal layout. and usemap will share a page because of they are allocated continuously too: sparse_early_usemap_alloc: usemap = ffff810024e00000 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00080 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00100 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00180 size = 24 ... so we make the bootmem allocation more compact and use less memory for usemap => mission accomplished ;-) Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-14 02:51:06 +08:00
usemap = usemap_map[pnum];
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2 There are problems in the use of SPARSEMEM and pageblock flags that causes problems on ia64. The first part of the problem is that units are incorrect in SECTION_BLOCKFLAGS_BITS computation. This results in a map_section's section_mem_map being treated as part of a bitmap which isn't good. This was evident with an invalid virtual address when mem_init attempted to free bootmem pages while relinquishing control from the bootmem allocator. The second part of the problem occurs because the pageblock flags bitmap is be located with the mem_section. The SECTIONS_PER_ROOT computation using sizeof (mem_section) may not be a power of 2 depending on the size of the bitmap. This renders masks and other such things not power of 2 base. This issue was seen with SPARSEMEM_EXTREME on ia64. This patch moves the bitmap outside of mem_section and uses a pointer instead in the mem_section. The bitmaps are allocated when the section is being initialised. Note that sparse_early_usemap_alloc() does not use alloc_remap() like sparse_early_mem_map_alloc(). The allocation required for the bitmap on x86, the only architecture that uses alloc_remap is typically smaller than a cache line. alloc_remap() pads out allocations to the cache size which would be a needless waste. Credit to Bob Picco for identifying the original problem and effecting a fix for the SECTION_BLOCKFLAGS_BITS calculation. Credit to Andy Whitcroft for devising the best way of allocating the bitmaps only when required for the section. [wli@holomorphy.com: warning fix] Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: William Irwin <bill.irwin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:25:56 +08:00
if (!usemap)
continue;
mm: make mem_map allocation continuous vmemmap allocation currently has this layout: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001800000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001c00000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810002000000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810002400000 on node 0 ... note that there is a 2M hole between them - not optimal. the root cause is that usemap (24 bytes) will be allocated after every 2M mem_map, and it will push next vmemmap (2M) to the next (2M) alignment. solution: try to allocate the mem_map continously. after the patch, we get: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001600000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001800000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810001a00000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810001c00000 on node 0 ... which is the ideal layout. and usemap will share a page because of they are allocated continuously too: sparse_early_usemap_alloc: usemap = ffff810024e00000 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00080 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00100 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00180 size = 24 ... so we make the bootmem allocation more compact and use less memory for usemap => mission accomplished ;-) Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-14 02:51:06 +08:00
map = sparse_early_mem_map_alloc(pnum);
if (!map)
continue;
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2 There are problems in the use of SPARSEMEM and pageblock flags that causes problems on ia64. The first part of the problem is that units are incorrect in SECTION_BLOCKFLAGS_BITS computation. This results in a map_section's section_mem_map being treated as part of a bitmap which isn't good. This was evident with an invalid virtual address when mem_init attempted to free bootmem pages while relinquishing control from the bootmem allocator. The second part of the problem occurs because the pageblock flags bitmap is be located with the mem_section. The SECTIONS_PER_ROOT computation using sizeof (mem_section) may not be a power of 2 depending on the size of the bitmap. This renders masks and other such things not power of 2 base. This issue was seen with SPARSEMEM_EXTREME on ia64. This patch moves the bitmap outside of mem_section and uses a pointer instead in the mem_section. The bitmaps are allocated when the section is being initialised. Note that sparse_early_usemap_alloc() does not use alloc_remap() like sparse_early_mem_map_alloc(). The allocation required for the bitmap on x86, the only architecture that uses alloc_remap is typically smaller than a cache line. alloc_remap() pads out allocations to the cache size which would be a needless waste. Credit to Bob Picco for identifying the original problem and effecting a fix for the SECTION_BLOCKFLAGS_BITS calculation. Credit to Andy Whitcroft for devising the best way of allocating the bitmaps only when required for the section. [wli@holomorphy.com: warning fix] Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: William Irwin <bill.irwin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:25:56 +08:00
sparse_init_one_section(__nr_to_section(pnum), pnum, map,
usemap);
}
mm: make mem_map allocation continuous vmemmap allocation currently has this layout: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001800000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001c00000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810002000000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810002400000 on node 0 ... note that there is a 2M hole between them - not optimal. the root cause is that usemap (24 bytes) will be allocated after every 2M mem_map, and it will push next vmemmap (2M) to the next (2M) alignment. solution: try to allocate the mem_map continously. after the patch, we get: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001600000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001800000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810001a00000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810001c00000 on node 0 ... which is the ideal layout. and usemap will share a page because of they are allocated continuously too: sparse_early_usemap_alloc: usemap = ffff810024e00000 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00080 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00100 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00180 size = 24 ... so we make the bootmem allocation more compact and use less memory for usemap => mission accomplished ;-) Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-14 02:51:06 +08:00
x86_64/mm: check and print vmemmap allocation continuous On big systems with lots of memory, don't print out too much during bootup, and make it easy to find if it is continuous. on 256G 8 sockets system will get [ffffe20000000000-ffffe20002bfffff] PMD -> [ffff810001400000-ffff810003ffffff] on node 0 [ffffe2001c700000-ffffe2001c7fffff] potential offnode page_structs [ffffe20002c00000-ffffe2001c7fffff] PMD -> [ffff81000c000000-ffff8100255fffff] on node 0 [ffffe20038700000-ffffe200387fffff] potential offnode page_structs [ffffe2001c800000-ffffe200387fffff] PMD -> [ffff810820200000-ffff81083c1fffff] on node 1 [ffffe20040000000-ffffe2007fffffff] PUD ->ffff811027a00000 on node 2 [ffffe20038800000-ffffe2003fffffff] PMD -> [ffff811020200000-ffff8110279fffff] on node 2 [ffffe20054700000-ffffe200547fffff] potential offnode page_structs [ffffe20040000000-ffffe200547fffff] PMD -> [ffff811027c00000-ffff81103c3fffff] on node 2 [ffffe20070700000-ffffe200707fffff] potential offnode page_structs [ffffe20054800000-ffffe200707fffff] PMD -> [ffff811820200000-ffff81183c1fffff] on node 3 [ffffe20080000000-ffffe200bfffffff] PUD ->ffff81202fa00000 on node 4 [ffffe20070800000-ffffe2007fffffff] PMD -> [ffff812020200000-ffff81202f9fffff] on node 4 [ffffe2008c700000-ffffe2008c7fffff] potential offnode page_structs [ffffe20080000000-ffffe2008c7fffff] PMD -> [ffff81202fc00000-ffff81203c3fffff] on node 4 [ffffe200a8700000-ffffe200a87fffff] potential offnode page_structs [ffffe2008c800000-ffffe200a87fffff] PMD -> [ffff812820200000-ffff81283c1fffff] on node 5 [ffffe200c0000000-ffffe200ffffffff] PUD ->ffff813037a00000 on node 6 [ffffe200a8800000-ffffe200bfffffff] PMD -> [ffff813020200000-ffff8130379fffff] on node 6 [ffffe200c4700000-ffffe200c47fffff] potential offnode page_structs [ffffe200c0000000-ffffe200c47fffff] PMD -> [ffff813037c00000-ffff81303c3fffff] on node 6 [ffffe200c4800000-ffffe200e07fffff] PMD -> [ffff813820200000-ffff81383c1fffff] on node 7 instead of a very long print out... Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-04-12 16:19:24 +08:00
vmemmap_populate_print_last();
mm: make mem_map allocation continuous vmemmap allocation currently has this layout: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001800000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001c00000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810002000000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810002400000 on node 0 ... note that there is a 2M hole between them - not optimal. the root cause is that usemap (24 bytes) will be allocated after every 2M mem_map, and it will push next vmemmap (2M) to the next (2M) alignment. solution: try to allocate the mem_map continously. after the patch, we get: [ffffe20000000000-ffffe200001fffff] PMD ->ffff810001400000 on node 0 [ffffe20000200000-ffffe200003fffff] PMD ->ffff810001600000 on node 0 [ffffe20000400000-ffffe200005fffff] PMD ->ffff810001800000 on node 0 [ffffe20000600000-ffffe200007fffff] PMD ->ffff810001a00000 on node 0 [ffffe20000800000-ffffe200009fffff] PMD ->ffff810001c00000 on node 0 ... which is the ideal layout. and usemap will share a page because of they are allocated continuously too: sparse_early_usemap_alloc: usemap = ffff810024e00000 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00080 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00100 size = 24 sparse_early_usemap_alloc: usemap = ffff810024e00180 size = 24 ... so we make the bootmem allocation more compact and use less memory for usemap => mission accomplished ;-) Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-14 02:51:06 +08:00
free_bootmem(__pa(usemap_map), size);
}
#ifdef CONFIG_MEMORY_HOTPLUG
#ifdef CONFIG_SPARSEMEM_VMEMMAP
static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
unsigned long nr_pages)
{
/* This will make the necessary allocations eventually. */
return sparse_mem_map_populate(pnum, nid);
}
static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
{
return; /* XXX: Not implemented yet */
}
static void free_map_bootmem(struct page *page, unsigned long nr_pages)
{
}
#else
static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
{
struct page *page, *ret;
unsigned long memmap_size = sizeof(struct page) * nr_pages;
page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
if (page)
goto got_map_page;
ret = vmalloc(memmap_size);
if (ret)
goto got_map_ptr;
return NULL;
got_map_page:
ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
got_map_ptr:
memset(ret, 0, memmap_size);
return ret;
}
static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
unsigned long nr_pages)
{
return __kmalloc_section_memmap(nr_pages);
}
static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
{
if (is_vmalloc_addr(memmap))
vfree(memmap);
else
free_pages((unsigned long)memmap,
get_order(sizeof(struct page) * nr_pages));
}
static void free_map_bootmem(struct page *page, unsigned long nr_pages)
{
unsigned long maps_section_nr, removing_section_nr, i;
int magic;
for (i = 0; i < nr_pages; i++, page++) {
magic = atomic_read(&page->_mapcount);
BUG_ON(magic == NODE_INFO);
maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
removing_section_nr = page->private;
/*
* When this function is called, the removing section is
* logical offlined state. This means all pages are isolated
* from page allocator. If removing section's memmap is placed
* on the same section, it must not be freed.
* If it is freed, page allocator may allocate it which will
* be removed physically soon.
*/
if (maps_section_nr != removing_section_nr)
put_page_bootmem(page);
}
}
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
static void free_section_usemap(struct page *memmap, unsigned long *usemap)
{
struct page *usemap_page;
unsigned long nr_pages;
if (!usemap)
return;
usemap_page = virt_to_page(usemap);
/*
* Check to see if allocation came from hot-plug-add
*/
if (PageSlab(usemap_page)) {
kfree(usemap);
if (memmap)
__kfree_section_memmap(memmap, PAGES_PER_SECTION);
return;
}
/*
* The usemap came from bootmem. This is packed with other usemaps
* on the section which has pgdat at boot time. Just keep it as is now.
*/
if (memmap) {
struct page *memmap_page;
memmap_page = virt_to_page(memmap);
nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
>> PAGE_SHIFT;
free_map_bootmem(memmap_page, nr_pages);
}
}
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
/*
* returns the number of sections whose mem_maps were properly
* set. If this is <=0, then that means that the passed-in
* map was not consumed and must be freed.
*/
int sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
int nr_pages)
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
{
unsigned long section_nr = pfn_to_section_nr(start_pfn);
struct pglist_data *pgdat = zone->zone_pgdat;
struct mem_section *ms;
struct page *memmap;
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2 There are problems in the use of SPARSEMEM and pageblock flags that causes problems on ia64. The first part of the problem is that units are incorrect in SECTION_BLOCKFLAGS_BITS computation. This results in a map_section's section_mem_map being treated as part of a bitmap which isn't good. This was evident with an invalid virtual address when mem_init attempted to free bootmem pages while relinquishing control from the bootmem allocator. The second part of the problem occurs because the pageblock flags bitmap is be located with the mem_section. The SECTIONS_PER_ROOT computation using sizeof (mem_section) may not be a power of 2 depending on the size of the bitmap. This renders masks and other such things not power of 2 base. This issue was seen with SPARSEMEM_EXTREME on ia64. This patch moves the bitmap outside of mem_section and uses a pointer instead in the mem_section. The bitmaps are allocated when the section is being initialised. Note that sparse_early_usemap_alloc() does not use alloc_remap() like sparse_early_mem_map_alloc(). The allocation required for the bitmap on x86, the only architecture that uses alloc_remap is typically smaller than a cache line. alloc_remap() pads out allocations to the cache size which would be a needless waste. Credit to Bob Picco for identifying the original problem and effecting a fix for the SECTION_BLOCKFLAGS_BITS calculation. Credit to Andy Whitcroft for devising the best way of allocating the bitmaps only when required for the section. [wli@holomorphy.com: warning fix] Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: William Irwin <bill.irwin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:25:56 +08:00
unsigned long *usemap;
unsigned long flags;
int ret;
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
/*
* no locking for this, because it does its own
* plus, it does a kmalloc
*/
ret = sparse_index_init(section_nr, pgdat->node_id);
if (ret < 0 && ret != -EEXIST)
return ret;
memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
if (!memmap)
return -ENOMEM;
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2 There are problems in the use of SPARSEMEM and pageblock flags that causes problems on ia64. The first part of the problem is that units are incorrect in SECTION_BLOCKFLAGS_BITS computation. This results in a map_section's section_mem_map being treated as part of a bitmap which isn't good. This was evident with an invalid virtual address when mem_init attempted to free bootmem pages while relinquishing control from the bootmem allocator. The second part of the problem occurs because the pageblock flags bitmap is be located with the mem_section. The SECTIONS_PER_ROOT computation using sizeof (mem_section) may not be a power of 2 depending on the size of the bitmap. This renders masks and other such things not power of 2 base. This issue was seen with SPARSEMEM_EXTREME on ia64. This patch moves the bitmap outside of mem_section and uses a pointer instead in the mem_section. The bitmaps are allocated when the section is being initialised. Note that sparse_early_usemap_alloc() does not use alloc_remap() like sparse_early_mem_map_alloc(). The allocation required for the bitmap on x86, the only architecture that uses alloc_remap is typically smaller than a cache line. alloc_remap() pads out allocations to the cache size which would be a needless waste. Credit to Bob Picco for identifying the original problem and effecting a fix for the SECTION_BLOCKFLAGS_BITS calculation. Credit to Andy Whitcroft for devising the best way of allocating the bitmaps only when required for the section. [wli@holomorphy.com: warning fix] Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: William Irwin <bill.irwin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:25:56 +08:00
usemap = __kmalloc_section_usemap();
if (!usemap) {
__kfree_section_memmap(memmap, nr_pages);
return -ENOMEM;
}
pgdat_resize_lock(pgdat, &flags);
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
ms = __pfn_to_section(start_pfn);
if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
ret = -EEXIST;
goto out;
}
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2 There are problems in the use of SPARSEMEM and pageblock flags that causes problems on ia64. The first part of the problem is that units are incorrect in SECTION_BLOCKFLAGS_BITS computation. This results in a map_section's section_mem_map being treated as part of a bitmap which isn't good. This was evident with an invalid virtual address when mem_init attempted to free bootmem pages while relinquishing control from the bootmem allocator. The second part of the problem occurs because the pageblock flags bitmap is be located with the mem_section. The SECTIONS_PER_ROOT computation using sizeof (mem_section) may not be a power of 2 depending on the size of the bitmap. This renders masks and other such things not power of 2 base. This issue was seen with SPARSEMEM_EXTREME on ia64. This patch moves the bitmap outside of mem_section and uses a pointer instead in the mem_section. The bitmaps are allocated when the section is being initialised. Note that sparse_early_usemap_alloc() does not use alloc_remap() like sparse_early_mem_map_alloc(). The allocation required for the bitmap on x86, the only architecture that uses alloc_remap is typically smaller than a cache line. alloc_remap() pads out allocations to the cache size which would be a needless waste. Credit to Bob Picco for identifying the original problem and effecting a fix for the SECTION_BLOCKFLAGS_BITS calculation. Credit to Andy Whitcroft for devising the best way of allocating the bitmaps only when required for the section. [wli@holomorphy.com: warning fix] Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: William Irwin <bill.irwin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:25:56 +08:00
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
ms->section_mem_map |= SECTION_MARKED_PRESENT;
Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2 There are problems in the use of SPARSEMEM and pageblock flags that causes problems on ia64. The first part of the problem is that units are incorrect in SECTION_BLOCKFLAGS_BITS computation. This results in a map_section's section_mem_map being treated as part of a bitmap which isn't good. This was evident with an invalid virtual address when mem_init attempted to free bootmem pages while relinquishing control from the bootmem allocator. The second part of the problem occurs because the pageblock flags bitmap is be located with the mem_section. The SECTIONS_PER_ROOT computation using sizeof (mem_section) may not be a power of 2 depending on the size of the bitmap. This renders masks and other such things not power of 2 base. This issue was seen with SPARSEMEM_EXTREME on ia64. This patch moves the bitmap outside of mem_section and uses a pointer instead in the mem_section. The bitmaps are allocated when the section is being initialised. Note that sparse_early_usemap_alloc() does not use alloc_remap() like sparse_early_mem_map_alloc(). The allocation required for the bitmap on x86, the only architecture that uses alloc_remap is typically smaller than a cache line. alloc_remap() pads out allocations to the cache size which would be a needless waste. Credit to Bob Picco for identifying the original problem and effecting a fix for the SECTION_BLOCKFLAGS_BITS calculation. Credit to Andy Whitcroft for devising the best way of allocating the bitmaps only when required for the section. [wli@holomorphy.com: warning fix] Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: William Irwin <bill.irwin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 16:25:56 +08:00
ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
out:
pgdat_resize_unlock(pgdat, &flags);
if (ret <= 0) {
kfree(usemap);
__kfree_section_memmap(memmap, nr_pages);
}
return ret;
[PATCH] sparsemem hotplug base Make sparse's initalization be accessible at runtime. This allows sparse mappings to be created after boot in a hotplug situation. This patch is separated from the previous one just to give an indication how much of the sparse infrastructure is *just* for hotplug memory. The section_mem_map doesn't really store a pointer. It stores something that is convenient to do some math against to get a pointer. It isn't valid to just do *section_mem_map, so I don't think it should be stored as a pointer. There are a couple of things I'd like to store about a section. First of all, the fact that it is !NULL does not mean that it is present. There could be such a combination where section_mem_map *is* NULL, but the math gets you properly to a real mem_map. So, I don't think that check is safe. Since we're storing 32-bit-aligned structures, we have a few bits in the bottom of the pointer to play with. Use one bit to encode whether there's really a mem_map there, and the other one to tell whether there's a valid section there. We need to distinguish between the two because sometimes there's a gap between when a section is discovered to be present and when we can get the mem_map for it. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 15:08:00 +08:00
}
void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
{
struct page *memmap = NULL;
unsigned long *usemap = NULL;
if (ms->section_mem_map) {
usemap = ms->pageblock_flags;
memmap = sparse_decode_mem_map(ms->section_mem_map,
__section_nr(ms));
ms->section_mem_map = 0;
ms->pageblock_flags = NULL;
}
free_section_usemap(memmap, usemap);
}
#endif