KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
/*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License, version 2, as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software
|
|
|
|
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
|
|
*
|
|
|
|
* Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/string.h>
|
|
|
|
#include <linux/kvm.h>
|
|
|
|
#include <linux/kvm_host.h>
|
|
|
|
#include <linux/highmem.h>
|
|
|
|
#include <linux/gfp.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/hugetlb.h>
|
2011-12-12 20:27:39 +08:00
|
|
|
#include <linux/vmalloc.h>
|
2012-09-11 21:27:01 +08:00
|
|
|
#include <linux/srcu.h>
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
#include <linux/anon_inodes.h>
|
|
|
|
#include <linux/file.h>
|
2015-03-28 11:21:01 +08:00
|
|
|
#include <linux/debugfs.h>
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
|
|
|
|
#include <asm/tlbflush.h>
|
|
|
|
#include <asm/kvm_ppc.h>
|
|
|
|
#include <asm/kvm_book3s.h>
|
2016-03-01 15:29:20 +08:00
|
|
|
#include <asm/book3s/64/mmu-hash.h>
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
#include <asm/hvcall.h>
|
|
|
|
#include <asm/synch.h>
|
|
|
|
#include <asm/ppc-opcode.h>
|
|
|
|
#include <asm/cputable.h>
|
2017-07-27 14:24:53 +08:00
|
|
|
#include <asm/pte-walk.h>
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
|
2014-12-04 08:48:10 +08:00
|
|
|
#include "trace_hv.h"
|
|
|
|
|
2016-12-20 13:49:05 +08:00
|
|
|
//#define DEBUG_RESIZE_HPT 1
|
|
|
|
|
|
|
|
#ifdef DEBUG_RESIZE_HPT
|
|
|
|
#define resize_hpt_debug(resize, ...) \
|
|
|
|
do { \
|
|
|
|
printk(KERN_DEBUG "RESIZE HPT %p: ", resize); \
|
|
|
|
printk(__VA_ARGS__); \
|
|
|
|
} while (0)
|
|
|
|
#else
|
|
|
|
#define resize_hpt_debug(resize, ...) \
|
|
|
|
do { } while (0)
|
|
|
|
#endif
|
|
|
|
|
KVM: PPC: Book3S HV: Restructure HPT entry creation code
This restructures the code that creates HPT (hashed page table)
entries so that it can be called in situations where we don't have a
struct vcpu pointer, only a struct kvm pointer. It also fixes a bug
where kvmppc_map_vrma() would corrupt the guest R4 value.
Most of the work of kvmppc_virtmode_h_enter is now done by a new
function, kvmppc_virtmode_do_h_enter, which itself calls another new
function, kvmppc_do_h_enter, which contains most of the old
kvmppc_h_enter. The new kvmppc_do_h_enter takes explicit arguments
for the place to return the HPTE index, the Linux page tables to use,
and whether it is being called in real mode, thus removing the need
for it to have the vcpu as an argument.
Currently kvmppc_map_vrma creates the VRMA (virtual real mode area)
HPTEs by calling kvmppc_virtmode_h_enter, which is designed primarily
to handle H_ENTER hcalls from the guest that need to pin a page of
memory. Since H_ENTER returns the index of the created HPTE in R4,
kvmppc_virtmode_h_enter updates the guest R4, corrupting the guest R4
in the case when it gets called from kvmppc_map_vrma on the first
VCPU_RUN ioctl. With this, kvmppc_map_vrma instead calls
kvmppc_virtmode_do_h_enter with the address of a dummy word as the
place to store the HPTE index, thus avoiding corrupting the guest R4.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-14 02:31:32 +08:00
|
|
|
static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
|
|
|
|
long pte_index, unsigned long pteh,
|
|
|
|
unsigned long ptel, unsigned long *pte_idx_ret);
|
2016-12-20 13:49:05 +08:00
|
|
|
|
|
|
|
struct kvm_resize_hpt {
|
|
|
|
/* These fields read-only after init */
|
|
|
|
struct kvm *kvm;
|
|
|
|
struct work_struct work;
|
|
|
|
u32 order;
|
|
|
|
|
|
|
|
/* These fields protected by kvm->lock */
|
|
|
|
int error;
|
|
|
|
bool prepare_done;
|
2016-12-20 13:49:06 +08:00
|
|
|
|
|
|
|
/* Private to the work thread, until prepare_done is true,
|
|
|
|
* then protected by kvm->resize_hpt_sem */
|
|
|
|
struct kvm_hpt_info hpt;
|
2016-12-20 13:49:05 +08:00
|
|
|
};
|
|
|
|
|
2012-11-22 07:27:19 +08:00
|
|
|
static void kvmppc_rmap_reset(struct kvm *kvm);
|
KVM: PPC: Book3S HV: Restructure HPT entry creation code
This restructures the code that creates HPT (hashed page table)
entries so that it can be called in situations where we don't have a
struct vcpu pointer, only a struct kvm pointer. It also fixes a bug
where kvmppc_map_vrma() would corrupt the guest R4 value.
Most of the work of kvmppc_virtmode_h_enter is now done by a new
function, kvmppc_virtmode_do_h_enter, which itself calls another new
function, kvmppc_do_h_enter, which contains most of the old
kvmppc_h_enter. The new kvmppc_do_h_enter takes explicit arguments
for the place to return the HPTE index, the Linux page tables to use,
and whether it is being called in real mode, thus removing the need
for it to have the vcpu as an argument.
Currently kvmppc_map_vrma creates the VRMA (virtual real mode area)
HPTEs by calling kvmppc_virtmode_h_enter, which is designed primarily
to handle H_ENTER hcalls from the guest that need to pin a page of
memory. Since H_ENTER returns the index of the created HPTE in R4,
kvmppc_virtmode_h_enter updates the guest R4, corrupting the guest R4
in the case when it gets called from kvmppc_map_vrma on the first
VCPU_RUN ioctl. With this, kvmppc_map_vrma instead calls
kvmppc_virtmode_do_h_enter with the address of a dummy word as the
place to store the HPTE index, thus avoiding corrupting the guest R4.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-14 02:31:32 +08:00
|
|
|
|
KVM: PPC: Book3S HV: Split HPT allocation from activation
Currently, kvmppc_alloc_hpt() both allocates a new hashed page table (HPT)
and sets it up as the active page table for a VM. For the upcoming HPT
resize implementation we're going to want to allocate HPTs separately from
activating them.
So, split the allocation itself out into kvmppc_allocate_hpt() and perform
the activation with a new kvmppc_set_hpt() function. Likewise we split
kvmppc_free_hpt(), which just frees the HPT, from kvmppc_release_hpt()
which unsets it as an active HPT, then frees it.
We also move the logic to fall back to smaller HPT sizes if the first try
fails into the single caller which used that behaviour,
kvmppc_hv_setup_htab_rma(). This introduces a slight semantic change, in
that previously if the initial attempt at CMA allocation failed, we would
fall back to attempting smaller sizes with the page allocator. Now, we
try first CMA, then the page allocator at each size. As far as I can tell
this change should be harmless.
To match, we make kvmppc_free_hpt() just free the actual HPT itself. The
call to kvmppc_free_lpid() that was there, we move to the single caller.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-12-20 13:49:02 +08:00
|
|
|
int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
{
|
2014-05-06 23:54:18 +08:00
|
|
|
unsigned long hpt = 0;
|
KVM: PPC: Book3S HV: Split HPT allocation from activation
Currently, kvmppc_alloc_hpt() both allocates a new hashed page table (HPT)
and sets it up as the active page table for a VM. For the upcoming HPT
resize implementation we're going to want to allocate HPTs separately from
activating them.
So, split the allocation itself out into kvmppc_allocate_hpt() and perform
the activation with a new kvmppc_set_hpt() function. Likewise we split
kvmppc_free_hpt(), which just frees the HPT, from kvmppc_release_hpt()
which unsets it as an active HPT, then frees it.
We also move the logic to fall back to smaller HPT sizes if the first try
fails into the single caller which used that behaviour,
kvmppc_hv_setup_htab_rma(). This introduces a slight semantic change, in
that previously if the initial attempt at CMA allocation failed, we would
fall back to attempting smaller sizes with the page allocator. Now, we
try first CMA, then the page allocator at each size. As far as I can tell
this change should be harmless.
To match, we make kvmppc_free_hpt() just free the actual HPT itself. The
call to kvmppc_free_lpid() that was there, we move to the single caller.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-12-20 13:49:02 +08:00
|
|
|
int cma = 0;
|
2013-07-02 13:45:16 +08:00
|
|
|
struct page *page = NULL;
|
KVM: PPC: Book3S HV: Split HPT allocation from activation
Currently, kvmppc_alloc_hpt() both allocates a new hashed page table (HPT)
and sets it up as the active page table for a VM. For the upcoming HPT
resize implementation we're going to want to allocate HPTs separately from
activating them.
So, split the allocation itself out into kvmppc_allocate_hpt() and perform
the activation with a new kvmppc_set_hpt() function. Likewise we split
kvmppc_free_hpt(), which just frees the HPT, from kvmppc_release_hpt()
which unsets it as an active HPT, then frees it.
We also move the logic to fall back to smaller HPT sizes if the first try
fails into the single caller which used that behaviour,
kvmppc_hv_setup_htab_rma(). This introduces a slight semantic change, in
that previously if the initial attempt at CMA allocation failed, we would
fall back to attempting smaller sizes with the page allocator. Now, we
try first CMA, then the page allocator at each size. As far as I can tell
this change should be harmless.
To match, we make kvmppc_free_hpt() just free the actual HPT itself. The
call to kvmppc_free_lpid() that was there, we move to the single caller.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-12-20 13:49:02 +08:00
|
|
|
struct revmap_entry *rev;
|
|
|
|
unsigned long npte;
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
|
KVM: PPC: Book3S HV: Split HPT allocation from activation
Currently, kvmppc_alloc_hpt() both allocates a new hashed page table (HPT)
and sets it up as the active page table for a VM. For the upcoming HPT
resize implementation we're going to want to allocate HPTs separately from
activating them.
So, split the allocation itself out into kvmppc_allocate_hpt() and perform
the activation with a new kvmppc_set_hpt() function. Likewise we split
kvmppc_free_hpt(), which just frees the HPT, from kvmppc_release_hpt()
which unsets it as an active HPT, then frees it.
We also move the logic to fall back to smaller HPT sizes if the first try
fails into the single caller which used that behaviour,
kvmppc_hv_setup_htab_rma(). This introduces a slight semantic change, in
that previously if the initial attempt at CMA allocation failed, we would
fall back to attempting smaller sizes with the page allocator. Now, we
try first CMA, then the page allocator at each size. As far as I can tell
this change should be harmless.
To match, we make kvmppc_free_hpt() just free the actual HPT itself. The
call to kvmppc_free_lpid() that was there, we move to the single caller.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-12-20 13:49:02 +08:00
|
|
|
if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
|
|
|
|
return -EINVAL;
|
KVM: PPC: Book3S HV: Make the guest hash table size configurable
This adds a new ioctl to enable userspace to control the size of the guest
hashed page table (HPT) and to clear it out when resetting the guest.
The KVM_PPC_ALLOCATE_HTAB ioctl is a VM ioctl and takes as its parameter
a pointer to a u32 containing the desired order of the HPT (log base 2
of the size in bytes), which is updated on successful return to the
actual order of the HPT which was allocated.
There must be no vcpus running at the time of this ioctl. To enforce
this, we now keep a count of the number of vcpus running in
kvm->arch.vcpus_running.
If the ioctl is called when a HPT has already been allocated, we don't
reallocate the HPT but just clear it out. We first clear the
kvm->arch.rma_setup_done flag, which has two effects: (a) since we hold
the kvm->lock mutex, it will prevent any vcpus from starting to run until
we're done, and (b) it means that the first vcpu to run after we're done
will re-establish the VRMA if necessary.
If userspace doesn't call this ioctl before running the first vcpu, the
kernel will allocate a default-sized HPT at that point. We do it then
rather than when creating the VM, as the code did previously, so that
userspace has a chance to do the ioctl if it wants.
When allocating the HPT, we can allocate either from the kernel page
allocator, or from the preallocated pool. If userspace is asking for
a different size from the preallocated HPTs, we first try to allocate
using the kernel page allocator. Then we try to allocate from the
preallocated pool, and then if that fails, we try allocating decreasing
sizes from the kernel page allocator, down to the minimum size allowed
(256kB). Note that the kernel page allocator limits allocations to
1 << CONFIG_FORCE_MAX_ZONEORDER pages, which by default corresponds to
16MB (on 64-bit powerpc, at least).
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix module compilation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-05-04 10:32:53 +08:00
|
|
|
|
2016-12-20 13:48:59 +08:00
|
|
|
page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
|
2014-05-06 23:54:18 +08:00
|
|
|
if (page) {
|
|
|
|
hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
|
2014-09-03 00:13:01 +08:00
|
|
|
memset((void *)hpt, 0, (1ul << order));
|
KVM: PPC: Book3S HV: Split HPT allocation from activation
Currently, kvmppc_alloc_hpt() both allocates a new hashed page table (HPT)
and sets it up as the active page table for a VM. For the upcoming HPT
resize implementation we're going to want to allocate HPTs separately from
activating them.
So, split the allocation itself out into kvmppc_allocate_hpt() and perform
the activation with a new kvmppc_set_hpt() function. Likewise we split
kvmppc_free_hpt(), which just frees the HPT, from kvmppc_release_hpt()
which unsets it as an active HPT, then frees it.
We also move the logic to fall back to smaller HPT sizes if the first try
fails into the single caller which used that behaviour,
kvmppc_hv_setup_htab_rma(). This introduces a slight semantic change, in
that previously if the initial attempt at CMA allocation failed, we would
fall back to attempting smaller sizes with the page allocator. Now, we
try first CMA, then the page allocator at each size. As far as I can tell
this change should be harmless.
To match, we make kvmppc_free_hpt() just free the actual HPT itself. The
call to kvmppc_free_lpid() that was there, we move to the single caller.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-12-20 13:49:02 +08:00
|
|
|
cma = 1;
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
}
|
KVM: PPC: Book3S HV: Make the guest hash table size configurable
This adds a new ioctl to enable userspace to control the size of the guest
hashed page table (HPT) and to clear it out when resetting the guest.
The KVM_PPC_ALLOCATE_HTAB ioctl is a VM ioctl and takes as its parameter
a pointer to a u32 containing the desired order of the HPT (log base 2
of the size in bytes), which is updated on successful return to the
actual order of the HPT which was allocated.
There must be no vcpus running at the time of this ioctl. To enforce
this, we now keep a count of the number of vcpus running in
kvm->arch.vcpus_running.
If the ioctl is called when a HPT has already been allocated, we don't
reallocate the HPT but just clear it out. We first clear the
kvm->arch.rma_setup_done flag, which has two effects: (a) since we hold
the kvm->lock mutex, it will prevent any vcpus from starting to run until
we're done, and (b) it means that the first vcpu to run after we're done
will re-establish the VRMA if necessary.
If userspace doesn't call this ioctl before running the first vcpu, the
kernel will allocate a default-sized HPT at that point. We do it then
rather than when creating the VM, as the code did previously, so that
userspace has a chance to do the ioctl if it wants.
When allocating the HPT, we can allocate either from the kernel page
allocator, or from the preallocated pool. If userspace is asking for
a different size from the preallocated HPTs, we first try to allocate
using the kernel page allocator. Then we try to allocate from the
preallocated pool, and then if that fails, we try allocating decreasing
sizes from the kernel page allocator, down to the minimum size allowed
(256kB). Note that the kernel page allocator limits allocations to
1 << CONFIG_FORCE_MAX_ZONEORDER pages, which by default corresponds to
16MB (on 64-bit powerpc, at least).
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix module compilation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-05-04 10:32:53 +08:00
|
|
|
|
KVM: PPC: Book3S HV: Split HPT allocation from activation
Currently, kvmppc_alloc_hpt() both allocates a new hashed page table (HPT)
and sets it up as the active page table for a VM. For the upcoming HPT
resize implementation we're going to want to allocate HPTs separately from
activating them.
So, split the allocation itself out into kvmppc_allocate_hpt() and perform
the activation with a new kvmppc_set_hpt() function. Likewise we split
kvmppc_free_hpt(), which just frees the HPT, from kvmppc_release_hpt()
which unsets it as an active HPT, then frees it.
We also move the logic to fall back to smaller HPT sizes if the first try
fails into the single caller which used that behaviour,
kvmppc_hv_setup_htab_rma(). This introduces a slight semantic change, in
that previously if the initial attempt at CMA allocation failed, we would
fall back to attempting smaller sizes with the page allocator. Now, we
try first CMA, then the page allocator at each size. As far as I can tell
this change should be harmless.
To match, we make kvmppc_free_hpt() just free the actual HPT itself. The
call to kvmppc_free_lpid() that was there, we move to the single caller.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-12-20 13:49:02 +08:00
|
|
|
if (!hpt)
|
2017-07-13 05:36:45 +08:00
|
|
|
hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL
|
KVM: PPC: Book3S HV: Split HPT allocation from activation
Currently, kvmppc_alloc_hpt() both allocates a new hashed page table (HPT)
and sets it up as the active page table for a VM. For the upcoming HPT
resize implementation we're going to want to allocate HPTs separately from
activating them.
So, split the allocation itself out into kvmppc_allocate_hpt() and perform
the activation with a new kvmppc_set_hpt() function. Likewise we split
kvmppc_free_hpt(), which just frees the HPT, from kvmppc_release_hpt()
which unsets it as an active HPT, then frees it.
We also move the logic to fall back to smaller HPT sizes if the first try
fails into the single caller which used that behaviour,
kvmppc_hv_setup_htab_rma(). This introduces a slight semantic change, in
that previously if the initial attempt at CMA allocation failed, we would
fall back to attempting smaller sizes with the page allocator. Now, we
try first CMA, then the page allocator at each size. As far as I can tell
this change should be harmless.
To match, we make kvmppc_free_hpt() just free the actual HPT itself. The
call to kvmppc_free_lpid() that was there, we move to the single caller.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-12-20 13:49:02 +08:00
|
|
|
|__GFP_NOWARN, order - PAGE_SHIFT);
|
KVM: PPC: Book3S HV: Make the guest hash table size configurable
This adds a new ioctl to enable userspace to control the size of the guest
hashed page table (HPT) and to clear it out when resetting the guest.
The KVM_PPC_ALLOCATE_HTAB ioctl is a VM ioctl and takes as its parameter
a pointer to a u32 containing the desired order of the HPT (log base 2
of the size in bytes), which is updated on successful return to the
actual order of the HPT which was allocated.
There must be no vcpus running at the time of this ioctl. To enforce
this, we now keep a count of the number of vcpus running in
kvm->arch.vcpus_running.
If the ioctl is called when a HPT has already been allocated, we don't
reallocate the HPT but just clear it out. We first clear the
kvm->arch.rma_setup_done flag, which has two effects: (a) since we hold
the kvm->lock mutex, it will prevent any vcpus from starting to run until
we're done, and (b) it means that the first vcpu to run after we're done
will re-establish the VRMA if necessary.
If userspace doesn't call this ioctl before running the first vcpu, the
kernel will allocate a default-sized HPT at that point. We do it then
rather than when creating the VM, as the code did previously, so that
userspace has a chance to do the ioctl if it wants.
When allocating the HPT, we can allocate either from the kernel page
allocator, or from the preallocated pool. If userspace is asking for
a different size from the preallocated HPTs, we first try to allocate
using the kernel page allocator. Then we try to allocate from the
preallocated pool, and then if that fails, we try allocating decreasing
sizes from the kernel page allocator, down to the minimum size allowed
(256kB). Note that the kernel page allocator limits allocations to
1 << CONFIG_FORCE_MAX_ZONEORDER pages, which by default corresponds to
16MB (on 64-bit powerpc, at least).
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix module compilation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-05-04 10:32:53 +08:00
|
|
|
|
|
|
|
if (!hpt)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
KVM: PPC: Book3S HV: Split HPT allocation from activation
Currently, kvmppc_alloc_hpt() both allocates a new hashed page table (HPT)
and sets it up as the active page table for a VM. For the upcoming HPT
resize implementation we're going to want to allocate HPTs separately from
activating them.
So, split the allocation itself out into kvmppc_allocate_hpt() and perform
the activation with a new kvmppc_set_hpt() function. Likewise we split
kvmppc_free_hpt(), which just frees the HPT, from kvmppc_release_hpt()
which unsets it as an active HPT, then frees it.
We also move the logic to fall back to smaller HPT sizes if the first try
fails into the single caller which used that behaviour,
kvmppc_hv_setup_htab_rma(). This introduces a slight semantic change, in
that previously if the initial attempt at CMA allocation failed, we would
fall back to attempting smaller sizes with the page allocator. Now, we
try first CMA, then the page allocator at each size. As far as I can tell
this change should be harmless.
To match, we make kvmppc_free_hpt() just free the actual HPT itself. The
call to kvmppc_free_lpid() that was there, we move to the single caller.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-12-20 13:49:02 +08:00
|
|
|
/* HPTEs are 2**4 bytes long */
|
|
|
|
npte = 1ul << (order - 4);
|
KVM: PPC: Book3S HV: Add a per vcpu cache for recently page faulted MMIO entries
This keeps a per vcpu cache for recently page faulted MMIO entries.
On a page fault, if the entry exists in the cache, we can avoid some
time-consuming paths, for example, looking up HPT, locking HPTE twice
and searching mmio gfn from memslots, then directly call
kvmppc_hv_emulate_mmio().
In current implenment, we limit the size of cache to four. We think
it's enough to cover the high-frequency MMIO HPTEs in most case.
For example, considering the case of using virtio device, for virtio
legacy devices, one HPTE could handle notifications from up to
1024 (64K page / 64 byte Port IO register) devices, so one cache entry
is enough; for virtio modern devices, we always need one HPTE to handle
notification for each device because modern device would use a 8M MMIO
register to notify host instead of Port IO register, typically the
system's configuration should not exceed four virtio devices per
vcpu, four cache entry is also enough in this case. Of course, if needed,
we could also modify the macro to a module parameter in the future.
Signed-off-by: Yongji Xie <xyjxie@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-11-04 13:55:12 +08:00
|
|
|
|
2011-12-12 20:27:39 +08:00
|
|
|
/* Allocate reverse map array */
|
KVM: PPC: Book3S HV: Split HPT allocation from activation
Currently, kvmppc_alloc_hpt() both allocates a new hashed page table (HPT)
and sets it up as the active page table for a VM. For the upcoming HPT
resize implementation we're going to want to allocate HPTs separately from
activating them.
So, split the allocation itself out into kvmppc_allocate_hpt() and perform
the activation with a new kvmppc_set_hpt() function. Likewise we split
kvmppc_free_hpt(), which just frees the HPT, from kvmppc_release_hpt()
which unsets it as an active HPT, then frees it.
We also move the logic to fall back to smaller HPT sizes if the first try
fails into the single caller which used that behaviour,
kvmppc_hv_setup_htab_rma(). This introduces a slight semantic change, in
that previously if the initial attempt at CMA allocation failed, we would
fall back to attempting smaller sizes with the page allocator. Now, we
try first CMA, then the page allocator at each size. As far as I can tell
this change should be harmless.
To match, we make kvmppc_free_hpt() just free the actual HPT itself. The
call to kvmppc_free_lpid() that was there, we move to the single caller.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-12-20 13:49:02 +08:00
|
|
|
rev = vmalloc(sizeof(struct revmap_entry) * npte);
|
2011-12-12 20:27:39 +08:00
|
|
|
if (!rev) {
|
KVM: PPC: Book3S HV: Split HPT allocation from activation
Currently, kvmppc_alloc_hpt() both allocates a new hashed page table (HPT)
and sets it up as the active page table for a VM. For the upcoming HPT
resize implementation we're going to want to allocate HPTs separately from
activating them.
So, split the allocation itself out into kvmppc_allocate_hpt() and perform
the activation with a new kvmppc_set_hpt() function. Likewise we split
kvmppc_free_hpt(), which just frees the HPT, from kvmppc_release_hpt()
which unsets it as an active HPT, then frees it.
We also move the logic to fall back to smaller HPT sizes if the first try
fails into the single caller which used that behaviour,
kvmppc_hv_setup_htab_rma(). This introduces a slight semantic change, in
that previously if the initial attempt at CMA allocation failed, we would
fall back to attempting smaller sizes with the page allocator. Now, we
try first CMA, then the page allocator at each size. As far as I can tell
this change should be harmless.
To match, we make kvmppc_free_hpt() just free the actual HPT itself. The
call to kvmppc_free_lpid() that was there, we move to the single caller.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-12-20 13:49:02 +08:00
|
|
|
if (cma)
|
|
|
|
kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
|
|
|
|
else
|
|
|
|
free_pages(hpt, order - PAGE_SHIFT);
|
|
|
|
return -ENOMEM;
|
2011-12-12 20:27:39 +08:00
|
|
|
}
|
|
|
|
|
KVM: PPC: Book3S HV: Split HPT allocation from activation
Currently, kvmppc_alloc_hpt() both allocates a new hashed page table (HPT)
and sets it up as the active page table for a VM. For the upcoming HPT
resize implementation we're going to want to allocate HPTs separately from
activating them.
So, split the allocation itself out into kvmppc_allocate_hpt() and perform
the activation with a new kvmppc_set_hpt() function. Likewise we split
kvmppc_free_hpt(), which just frees the HPT, from kvmppc_release_hpt()
which unsets it as an active HPT, then frees it.
We also move the logic to fall back to smaller HPT sizes if the first try
fails into the single caller which used that behaviour,
kvmppc_hv_setup_htab_rma(). This introduces a slight semantic change, in
that previously if the initial attempt at CMA allocation failed, we would
fall back to attempting smaller sizes with the page allocator. Now, we
try first CMA, then the page allocator at each size. As far as I can tell
this change should be harmless.
To match, we make kvmppc_free_hpt() just free the actual HPT itself. The
call to kvmppc_free_lpid() that was there, we move to the single caller.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-12-20 13:49:02 +08:00
|
|
|
info->order = order;
|
|
|
|
info->virt = hpt;
|
|
|
|
info->cma = cma;
|
|
|
|
info->rev = rev;
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
|
|
|
|
return 0;
|
KVM: PPC: Book3S HV: Split HPT allocation from activation
Currently, kvmppc_alloc_hpt() both allocates a new hashed page table (HPT)
and sets it up as the active page table for a VM. For the upcoming HPT
resize implementation we're going to want to allocate HPTs separately from
activating them.
So, split the allocation itself out into kvmppc_allocate_hpt() and perform
the activation with a new kvmppc_set_hpt() function. Likewise we split
kvmppc_free_hpt(), which just frees the HPT, from kvmppc_release_hpt()
which unsets it as an active HPT, then frees it.
We also move the logic to fall back to smaller HPT sizes if the first try
fails into the single caller which used that behaviour,
kvmppc_hv_setup_htab_rma(). This introduces a slight semantic change, in
that previously if the initial attempt at CMA allocation failed, we would
fall back to attempting smaller sizes with the page allocator. Now, we
try first CMA, then the page allocator at each size. As far as I can tell
this change should be harmless.
To match, we make kvmppc_free_hpt() just free the actual HPT itself. The
call to kvmppc_free_lpid() that was there, we move to the single caller.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-12-20 13:49:02 +08:00
|
|
|
}
|
2011-12-12 20:27:39 +08:00
|
|
|
|
KVM: PPC: Book3S HV: Split HPT allocation from activation
Currently, kvmppc_alloc_hpt() both allocates a new hashed page table (HPT)
and sets it up as the active page table for a VM. For the upcoming HPT
resize implementation we're going to want to allocate HPTs separately from
activating them.
So, split the allocation itself out into kvmppc_allocate_hpt() and perform
the activation with a new kvmppc_set_hpt() function. Likewise we split
kvmppc_free_hpt(), which just frees the HPT, from kvmppc_release_hpt()
which unsets it as an active HPT, then frees it.
We also move the logic to fall back to smaller HPT sizes if the first try
fails into the single caller which used that behaviour,
kvmppc_hv_setup_htab_rma(). This introduces a slight semantic change, in
that previously if the initial attempt at CMA allocation failed, we would
fall back to attempting smaller sizes with the page allocator. Now, we
try first CMA, then the page allocator at each size. As far as I can tell
this change should be harmless.
To match, we make kvmppc_free_hpt() just free the actual HPT itself. The
call to kvmppc_free_lpid() that was there, we move to the single caller.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-12-20 13:49:02 +08:00
|
|
|
void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
|
|
|
|
{
|
|
|
|
atomic64_set(&kvm->arch.mmio_update, 0);
|
|
|
|
kvm->arch.hpt = *info;
|
|
|
|
kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);
|
|
|
|
|
2017-02-17 05:07:12 +08:00
|
|
|
pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n",
|
|
|
|
info->virt, (long)info->order, kvm->arch.lpid);
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
}
|
|
|
|
|
2016-12-20 13:49:03 +08:00
|
|
|
long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
|
KVM: PPC: Book3S HV: Make the guest hash table size configurable
This adds a new ioctl to enable userspace to control the size of the guest
hashed page table (HPT) and to clear it out when resetting the guest.
The KVM_PPC_ALLOCATE_HTAB ioctl is a VM ioctl and takes as its parameter
a pointer to a u32 containing the desired order of the HPT (log base 2
of the size in bytes), which is updated on successful return to the
actual order of the HPT which was allocated.
There must be no vcpus running at the time of this ioctl. To enforce
this, we now keep a count of the number of vcpus running in
kvm->arch.vcpus_running.
If the ioctl is called when a HPT has already been allocated, we don't
reallocate the HPT but just clear it out. We first clear the
kvm->arch.rma_setup_done flag, which has two effects: (a) since we hold
the kvm->lock mutex, it will prevent any vcpus from starting to run until
we're done, and (b) it means that the first vcpu to run after we're done
will re-establish the VRMA if necessary.
If userspace doesn't call this ioctl before running the first vcpu, the
kernel will allocate a default-sized HPT at that point. We do it then
rather than when creating the VM, as the code did previously, so that
userspace has a chance to do the ioctl if it wants.
When allocating the HPT, we can allocate either from the kernel page
allocator, or from the preallocated pool. If userspace is asking for
a different size from the preallocated HPTs, we first try to allocate
using the kernel page allocator. Then we try to allocate from the
preallocated pool, and then if that fails, we try allocating decreasing
sizes from the kernel page allocator, down to the minimum size allowed
(256kB). Note that the kernel page allocator limits allocations to
1 << CONFIG_FORCE_MAX_ZONEORDER pages, which by default corresponds to
16MB (on 64-bit powerpc, at least).
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix module compilation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-05-04 10:32:53 +08:00
|
|
|
{
|
|
|
|
long err = -EBUSY;
|
2016-12-20 13:49:03 +08:00
|
|
|
struct kvm_hpt_info info;
|
KVM: PPC: Book3S HV: Make the guest hash table size configurable
This adds a new ioctl to enable userspace to control the size of the guest
hashed page table (HPT) and to clear it out when resetting the guest.
The KVM_PPC_ALLOCATE_HTAB ioctl is a VM ioctl and takes as its parameter
a pointer to a u32 containing the desired order of the HPT (log base 2
of the size in bytes), which is updated on successful return to the
actual order of the HPT which was allocated.
There must be no vcpus running at the time of this ioctl. To enforce
this, we now keep a count of the number of vcpus running in
kvm->arch.vcpus_running.
If the ioctl is called when a HPT has already been allocated, we don't
reallocate the HPT but just clear it out. We first clear the
kvm->arch.rma_setup_done flag, which has two effects: (a) since we hold
the kvm->lock mutex, it will prevent any vcpus from starting to run until
we're done, and (b) it means that the first vcpu to run after we're done
will re-establish the VRMA if necessary.
If userspace doesn't call this ioctl before running the first vcpu, the
kernel will allocate a default-sized HPT at that point. We do it then
rather than when creating the VM, as the code did previously, so that
userspace has a chance to do the ioctl if it wants.
When allocating the HPT, we can allocate either from the kernel page
allocator, or from the preallocated pool. If userspace is asking for
a different size from the preallocated HPTs, we first try to allocate
using the kernel page allocator. Then we try to allocate from the
preallocated pool, and then if that fails, we try allocating decreasing
sizes from the kernel page allocator, down to the minimum size allowed
(256kB). Note that the kernel page allocator limits allocations to
1 << CONFIG_FORCE_MAX_ZONEORDER pages, which by default corresponds to
16MB (on 64-bit powerpc, at least).
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix module compilation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-05-04 10:32:53 +08:00
|
|
|
|
2017-01-30 18:21:44 +08:00
|
|
|
if (kvm_is_radix(kvm))
|
|
|
|
return -EINVAL;
|
|
|
|
|
KVM: PPC: Book3S HV: Make the guest hash table size configurable
This adds a new ioctl to enable userspace to control the size of the guest
hashed page table (HPT) and to clear it out when resetting the guest.
The KVM_PPC_ALLOCATE_HTAB ioctl is a VM ioctl and takes as its parameter
a pointer to a u32 containing the desired order of the HPT (log base 2
of the size in bytes), which is updated on successful return to the
actual order of the HPT which was allocated.
There must be no vcpus running at the time of this ioctl. To enforce
this, we now keep a count of the number of vcpus running in
kvm->arch.vcpus_running.
If the ioctl is called when a HPT has already been allocated, we don't
reallocate the HPT but just clear it out. We first clear the
kvm->arch.rma_setup_done flag, which has two effects: (a) since we hold
the kvm->lock mutex, it will prevent any vcpus from starting to run until
we're done, and (b) it means that the first vcpu to run after we're done
will re-establish the VRMA if necessary.
If userspace doesn't call this ioctl before running the first vcpu, the
kernel will allocate a default-sized HPT at that point. We do it then
rather than when creating the VM, as the code did previously, so that
userspace has a chance to do the ioctl if it wants.
When allocating the HPT, we can allocate either from the kernel page
allocator, or from the preallocated pool. If userspace is asking for
a different size from the preallocated HPTs, we first try to allocate
using the kernel page allocator. Then we try to allocate from the
preallocated pool, and then if that fails, we try allocating decreasing
sizes from the kernel page allocator, down to the minimum size allowed
(256kB). Note that the kernel page allocator limits allocations to
1 << CONFIG_FORCE_MAX_ZONEORDER pages, which by default corresponds to
16MB (on 64-bit powerpc, at least).
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix module compilation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-05-04 10:32:53 +08:00
|
|
|
mutex_lock(&kvm->lock);
|
2017-09-13 13:53:48 +08:00
|
|
|
if (kvm->arch.mmu_ready) {
|
|
|
|
kvm->arch.mmu_ready = 0;
|
|
|
|
/* order mmu_ready vs. vcpus_running */
|
KVM: PPC: Book3S HV: Make the guest hash table size configurable
This adds a new ioctl to enable userspace to control the size of the guest
hashed page table (HPT) and to clear it out when resetting the guest.
The KVM_PPC_ALLOCATE_HTAB ioctl is a VM ioctl and takes as its parameter
a pointer to a u32 containing the desired order of the HPT (log base 2
of the size in bytes), which is updated on successful return to the
actual order of the HPT which was allocated.
There must be no vcpus running at the time of this ioctl. To enforce
this, we now keep a count of the number of vcpus running in
kvm->arch.vcpus_running.
If the ioctl is called when a HPT has already been allocated, we don't
reallocate the HPT but just clear it out. We first clear the
kvm->arch.rma_setup_done flag, which has two effects: (a) since we hold
the kvm->lock mutex, it will prevent any vcpus from starting to run until
we're done, and (b) it means that the first vcpu to run after we're done
will re-establish the VRMA if necessary.
If userspace doesn't call this ioctl before running the first vcpu, the
kernel will allocate a default-sized HPT at that point. We do it then
rather than when creating the VM, as the code did previously, so that
userspace has a chance to do the ioctl if it wants.
When allocating the HPT, we can allocate either from the kernel page
allocator, or from the preallocated pool. If userspace is asking for
a different size from the preallocated HPTs, we first try to allocate
using the kernel page allocator. Then we try to allocate from the
preallocated pool, and then if that fails, we try allocating decreasing
sizes from the kernel page allocator, down to the minimum size allowed
(256kB). Note that the kernel page allocator limits allocations to
1 << CONFIG_FORCE_MAX_ZONEORDER pages, which by default corresponds to
16MB (on 64-bit powerpc, at least).
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix module compilation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-05-04 10:32:53 +08:00
|
|
|
smp_mb();
|
|
|
|
if (atomic_read(&kvm->arch.vcpus_running)) {
|
2017-09-13 13:53:48 +08:00
|
|
|
kvm->arch.mmu_ready = 1;
|
KVM: PPC: Book3S HV: Make the guest hash table size configurable
This adds a new ioctl to enable userspace to control the size of the guest
hashed page table (HPT) and to clear it out when resetting the guest.
The KVM_PPC_ALLOCATE_HTAB ioctl is a VM ioctl and takes as its parameter
a pointer to a u32 containing the desired order of the HPT (log base 2
of the size in bytes), which is updated on successful return to the
actual order of the HPT which was allocated.
There must be no vcpus running at the time of this ioctl. To enforce
this, we now keep a count of the number of vcpus running in
kvm->arch.vcpus_running.
If the ioctl is called when a HPT has already been allocated, we don't
reallocate the HPT but just clear it out. We first clear the
kvm->arch.rma_setup_done flag, which has two effects: (a) since we hold
the kvm->lock mutex, it will prevent any vcpus from starting to run until
we're done, and (b) it means that the first vcpu to run after we're done
will re-establish the VRMA if necessary.
If userspace doesn't call this ioctl before running the first vcpu, the
kernel will allocate a default-sized HPT at that point. We do it then
rather than when creating the VM, as the code did previously, so that
userspace has a chance to do the ioctl if it wants.
When allocating the HPT, we can allocate either from the kernel page
allocator, or from the preallocated pool. If userspace is asking for
a different size from the preallocated HPTs, we first try to allocate
using the kernel page allocator. Then we try to allocate from the
preallocated pool, and then if that fails, we try allocating decreasing
sizes from the kernel page allocator, down to the minimum size allowed
(256kB). Note that the kernel page allocator limits allocations to
1 << CONFIG_FORCE_MAX_ZONEORDER pages, which by default corresponds to
16MB (on 64-bit powerpc, at least).
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix module compilation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-05-04 10:32:53 +08:00
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
}
|
2016-12-20 13:49:03 +08:00
|
|
|
if (kvm->arch.hpt.order == order) {
|
|
|
|
/* We already have a suitable HPT */
|
|
|
|
|
KVM: PPC: Book3S HV: Make the guest hash table size configurable
This adds a new ioctl to enable userspace to control the size of the guest
hashed page table (HPT) and to clear it out when resetting the guest.
The KVM_PPC_ALLOCATE_HTAB ioctl is a VM ioctl and takes as its parameter
a pointer to a u32 containing the desired order of the HPT (log base 2
of the size in bytes), which is updated on successful return to the
actual order of the HPT which was allocated.
There must be no vcpus running at the time of this ioctl. To enforce
this, we now keep a count of the number of vcpus running in
kvm->arch.vcpus_running.
If the ioctl is called when a HPT has already been allocated, we don't
reallocate the HPT but just clear it out. We first clear the
kvm->arch.rma_setup_done flag, which has two effects: (a) since we hold
the kvm->lock mutex, it will prevent any vcpus from starting to run until
we're done, and (b) it means that the first vcpu to run after we're done
will re-establish the VRMA if necessary.
If userspace doesn't call this ioctl before running the first vcpu, the
kernel will allocate a default-sized HPT at that point. We do it then
rather than when creating the VM, as the code did previously, so that
userspace has a chance to do the ioctl if it wants.
When allocating the HPT, we can allocate either from the kernel page
allocator, or from the preallocated pool. If userspace is asking for
a different size from the preallocated HPTs, we first try to allocate
using the kernel page allocator. Then we try to allocate from the
preallocated pool, and then if that fails, we try allocating decreasing
sizes from the kernel page allocator, down to the minimum size allowed
(256kB). Note that the kernel page allocator limits allocations to
1 << CONFIG_FORCE_MAX_ZONEORDER pages, which by default corresponds to
16MB (on 64-bit powerpc, at least).
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix module compilation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-05-04 10:32:53 +08:00
|
|
|
/* Set the entire HPT to 0, i.e. invalid HPTEs */
|
2016-12-20 13:49:00 +08:00
|
|
|
memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
|
2012-11-22 07:27:19 +08:00
|
|
|
/*
|
|
|
|
* Reset all the reverse-mapping chains for all memslots
|
|
|
|
*/
|
|
|
|
kvmppc_rmap_reset(kvm);
|
KVM: PPC: Book3S HV: Improve handling of local vs. global TLB invalidations
When we change or remove a HPT (hashed page table) entry, we can do
either a global TLB invalidation (tlbie) that works across the whole
machine, or a local invalidation (tlbiel) that only affects this core.
Currently we do local invalidations if the VM has only one vcpu or if
the guest requests it with the H_LOCAL flag, though the guest Linux
kernel currently doesn't ever use H_LOCAL. Then, to cope with the
possibility that vcpus moving around to different physical cores might
expose stale TLB entries, there is some code in kvmppc_hv_entry to
flush the whole TLB of entries for this VM if either this vcpu is now
running on a different physical core from where it last ran, or if this
physical core last ran a different vcpu.
There are a number of problems on POWER7 with this as it stands:
- The TLB invalidation is done per thread, whereas it only needs to be
done per core, since the TLB is shared between the threads.
- With the possibility of the host paging out guest pages, the use of
H_LOCAL by an SMP guest is dangerous since the guest could possibly
retain and use a stale TLB entry pointing to a page that had been
removed from the guest.
- The TLB invalidations that we do when a vcpu moves from one physical
core to another are unnecessary in the case of an SMP guest that isn't
using H_LOCAL.
- The optimization of using local invalidations rather than global should
apply to guests with one virtual core, not just one vcpu.
(None of this applies on PPC970, since there we always have to
invalidate the whole TLB when entering and leaving the guest, and we
can't support paging out guest memory.)
To fix these problems and simplify the code, we now maintain a simple
cpumask of which cpus need to flush the TLB on entry to the guest.
(This is indexed by cpu, though we only ever use the bits for thread
0 of each core.) Whenever we do a local TLB invalidation, we set the
bits for every cpu except the bit for thread 0 of the core that we're
currently running on. Whenever we enter a guest, we test and clear the
bit for our core, and flush the TLB if it was set.
On initial startup of the VM, and when resetting the HPT, we set all the
bits in the need_tlb_flush cpumask, since any core could potentially have
stale TLB entries from the previous VM to use the same LPID, or the
previous contents of the HPT.
Then, we maintain a count of the number of online virtual cores, and use
that when deciding whether to use a local invalidation rather than the
number of online vcpus. The code to make that decision is extracted out
into a new function, global_invalidates(). For multi-core guests on
POWER7 (i.e. when we are using mmu notifiers), we now never do local
invalidations regardless of the H_LOCAL flag.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-22 07:28:08 +08:00
|
|
|
/* Ensure that each vcpu will flush its TLB on next entry. */
|
|
|
|
cpumask_setall(&kvm->arch.need_tlb_flush);
|
KVM: PPC: Book3S HV: Make the guest hash table size configurable
This adds a new ioctl to enable userspace to control the size of the guest
hashed page table (HPT) and to clear it out when resetting the guest.
The KVM_PPC_ALLOCATE_HTAB ioctl is a VM ioctl and takes as its parameter
a pointer to a u32 containing the desired order of the HPT (log base 2
of the size in bytes), which is updated on successful return to the
actual order of the HPT which was allocated.
There must be no vcpus running at the time of this ioctl. To enforce
this, we now keep a count of the number of vcpus running in
kvm->arch.vcpus_running.
If the ioctl is called when a HPT has already been allocated, we don't
reallocate the HPT but just clear it out. We first clear the
kvm->arch.rma_setup_done flag, which has two effects: (a) since we hold
the kvm->lock mutex, it will prevent any vcpus from starting to run until
we're done, and (b) it means that the first vcpu to run after we're done
will re-establish the VRMA if necessary.
If userspace doesn't call this ioctl before running the first vcpu, the
kernel will allocate a default-sized HPT at that point. We do it then
rather than when creating the VM, as the code did previously, so that
userspace has a chance to do the ioctl if it wants.
When allocating the HPT, we can allocate either from the kernel page
allocator, or from the preallocated pool. If userspace is asking for
a different size from the preallocated HPTs, we first try to allocate
using the kernel page allocator. Then we try to allocate from the
preallocated pool, and then if that fails, we try allocating decreasing
sizes from the kernel page allocator, down to the minimum size allowed
(256kB). Note that the kernel page allocator limits allocations to
1 << CONFIG_FORCE_MAX_ZONEORDER pages, which by default corresponds to
16MB (on 64-bit powerpc, at least).
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix module compilation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-05-04 10:32:53 +08:00
|
|
|
err = 0;
|
2016-12-20 13:49:03 +08:00
|
|
|
goto out;
|
KVM: PPC: Book3S HV: Make the guest hash table size configurable
This adds a new ioctl to enable userspace to control the size of the guest
hashed page table (HPT) and to clear it out when resetting the guest.
The KVM_PPC_ALLOCATE_HTAB ioctl is a VM ioctl and takes as its parameter
a pointer to a u32 containing the desired order of the HPT (log base 2
of the size in bytes), which is updated on successful return to the
actual order of the HPT which was allocated.
There must be no vcpus running at the time of this ioctl. To enforce
this, we now keep a count of the number of vcpus running in
kvm->arch.vcpus_running.
If the ioctl is called when a HPT has already been allocated, we don't
reallocate the HPT but just clear it out. We first clear the
kvm->arch.rma_setup_done flag, which has two effects: (a) since we hold
the kvm->lock mutex, it will prevent any vcpus from starting to run until
we're done, and (b) it means that the first vcpu to run after we're done
will re-establish the VRMA if necessary.
If userspace doesn't call this ioctl before running the first vcpu, the
kernel will allocate a default-sized HPT at that point. We do it then
rather than when creating the VM, as the code did previously, so that
userspace has a chance to do the ioctl if it wants.
When allocating the HPT, we can allocate either from the kernel page
allocator, or from the preallocated pool. If userspace is asking for
a different size from the preallocated HPTs, we first try to allocate
using the kernel page allocator. Then we try to allocate from the
preallocated pool, and then if that fails, we try allocating decreasing
sizes from the kernel page allocator, down to the minimum size allowed
(256kB). Note that the kernel page allocator limits allocations to
1 << CONFIG_FORCE_MAX_ZONEORDER pages, which by default corresponds to
16MB (on 64-bit powerpc, at least).
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix module compilation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-05-04 10:32:53 +08:00
|
|
|
}
|
2016-12-20 13:49:03 +08:00
|
|
|
|
KVM: PPC: Book3S HV: Fix host crash on changing HPT size
Commit f98a8bf9ee20 ("KVM: PPC: Book3S HV: Allow KVM_PPC_ALLOCATE_HTAB
ioctl() to change HPT size", 2016-12-20) changed the behaviour of
the KVM_PPC_ALLOCATE_HTAB ioctl so that it now allocates a new HPT
and new revmap array if there was a previously-allocated HPT of a
different size from the size being requested. In this case, we need
to reset the rmap arrays of the memslots, because the rmap arrays
will contain references to HPTEs which are no longer valid. Worse,
these references are also references to slots in the new revmap
array (which parallels the HPT), and the new revmap array contains
random contents, since it doesn't get zeroed on allocation.
The effect of having these stale references to slots in the revmap
array that contain random contents is that subsequent calls to
functions such as kvmppc_add_revmap_chain will crash because they
will interpret the non-zero contents of the revmap array as HPTE
indexes and thus index outside of the revmap array. This leads to
host crashes such as the following.
[ 7072.862122] Unable to handle kernel paging request for data at address 0xd000000c250c00f8
[ 7072.862218] Faulting instruction address: 0xc0000000000e1c78
[ 7072.862233] Oops: Kernel access of bad area, sig: 11 [#1]
[ 7072.862286] SMP NR_CPUS=1024
[ 7072.862286] NUMA
[ 7072.862325] PowerNV
[ 7072.862378] Modules linked in: kvm_hv vhost_net vhost tap xt_CHECKSUM ipt_MASQUERADE nf_nat_masquerade_ipv4 ip6t_rpfilter ip6t_REJECT nf_reject_ipv6 nf_conntrack_ipv6 nf_defrag_ipv6 xt_conntrack ip_set nfnetlink ebtable_nat ebtable_broute bridge stp llc ip6table_mangle ip6table_security ip6table_raw iptable_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_nat_ipv4 nf_nat nf_conntrack iptable_mangle iptable_security iptable_raw ebtable_filter ebtables ip6table_filter ip6_tables rpcrdma ib_isert iscsi_target_mod ib_iser libiscsi scsi_transport_iscsi ib_srpt target_core_mod ib_srp scsi_transport_srp ib_ipoib rdma_ucm ib_ucm ib_uverbs ib_umad rdma_cm ib_cm iw_cm iw_cxgb3 mlx5_ib ib_core ses enclosure scsi_transport_sas ipmi_powernv ipmi_devintf ipmi_msghandler powernv_op_panel i2c_opal nfsd auth_rpcgss oid_registry
[ 7072.863085] nfs_acl lockd grace sunrpc kvm_pr kvm xfs libcrc32c scsi_dh_alua dm_service_time radeon lpfc nvme_fc nvme_fabrics nvme_core scsi_transport_fc i2c_algo_bit tg3 drm_kms_helper ptp pps_core syscopyarea sysfillrect sysimgblt fb_sys_fops ttm drm dm_multipath i2c_core cxgb3 mlx5_core mdio [last unloaded: kvm_hv]
[ 7072.863381] CPU: 72 PID: 56929 Comm: qemu-system-ppc Not tainted 4.12.0-kvm+ #59
[ 7072.863457] task: c000000fe29e7600 task.stack: c000001e3ffec000
[ 7072.863520] NIP: c0000000000e1c78 LR: c0000000000e2e3c CTR: c0000000000e25f0
[ 7072.863596] REGS: c000001e3ffef560 TRAP: 0300 Not tainted (4.12.0-kvm+)
[ 7072.863658] MSR: 9000000100009033 <SF,HV,EE,ME,IR,DR,RI,LE,TM[E]>
[ 7072.863667] CR: 44082882 XER: 20000000
[ 7072.863767] CFAR: c0000000000e2e38 DAR: d000000c250c00f8 DSISR: 42000000 SOFTE: 1
GPR00: c0000000000e2e3c c000001e3ffef7e0 c000000001407d00 d000000c250c00f0
GPR04: d00000006509fb70 d00000000b3d2048 0000000003ffdfb7 0000000000000000
GPR08: 00000001007fdfb7 00000000c000000f d0000000250c0000 000000000070f7bf
GPR12: 0000000000000008 c00000000fdad000 0000000010879478 00000000105a0d78
GPR16: 00007ffaf4080000 0000000000001190 0000000000000000 0000000000010000
GPR20: 4001ffffff000415 d00000006509fb70 0000000004091190 0000000ee1881190
GPR24: 0000000003ffdfb7 0000000003ffdfb7 00000000007fdfb7 c000000f5c958000
GPR28: d00000002d09fb70 0000000003ffdfb7 d00000006509fb70 d00000000b3d2048
[ 7072.864439] NIP [c0000000000e1c78] kvmppc_add_revmap_chain+0x88/0x130
[ 7072.864503] LR [c0000000000e2e3c] kvmppc_do_h_enter+0x84c/0x9e0
[ 7072.864566] Call Trace:
[ 7072.864594] [c000001e3ffef7e0] [c000001e3ffef830] 0xc000001e3ffef830 (unreliable)
[ 7072.864671] [c000001e3ffef830] [c0000000000e2e3c] kvmppc_do_h_enter+0x84c/0x9e0
[ 7072.864751] [c000001e3ffef920] [d00000000b38d878] kvmppc_map_vrma+0x168/0x200 [kvm_hv]
[ 7072.864831] [c000001e3ffef9e0] [d00000000b38a684] kvmppc_vcpu_run_hv+0x1284/0x1300 [kvm_hv]
[ 7072.864914] [c000001e3ffefb30] [d00000000f465664] kvmppc_vcpu_run+0x44/0x60 [kvm]
[ 7072.865008] [c000001e3ffefb60] [d00000000f461864] kvm_arch_vcpu_ioctl_run+0x114/0x290 [kvm]
[ 7072.865152] [c000001e3ffefbe0] [d00000000f453c98] kvm_vcpu_ioctl+0x598/0x7a0 [kvm]
[ 7072.865292] [c000001e3ffefd40] [c000000000389328] do_vfs_ioctl+0xd8/0x8c0
[ 7072.865410] [c000001e3ffefde0] [c000000000389be4] SyS_ioctl+0xd4/0x130
[ 7072.865526] [c000001e3ffefe30] [c00000000000b760] system_call+0x58/0x6c
[ 7072.865644] Instruction dump:
[ 7072.865715] e95b2110 793a0020 7b4926e4 7f8a4a14 409e0098 807c000c 786326e4 7c6a1a14
[ 7072.865857] 935e0008 7bbd0020 813c000c 913e000c <93a30008> 93bc000c 48000038 60000000
[ 7072.866001] ---[ end trace 627b6e4bf8080edc ]---
Note that to trigger this, it is necessary to use a recent upstream
QEMU (or other userspace that resizes the HPT at CAS time), specify
a maximum memory size substantially larger than the current memory
size, and boot a guest kernel that does not support HPT resizing.
This fixes the problem by resetting the rmap arrays when the old HPT
is freed.
Fixes: f98a8bf9ee20 ("KVM: PPC: Book3S HV: Allow KVM_PPC_ALLOCATE_HTAB ioctl() to change HPT size")
Cc: stable@vger.kernel.org # v4.11+
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-07-21 13:41:49 +08:00
|
|
|
if (kvm->arch.hpt.virt) {
|
2016-12-20 13:49:03 +08:00
|
|
|
kvmppc_free_hpt(&kvm->arch.hpt);
|
KVM: PPC: Book3S HV: Fix host crash on changing HPT size
Commit f98a8bf9ee20 ("KVM: PPC: Book3S HV: Allow KVM_PPC_ALLOCATE_HTAB
ioctl() to change HPT size", 2016-12-20) changed the behaviour of
the KVM_PPC_ALLOCATE_HTAB ioctl so that it now allocates a new HPT
and new revmap array if there was a previously-allocated HPT of a
different size from the size being requested. In this case, we need
to reset the rmap arrays of the memslots, because the rmap arrays
will contain references to HPTEs which are no longer valid. Worse,
these references are also references to slots in the new revmap
array (which parallels the HPT), and the new revmap array contains
random contents, since it doesn't get zeroed on allocation.
The effect of having these stale references to slots in the revmap
array that contain random contents is that subsequent calls to
functions such as kvmppc_add_revmap_chain will crash because they
will interpret the non-zero contents of the revmap array as HPTE
indexes and thus index outside of the revmap array. This leads to
host crashes such as the following.
[ 7072.862122] Unable to handle kernel paging request for data at address 0xd000000c250c00f8
[ 7072.862218] Faulting instruction address: 0xc0000000000e1c78
[ 7072.862233] Oops: Kernel access of bad area, sig: 11 [#1]
[ 7072.862286] SMP NR_CPUS=1024
[ 7072.862286] NUMA
[ 7072.862325] PowerNV
[ 7072.862378] Modules linked in: kvm_hv vhost_net vhost tap xt_CHECKSUM ipt_MASQUERADE nf_nat_masquerade_ipv4 ip6t_rpfilter ip6t_REJECT nf_reject_ipv6 nf_conntrack_ipv6 nf_defrag_ipv6 xt_conntrack ip_set nfnetlink ebtable_nat ebtable_broute bridge stp llc ip6table_mangle ip6table_security ip6table_raw iptable_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_nat_ipv4 nf_nat nf_conntrack iptable_mangle iptable_security iptable_raw ebtable_filter ebtables ip6table_filter ip6_tables rpcrdma ib_isert iscsi_target_mod ib_iser libiscsi scsi_transport_iscsi ib_srpt target_core_mod ib_srp scsi_transport_srp ib_ipoib rdma_ucm ib_ucm ib_uverbs ib_umad rdma_cm ib_cm iw_cm iw_cxgb3 mlx5_ib ib_core ses enclosure scsi_transport_sas ipmi_powernv ipmi_devintf ipmi_msghandler powernv_op_panel i2c_opal nfsd auth_rpcgss oid_registry
[ 7072.863085] nfs_acl lockd grace sunrpc kvm_pr kvm xfs libcrc32c scsi_dh_alua dm_service_time radeon lpfc nvme_fc nvme_fabrics nvme_core scsi_transport_fc i2c_algo_bit tg3 drm_kms_helper ptp pps_core syscopyarea sysfillrect sysimgblt fb_sys_fops ttm drm dm_multipath i2c_core cxgb3 mlx5_core mdio [last unloaded: kvm_hv]
[ 7072.863381] CPU: 72 PID: 56929 Comm: qemu-system-ppc Not tainted 4.12.0-kvm+ #59
[ 7072.863457] task: c000000fe29e7600 task.stack: c000001e3ffec000
[ 7072.863520] NIP: c0000000000e1c78 LR: c0000000000e2e3c CTR: c0000000000e25f0
[ 7072.863596] REGS: c000001e3ffef560 TRAP: 0300 Not tainted (4.12.0-kvm+)
[ 7072.863658] MSR: 9000000100009033 <SF,HV,EE,ME,IR,DR,RI,LE,TM[E]>
[ 7072.863667] CR: 44082882 XER: 20000000
[ 7072.863767] CFAR: c0000000000e2e38 DAR: d000000c250c00f8 DSISR: 42000000 SOFTE: 1
GPR00: c0000000000e2e3c c000001e3ffef7e0 c000000001407d00 d000000c250c00f0
GPR04: d00000006509fb70 d00000000b3d2048 0000000003ffdfb7 0000000000000000
GPR08: 00000001007fdfb7 00000000c000000f d0000000250c0000 000000000070f7bf
GPR12: 0000000000000008 c00000000fdad000 0000000010879478 00000000105a0d78
GPR16: 00007ffaf4080000 0000000000001190 0000000000000000 0000000000010000
GPR20: 4001ffffff000415 d00000006509fb70 0000000004091190 0000000ee1881190
GPR24: 0000000003ffdfb7 0000000003ffdfb7 00000000007fdfb7 c000000f5c958000
GPR28: d00000002d09fb70 0000000003ffdfb7 d00000006509fb70 d00000000b3d2048
[ 7072.864439] NIP [c0000000000e1c78] kvmppc_add_revmap_chain+0x88/0x130
[ 7072.864503] LR [c0000000000e2e3c] kvmppc_do_h_enter+0x84c/0x9e0
[ 7072.864566] Call Trace:
[ 7072.864594] [c000001e3ffef7e0] [c000001e3ffef830] 0xc000001e3ffef830 (unreliable)
[ 7072.864671] [c000001e3ffef830] [c0000000000e2e3c] kvmppc_do_h_enter+0x84c/0x9e0
[ 7072.864751] [c000001e3ffef920] [d00000000b38d878] kvmppc_map_vrma+0x168/0x200 [kvm_hv]
[ 7072.864831] [c000001e3ffef9e0] [d00000000b38a684] kvmppc_vcpu_run_hv+0x1284/0x1300 [kvm_hv]
[ 7072.864914] [c000001e3ffefb30] [d00000000f465664] kvmppc_vcpu_run+0x44/0x60 [kvm]
[ 7072.865008] [c000001e3ffefb60] [d00000000f461864] kvm_arch_vcpu_ioctl_run+0x114/0x290 [kvm]
[ 7072.865152] [c000001e3ffefbe0] [d00000000f453c98] kvm_vcpu_ioctl+0x598/0x7a0 [kvm]
[ 7072.865292] [c000001e3ffefd40] [c000000000389328] do_vfs_ioctl+0xd8/0x8c0
[ 7072.865410] [c000001e3ffefde0] [c000000000389be4] SyS_ioctl+0xd4/0x130
[ 7072.865526] [c000001e3ffefe30] [c00000000000b760] system_call+0x58/0x6c
[ 7072.865644] Instruction dump:
[ 7072.865715] e95b2110 793a0020 7b4926e4 7f8a4a14 409e0098 807c000c 786326e4 7c6a1a14
[ 7072.865857] 935e0008 7bbd0020 813c000c 913e000c <93a30008> 93bc000c 48000038 60000000
[ 7072.866001] ---[ end trace 627b6e4bf8080edc ]---
Note that to trigger this, it is necessary to use a recent upstream
QEMU (or other userspace that resizes the HPT at CAS time), specify
a maximum memory size substantially larger than the current memory
size, and boot a guest kernel that does not support HPT resizing.
This fixes the problem by resetting the rmap arrays when the old HPT
is freed.
Fixes: f98a8bf9ee20 ("KVM: PPC: Book3S HV: Allow KVM_PPC_ALLOCATE_HTAB ioctl() to change HPT size")
Cc: stable@vger.kernel.org # v4.11+
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2017-07-21 13:41:49 +08:00
|
|
|
kvmppc_rmap_reset(kvm);
|
|
|
|
}
|
2016-12-20 13:49:03 +08:00
|
|
|
|
|
|
|
err = kvmppc_allocate_hpt(&info, order);
|
|
|
|
if (err < 0)
|
|
|
|
goto out;
|
|
|
|
kvmppc_set_hpt(kvm, &info);
|
|
|
|
|
|
|
|
out:
|
KVM: PPC: Book3S HV: Make the guest hash table size configurable
This adds a new ioctl to enable userspace to control the size of the guest
hashed page table (HPT) and to clear it out when resetting the guest.
The KVM_PPC_ALLOCATE_HTAB ioctl is a VM ioctl and takes as its parameter
a pointer to a u32 containing the desired order of the HPT (log base 2
of the size in bytes), which is updated on successful return to the
actual order of the HPT which was allocated.
There must be no vcpus running at the time of this ioctl. To enforce
this, we now keep a count of the number of vcpus running in
kvm->arch.vcpus_running.
If the ioctl is called when a HPT has already been allocated, we don't
reallocate the HPT but just clear it out. We first clear the
kvm->arch.rma_setup_done flag, which has two effects: (a) since we hold
the kvm->lock mutex, it will prevent any vcpus from starting to run until
we're done, and (b) it means that the first vcpu to run after we're done
will re-establish the VRMA if necessary.
If userspace doesn't call this ioctl before running the first vcpu, the
kernel will allocate a default-sized HPT at that point. We do it then
rather than when creating the VM, as the code did previously, so that
userspace has a chance to do the ioctl if it wants.
When allocating the HPT, we can allocate either from the kernel page
allocator, or from the preallocated pool. If userspace is asking for
a different size from the preallocated HPTs, we first try to allocate
using the kernel page allocator. Then we try to allocate from the
preallocated pool, and then if that fails, we try allocating decreasing
sizes from the kernel page allocator, down to the minimum size allowed
(256kB). Note that the kernel page allocator limits allocations to
1 << CONFIG_FORCE_MAX_ZONEORDER pages, which by default corresponds to
16MB (on 64-bit powerpc, at least).
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix module compilation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-05-04 10:32:53 +08:00
|
|
|
mutex_unlock(&kvm->lock);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
KVM: PPC: Book3S HV: Split HPT allocation from activation
Currently, kvmppc_alloc_hpt() both allocates a new hashed page table (HPT)
and sets it up as the active page table for a VM. For the upcoming HPT
resize implementation we're going to want to allocate HPTs separately from
activating them.
So, split the allocation itself out into kvmppc_allocate_hpt() and perform
the activation with a new kvmppc_set_hpt() function. Likewise we split
kvmppc_free_hpt(), which just frees the HPT, from kvmppc_release_hpt()
which unsets it as an active HPT, then frees it.
We also move the logic to fall back to smaller HPT sizes if the first try
fails into the single caller which used that behaviour,
kvmppc_hv_setup_htab_rma(). This introduces a slight semantic change, in
that previously if the initial attempt at CMA allocation failed, we would
fall back to attempting smaller sizes with the page allocator. Now, we
try first CMA, then the page allocator at each size. As far as I can tell
this change should be harmless.
To match, we make kvmppc_free_hpt() just free the actual HPT itself. The
call to kvmppc_free_lpid() that was there, we move to the single caller.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-12-20 13:49:02 +08:00
|
|
|
void kvmppc_free_hpt(struct kvm_hpt_info *info)
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
{
|
KVM: PPC: Book3S HV: Split HPT allocation from activation
Currently, kvmppc_alloc_hpt() both allocates a new hashed page table (HPT)
and sets it up as the active page table for a VM. For the upcoming HPT
resize implementation we're going to want to allocate HPTs separately from
activating them.
So, split the allocation itself out into kvmppc_allocate_hpt() and perform
the activation with a new kvmppc_set_hpt() function. Likewise we split
kvmppc_free_hpt(), which just frees the HPT, from kvmppc_release_hpt()
which unsets it as an active HPT, then frees it.
We also move the logic to fall back to smaller HPT sizes if the first try
fails into the single caller which used that behaviour,
kvmppc_hv_setup_htab_rma(). This introduces a slight semantic change, in
that previously if the initial attempt at CMA allocation failed, we would
fall back to attempting smaller sizes with the page allocator. Now, we
try first CMA, then the page allocator at each size. As far as I can tell
this change should be harmless.
To match, we make kvmppc_free_hpt() just free the actual HPT itself. The
call to kvmppc_free_lpid() that was there, we move to the single caller.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-12-20 13:49:02 +08:00
|
|
|
vfree(info->rev);
|
|
|
|
if (info->cma)
|
|
|
|
kvm_free_hpt_cma(virt_to_page(info->virt),
|
|
|
|
1 << (info->order - PAGE_SHIFT));
|
|
|
|
else if (info->virt)
|
|
|
|
free_pages(info->virt, info->order - PAGE_SHIFT);
|
|
|
|
info->virt = 0;
|
|
|
|
info->order = 0;
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
}
|
|
|
|
|
2011-12-12 20:31:41 +08:00
|
|
|
/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
|
|
|
|
static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
|
|
|
|
{
|
|
|
|
return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
|
|
|
|
static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
|
|
|
|
{
|
|
|
|
return (pgsize == 0x10000) ? 0x1000 : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
|
|
|
|
unsigned long porder)
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
{
|
|
|
|
unsigned long i;
|
2011-12-12 20:28:21 +08:00
|
|
|
unsigned long npages;
|
KVM: PPC: Only get pages when actually needed, not in prepare_memory_region()
This removes the code from kvmppc_core_prepare_memory_region() that
looked up the VMA for the region being added and called hva_to_page
to get the pfns for the memory. We have no guarantee that there will
be anything mapped there at the time of the KVM_SET_USER_MEMORY_REGION
ioctl call; userspace can do that ioctl and then map memory into the
region later.
Instead we defer looking up the pfn for each memory page until it is
needed, which generally means when the guest does an H_ENTER hcall on
the page. Since we can't call get_user_pages in real mode, if we don't
already have the pfn for the page, kvmppc_h_enter() will return
H_TOO_HARD and we then call kvmppc_virtmode_h_enter() once we get back
to kernel context. That calls kvmppc_get_guest_page() to get the pfn
for the page, and then calls back to kvmppc_h_enter() to redo the HPTE
insertion.
When the first vcpu starts executing, we need to have the RMO or VRMA
region mapped so that the guest's real mode accesses will work. Thus
we now have a check in kvmppc_vcpu_run() to see if the RMO/VRMA is set
up and if not, call kvmppc_hv_setup_rma(). It checks if the memslot
starting at guest physical 0 now has RMO memory mapped there; if so it
sets it up for the guest, otherwise on POWER7 it sets up the VRMA.
The function that does that, kvmppc_map_vrma, is now a bit simpler,
as it calls kvmppc_virtmode_h_enter instead of creating the HPTE itself.
Since we are now potentially updating entries in the slot_phys[]
arrays from multiple vcpu threads, we now have a spinlock protecting
those updates to ensure that we don't lose track of any references
to pages.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:31:00 +08:00
|
|
|
unsigned long hp_v, hp_r;
|
|
|
|
unsigned long addr, hash;
|
2011-12-12 20:31:41 +08:00
|
|
|
unsigned long psize;
|
|
|
|
unsigned long hp0, hp1;
|
KVM: PPC: Book3S HV: Restructure HPT entry creation code
This restructures the code that creates HPT (hashed page table)
entries so that it can be called in situations where we don't have a
struct vcpu pointer, only a struct kvm pointer. It also fixes a bug
where kvmppc_map_vrma() would corrupt the guest R4 value.
Most of the work of kvmppc_virtmode_h_enter is now done by a new
function, kvmppc_virtmode_do_h_enter, which itself calls another new
function, kvmppc_do_h_enter, which contains most of the old
kvmppc_h_enter. The new kvmppc_do_h_enter takes explicit arguments
for the place to return the HPTE index, the Linux page tables to use,
and whether it is being called in real mode, thus removing the need
for it to have the vcpu as an argument.
Currently kvmppc_map_vrma creates the VRMA (virtual real mode area)
HPTEs by calling kvmppc_virtmode_h_enter, which is designed primarily
to handle H_ENTER hcalls from the guest that need to pin a page of
memory. Since H_ENTER returns the index of the created HPTE in R4,
kvmppc_virtmode_h_enter updates the guest R4, corrupting the guest R4
in the case when it gets called from kvmppc_map_vrma on the first
VCPU_RUN ioctl. With this, kvmppc_map_vrma instead calls
kvmppc_virtmode_do_h_enter with the address of a dummy word as the
place to store the HPTE index, thus avoiding corrupting the guest R4.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-14 02:31:32 +08:00
|
|
|
unsigned long idx_ret;
|
KVM: PPC: Only get pages when actually needed, not in prepare_memory_region()
This removes the code from kvmppc_core_prepare_memory_region() that
looked up the VMA for the region being added and called hva_to_page
to get the pfns for the memory. We have no guarantee that there will
be anything mapped there at the time of the KVM_SET_USER_MEMORY_REGION
ioctl call; userspace can do that ioctl and then map memory into the
region later.
Instead we defer looking up the pfn for each memory page until it is
needed, which generally means when the guest does an H_ENTER hcall on
the page. Since we can't call get_user_pages in real mode, if we don't
already have the pfn for the page, kvmppc_h_enter() will return
H_TOO_HARD and we then call kvmppc_virtmode_h_enter() once we get back
to kernel context. That calls kvmppc_get_guest_page() to get the pfn
for the page, and then calls back to kvmppc_h_enter() to redo the HPTE
insertion.
When the first vcpu starts executing, we need to have the RMO or VRMA
region mapped so that the guest's real mode accesses will work. Thus
we now have a check in kvmppc_vcpu_run() to see if the RMO/VRMA is set
up and if not, call kvmppc_hv_setup_rma(). It checks if the memslot
starting at guest physical 0 now has RMO memory mapped there; if so it
sets it up for the guest, otherwise on POWER7 it sets up the VRMA.
The function that does that, kvmppc_map_vrma, is now a bit simpler,
as it calls kvmppc_virtmode_h_enter instead of creating the HPTE itself.
Since we are now potentially updating entries in the slot_phys[]
arrays from multiple vcpu threads, we now have a spinlock protecting
those updates to ensure that we don't lose track of any references
to pages.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:31:00 +08:00
|
|
|
long ret;
|
KVM: PPC: Book3S HV: Make the guest hash table size configurable
This adds a new ioctl to enable userspace to control the size of the guest
hashed page table (HPT) and to clear it out when resetting the guest.
The KVM_PPC_ALLOCATE_HTAB ioctl is a VM ioctl and takes as its parameter
a pointer to a u32 containing the desired order of the HPT (log base 2
of the size in bytes), which is updated on successful return to the
actual order of the HPT which was allocated.
There must be no vcpus running at the time of this ioctl. To enforce
this, we now keep a count of the number of vcpus running in
kvm->arch.vcpus_running.
If the ioctl is called when a HPT has already been allocated, we don't
reallocate the HPT but just clear it out. We first clear the
kvm->arch.rma_setup_done flag, which has two effects: (a) since we hold
the kvm->lock mutex, it will prevent any vcpus from starting to run until
we're done, and (b) it means that the first vcpu to run after we're done
will re-establish the VRMA if necessary.
If userspace doesn't call this ioctl before running the first vcpu, the
kernel will allocate a default-sized HPT at that point. We do it then
rather than when creating the VM, as the code did previously, so that
userspace has a chance to do the ioctl if it wants.
When allocating the HPT, we can allocate either from the kernel page
allocator, or from the preallocated pool. If userspace is asking for
a different size from the preallocated HPTs, we first try to allocate
using the kernel page allocator. Then we try to allocate from the
preallocated pool, and then if that fails, we try allocating decreasing
sizes from the kernel page allocator, down to the minimum size allowed
(256kB). Note that the kernel page allocator limits allocations to
1 << CONFIG_FORCE_MAX_ZONEORDER pages, which by default corresponds to
16MB (on 64-bit powerpc, at least).
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix module compilation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-05-04 10:32:53 +08:00
|
|
|
struct kvm *kvm = vcpu->kvm;
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
|
2011-12-12 20:31:41 +08:00
|
|
|
psize = 1ul << porder;
|
|
|
|
npages = memslot->npages >> (porder - PAGE_SHIFT);
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
|
|
|
|
/* VRMA can't be > 1TB */
|
2011-12-12 20:27:39 +08:00
|
|
|
if (npages > 1ul << (40 - porder))
|
|
|
|
npages = 1ul << (40 - porder);
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
/* Can't use more than 1 HPTE per HPTEG */
|
2016-12-20 13:49:01 +08:00
|
|
|
if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
|
|
|
|
npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
|
2011-12-12 20:31:41 +08:00
|
|
|
hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
|
|
|
|
HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
|
|
|
|
hp1 = hpte1_pgsize_encoding(psize) |
|
|
|
|
HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
|
|
|
|
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
for (i = 0; i < npages; ++i) {
|
KVM: PPC: Only get pages when actually needed, not in prepare_memory_region()
This removes the code from kvmppc_core_prepare_memory_region() that
looked up the VMA for the region being added and called hva_to_page
to get the pfns for the memory. We have no guarantee that there will
be anything mapped there at the time of the KVM_SET_USER_MEMORY_REGION
ioctl call; userspace can do that ioctl and then map memory into the
region later.
Instead we defer looking up the pfn for each memory page until it is
needed, which generally means when the guest does an H_ENTER hcall on
the page. Since we can't call get_user_pages in real mode, if we don't
already have the pfn for the page, kvmppc_h_enter() will return
H_TOO_HARD and we then call kvmppc_virtmode_h_enter() once we get back
to kernel context. That calls kvmppc_get_guest_page() to get the pfn
for the page, and then calls back to kvmppc_h_enter() to redo the HPTE
insertion.
When the first vcpu starts executing, we need to have the RMO or VRMA
region mapped so that the guest's real mode accesses will work. Thus
we now have a check in kvmppc_vcpu_run() to see if the RMO/VRMA is set
up and if not, call kvmppc_hv_setup_rma(). It checks if the memslot
starting at guest physical 0 now has RMO memory mapped there; if so it
sets it up for the guest, otherwise on POWER7 it sets up the VRMA.
The function that does that, kvmppc_map_vrma, is now a bit simpler,
as it calls kvmppc_virtmode_h_enter instead of creating the HPTE itself.
Since we are now potentially updating entries in the slot_phys[]
arrays from multiple vcpu threads, we now have a spinlock protecting
those updates to ensure that we don't lose track of any references
to pages.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:31:00 +08:00
|
|
|
addr = i << porder;
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
/* can't use hpt_hash since va > 64 bits */
|
2016-12-20 13:49:01 +08:00
|
|
|
hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
|
|
|
|
& kvmppc_hpt_mask(&kvm->arch.hpt);
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
/*
|
|
|
|
* We assume that the hash table is empty and no
|
|
|
|
* vcpus are using it at this stage. Since we create
|
|
|
|
* at most one HPTE per HPTEG, we just assume entry 7
|
|
|
|
* is available and use it.
|
|
|
|
*/
|
2011-12-12 20:27:39 +08:00
|
|
|
hash = (hash << 3) + 7;
|
2011-12-12 20:31:41 +08:00
|
|
|
hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
|
|
|
|
hp_r = hp1 | addr;
|
KVM: PPC: Book3S HV: Restructure HPT entry creation code
This restructures the code that creates HPT (hashed page table)
entries so that it can be called in situations where we don't have a
struct vcpu pointer, only a struct kvm pointer. It also fixes a bug
where kvmppc_map_vrma() would corrupt the guest R4 value.
Most of the work of kvmppc_virtmode_h_enter is now done by a new
function, kvmppc_virtmode_do_h_enter, which itself calls another new
function, kvmppc_do_h_enter, which contains most of the old
kvmppc_h_enter. The new kvmppc_do_h_enter takes explicit arguments
for the place to return the HPTE index, the Linux page tables to use,
and whether it is being called in real mode, thus removing the need
for it to have the vcpu as an argument.
Currently kvmppc_map_vrma creates the VRMA (virtual real mode area)
HPTEs by calling kvmppc_virtmode_h_enter, which is designed primarily
to handle H_ENTER hcalls from the guest that need to pin a page of
memory. Since H_ENTER returns the index of the created HPTE in R4,
kvmppc_virtmode_h_enter updates the guest R4, corrupting the guest R4
in the case when it gets called from kvmppc_map_vrma on the first
VCPU_RUN ioctl. With this, kvmppc_map_vrma instead calls
kvmppc_virtmode_do_h_enter with the address of a dummy word as the
place to store the HPTE index, thus avoiding corrupting the guest R4.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-14 02:31:32 +08:00
|
|
|
ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
|
|
|
|
&idx_ret);
|
KVM: PPC: Only get pages when actually needed, not in prepare_memory_region()
This removes the code from kvmppc_core_prepare_memory_region() that
looked up the VMA for the region being added and called hva_to_page
to get the pfns for the memory. We have no guarantee that there will
be anything mapped there at the time of the KVM_SET_USER_MEMORY_REGION
ioctl call; userspace can do that ioctl and then map memory into the
region later.
Instead we defer looking up the pfn for each memory page until it is
needed, which generally means when the guest does an H_ENTER hcall on
the page. Since we can't call get_user_pages in real mode, if we don't
already have the pfn for the page, kvmppc_h_enter() will return
H_TOO_HARD and we then call kvmppc_virtmode_h_enter() once we get back
to kernel context. That calls kvmppc_get_guest_page() to get the pfn
for the page, and then calls back to kvmppc_h_enter() to redo the HPTE
insertion.
When the first vcpu starts executing, we need to have the RMO or VRMA
region mapped so that the guest's real mode accesses will work. Thus
we now have a check in kvmppc_vcpu_run() to see if the RMO/VRMA is set
up and if not, call kvmppc_hv_setup_rma(). It checks if the memslot
starting at guest physical 0 now has RMO memory mapped there; if so it
sets it up for the guest, otherwise on POWER7 it sets up the VRMA.
The function that does that, kvmppc_map_vrma, is now a bit simpler,
as it calls kvmppc_virtmode_h_enter instead of creating the HPTE itself.
Since we are now potentially updating entries in the slot_phys[]
arrays from multiple vcpu threads, we now have a spinlock protecting
those updates to ensure that we don't lose track of any references
to pages.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:31:00 +08:00
|
|
|
if (ret != H_SUCCESS) {
|
|
|
|
pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
|
|
|
|
addr, ret);
|
|
|
|
break;
|
|
|
|
}
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvmppc_mmu_hv_init(void)
|
|
|
|
{
|
KVM: PPC: book3s_hv: Add support for PPC970-family processors
This adds support for running KVM guests in supervisor mode on those
PPC970 processors that have a usable hypervisor mode. Unfortunately,
Apple G5 machines have supervisor mode disabled (MSR[HV] is forced to
1), but the YDL PowerStation does have a usable hypervisor mode.
There are several differences between the PPC970 and POWER7 in how
guests are managed. These differences are accommodated using the
CPU_FTR_ARCH_201 (PPC970) and CPU_FTR_ARCH_206 (POWER7) CPU feature
bits. Notably, on PPC970:
* The LPCR, LPID or RMOR registers don't exist, and the functions of
those registers are provided by bits in HID4 and one bit in HID0.
* External interrupts can be directed to the hypervisor, but unlike
POWER7 they are masked by MSR[EE] in non-hypervisor modes and use
SRR0/1 not HSRR0/1.
* There is no virtual RMA (VRMA) mode; the guest must use an RMO
(real mode offset) area.
* The TLB entries are not tagged with the LPID, so it is necessary to
flush the whole TLB on partition switch. Furthermore, when switching
partitions we have to ensure that no other CPU is executing the tlbie
or tlbsync instructions in either the old or the new partition,
otherwise undefined behaviour can occur.
* The PMU has 8 counters (PMC registers) rather than 6.
* The DSCR, PURR, SPURR, AMR, AMOR, UAMOR registers don't exist.
* The SLB has 64 entries rather than 32.
* There is no mediated external interrupt facility, so if we switch to
a guest that has a virtual external interrupt pending but the guest
has MSR[EE] = 0, we have to arrange to have an interrupt pending for
it so that we can get control back once it re-enables interrupts. We
do that by sending ourselves an IPI with smp_send_reschedule after
hard-disabling interrupts.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:40:08 +08:00
|
|
|
unsigned long host_lpid, rsvd_lpid;
|
|
|
|
|
|
|
|
if (!cpu_has_feature(CPU_FTR_HVMODE))
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
return -EINVAL;
|
KVM: PPC: book3s_hv: Add support for PPC970-family processors
This adds support for running KVM guests in supervisor mode on those
PPC970 processors that have a usable hypervisor mode. Unfortunately,
Apple G5 machines have supervisor mode disabled (MSR[HV] is forced to
1), but the YDL PowerStation does have a usable hypervisor mode.
There are several differences between the PPC970 and POWER7 in how
guests are managed. These differences are accommodated using the
CPU_FTR_ARCH_201 (PPC970) and CPU_FTR_ARCH_206 (POWER7) CPU feature
bits. Notably, on PPC970:
* The LPCR, LPID or RMOR registers don't exist, and the functions of
those registers are provided by bits in HID4 and one bit in HID0.
* External interrupts can be directed to the hypervisor, but unlike
POWER7 they are masked by MSR[EE] in non-hypervisor modes and use
SRR0/1 not HSRR0/1.
* There is no virtual RMA (VRMA) mode; the guest must use an RMO
(real mode offset) area.
* The TLB entries are not tagged with the LPID, so it is necessary to
flush the whole TLB on partition switch. Furthermore, when switching
partitions we have to ensure that no other CPU is executing the tlbie
or tlbsync instructions in either the old or the new partition,
otherwise undefined behaviour can occur.
* The PMU has 8 counters (PMC registers) rather than 6.
* The DSCR, PURR, SPURR, AMR, AMOR, UAMOR registers don't exist.
* The SLB has 64 entries rather than 32.
* There is no mediated external interrupt facility, so if we switch to
a guest that has a virtual external interrupt pending but the guest
has MSR[EE] = 0, we have to arrange to have an interrupt pending for
it so that we can get control back once it re-enables interrupts. We
do that by sending ourselves an IPI with smp_send_reschedule after
hard-disabling interrupts.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:40:08 +08:00
|
|
|
|
2014-12-03 10:30:38 +08:00
|
|
|
/* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
|
|
|
|
host_lpid = mfspr(SPRN_LPID);
|
|
|
|
rsvd_lpid = LPID_RSVD;
|
KVM: PPC: book3s_hv: Add support for PPC970-family processors
This adds support for running KVM guests in supervisor mode on those
PPC970 processors that have a usable hypervisor mode. Unfortunately,
Apple G5 machines have supervisor mode disabled (MSR[HV] is forced to
1), but the YDL PowerStation does have a usable hypervisor mode.
There are several differences between the PPC970 and POWER7 in how
guests are managed. These differences are accommodated using the
CPU_FTR_ARCH_201 (PPC970) and CPU_FTR_ARCH_206 (POWER7) CPU feature
bits. Notably, on PPC970:
* The LPCR, LPID or RMOR registers don't exist, and the functions of
those registers are provided by bits in HID4 and one bit in HID0.
* External interrupts can be directed to the hypervisor, but unlike
POWER7 they are masked by MSR[EE] in non-hypervisor modes and use
SRR0/1 not HSRR0/1.
* There is no virtual RMA (VRMA) mode; the guest must use an RMO
(real mode offset) area.
* The TLB entries are not tagged with the LPID, so it is necessary to
flush the whole TLB on partition switch. Furthermore, when switching
partitions we have to ensure that no other CPU is executing the tlbie
or tlbsync instructions in either the old or the new partition,
otherwise undefined behaviour can occur.
* The PMU has 8 counters (PMC registers) rather than 6.
* The DSCR, PURR, SPURR, AMR, AMOR, UAMOR registers don't exist.
* The SLB has 64 entries rather than 32.
* There is no mediated external interrupt facility, so if we switch to
a guest that has a virtual external interrupt pending but the guest
has MSR[EE] = 0, we have to arrange to have an interrupt pending for
it so that we can get control back once it re-enables interrupts. We
do that by sending ourselves an IPI with smp_send_reschedule after
hard-disabling interrupts.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:40:08 +08:00
|
|
|
|
2011-12-20 23:34:20 +08:00
|
|
|
kvmppc_init_lpid(rsvd_lpid + 1);
|
|
|
|
|
|
|
|
kvmppc_claim_lpid(host_lpid);
|
KVM: PPC: book3s_hv: Add support for PPC970-family processors
This adds support for running KVM guests in supervisor mode on those
PPC970 processors that have a usable hypervisor mode. Unfortunately,
Apple G5 machines have supervisor mode disabled (MSR[HV] is forced to
1), but the YDL PowerStation does have a usable hypervisor mode.
There are several differences between the PPC970 and POWER7 in how
guests are managed. These differences are accommodated using the
CPU_FTR_ARCH_201 (PPC970) and CPU_FTR_ARCH_206 (POWER7) CPU feature
bits. Notably, on PPC970:
* The LPCR, LPID or RMOR registers don't exist, and the functions of
those registers are provided by bits in HID4 and one bit in HID0.
* External interrupts can be directed to the hypervisor, but unlike
POWER7 they are masked by MSR[EE] in non-hypervisor modes and use
SRR0/1 not HSRR0/1.
* There is no virtual RMA (VRMA) mode; the guest must use an RMO
(real mode offset) area.
* The TLB entries are not tagged with the LPID, so it is necessary to
flush the whole TLB on partition switch. Furthermore, when switching
partitions we have to ensure that no other CPU is executing the tlbie
or tlbsync instructions in either the old or the new partition,
otherwise undefined behaviour can occur.
* The PMU has 8 counters (PMC registers) rather than 6.
* The DSCR, PURR, SPURR, AMR, AMOR, UAMOR registers don't exist.
* The SLB has 64 entries rather than 32.
* There is no mediated external interrupt facility, so if we switch to
a guest that has a virtual external interrupt pending but the guest
has MSR[EE] = 0, we have to arrange to have an interrupt pending for
it so that we can get control back once it re-enables interrupts. We
do that by sending ourselves an IPI with smp_send_reschedule after
hard-disabling interrupts.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:40:08 +08:00
|
|
|
/* rsvd_lpid is reserved for use in partition switching */
|
2011-12-20 23:34:20 +08:00
|
|
|
kvmppc_claim_lpid(rsvd_lpid);
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
2014-03-25 07:47:02 +08:00
|
|
|
unsigned long msr = vcpu->arch.intr_msr;
|
|
|
|
|
|
|
|
/* If transactional, change to suspend mode on IRQ delivery */
|
|
|
|
if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
|
|
|
|
msr |= MSR_TS_S;
|
|
|
|
else
|
|
|
|
msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
|
|
|
|
kvmppc_set_msr(vcpu, msr);
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
}
|
|
|
|
|
2016-10-10 08:31:19 +08:00
|
|
|
static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
|
KVM: PPC: Book3S HV: Restructure HPT entry creation code
This restructures the code that creates HPT (hashed page table)
entries so that it can be called in situations where we don't have a
struct vcpu pointer, only a struct kvm pointer. It also fixes a bug
where kvmppc_map_vrma() would corrupt the guest R4 value.
Most of the work of kvmppc_virtmode_h_enter is now done by a new
function, kvmppc_virtmode_do_h_enter, which itself calls another new
function, kvmppc_do_h_enter, which contains most of the old
kvmppc_h_enter. The new kvmppc_do_h_enter takes explicit arguments
for the place to return the HPTE index, the Linux page tables to use,
and whether it is being called in real mode, thus removing the need
for it to have the vcpu as an argument.
Currently kvmppc_map_vrma creates the VRMA (virtual real mode area)
HPTEs by calling kvmppc_virtmode_h_enter, which is designed primarily
to handle H_ENTER hcalls from the guest that need to pin a page of
memory. Since H_ENTER returns the index of the created HPTE in R4,
kvmppc_virtmode_h_enter updates the guest R4, corrupting the guest R4
in the case when it gets called from kvmppc_map_vrma on the first
VCPU_RUN ioctl. With this, kvmppc_map_vrma instead calls
kvmppc_virtmode_do_h_enter with the address of a dummy word as the
place to store the HPTE index, thus avoiding corrupting the guest R4.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-14 02:31:32 +08:00
|
|
|
long pte_index, unsigned long pteh,
|
|
|
|
unsigned long ptel, unsigned long *pte_idx_ret)
|
KVM: PPC: Only get pages when actually needed, not in prepare_memory_region()
This removes the code from kvmppc_core_prepare_memory_region() that
looked up the VMA for the region being added and called hva_to_page
to get the pfns for the memory. We have no guarantee that there will
be anything mapped there at the time of the KVM_SET_USER_MEMORY_REGION
ioctl call; userspace can do that ioctl and then map memory into the
region later.
Instead we defer looking up the pfn for each memory page until it is
needed, which generally means when the guest does an H_ENTER hcall on
the page. Since we can't call get_user_pages in real mode, if we don't
already have the pfn for the page, kvmppc_h_enter() will return
H_TOO_HARD and we then call kvmppc_virtmode_h_enter() once we get back
to kernel context. That calls kvmppc_get_guest_page() to get the pfn
for the page, and then calls back to kvmppc_h_enter() to redo the HPTE
insertion.
When the first vcpu starts executing, we need to have the RMO or VRMA
region mapped so that the guest's real mode accesses will work. Thus
we now have a check in kvmppc_vcpu_run() to see if the RMO/VRMA is set
up and if not, call kvmppc_hv_setup_rma(). It checks if the memslot
starting at guest physical 0 now has RMO memory mapped there; if so it
sets it up for the guest, otherwise on POWER7 it sets up the VRMA.
The function that does that, kvmppc_map_vrma, is now a bit simpler,
as it calls kvmppc_virtmode_h_enter instead of creating the HPTE itself.
Since we are now potentially updating entries in the slot_phys[]
arrays from multiple vcpu threads, we now have a spinlock protecting
those updates to ensure that we don't lose track of any references
to pages.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:31:00 +08:00
|
|
|
{
|
|
|
|
long ret;
|
|
|
|
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
/* Protect linux PTE lookup from page table destruction */
|
|
|
|
rcu_read_lock_sched(); /* this disables preemption too */
|
KVM: PPC: Book3S HV: Restructure HPT entry creation code
This restructures the code that creates HPT (hashed page table)
entries so that it can be called in situations where we don't have a
struct vcpu pointer, only a struct kvm pointer. It also fixes a bug
where kvmppc_map_vrma() would corrupt the guest R4 value.
Most of the work of kvmppc_virtmode_h_enter is now done by a new
function, kvmppc_virtmode_do_h_enter, which itself calls another new
function, kvmppc_do_h_enter, which contains most of the old
kvmppc_h_enter. The new kvmppc_do_h_enter takes explicit arguments
for the place to return the HPTE index, the Linux page tables to use,
and whether it is being called in real mode, thus removing the need
for it to have the vcpu as an argument.
Currently kvmppc_map_vrma creates the VRMA (virtual real mode area)
HPTEs by calling kvmppc_virtmode_h_enter, which is designed primarily
to handle H_ENTER hcalls from the guest that need to pin a page of
memory. Since H_ENTER returns the index of the created HPTE in R4,
kvmppc_virtmode_h_enter updates the guest R4, corrupting the guest R4
in the case when it gets called from kvmppc_map_vrma on the first
VCPU_RUN ioctl. With this, kvmppc_map_vrma instead calls
kvmppc_virtmode_do_h_enter with the address of a dummy word as the
place to store the HPTE index, thus avoiding corrupting the guest R4.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-14 02:31:32 +08:00
|
|
|
ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
|
|
|
|
current->mm->pgd, false, pte_idx_ret);
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
rcu_read_unlock_sched();
|
KVM: PPC: Only get pages when actually needed, not in prepare_memory_region()
This removes the code from kvmppc_core_prepare_memory_region() that
looked up the VMA for the region being added and called hva_to_page
to get the pfns for the memory. We have no guarantee that there will
be anything mapped there at the time of the KVM_SET_USER_MEMORY_REGION
ioctl call; userspace can do that ioctl and then map memory into the
region later.
Instead we defer looking up the pfn for each memory page until it is
needed, which generally means when the guest does an H_ENTER hcall on
the page. Since we can't call get_user_pages in real mode, if we don't
already have the pfn for the page, kvmppc_h_enter() will return
H_TOO_HARD and we then call kvmppc_virtmode_h_enter() once we get back
to kernel context. That calls kvmppc_get_guest_page() to get the pfn
for the page, and then calls back to kvmppc_h_enter() to redo the HPTE
insertion.
When the first vcpu starts executing, we need to have the RMO or VRMA
region mapped so that the guest's real mode accesses will work. Thus
we now have a check in kvmppc_vcpu_run() to see if the RMO/VRMA is set
up and if not, call kvmppc_hv_setup_rma(). It checks if the memslot
starting at guest physical 0 now has RMO memory mapped there; if so it
sets it up for the guest, otherwise on POWER7 it sets up the VRMA.
The function that does that, kvmppc_map_vrma, is now a bit simpler,
as it calls kvmppc_virtmode_h_enter instead of creating the HPTE itself.
Since we are now potentially updating entries in the slot_phys[]
arrays from multiple vcpu threads, we now have a spinlock protecting
those updates to ensure that we don't lose track of any references
to pages.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:31:00 +08:00
|
|
|
if (ret == H_TOO_HARD) {
|
|
|
|
/* this can't happen */
|
|
|
|
pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
|
|
|
|
ret = H_RESOURCE; /* or something */
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
KVM: PPC: Implement MMIO emulation support for Book3S HV guests
This provides the low-level support for MMIO emulation in Book3S HV
guests. When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page. Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page. An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.
When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.
This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:36:37 +08:00
|
|
|
static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
|
|
|
|
gva_t eaddr)
|
|
|
|
{
|
|
|
|
u64 mask;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < vcpu->arch.slb_nr; i++) {
|
|
|
|
if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
|
|
|
|
mask = ESID_MASK_1T;
|
|
|
|
else
|
|
|
|
mask = ESID_MASK;
|
|
|
|
|
|
|
|
if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
|
|
|
|
return &vcpu->arch.slb[i];
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
|
|
|
|
unsigned long ea)
|
|
|
|
{
|
|
|
|
unsigned long ra_mask;
|
|
|
|
|
2017-09-11 13:29:45 +08:00
|
|
|
ra_mask = kvmppc_actual_pgsz(v, r) - 1;
|
KVM: PPC: Implement MMIO emulation support for Book3S HV guests
This provides the low-level support for MMIO emulation in Book3S HV
guests. When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page. Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page. An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.
When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.
This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:36:37 +08:00
|
|
|
return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
|
|
|
|
}
|
|
|
|
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
|
KVM: PPC: Book3S PR: Better handling of host-side read-only pages
Currently we request write access to all pages that get mapped into the
guest, even if the guest is only loading from the page. This reduces
the effectiveness of KSM because it means that we unshare every page we
access. Also, we always set the changed (C) bit in the guest HPTE if
it allows writing, even for a guest load.
This fixes both these problems. We pass an 'iswrite' flag to the
mmu.xlate() functions and to kvmppc_mmu_map_page() to indicate whether
the access is a load or a store. The mmu.xlate() functions now only
set C for stores. kvmppc_gfn_to_pfn() now calls gfn_to_pfn_prot()
instead of gfn_to_pfn() so that it can indicate whether we need write
access to the page, and get back a 'writable' flag to indicate whether
the page is writable or not. If that 'writable' flag is clear, we then
make the host HPTE read-only even if the guest HPTE allowed writing.
This means that we can get a protection fault when the guest writes to a
page that it has mapped read-write but which is read-only on the host
side (perhaps due to KSM having merged the page). Thus we now call
kvmppc_handle_pagefault() for protection faults as well as HPTE not found
faults. In kvmppc_handle_pagefault(), if the access was allowed by the
guest HPTE and we thus need to install a new host HPTE, we then need to
remove the old host HPTE if there is one. This is done with a new
function, kvmppc_mmu_unmap_page(), which uses kvmppc_mmu_pte_vflush() to
find and remove the old host HPTE.
Since the memslot-related functions require the KVM SRCU read lock to
be held, this adds srcu_read_lock/unlock pairs around the calls to
kvmppc_handle_pagefault().
Finally, this changes kvmppc_mmu_book3s_32_xlate_pte() to not ignore
guest HPTEs that don't permit access, and to return -EPERM for accesses
that are not permitted by the page protections.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-09-20 12:52:51 +08:00
|
|
|
struct kvmppc_pte *gpte, bool data, bool iswrite)
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
{
|
KVM: PPC: Implement MMIO emulation support for Book3S HV guests
This provides the low-level support for MMIO emulation in Book3S HV
guests. When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page. Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page. An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.
When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.
This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:36:37 +08:00
|
|
|
struct kvm *kvm = vcpu->kvm;
|
|
|
|
struct kvmppc_slb *slbe;
|
|
|
|
unsigned long slb_v;
|
|
|
|
unsigned long pp, key;
|
2016-11-16 13:57:24 +08:00
|
|
|
unsigned long v, orig_v, gr;
|
2014-06-11 16:16:06 +08:00
|
|
|
__be64 *hptep;
|
KVM: PPC: Implement MMIO emulation support for Book3S HV guests
This provides the low-level support for MMIO emulation in Book3S HV
guests. When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page. Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page. An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.
When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.
This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:36:37 +08:00
|
|
|
int index;
|
|
|
|
int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
|
|
|
|
|
|
|
|
/* Get SLB entry */
|
|
|
|
if (virtmode) {
|
|
|
|
slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
|
|
|
|
if (!slbe)
|
|
|
|
return -EINVAL;
|
|
|
|
slb_v = slbe->origv;
|
|
|
|
} else {
|
|
|
|
/* real mode access */
|
|
|
|
slb_v = vcpu->kvm->arch.vrma_slb_v;
|
|
|
|
}
|
|
|
|
|
powerpc: kvm: fix rare but potential deadlock scene
Since kvmppc_hv_find_lock_hpte() is called from both virtmode and
realmode, so it can trigger the deadlock.
Suppose the following scene:
Two physical cpuM, cpuN, two VM instances A, B, each VM has a group of
vcpus.
If on cpuM, vcpu_A_1 holds bitlock X (HPTE_V_HVLOCK), then is switched
out, and on cpuN, vcpu_A_2 try to lock X in realmode, then cpuN will be
caught in realmode for a long time.
What makes things even worse if the following happens,
On cpuM, bitlockX is hold, on cpuN, Y is hold.
vcpu_B_2 try to lock Y on cpuM in realmode
vcpu_A_2 try to lock X on cpuN in realmode
Oops! deadlock happens
Signed-off-by: Liu Ping Fan <pingfank@linux.vnet.ibm.com>
Reviewed-by: Paul Mackerras <paulus@samba.org>
CC: stable@vger.kernel.org
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-11-15 16:35:00 +08:00
|
|
|
preempt_disable();
|
KVM: PPC: Implement MMIO emulation support for Book3S HV guests
This provides the low-level support for MMIO emulation in Book3S HV
guests. When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page. Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page. An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.
When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.
This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:36:37 +08:00
|
|
|
/* Find the HPTE in the hash table */
|
|
|
|
index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
|
|
|
|
HPTE_V_VALID | HPTE_V_ABSENT);
|
powerpc: kvm: fix rare but potential deadlock scene
Since kvmppc_hv_find_lock_hpte() is called from both virtmode and
realmode, so it can trigger the deadlock.
Suppose the following scene:
Two physical cpuM, cpuN, two VM instances A, B, each VM has a group of
vcpus.
If on cpuM, vcpu_A_1 holds bitlock X (HPTE_V_HVLOCK), then is switched
out, and on cpuN, vcpu_A_2 try to lock X in realmode, then cpuN will be
caught in realmode for a long time.
What makes things even worse if the following happens,
On cpuM, bitlockX is hold, on cpuN, Y is hold.
vcpu_B_2 try to lock Y on cpuM in realmode
vcpu_A_2 try to lock X on cpuN in realmode
Oops! deadlock happens
Signed-off-by: Liu Ping Fan <pingfank@linux.vnet.ibm.com>
Reviewed-by: Paul Mackerras <paulus@samba.org>
CC: stable@vger.kernel.org
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-11-15 16:35:00 +08:00
|
|
|
if (index < 0) {
|
|
|
|
preempt_enable();
|
KVM: PPC: Implement MMIO emulation support for Book3S HV guests
This provides the low-level support for MMIO emulation in Book3S HV
guests. When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page. Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page. An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.
When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.
This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:36:37 +08:00
|
|
|
return -ENOENT;
|
powerpc: kvm: fix rare but potential deadlock scene
Since kvmppc_hv_find_lock_hpte() is called from both virtmode and
realmode, so it can trigger the deadlock.
Suppose the following scene:
Two physical cpuM, cpuN, two VM instances A, B, each VM has a group of
vcpus.
If on cpuM, vcpu_A_1 holds bitlock X (HPTE_V_HVLOCK), then is switched
out, and on cpuN, vcpu_A_2 try to lock X in realmode, then cpuN will be
caught in realmode for a long time.
What makes things even worse if the following happens,
On cpuM, bitlockX is hold, on cpuN, Y is hold.
vcpu_B_2 try to lock Y on cpuM in realmode
vcpu_A_2 try to lock X on cpuN in realmode
Oops! deadlock happens
Signed-off-by: Liu Ping Fan <pingfank@linux.vnet.ibm.com>
Reviewed-by: Paul Mackerras <paulus@samba.org>
CC: stable@vger.kernel.org
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-11-15 16:35:00 +08:00
|
|
|
}
|
2016-12-20 13:49:00 +08:00
|
|
|
hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
|
2016-11-16 13:57:24 +08:00
|
|
|
v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
|
|
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300))
|
|
|
|
v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
|
2016-12-20 13:49:00 +08:00
|
|
|
gr = kvm->arch.hpt.rev[index].guest_rpte;
|
KVM: PPC: Implement MMIO emulation support for Book3S HV guests
This provides the low-level support for MMIO emulation in Book3S HV
guests. When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page. Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page. An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.
When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.
This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:36:37 +08:00
|
|
|
|
2016-11-16 13:57:24 +08:00
|
|
|
unlock_hpte(hptep, orig_v);
|
powerpc: kvm: fix rare but potential deadlock scene
Since kvmppc_hv_find_lock_hpte() is called from both virtmode and
realmode, so it can trigger the deadlock.
Suppose the following scene:
Two physical cpuM, cpuN, two VM instances A, B, each VM has a group of
vcpus.
If on cpuM, vcpu_A_1 holds bitlock X (HPTE_V_HVLOCK), then is switched
out, and on cpuN, vcpu_A_2 try to lock X in realmode, then cpuN will be
caught in realmode for a long time.
What makes things even worse if the following happens,
On cpuM, bitlockX is hold, on cpuN, Y is hold.
vcpu_B_2 try to lock Y on cpuM in realmode
vcpu_A_2 try to lock X on cpuN in realmode
Oops! deadlock happens
Signed-off-by: Liu Ping Fan <pingfank@linux.vnet.ibm.com>
Reviewed-by: Paul Mackerras <paulus@samba.org>
CC: stable@vger.kernel.org
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-11-15 16:35:00 +08:00
|
|
|
preempt_enable();
|
KVM: PPC: Implement MMIO emulation support for Book3S HV guests
This provides the low-level support for MMIO emulation in Book3S HV
guests. When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page. Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page. An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.
When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.
This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:36:37 +08:00
|
|
|
|
|
|
|
gpte->eaddr = eaddr;
|
|
|
|
gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
|
|
|
|
|
|
|
|
/* Get PP bits and key for permission check */
|
|
|
|
pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
|
|
|
|
key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
|
|
|
|
key &= slb_v;
|
|
|
|
|
|
|
|
/* Calculate permissions */
|
|
|
|
gpte->may_read = hpte_read_permission(pp, key);
|
|
|
|
gpte->may_write = hpte_write_permission(pp, key);
|
|
|
|
gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
|
|
|
|
|
|
|
|
/* Storage key permission check for POWER7 */
|
2014-12-03 10:30:38 +08:00
|
|
|
if (data && virtmode) {
|
KVM: PPC: Implement MMIO emulation support for Book3S HV guests
This provides the low-level support for MMIO emulation in Book3S HV
guests. When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page. Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page. An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.
When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.
This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:36:37 +08:00
|
|
|
int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
|
|
|
|
if (amrfield & 1)
|
|
|
|
gpte->may_read = 0;
|
|
|
|
if (amrfield & 2)
|
|
|
|
gpte->may_write = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Get the guest physical address */
|
|
|
|
gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Quick test for whether an instruction is a load or a store.
|
|
|
|
* If the instruction is a load or a store, then this will indicate
|
|
|
|
* which it is, at least on server processors. (Embedded processors
|
|
|
|
* have some external PID instructions that don't follow the rule
|
|
|
|
* embodied here.) If the instruction isn't a load or store, then
|
|
|
|
* this doesn't return anything useful.
|
|
|
|
*/
|
|
|
|
static int instruction_is_store(unsigned int instr)
|
|
|
|
{
|
|
|
|
unsigned int mask;
|
|
|
|
|
|
|
|
mask = 0x10000000;
|
|
|
|
if ((instr & 0xfc000000) == 0x7c000000)
|
|
|
|
mask = 0x100; /* major opcode 31 */
|
|
|
|
return (instr & mask) != 0;
|
|
|
|
}
|
|
|
|
|
2017-01-30 18:21:46 +08:00
|
|
|
int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
|
|
|
|
unsigned long gpa, gva_t ea, int is_store)
|
KVM: PPC: Implement MMIO emulation support for Book3S HV guests
This provides the low-level support for MMIO emulation in Book3S HV
guests. When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page. Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page. An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.
When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.
This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:36:37 +08:00
|
|
|
{
|
|
|
|
u32 last_inst;
|
|
|
|
|
2014-07-24 00:06:21 +08:00
|
|
|
/*
|
KVM: PPC: Implement MMIO emulation support for Book3S HV guests
This provides the low-level support for MMIO emulation in Book3S HV
guests. When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page. Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page. An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.
When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.
This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:36:37 +08:00
|
|
|
* If we fail, we just return to the guest and try executing it again.
|
|
|
|
*/
|
2014-07-24 00:06:21 +08:00
|
|
|
if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
|
|
|
|
EMULATE_DONE)
|
|
|
|
return RESUME_GUEST;
|
KVM: PPC: Implement MMIO emulation support for Book3S HV guests
This provides the low-level support for MMIO emulation in Book3S HV
guests. When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page. Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page. An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.
When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.
This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:36:37 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* WARNING: We do not know for sure whether the instruction we just
|
|
|
|
* read from memory is the same that caused the fault in the first
|
|
|
|
* place. If the instruction we read is neither an load or a store,
|
|
|
|
* then it can't access memory, so we don't need to worry about
|
|
|
|
* enforcing access permissions. So, assuming it is a load or
|
|
|
|
* store, we just check that its direction (load or store) is
|
|
|
|
* consistent with the original fault, since that's what we
|
|
|
|
* checked the access permissions against. If there is a mismatch
|
|
|
|
* we just return and retry the instruction.
|
|
|
|
*/
|
|
|
|
|
2014-07-24 00:06:21 +08:00
|
|
|
if (instruction_is_store(last_inst) != !!is_store)
|
KVM: PPC: Implement MMIO emulation support for Book3S HV guests
This provides the low-level support for MMIO emulation in Book3S HV
guests. When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page. Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page. An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.
When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.
This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:36:37 +08:00
|
|
|
return RESUME_GUEST;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Emulated accesses are emulated by looking at the hash for
|
|
|
|
* translation once, then performing the access later. The
|
|
|
|
* translation could be invalidated in the meantime in which
|
|
|
|
* point performing the subsequent memory access on the old
|
|
|
|
* physical address could possibly be a security hole for the
|
|
|
|
* guest (but not the host).
|
|
|
|
*
|
|
|
|
* This is less of an issue for MMIO stores since they aren't
|
|
|
|
* globally visible. It could be an issue for MMIO loads to
|
|
|
|
* a certain extent but we'll ignore it for now.
|
|
|
|
*/
|
|
|
|
|
|
|
|
vcpu->arch.paddr_accessed = gpa;
|
2012-03-12 09:26:30 +08:00
|
|
|
vcpu->arch.vaddr_accessed = ea;
|
KVM: PPC: Implement MMIO emulation support for Book3S HV guests
This provides the low-level support for MMIO emulation in Book3S HV
guests. When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page. Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page. An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.
When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.
This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:36:37 +08:00
|
|
|
return kvmppc_emulate_mmio(run, vcpu);
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
|
|
|
|
unsigned long ea, unsigned long dsisr)
|
|
|
|
{
|
|
|
|
struct kvm *kvm = vcpu->kvm;
|
2014-06-11 16:16:06 +08:00
|
|
|
unsigned long hpte[3], r;
|
2016-11-16 13:57:24 +08:00
|
|
|
unsigned long hnow_v, hnow_r;
|
2014-06-11 16:16:06 +08:00
|
|
|
__be64 *hptep;
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
unsigned long mmu_seq, psize, pte_size;
|
2014-05-26 17:48:37 +08:00
|
|
|
unsigned long gpa_base, gfn_base;
|
2012-09-21 03:39:21 +08:00
|
|
|
unsigned long gpa, gfn, hva, pfn;
|
KVM: PPC: Implement MMIO emulation support for Book3S HV guests
This provides the low-level support for MMIO emulation in Book3S HV
guests. When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page. Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page. An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.
When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.
This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:36:37 +08:00
|
|
|
struct kvm_memory_slot *memslot;
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
unsigned long *rmap;
|
KVM: PPC: Implement MMIO emulation support for Book3S HV guests
This provides the low-level support for MMIO emulation in Book3S HV
guests. When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page. Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page. An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.
When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.
This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:36:37 +08:00
|
|
|
struct revmap_entry *rev;
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
struct page *page, *pages[1];
|
|
|
|
long index, ret, npages;
|
2016-04-29 21:25:38 +08:00
|
|
|
bool is_ci;
|
2011-12-12 20:38:51 +08:00
|
|
|
unsigned int writing, write_ok;
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
struct vm_area_struct *vma;
|
2011-12-15 10:02:02 +08:00
|
|
|
unsigned long rcbits;
|
KVM: PPC: Book3S HV: Add a per vcpu cache for recently page faulted MMIO entries
This keeps a per vcpu cache for recently page faulted MMIO entries.
On a page fault, if the entry exists in the cache, we can avoid some
time-consuming paths, for example, looking up HPT, locking HPTE twice
and searching mmio gfn from memslots, then directly call
kvmppc_hv_emulate_mmio().
In current implenment, we limit the size of cache to four. We think
it's enough to cover the high-frequency MMIO HPTEs in most case.
For example, considering the case of using virtio device, for virtio
legacy devices, one HPTE could handle notifications from up to
1024 (64K page / 64 byte Port IO register) devices, so one cache entry
is enough; for virtio modern devices, we always need one HPTE to handle
notification for each device because modern device would use a 8M MMIO
register to notify host instead of Port IO register, typically the
system's configuration should not exceed four virtio devices per
vcpu, four cache entry is also enough in this case. Of course, if needed,
we could also modify the macro to a module parameter in the future.
Signed-off-by: Yongji Xie <xyjxie@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-11-04 13:55:12 +08:00
|
|
|
long mmio_update;
|
KVM: PPC: Implement MMIO emulation support for Book3S HV guests
This provides the low-level support for MMIO emulation in Book3S HV
guests. When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page. Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page. An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.
When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.
This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:36:37 +08:00
|
|
|
|
2017-01-30 18:21:46 +08:00
|
|
|
if (kvm_is_radix(kvm))
|
|
|
|
return kvmppc_book3s_radix_page_fault(run, vcpu, ea, dsisr);
|
|
|
|
|
KVM: PPC: Implement MMIO emulation support for Book3S HV guests
This provides the low-level support for MMIO emulation in Book3S HV
guests. When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page. Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page. An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.
When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.
This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:36:37 +08:00
|
|
|
/*
|
|
|
|
* Real-mode code has already searched the HPT and found the
|
|
|
|
* entry we're interested in. Lock the entry and check that
|
|
|
|
* it hasn't changed. If it has, just return and re-execute the
|
|
|
|
* instruction.
|
|
|
|
*/
|
|
|
|
if (ea != vcpu->arch.pgfault_addr)
|
|
|
|
return RESUME_GUEST;
|
KVM: PPC: Book3S HV: Add a per vcpu cache for recently page faulted MMIO entries
This keeps a per vcpu cache for recently page faulted MMIO entries.
On a page fault, if the entry exists in the cache, we can avoid some
time-consuming paths, for example, looking up HPT, locking HPTE twice
and searching mmio gfn from memslots, then directly call
kvmppc_hv_emulate_mmio().
In current implenment, we limit the size of cache to four. We think
it's enough to cover the high-frequency MMIO HPTEs in most case.
For example, considering the case of using virtio device, for virtio
legacy devices, one HPTE could handle notifications from up to
1024 (64K page / 64 byte Port IO register) devices, so one cache entry
is enough; for virtio modern devices, we always need one HPTE to handle
notification for each device because modern device would use a 8M MMIO
register to notify host instead of Port IO register, typically the
system's configuration should not exceed four virtio devices per
vcpu, four cache entry is also enough in this case. Of course, if needed,
we could also modify the macro to a module parameter in the future.
Signed-off-by: Yongji Xie <xyjxie@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-11-04 13:55:12 +08:00
|
|
|
|
|
|
|
if (vcpu->arch.pgfault_cache) {
|
|
|
|
mmio_update = atomic64_read(&kvm->arch.mmio_update);
|
|
|
|
if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
|
|
|
|
r = vcpu->arch.pgfault_cache->rpte;
|
2017-09-11 13:29:45 +08:00
|
|
|
psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0],
|
|
|
|
r);
|
KVM: PPC: Book3S HV: Add a per vcpu cache for recently page faulted MMIO entries
This keeps a per vcpu cache for recently page faulted MMIO entries.
On a page fault, if the entry exists in the cache, we can avoid some
time-consuming paths, for example, looking up HPT, locking HPTE twice
and searching mmio gfn from memslots, then directly call
kvmppc_hv_emulate_mmio().
In current implenment, we limit the size of cache to four. We think
it's enough to cover the high-frequency MMIO HPTEs in most case.
For example, considering the case of using virtio device, for virtio
legacy devices, one HPTE could handle notifications from up to
1024 (64K page / 64 byte Port IO register) devices, so one cache entry
is enough; for virtio modern devices, we always need one HPTE to handle
notification for each device because modern device would use a 8M MMIO
register to notify host instead of Port IO register, typically the
system's configuration should not exceed four virtio devices per
vcpu, four cache entry is also enough in this case. Of course, if needed,
we could also modify the macro to a module parameter in the future.
Signed-off-by: Yongji Xie <xyjxie@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2016-11-04 13:55:12 +08:00
|
|
|
gpa_base = r & HPTE_R_RPN & ~(psize - 1);
|
|
|
|
gfn_base = gpa_base >> PAGE_SHIFT;
|
|
|
|
gpa = gpa_base | (ea & (psize - 1));
|
|
|
|
return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
|
|
|
|
dsisr & DSISR_ISSTORE);
|
|
|
|
}
|
|
|
|
}
|
KVM: PPC: Implement MMIO emulation support for Book3S HV guests
This provides the low-level support for MMIO emulation in Book3S HV
guests. When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page. Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page. An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.
When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.
This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:36:37 +08:00
|
|
|
index = vcpu->arch.pgfault_index;
|
2016-12-20 13:49:00 +08:00
|
|
|
hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
|
|
|
|
rev = &kvm->arch.hpt.rev[index];
|
KVM: PPC: Implement MMIO emulation support for Book3S HV guests
This provides the low-level support for MMIO emulation in Book3S HV
guests. When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page. Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page. An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.
When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.
This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:36:37 +08:00
|
|
|
preempt_disable();
|
|
|
|
while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
|
|
|
|
cpu_relax();
|
2014-06-11 16:16:06 +08:00
|
|
|
hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
|
|
|
|
hpte[1] = be64_to_cpu(hptep[1]);
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
hpte[2] = r = rev->guest_rpte;
|
2015-03-20 17:39:43 +08:00
|
|
|
unlock_hpte(hptep, hpte[0]);
|
KVM: PPC: Implement MMIO emulation support for Book3S HV guests
This provides the low-level support for MMIO emulation in Book3S HV
guests. When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page. Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page. An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.
When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.
This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:36:37 +08:00
|
|
|
preempt_enable();
|
|
|
|
|
2016-11-16 13:57:24 +08:00
|
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
|
|
hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
|
|
|
|
hpte[1] = hpte_new_to_old_r(hpte[1]);
|
|
|
|
}
|
KVM: PPC: Implement MMIO emulation support for Book3S HV guests
This provides the low-level support for MMIO emulation in Book3S HV
guests. When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page. Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page. An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.
When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.
This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:36:37 +08:00
|
|
|
if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
|
|
|
|
hpte[1] != vcpu->arch.pgfault_hpte[1])
|
|
|
|
return RESUME_GUEST;
|
|
|
|
|
|
|
|
/* Translate the logical address and get the page */
|
2017-09-11 13:29:45 +08:00
|
|
|
psize = kvmppc_actual_pgsz(hpte[0], r);
|
2014-05-26 17:48:37 +08:00
|
|
|
gpa_base = r & HPTE_R_RPN & ~(psize - 1);
|
|
|
|
gfn_base = gpa_base >> PAGE_SHIFT;
|
|
|
|
gpa = gpa_base | (ea & (psize - 1));
|
2012-09-21 03:39:21 +08:00
|
|
|
gfn = gpa >> PAGE_SHIFT;
|
KVM: PPC: Implement MMIO emulation support for Book3S HV guests
This provides the low-level support for MMIO emulation in Book3S HV
guests. When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page. Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page. An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.
When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.
This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:36:37 +08:00
|
|
|
memslot = gfn_to_memslot(kvm, gfn);
|
|
|
|
|
2014-12-04 08:48:10 +08:00
|
|
|
trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
|
|
|
|
|
KVM: PPC: Implement MMIO emulation support for Book3S HV guests
This provides the low-level support for MMIO emulation in Book3S HV
guests. When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page. Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page. An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.
When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.
This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:36:37 +08:00
|
|
|
/* No memslot means it's an emulated MMIO region */
|
2012-09-21 03:39:21 +08:00
|
|
|
if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
|
2012-03-12 09:26:30 +08:00
|
|
|
return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
|
KVM: PPC: Implement MMIO emulation support for Book3S HV guests
This provides the low-level support for MMIO emulation in Book3S HV
guests. When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page. Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page. An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.
When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.
This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:36:37 +08:00
|
|
|
dsisr & DSISR_ISSTORE);
|
|
|
|
|
2014-05-26 17:48:37 +08:00
|
|
|
/*
|
|
|
|
* This should never happen, because of the slot_is_aligned()
|
|
|
|
* check in kvmppc_do_h_enter().
|
|
|
|
*/
|
|
|
|
if (gfn_base < memslot->base_gfn)
|
|
|
|
return -EFAULT;
|
|
|
|
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
/* used to check for invalidations in progress */
|
|
|
|
mmu_seq = kvm->mmu_notifier_seq;
|
|
|
|
smp_rmb();
|
|
|
|
|
2014-12-04 08:48:10 +08:00
|
|
|
ret = -EFAULT;
|
2016-04-29 21:25:38 +08:00
|
|
|
is_ci = false;
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
pfn = 0;
|
|
|
|
page = NULL;
|
|
|
|
pte_size = PAGE_SIZE;
|
2011-12-12 20:38:51 +08:00
|
|
|
writing = (dsisr & DSISR_ISSTORE) != 0;
|
|
|
|
/* If writing != 0, then the HPTE must allow writing, if we get here */
|
|
|
|
write_ok = writing;
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
hva = gfn_to_hva_memslot(memslot, gfn);
|
2011-12-12 20:38:51 +08:00
|
|
|
npages = get_user_pages_fast(hva, 1, writing, pages);
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
if (npages < 1) {
|
|
|
|
/* Check if it's an I/O mapping */
|
|
|
|
down_read(¤t->mm->mmap_sem);
|
|
|
|
vma = find_vma(current->mm, hva);
|
|
|
|
if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
|
|
|
|
(vma->vm_flags & VM_PFNMAP)) {
|
|
|
|
pfn = vma->vm_pgoff +
|
|
|
|
((hva - vma->vm_start) >> PAGE_SHIFT);
|
|
|
|
pte_size = psize;
|
2016-04-29 21:25:38 +08:00
|
|
|
is_ci = pte_ci(__pte((pgprot_val(vma->vm_page_prot))));
|
2011-12-12 20:38:51 +08:00
|
|
|
write_ok = vma->vm_flags & VM_WRITE;
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
}
|
|
|
|
up_read(¤t->mm->mmap_sem);
|
|
|
|
if (!pfn)
|
2014-12-04 08:48:10 +08:00
|
|
|
goto out_put;
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
} else {
|
|
|
|
page = pages[0];
|
KVM: PPC: Book3S HV: Fix physical address calculations
This fixes a bug in kvmppc_do_h_enter() where the physical address
for a page can be calculated incorrectly if transparent huge pages
(THP) are active. Until THP came along, it was true that if we
encountered a large (16M) page in kvmppc_do_h_enter(), then the
associated memslot must be 16M aligned for both its guest physical
address and the userspace address, and the physical address
calculations in kvmppc_do_h_enter() assumed that. With THP, that
is no longer true.
In the case where we are using MMU notifiers and the page size that
we get from the Linux page tables is larger than the page being mapped
by the guest, we need to fill in some low-order bits of the physical
address. Without THP, these bits would be the same in the guest
physical address (gpa) and the host virtual address (hva). With THP,
they can be different, and we need to use the bits from hva rather
than gpa.
In the case where we are not using MMU notifiers, the host physical
address we get from the memslot->arch.slot_phys[] array already
includes the low-order bits down to the PAGE_SIZE level, even if
we are using large pages. Thus we can simplify the calculation in
this case to just add in the remaining bits in the case where
PAGE_SIZE is 64k and the guest is mapping a 4k page.
The same bug exists in kvmppc_book3s_hv_page_fault(). The basic fix
is to use psize (the page size from the HPTE) rather than pte_size
(the page size from the Linux PTE) when updating the HPTE low word
in r. That means that pfn needs to be computed to PAGE_SIZE
granularity even if the Linux PTE is a huge page PTE. That can be
arranged simply by doing the page_to_pfn() before setting page to
the head of the compound page. If psize is less than PAGE_SIZE,
then we need to make sure we only update the bits from PAGE_SIZE
upwards, in order not to lose any sub-page offset bits in r.
On the other hand, if psize is greater than PAGE_SIZE, we need to
make sure we don't bring in non-zero low order bits in pfn, hence
we mask (pfn << PAGE_SHIFT) with ~(psize - 1).
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-11-16 14:46:02 +08:00
|
|
|
pfn = page_to_pfn(page);
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
if (PageHuge(page)) {
|
|
|
|
page = compound_head(page);
|
|
|
|
pte_size <<= compound_order(page);
|
|
|
|
}
|
2011-12-12 20:38:51 +08:00
|
|
|
/* if the guest wants write access, see if that is OK */
|
|
|
|
if (!writing && hpte_is_writable(r)) {
|
|
|
|
pte_t *ptep, pte;
|
2015-03-30 13:11:03 +08:00
|
|
|
unsigned long flags;
|
2011-12-12 20:38:51 +08:00
|
|
|
/*
|
|
|
|
* We need to protect against page table destruction
|
2015-03-30 13:11:04 +08:00
|
|
|
* hugepage split and collapse.
|
2011-12-12 20:38:51 +08:00
|
|
|
*/
|
2015-03-30 13:11:03 +08:00
|
|
|
local_irq_save(flags);
|
2017-07-27 14:24:53 +08:00
|
|
|
ptep = find_current_mm_pte(current->mm->pgd,
|
|
|
|
hva, NULL, NULL);
|
2013-06-20 17:00:19 +08:00
|
|
|
if (ptep) {
|
2015-03-30 13:11:04 +08:00
|
|
|
pte = kvmppc_read_update_linux_pte(ptep, 1);
|
2017-03-10 08:16:39 +08:00
|
|
|
if (__pte_write(pte))
|
2011-12-12 20:38:51 +08:00
|
|
|
write_ok = 1;
|
|
|
|
}
|
2015-03-30 13:11:03 +08:00
|
|
|
local_irq_restore(flags);
|
2011-12-12 20:38:51 +08:00
|
|
|
}
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
if (psize > pte_size)
|
|
|
|
goto out_put;
|
|
|
|
|
|
|
|
/* Check WIMG vs. the actual page we're accessing */
|
2016-04-29 21:25:38 +08:00
|
|
|
if (!hpte_cache_flags_ok(r, is_ci)) {
|
|
|
|
if (is_ci)
|
2014-12-04 08:48:10 +08:00
|
|
|
goto out_put;
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
/*
|
|
|
|
* Allow guest to map emulated device memory as
|
|
|
|
* uncacheable, but actually make it cacheable.
|
|
|
|
*/
|
|
|
|
r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
|
|
|
|
}
|
|
|
|
|
KVM: PPC: Book3S HV: Fix physical address calculations
This fixes a bug in kvmppc_do_h_enter() where the physical address
for a page can be calculated incorrectly if transparent huge pages
(THP) are active. Until THP came along, it was true that if we
encountered a large (16M) page in kvmppc_do_h_enter(), then the
associated memslot must be 16M aligned for both its guest physical
address and the userspace address, and the physical address
calculations in kvmppc_do_h_enter() assumed that. With THP, that
is no longer true.
In the case where we are using MMU notifiers and the page size that
we get from the Linux page tables is larger than the page being mapped
by the guest, we need to fill in some low-order bits of the physical
address. Without THP, these bits would be the same in the guest
physical address (gpa) and the host virtual address (hva). With THP,
they can be different, and we need to use the bits from hva rather
than gpa.
In the case where we are not using MMU notifiers, the host physical
address we get from the memslot->arch.slot_phys[] array already
includes the low-order bits down to the PAGE_SIZE level, even if
we are using large pages. Thus we can simplify the calculation in
this case to just add in the remaining bits in the case where
PAGE_SIZE is 64k and the guest is mapping a 4k page.
The same bug exists in kvmppc_book3s_hv_page_fault(). The basic fix
is to use psize (the page size from the HPTE) rather than pte_size
(the page size from the Linux PTE) when updating the HPTE low word
in r. That means that pfn needs to be computed to PAGE_SIZE
granularity even if the Linux PTE is a huge page PTE. That can be
arranged simply by doing the page_to_pfn() before setting page to
the head of the compound page. If psize is less than PAGE_SIZE,
then we need to make sure we only update the bits from PAGE_SIZE
upwards, in order not to lose any sub-page offset bits in r.
On the other hand, if psize is greater than PAGE_SIZE, we need to
make sure we don't bring in non-zero low order bits in pfn, hence
we mask (pfn << PAGE_SHIFT) with ~(psize - 1).
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-11-16 14:46:02 +08:00
|
|
|
/*
|
|
|
|
* Set the HPTE to point to pfn.
|
|
|
|
* Since the pfn is at PAGE_SIZE granularity, make sure we
|
|
|
|
* don't mask out lower-order bits if psize < PAGE_SIZE.
|
|
|
|
*/
|
|
|
|
if (psize < PAGE_SIZE)
|
|
|
|
psize = PAGE_SIZE;
|
2016-11-04 13:55:11 +08:00
|
|
|
r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) |
|
|
|
|
((pfn << PAGE_SHIFT) & ~(psize - 1));
|
2011-12-12 20:38:51 +08:00
|
|
|
if (hpte_is_writable(r) && !write_ok)
|
|
|
|
r = hpte_make_readonly(r);
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
ret = RESUME_GUEST;
|
|
|
|
preempt_disable();
|
|
|
|
while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
|
|
|
|
cpu_relax();
|
2016-11-16 13:57:24 +08:00
|
|
|
hnow_v = be64_to_cpu(hptep[0]);
|
|
|
|
hnow_r = be64_to_cpu(hptep[1]);
|
|
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
|
|
hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
|
|
|
|
hnow_r = hpte_new_to_old_r(hnow_r);
|
|
|
|
}
|
|
|
|
if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
|
|
|
|
rev->guest_rpte != hpte[2])
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
/* HPTE has been changed under us; let the guest retry */
|
|
|
|
goto out_unlock;
|
|
|
|
hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
|
|
|
|
|
2014-05-26 17:48:37 +08:00
|
|
|
/* Always put the HPTE in the rmap chain for the page base address */
|
|
|
|
rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
lock_rmap(rmap);
|
|
|
|
|
|
|
|
/* Check if we might have been invalidated; let the guest retry if so */
|
|
|
|
ret = RESUME_GUEST;
|
2012-10-15 11:10:18 +08:00
|
|
|
if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
unlock_rmap(rmap);
|
|
|
|
goto out_unlock;
|
|
|
|
}
|
2011-12-12 20:38:51 +08:00
|
|
|
|
2011-12-15 10:02:02 +08:00
|
|
|
/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
|
|
|
|
rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
|
|
|
|
r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
|
|
|
|
|
2014-06-11 16:16:06 +08:00
|
|
|
if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
|
2011-12-12 20:38:51 +08:00
|
|
|
/* HPTE was previously valid, so we need to invalidate it */
|
|
|
|
unlock_rmap(rmap);
|
2014-06-11 16:16:06 +08:00
|
|
|
hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
|
2011-12-12 20:38:51 +08:00
|
|
|
kvmppc_invalidate_hpte(kvm, hptep, index);
|
2011-12-15 10:02:02 +08:00
|
|
|
/* don't lose previous R and C bits */
|
2014-06-11 16:16:06 +08:00
|
|
|
r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
|
2011-12-12 20:38:51 +08:00
|
|
|
} else {
|
|
|
|
kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
|
|
|
|
}
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
|
2016-11-16 13:57:24 +08:00
|
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
|
|
r = hpte_old_to_new_r(hpte[0], r);
|
|
|
|
hpte[0] = hpte_old_to_new_v(hpte[0]);
|
|
|
|
}
|
2014-06-11 16:16:06 +08:00
|
|
|
hptep[1] = cpu_to_be64(r);
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
eieio();
|
2015-03-20 17:39:43 +08:00
|
|
|
__unlock_hpte(hptep, hpte[0]);
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
asm volatile("ptesync" : : : "memory");
|
|
|
|
preempt_enable();
|
2011-12-12 20:38:51 +08:00
|
|
|
if (page && hpte_is_writable(r))
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
SetPageDirty(page);
|
|
|
|
|
|
|
|
out_put:
|
2014-12-04 08:48:10 +08:00
|
|
|
trace_kvm_page_fault_exit(vcpu, hpte, ret);
|
|
|
|
|
2012-05-08 18:24:08 +08:00
|
|
|
if (page) {
|
|
|
|
/*
|
|
|
|
* We drop pages[0] here, not page because page might
|
|
|
|
* have been set to the head page of a compound, but
|
|
|
|
* we have to drop the reference on the correct tail
|
|
|
|
* page to match the get inside gup()
|
|
|
|
*/
|
|
|
|
put_page(pages[0]);
|
|
|
|
}
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
return ret;
|
|
|
|
|
|
|
|
out_unlock:
|
2015-03-20 17:39:43 +08:00
|
|
|
__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
preempt_enable();
|
|
|
|
goto out_put;
|
|
|
|
}
|
|
|
|
|
2012-11-22 07:27:19 +08:00
|
|
|
static void kvmppc_rmap_reset(struct kvm *kvm)
|
|
|
|
{
|
|
|
|
struct kvm_memslots *slots;
|
|
|
|
struct kvm_memory_slot *memslot;
|
|
|
|
int srcu_idx;
|
|
|
|
|
|
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
2015-05-17 22:20:07 +08:00
|
|
|
slots = kvm_memslots(kvm);
|
2012-11-22 07:27:19 +08:00
|
|
|
kvm_for_each_memslot(memslot, slots) {
|
|
|
|
/*
|
|
|
|
* This assumes it is acceptable to lose reference and
|
|
|
|
* change bits across a reset.
|
|
|
|
*/
|
|
|
|
memset(memslot->arch.rmap, 0,
|
|
|
|
memslot->npages * sizeof(*memslot->arch.rmap));
|
|
|
|
}
|
|
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
|
|
}
|
|
|
|
|
2017-01-30 18:21:47 +08:00
|
|
|
typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot,
|
|
|
|
unsigned long gfn);
|
|
|
|
|
KVM: MMU: Make kvm_handle_hva() handle range of addresses
When guest's memory is backed by THP pages, MMU notifier needs to call
kvm_unmap_hva(), which in turn leads to kvm_handle_hva(), in a loop to
invalidate a range of pages which constitute one huge page:
for each page
for each memslot
if page is in memslot
unmap using rmap
This means although every page in that range is expected to be found in
the same memslot, we are forced to check unrelated memslots many times.
If the guest has more memslots, the situation will become worse.
Furthermore, if the range does not include any pages in the guest's
memory, the loop over the pages will just consume extra time.
This patch, together with the following patches, solves this problem by
introducing kvm_handle_hva_range() which makes the loop look like this:
for each memslot
for each page in memslot
unmap using rmap
In this new processing, the actual work is converted to a loop over rmap
which is much more cache friendly than before.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Cc: Alexander Graf <agraf@suse.de>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2012-07-02 16:55:48 +08:00
|
|
|
static int kvm_handle_hva_range(struct kvm *kvm,
|
|
|
|
unsigned long start,
|
|
|
|
unsigned long end,
|
2017-01-30 18:21:47 +08:00
|
|
|
hva_handler_fn handler)
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
int retval = 0;
|
|
|
|
struct kvm_memslots *slots;
|
|
|
|
struct kvm_memory_slot *memslot;
|
|
|
|
|
|
|
|
slots = kvm_memslots(kvm);
|
|
|
|
kvm_for_each_memslot(memslot, slots) {
|
KVM: MMU: Make kvm_handle_hva() handle range of addresses
When guest's memory is backed by THP pages, MMU notifier needs to call
kvm_unmap_hva(), which in turn leads to kvm_handle_hva(), in a loop to
invalidate a range of pages which constitute one huge page:
for each page
for each memslot
if page is in memslot
unmap using rmap
This means although every page in that range is expected to be found in
the same memslot, we are forced to check unrelated memslots many times.
If the guest has more memslots, the situation will become worse.
Furthermore, if the range does not include any pages in the guest's
memory, the loop over the pages will just consume extra time.
This patch, together with the following patches, solves this problem by
introducing kvm_handle_hva_range() which makes the loop look like this:
for each memslot
for each page in memslot
unmap using rmap
In this new processing, the actual work is converted to a loop over rmap
which is much more cache friendly than before.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Cc: Alexander Graf <agraf@suse.de>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2012-07-02 16:55:48 +08:00
|
|
|
unsigned long hva_start, hva_end;
|
|
|
|
gfn_t gfn, gfn_end;
|
|
|
|
|
|
|
|
hva_start = max(start, memslot->userspace_addr);
|
|
|
|
hva_end = min(end, memslot->userspace_addr +
|
|
|
|
(memslot->npages << PAGE_SHIFT));
|
|
|
|
if (hva_start >= hva_end)
|
|
|
|
continue;
|
|
|
|
/*
|
|
|
|
* {gfn(page) | page intersects with [hva_start, hva_end)} =
|
|
|
|
* {gfn, gfn+1, ..., gfn_end-1}.
|
|
|
|
*/
|
|
|
|
gfn = hva_to_gfn_memslot(hva_start, memslot);
|
|
|
|
gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
|
KVM: MMU: Make kvm_handle_hva() handle range of addresses
When guest's memory is backed by THP pages, MMU notifier needs to call
kvm_unmap_hva(), which in turn leads to kvm_handle_hva(), in a loop to
invalidate a range of pages which constitute one huge page:
for each page
for each memslot
if page is in memslot
unmap using rmap
This means although every page in that range is expected to be found in
the same memslot, we are forced to check unrelated memslots many times.
If the guest has more memslots, the situation will become worse.
Furthermore, if the range does not include any pages in the guest's
memory, the loop over the pages will just consume extra time.
This patch, together with the following patches, solves this problem by
introducing kvm_handle_hva_range() which makes the loop look like this:
for each memslot
for each page in memslot
unmap using rmap
In this new processing, the actual work is converted to a loop over rmap
which is much more cache friendly than before.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Cc: Alexander Graf <agraf@suse.de>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2012-07-02 16:55:48 +08:00
|
|
|
for (; gfn < gfn_end; ++gfn) {
|
2017-01-30 18:21:47 +08:00
|
|
|
ret = handler(kvm, memslot, gfn);
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
retval |= ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
KVM: MMU: Make kvm_handle_hva() handle range of addresses
When guest's memory is backed by THP pages, MMU notifier needs to call
kvm_unmap_hva(), which in turn leads to kvm_handle_hva(), in a loop to
invalidate a range of pages which constitute one huge page:
for each page
for each memslot
if page is in memslot
unmap using rmap
This means although every page in that range is expected to be found in
the same memslot, we are forced to check unrelated memslots many times.
If the guest has more memslots, the situation will become worse.
Furthermore, if the range does not include any pages in the guest's
memory, the loop over the pages will just consume extra time.
This patch, together with the following patches, solves this problem by
introducing kvm_handle_hva_range() which makes the loop look like this:
for each memslot
for each page in memslot
unmap using rmap
In this new processing, the actual work is converted to a loop over rmap
which is much more cache friendly than before.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Cc: Alexander Graf <agraf@suse.de>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2012-07-02 16:55:48 +08:00
|
|
|
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
|
2017-01-30 18:21:47 +08:00
|
|
|
hva_handler_fn handler)
|
KVM: MMU: Make kvm_handle_hva() handle range of addresses
When guest's memory is backed by THP pages, MMU notifier needs to call
kvm_unmap_hva(), which in turn leads to kvm_handle_hva(), in a loop to
invalidate a range of pages which constitute one huge page:
for each page
for each memslot
if page is in memslot
unmap using rmap
This means although every page in that range is expected to be found in
the same memslot, we are forced to check unrelated memslots many times.
If the guest has more memslots, the situation will become worse.
Furthermore, if the range does not include any pages in the guest's
memory, the loop over the pages will just consume extra time.
This patch, together with the following patches, solves this problem by
introducing kvm_handle_hva_range() which makes the loop look like this:
for each memslot
for each page in memslot
unmap using rmap
In this new processing, the actual work is converted to a loop over rmap
which is much more cache friendly than before.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Cc: Alexander Graf <agraf@suse.de>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2012-07-02 16:55:48 +08:00
|
|
|
{
|
|
|
|
return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
|
|
|
|
}
|
|
|
|
|
2016-12-20 13:49:04 +08:00
|
|
|
/* Must be called with both HPTE and rmap locked */
|
|
|
|
static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
|
|
|
|
unsigned long *rmapp, unsigned long gfn)
|
|
|
|
{
|
|
|
|
__be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
|
|
|
|
struct revmap_entry *rev = kvm->arch.hpt.rev;
|
|
|
|
unsigned long j, h;
|
|
|
|
unsigned long ptel, psize, rcbits;
|
|
|
|
|
|
|
|
j = rev[i].forw;
|
|
|
|
if (j == i) {
|
|
|
|
/* chain is now empty */
|
|
|
|
*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
|
|
|
|
} else {
|
|
|
|
/* remove i from chain */
|
|
|
|
h = rev[i].back;
|
|
|
|
rev[h].forw = j;
|
|
|
|
rev[j].back = h;
|
|
|
|
rev[i].forw = rev[i].back = i;
|
|
|
|
*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Now check and modify the HPTE */
|
|
|
|
ptel = rev[i].guest_rpte;
|
2017-09-11 13:29:45 +08:00
|
|
|
psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel);
|
2016-12-20 13:49:04 +08:00
|
|
|
if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
|
|
|
|
hpte_rpn(ptel, psize) == gfn) {
|
|
|
|
hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
|
|
|
|
kvmppc_invalidate_hpte(kvm, hptep, i);
|
|
|
|
hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
|
|
|
|
/* Harvest R and C */
|
|
|
|
rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
|
|
|
|
*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
|
|
|
|
if (rcbits & HPTE_R_C)
|
|
|
|
kvmppc_update_rmap_change(rmapp, psize);
|
|
|
|
if (rcbits & ~rev[i].guest_rpte) {
|
|
|
|
rev[i].guest_rpte = ptel | rcbits;
|
|
|
|
note_hpte_modification(kvm, &rev[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-01-30 18:21:47 +08:00
|
|
|
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
unsigned long gfn)
|
|
|
|
{
|
2016-12-20 13:49:04 +08:00
|
|
|
unsigned long i;
|
2014-06-11 16:16:06 +08:00
|
|
|
__be64 *hptep;
|
2017-01-30 18:21:47 +08:00
|
|
|
unsigned long *rmapp;
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
|
2017-01-30 18:21:47 +08:00
|
|
|
rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
for (;;) {
|
2011-12-15 10:02:02 +08:00
|
|
|
lock_rmap(rmapp);
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
|
2011-12-15 10:02:02 +08:00
|
|
|
unlock_rmap(rmapp);
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To avoid an ABBA deadlock with the HPTE lock bit,
|
2011-12-15 10:02:02 +08:00
|
|
|
* we can't spin on the HPTE lock while holding the
|
|
|
|
* rmap chain lock.
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
*/
|
|
|
|
i = *rmapp & KVMPPC_RMAP_INDEX;
|
2016-12-20 13:49:00 +08:00
|
|
|
hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
|
2011-12-15 10:02:02 +08:00
|
|
|
if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
|
|
|
|
/* unlock rmap before spinning on the HPTE lock */
|
|
|
|
unlock_rmap(rmapp);
|
2014-06-11 16:16:06 +08:00
|
|
|
while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
|
2011-12-15 10:02:02 +08:00
|
|
|
cpu_relax();
|
|
|
|
continue;
|
|
|
|
}
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
|
2016-12-20 13:49:04 +08:00
|
|
|
kvmppc_unmap_hpte(kvm, i, rmapp, gfn);
|
2011-12-15 10:02:02 +08:00
|
|
|
unlock_rmap(rmapp);
|
2015-03-20 17:39:43 +08:00
|
|
|
__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2013-10-08 00:47:53 +08:00
|
|
|
int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
{
|
2017-01-30 18:21:47 +08:00
|
|
|
hva_handler_fn handler;
|
|
|
|
|
|
|
|
handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
|
|
|
|
kvm_handle_hva(kvm, hva, handler);
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2013-10-08 00:47:53 +08:00
|
|
|
int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
|
2012-07-02 16:56:33 +08:00
|
|
|
{
|
2017-01-30 18:21:47 +08:00
|
|
|
hva_handler_fn handler;
|
|
|
|
|
|
|
|
handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
|
|
|
|
kvm_handle_hva_range(kvm, start, end, handler);
|
2012-07-02 16:56:33 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2013-10-08 00:47:53 +08:00
|
|
|
void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
|
|
|
|
struct kvm_memory_slot *memslot)
|
2012-09-11 21:28:18 +08:00
|
|
|
{
|
|
|
|
unsigned long gfn;
|
|
|
|
unsigned long n;
|
2017-01-30 18:21:47 +08:00
|
|
|
unsigned long *rmapp;
|
2012-09-11 21:28:18 +08:00
|
|
|
|
|
|
|
gfn = memslot->base_gfn;
|
2017-01-30 18:21:47 +08:00
|
|
|
rmapp = memslot->arch.rmap;
|
|
|
|
for (n = memslot->npages; n; --n, ++gfn) {
|
|
|
|
if (kvm_is_radix(kvm)) {
|
|
|
|
kvm_unmap_radix(kvm, memslot, gfn);
|
|
|
|
continue;
|
|
|
|
}
|
2012-09-11 21:28:18 +08:00
|
|
|
/*
|
|
|
|
* Testing the present bit without locking is OK because
|
|
|
|
* the memslot has been marked invalid already, and hence
|
|
|
|
* no new HPTEs referencing this page can be created,
|
|
|
|
* thus the present bit can't go from 0 to 1.
|
|
|
|
*/
|
|
|
|
if (*rmapp & KVMPPC_RMAP_PRESENT)
|
2017-01-30 18:21:47 +08:00
|
|
|
kvm_unmap_rmapp(kvm, memslot, gfn);
|
2012-09-11 21:28:18 +08:00
|
|
|
++rmapp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-01-30 18:21:47 +08:00
|
|
|
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
unsigned long gfn)
|
|
|
|
{
|
2016-12-20 13:49:00 +08:00
|
|
|
struct revmap_entry *rev = kvm->arch.hpt.rev;
|
2011-12-15 10:02:47 +08:00
|
|
|
unsigned long head, i, j;
|
2014-06-11 16:16:06 +08:00
|
|
|
__be64 *hptep;
|
2011-12-15 10:02:47 +08:00
|
|
|
int ret = 0;
|
2017-01-30 18:21:47 +08:00
|
|
|
unsigned long *rmapp;
|
2011-12-15 10:02:47 +08:00
|
|
|
|
2017-01-30 18:21:47 +08:00
|
|
|
rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
|
2011-12-15 10:02:47 +08:00
|
|
|
retry:
|
|
|
|
lock_rmap(rmapp);
|
|
|
|
if (*rmapp & KVMPPC_RMAP_REFERENCED) {
|
|
|
|
*rmapp &= ~KVMPPC_RMAP_REFERENCED;
|
|
|
|
ret = 1;
|
|
|
|
}
|
|
|
|
if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
|
|
|
|
unlock_rmap(rmapp);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
i = head = *rmapp & KVMPPC_RMAP_INDEX;
|
|
|
|
do {
|
2016-12-20 13:49:00 +08:00
|
|
|
hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
|
2011-12-15 10:02:47 +08:00
|
|
|
j = rev[i].forw;
|
|
|
|
|
|
|
|
/* If this HPTE isn't referenced, ignore it */
|
2014-06-11 16:16:06 +08:00
|
|
|
if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
|
2011-12-15 10:02:47 +08:00
|
|
|
continue;
|
|
|
|
|
|
|
|
if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
|
|
|
|
/* unlock rmap before spinning on the HPTE lock */
|
|
|
|
unlock_rmap(rmapp);
|
2014-06-11 16:16:06 +08:00
|
|
|
while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
|
2011-12-15 10:02:47 +08:00
|
|
|
cpu_relax();
|
|
|
|
goto retry;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Now check and modify the HPTE */
|
2014-06-11 16:16:06 +08:00
|
|
|
if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
|
|
|
|
(be64_to_cpu(hptep[1]) & HPTE_R_R)) {
|
2011-12-15 10:02:47 +08:00
|
|
|
kvmppc_clear_ref_hpte(kvm, hptep, i);
|
2013-04-19 03:50:24 +08:00
|
|
|
if (!(rev[i].guest_rpte & HPTE_R_R)) {
|
|
|
|
rev[i].guest_rpte |= HPTE_R_R;
|
|
|
|
note_hpte_modification(kvm, &rev[i]);
|
|
|
|
}
|
2011-12-15 10:02:47 +08:00
|
|
|
ret = 1;
|
|
|
|
}
|
2015-03-20 17:39:43 +08:00
|
|
|
__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
|
2011-12-15 10:02:47 +08:00
|
|
|
} while ((i = j) != head);
|
|
|
|
|
|
|
|
unlock_rmap(rmapp);
|
|
|
|
return ret;
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
}
|
|
|
|
|
2014-09-23 05:54:42 +08:00
|
|
|
int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
{
|
2017-01-30 18:21:47 +08:00
|
|
|
hva_handler_fn handler;
|
|
|
|
|
|
|
|
handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp;
|
|
|
|
return kvm_handle_hva_range(kvm, start, end, handler);
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
}
|
|
|
|
|
2017-01-30 18:21:47 +08:00
|
|
|
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
unsigned long gfn)
|
|
|
|
{
|
2016-12-20 13:49:00 +08:00
|
|
|
struct revmap_entry *rev = kvm->arch.hpt.rev;
|
2011-12-15 10:02:47 +08:00
|
|
|
unsigned long head, i, j;
|
|
|
|
unsigned long *hp;
|
|
|
|
int ret = 1;
|
2017-01-30 18:21:47 +08:00
|
|
|
unsigned long *rmapp;
|
2011-12-15 10:02:47 +08:00
|
|
|
|
2017-01-30 18:21:47 +08:00
|
|
|
rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
|
2011-12-15 10:02:47 +08:00
|
|
|
if (*rmapp & KVMPPC_RMAP_REFERENCED)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
lock_rmap(rmapp);
|
|
|
|
if (*rmapp & KVMPPC_RMAP_REFERENCED)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
if (*rmapp & KVMPPC_RMAP_PRESENT) {
|
|
|
|
i = head = *rmapp & KVMPPC_RMAP_INDEX;
|
|
|
|
do {
|
2016-12-20 13:49:00 +08:00
|
|
|
hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
|
2011-12-15 10:02:47 +08:00
|
|
|
j = rev[i].forw;
|
2014-06-11 16:16:06 +08:00
|
|
|
if (be64_to_cpu(hp[1]) & HPTE_R_R)
|
2011-12-15 10:02:47 +08:00
|
|
|
goto out;
|
|
|
|
} while ((i = j) != head);
|
|
|
|
}
|
|
|
|
ret = 0;
|
|
|
|
|
|
|
|
out:
|
|
|
|
unlock_rmap(rmapp);
|
|
|
|
return ret;
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
}
|
|
|
|
|
2013-10-08 00:47:53 +08:00
|
|
|
int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
{
|
2017-01-30 18:21:47 +08:00
|
|
|
hva_handler_fn handler;
|
|
|
|
|
|
|
|
handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp;
|
|
|
|
return kvm_handle_hva(kvm, hva, handler);
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
}
|
|
|
|
|
2013-10-08 00:47:53 +08:00
|
|
|
void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
{
|
2017-01-30 18:21:47 +08:00
|
|
|
hva_handler_fn handler;
|
|
|
|
|
|
|
|
handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
|
|
|
|
kvm_handle_hva(kvm, hva, handler);
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
}
|
|
|
|
|
KVM: PPC: Book3S HV: Make sure we don't miss dirty pages
Current, when testing whether a page is dirty (when constructing the
bitmap for the KVM_GET_DIRTY_LOG ioctl), we test the C (changed) bit
in the HPT entries mapping the page, and if it is 0, we consider the
page to be clean. However, the Power ISA doesn't require processors
to set the C bit to 1 immediately when writing to a page, and in fact
allows them to delay the writeback of the C bit until they receive a
TLB invalidation for the page. Thus it is possible that the page
could be dirty and we miss it.
Now, if there are vcpus running, this is not serious since the
collection of the dirty log is racy already - some vcpu could dirty
the page just after we check it. But if there are no vcpus running we
should return definitive results, in case we are in the final phase of
migrating the guest.
Also, if the permission bits in the HPTE don't allow writing, then we
know that no CPU can set C. If the HPTE was previously writable and
the page was modified, any C bit writeback would have been flushed out
by the tlbie that we did when changing the HPTE to read-only.
Otherwise we need to do a TLB invalidation even if the C bit is 0, and
then check the C bit.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-26 17:48:39 +08:00
|
|
|
static int vcpus_running(struct kvm *kvm)
|
|
|
|
{
|
|
|
|
return atomic_read(&kvm->arch.vcpus_running) != 0;
|
|
|
|
}
|
|
|
|
|
2014-05-26 17:48:38 +08:00
|
|
|
/*
|
|
|
|
* Returns the number of system pages that are dirty.
|
|
|
|
* This can be more than 1 if we find a huge-page HPTE.
|
|
|
|
*/
|
|
|
|
static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
|
2011-12-15 10:03:22 +08:00
|
|
|
{
|
2016-12-20 13:49:00 +08:00
|
|
|
struct revmap_entry *rev = kvm->arch.hpt.rev;
|
2011-12-15 10:03:22 +08:00
|
|
|
unsigned long head, i, j;
|
2014-05-26 17:48:38 +08:00
|
|
|
unsigned long n;
|
KVM: PPC: Book3S HV: Make sure we don't miss dirty pages
Current, when testing whether a page is dirty (when constructing the
bitmap for the KVM_GET_DIRTY_LOG ioctl), we test the C (changed) bit
in the HPT entries mapping the page, and if it is 0, we consider the
page to be clean. However, the Power ISA doesn't require processors
to set the C bit to 1 immediately when writing to a page, and in fact
allows them to delay the writeback of the C bit until they receive a
TLB invalidation for the page. Thus it is possible that the page
could be dirty and we miss it.
Now, if there are vcpus running, this is not serious since the
collection of the dirty log is racy already - some vcpu could dirty
the page just after we check it. But if there are no vcpus running we
should return definitive results, in case we are in the final phase of
migrating the guest.
Also, if the permission bits in the HPTE don't allow writing, then we
know that no CPU can set C. If the HPTE was previously writable and
the page was modified, any C bit writeback would have been flushed out
by the tlbie that we did when changing the HPTE to read-only.
Otherwise we need to do a TLB invalidation even if the C bit is 0, and
then check the C bit.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-26 17:48:39 +08:00
|
|
|
unsigned long v, r;
|
2014-06-11 16:16:06 +08:00
|
|
|
__be64 *hptep;
|
2014-05-26 17:48:38 +08:00
|
|
|
int npages_dirty = 0;
|
2011-12-15 10:03:22 +08:00
|
|
|
|
|
|
|
retry:
|
|
|
|
lock_rmap(rmapp);
|
|
|
|
if (*rmapp & KVMPPC_RMAP_CHANGED) {
|
KVM: PPC: Book3S HV: Fix bug in dirty page tracking
This fixes a bug in the tracking of pages that get modified by the
guest. If the guest creates a large-page HPTE, writes to memory
somewhere within the large page, and then removes the HPTE, we only
record the modified state for the first normal page within the large
page, when in fact the guest might have modified some other normal
page within the large page.
To fix this we use some unused bits in the rmap entry to record the
order (log base 2) of the size of the page that was modified, when
removing an HPTE. Then in kvm_test_clear_dirty_npages() we use that
order to return the correct number of modified pages.
The same thing could in principle happen when removing a HPTE at the
host's request, i.e. when paging out a page, except that we never
page out large pages, and the guest can only create large-page HPTEs
if the guest RAM is backed by large pages. However, we also fix
this case for the sake of future-proofing.
The reference bit is also subject to the same loss of information. We
don't make the same fix here for the reference bit because there isn't
an interface for userspace to find out which pages the guest has
referenced, whereas there is one for userspace to find out which pages
the guest has modified. Because of this loss of information, the
kvm_age_hva_hv() and kvm_test_age_hva_hv() functions might incorrectly
say that a page has not been referenced when it has, but that doesn't
matter greatly because we never page or swap out large pages.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-06-24 19:18:06 +08:00
|
|
|
long change_order = (*rmapp & KVMPPC_RMAP_CHG_ORDER)
|
|
|
|
>> KVMPPC_RMAP_CHG_SHIFT;
|
|
|
|
*rmapp &= ~(KVMPPC_RMAP_CHANGED | KVMPPC_RMAP_CHG_ORDER);
|
2014-05-26 17:48:38 +08:00
|
|
|
npages_dirty = 1;
|
KVM: PPC: Book3S HV: Fix bug in dirty page tracking
This fixes a bug in the tracking of pages that get modified by the
guest. If the guest creates a large-page HPTE, writes to memory
somewhere within the large page, and then removes the HPTE, we only
record the modified state for the first normal page within the large
page, when in fact the guest might have modified some other normal
page within the large page.
To fix this we use some unused bits in the rmap entry to record the
order (log base 2) of the size of the page that was modified, when
removing an HPTE. Then in kvm_test_clear_dirty_npages() we use that
order to return the correct number of modified pages.
The same thing could in principle happen when removing a HPTE at the
host's request, i.e. when paging out a page, except that we never
page out large pages, and the guest can only create large-page HPTEs
if the guest RAM is backed by large pages. However, we also fix
this case for the sake of future-proofing.
The reference bit is also subject to the same loss of information. We
don't make the same fix here for the reference bit because there isn't
an interface for userspace to find out which pages the guest has
referenced, whereas there is one for userspace to find out which pages
the guest has modified. Because of this loss of information, the
kvm_age_hva_hv() and kvm_test_age_hva_hv() functions might incorrectly
say that a page has not been referenced when it has, but that doesn't
matter greatly because we never page or swap out large pages.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-06-24 19:18:06 +08:00
|
|
|
if (change_order > PAGE_SHIFT)
|
|
|
|
npages_dirty = 1ul << (change_order - PAGE_SHIFT);
|
2011-12-15 10:03:22 +08:00
|
|
|
}
|
|
|
|
if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
|
|
|
|
unlock_rmap(rmapp);
|
2014-05-26 17:48:38 +08:00
|
|
|
return npages_dirty;
|
2011-12-15 10:03:22 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
i = head = *rmapp & KVMPPC_RMAP_INDEX;
|
|
|
|
do {
|
2014-06-11 16:16:06 +08:00
|
|
|
unsigned long hptep1;
|
2016-12-20 13:49:00 +08:00
|
|
|
hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
|
2011-12-15 10:03:22 +08:00
|
|
|
j = rev[i].forw;
|
|
|
|
|
KVM: PPC: Book3S HV: Make sure we don't miss dirty pages
Current, when testing whether a page is dirty (when constructing the
bitmap for the KVM_GET_DIRTY_LOG ioctl), we test the C (changed) bit
in the HPT entries mapping the page, and if it is 0, we consider the
page to be clean. However, the Power ISA doesn't require processors
to set the C bit to 1 immediately when writing to a page, and in fact
allows them to delay the writeback of the C bit until they receive a
TLB invalidation for the page. Thus it is possible that the page
could be dirty and we miss it.
Now, if there are vcpus running, this is not serious since the
collection of the dirty log is racy already - some vcpu could dirty
the page just after we check it. But if there are no vcpus running we
should return definitive results, in case we are in the final phase of
migrating the guest.
Also, if the permission bits in the HPTE don't allow writing, then we
know that no CPU can set C. If the HPTE was previously writable and
the page was modified, any C bit writeback would have been flushed out
by the tlbie that we did when changing the HPTE to read-only.
Otherwise we need to do a TLB invalidation even if the C bit is 0, and
then check the C bit.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-26 17:48:39 +08:00
|
|
|
/*
|
|
|
|
* Checking the C (changed) bit here is racy since there
|
|
|
|
* is no guarantee about when the hardware writes it back.
|
|
|
|
* If the HPTE is not writable then it is stable since the
|
|
|
|
* page can't be written to, and we would have done a tlbie
|
|
|
|
* (which forces the hardware to complete any writeback)
|
|
|
|
* when making the HPTE read-only.
|
|
|
|
* If vcpus are running then this call is racy anyway
|
|
|
|
* since the page could get dirtied subsequently, so we
|
|
|
|
* expect there to be a further call which would pick up
|
|
|
|
* any delayed C bit writeback.
|
|
|
|
* Otherwise we need to do the tlbie even if C==0 in
|
|
|
|
* order to pick up any delayed writeback of C.
|
|
|
|
*/
|
2014-06-11 16:16:06 +08:00
|
|
|
hptep1 = be64_to_cpu(hptep[1]);
|
|
|
|
if (!(hptep1 & HPTE_R_C) &&
|
|
|
|
(!hpte_is_writable(hptep1) || vcpus_running(kvm)))
|
2011-12-15 10:03:22 +08:00
|
|
|
continue;
|
|
|
|
|
|
|
|
if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
|
|
|
|
/* unlock rmap before spinning on the HPTE lock */
|
|
|
|
unlock_rmap(rmapp);
|
2014-06-11 16:16:06 +08:00
|
|
|
while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
|
2011-12-15 10:03:22 +08:00
|
|
|
cpu_relax();
|
|
|
|
goto retry;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Now check and modify the HPTE */
|
2014-11-05 09:21:13 +08:00
|
|
|
if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
|
2015-03-20 17:39:43 +08:00
|
|
|
__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
|
KVM: PPC: Book3S HV: Make sure we don't miss dirty pages
Current, when testing whether a page is dirty (when constructing the
bitmap for the KVM_GET_DIRTY_LOG ioctl), we test the C (changed) bit
in the HPT entries mapping the page, and if it is 0, we consider the
page to be clean. However, the Power ISA doesn't require processors
to set the C bit to 1 immediately when writing to a page, and in fact
allows them to delay the writeback of the C bit until they receive a
TLB invalidation for the page. Thus it is possible that the page
could be dirty and we miss it.
Now, if there are vcpus running, this is not serious since the
collection of the dirty log is racy already - some vcpu could dirty
the page just after we check it. But if there are no vcpus running we
should return definitive results, in case we are in the final phase of
migrating the guest.
Also, if the permission bits in the HPTE don't allow writing, then we
know that no CPU can set C. If the HPTE was previously writable and
the page was modified, any C bit writeback would have been flushed out
by the tlbie that we did when changing the HPTE to read-only.
Otherwise we need to do a TLB invalidation even if the C bit is 0, and
then check the C bit.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-26 17:48:39 +08:00
|
|
|
continue;
|
2014-11-05 09:21:13 +08:00
|
|
|
}
|
KVM: PPC: Book3S HV: Make sure we don't miss dirty pages
Current, when testing whether a page is dirty (when constructing the
bitmap for the KVM_GET_DIRTY_LOG ioctl), we test the C (changed) bit
in the HPT entries mapping the page, and if it is 0, we consider the
page to be clean. However, the Power ISA doesn't require processors
to set the C bit to 1 immediately when writing to a page, and in fact
allows them to delay the writeback of the C bit until they receive a
TLB invalidation for the page. Thus it is possible that the page
could be dirty and we miss it.
Now, if there are vcpus running, this is not serious since the
collection of the dirty log is racy already - some vcpu could dirty
the page just after we check it. But if there are no vcpus running we
should return definitive results, in case we are in the final phase of
migrating the guest.
Also, if the permission bits in the HPTE don't allow writing, then we
know that no CPU can set C. If the HPTE was previously writable and
the page was modified, any C bit writeback would have been flushed out
by the tlbie that we did when changing the HPTE to read-only.
Otherwise we need to do a TLB invalidation even if the C bit is 0, and
then check the C bit.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-26 17:48:39 +08:00
|
|
|
|
|
|
|
/* need to make it temporarily absent so C is stable */
|
2014-06-11 16:16:06 +08:00
|
|
|
hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
|
KVM: PPC: Book3S HV: Make sure we don't miss dirty pages
Current, when testing whether a page is dirty (when constructing the
bitmap for the KVM_GET_DIRTY_LOG ioctl), we test the C (changed) bit
in the HPT entries mapping the page, and if it is 0, we consider the
page to be clean. However, the Power ISA doesn't require processors
to set the C bit to 1 immediately when writing to a page, and in fact
allows them to delay the writeback of the C bit until they receive a
TLB invalidation for the page. Thus it is possible that the page
could be dirty and we miss it.
Now, if there are vcpus running, this is not serious since the
collection of the dirty log is racy already - some vcpu could dirty
the page just after we check it. But if there are no vcpus running we
should return definitive results, in case we are in the final phase of
migrating the guest.
Also, if the permission bits in the HPTE don't allow writing, then we
know that no CPU can set C. If the HPTE was previously writable and
the page was modified, any C bit writeback would have been flushed out
by the tlbie that we did when changing the HPTE to read-only.
Otherwise we need to do a TLB invalidation even if the C bit is 0, and
then check the C bit.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-26 17:48:39 +08:00
|
|
|
kvmppc_invalidate_hpte(kvm, hptep, i);
|
2014-06-11 16:16:06 +08:00
|
|
|
v = be64_to_cpu(hptep[0]);
|
|
|
|
r = be64_to_cpu(hptep[1]);
|
KVM: PPC: Book3S HV: Make sure we don't miss dirty pages
Current, when testing whether a page is dirty (when constructing the
bitmap for the KVM_GET_DIRTY_LOG ioctl), we test the C (changed) bit
in the HPT entries mapping the page, and if it is 0, we consider the
page to be clean. However, the Power ISA doesn't require processors
to set the C bit to 1 immediately when writing to a page, and in fact
allows them to delay the writeback of the C bit until they receive a
TLB invalidation for the page. Thus it is possible that the page
could be dirty and we miss it.
Now, if there are vcpus running, this is not serious since the
collection of the dirty log is racy already - some vcpu could dirty
the page just after we check it. But if there are no vcpus running we
should return definitive results, in case we are in the final phase of
migrating the guest.
Also, if the permission bits in the HPTE don't allow writing, then we
know that no CPU can set C. If the HPTE was previously writable and
the page was modified, any C bit writeback would have been flushed out
by the tlbie that we did when changing the HPTE to read-only.
Otherwise we need to do a TLB invalidation even if the C bit is 0, and
then check the C bit.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-26 17:48:39 +08:00
|
|
|
if (r & HPTE_R_C) {
|
2014-06-11 16:16:06 +08:00
|
|
|
hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
|
2013-04-19 03:50:24 +08:00
|
|
|
if (!(rev[i].guest_rpte & HPTE_R_C)) {
|
|
|
|
rev[i].guest_rpte |= HPTE_R_C;
|
|
|
|
note_hpte_modification(kvm, &rev[i]);
|
|
|
|
}
|
2017-09-11 13:29:45 +08:00
|
|
|
n = kvmppc_actual_pgsz(v, r);
|
2014-05-26 17:48:38 +08:00
|
|
|
n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
|
|
if (n > npages_dirty)
|
|
|
|
npages_dirty = n;
|
KVM: PPC: Book3S HV: Make sure we don't miss dirty pages
Current, when testing whether a page is dirty (when constructing the
bitmap for the KVM_GET_DIRTY_LOG ioctl), we test the C (changed) bit
in the HPT entries mapping the page, and if it is 0, we consider the
page to be clean. However, the Power ISA doesn't require processors
to set the C bit to 1 immediately when writing to a page, and in fact
allows them to delay the writeback of the C bit until they receive a
TLB invalidation for the page. Thus it is possible that the page
could be dirty and we miss it.
Now, if there are vcpus running, this is not serious since the
collection of the dirty log is racy already - some vcpu could dirty
the page just after we check it. But if there are no vcpus running we
should return definitive results, in case we are in the final phase of
migrating the guest.
Also, if the permission bits in the HPTE don't allow writing, then we
know that no CPU can set C. If the HPTE was previously writable and
the page was modified, any C bit writeback would have been flushed out
by the tlbie that we did when changing the HPTE to read-only.
Otherwise we need to do a TLB invalidation even if the C bit is 0, and
then check the C bit.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-26 17:48:39 +08:00
|
|
|
eieio();
|
2011-12-15 10:03:22 +08:00
|
|
|
}
|
2015-03-20 17:39:43 +08:00
|
|
|
v &= ~HPTE_V_ABSENT;
|
KVM: PPC: Book3S HV: Make sure we don't miss dirty pages
Current, when testing whether a page is dirty (when constructing the
bitmap for the KVM_GET_DIRTY_LOG ioctl), we test the C (changed) bit
in the HPT entries mapping the page, and if it is 0, we consider the
page to be clean. However, the Power ISA doesn't require processors
to set the C bit to 1 immediately when writing to a page, and in fact
allows them to delay the writeback of the C bit until they receive a
TLB invalidation for the page. Thus it is possible that the page
could be dirty and we miss it.
Now, if there are vcpus running, this is not serious since the
collection of the dirty log is racy already - some vcpu could dirty
the page just after we check it. But if there are no vcpus running we
should return definitive results, in case we are in the final phase of
migrating the guest.
Also, if the permission bits in the HPTE don't allow writing, then we
know that no CPU can set C. If the HPTE was previously writable and
the page was modified, any C bit writeback would have been flushed out
by the tlbie that we did when changing the HPTE to read-only.
Otherwise we need to do a TLB invalidation even if the C bit is 0, and
then check the C bit.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-26 17:48:39 +08:00
|
|
|
v |= HPTE_V_VALID;
|
2015-03-20 17:39:43 +08:00
|
|
|
__unlock_hpte(hptep, v);
|
2011-12-15 10:03:22 +08:00
|
|
|
} while ((i = j) != head);
|
|
|
|
|
|
|
|
unlock_rmap(rmapp);
|
2014-05-26 17:48:38 +08:00
|
|
|
return npages_dirty;
|
2011-12-15 10:03:22 +08:00
|
|
|
}
|
|
|
|
|
2017-01-30 18:21:48 +08:00
|
|
|
void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
|
KVM: PPC: Book3S HV: Report VPA and DTL modifications in dirty map
At present, the KVM_GET_DIRTY_LOG ioctl doesn't report modifications
done by the host to the virtual processor areas (VPAs) and dispatch
trace logs (DTLs) registered by the guest. This is because those
modifications are done either in real mode or in the host kernel
context, and in neither case does the access go through the guest's
HPT, and thus no change (C) bit gets set in the guest's HPT.
However, the changes done by the host do need to be tracked so that
the modified pages get transferred when doing live migration. In
order to track these modifications, this adds a dirty flag to the
struct representing the VPA/DTL areas, and arranges to set the flag
when the VPA/DTL gets modified by the host. Then, when we are
collecting the dirty log, we also check the dirty flags for the
VPA and DTL for each vcpu and set the relevant bit in the dirty log
if necessary. Doing this also means we now need to keep track of
the guest physical address of the VPA/DTL areas.
So as not to lose track of modifications to a VPA/DTL area when it gets
unregistered, or when a new area gets registered in its place, we need
to transfer the dirty state to the rmap chain. This adds code to
kvmppc_unpin_guest_page() to do that if the area was dirty. To simplify
that code, we now require that all VPA, DTL and SLB shadow buffer areas
fit within a single host page. Guests already comply with this
requirement because pHyp requires that these areas not cross a 4k
boundary.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-19 03:51:04 +08:00
|
|
|
struct kvm_memory_slot *memslot,
|
|
|
|
unsigned long *map)
|
|
|
|
{
|
|
|
|
unsigned long gfn;
|
|
|
|
|
|
|
|
if (!vpa->dirty || !vpa->pinned_addr)
|
|
|
|
return;
|
|
|
|
gfn = vpa->gpa >> PAGE_SHIFT;
|
|
|
|
if (gfn < memslot->base_gfn ||
|
|
|
|
gfn >= memslot->base_gfn + memslot->npages)
|
|
|
|
return;
|
|
|
|
|
|
|
|
vpa->dirty = false;
|
|
|
|
if (map)
|
|
|
|
__set_bit_le(gfn - memslot->base_gfn, map);
|
|
|
|
}
|
|
|
|
|
2017-01-30 18:21:48 +08:00
|
|
|
long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
|
|
|
|
struct kvm_memory_slot *memslot, unsigned long *map)
|
2011-12-15 10:03:22 +08:00
|
|
|
{
|
2014-05-26 17:48:38 +08:00
|
|
|
unsigned long i, j;
|
2012-09-11 21:28:18 +08:00
|
|
|
unsigned long *rmapp;
|
2011-12-15 10:03:22 +08:00
|
|
|
|
|
|
|
preempt_disable();
|
2012-08-01 17:03:28 +08:00
|
|
|
rmapp = memslot->arch.rmap;
|
2011-12-15 10:03:22 +08:00
|
|
|
for (i = 0; i < memslot->npages; ++i) {
|
2014-05-26 17:48:38 +08:00
|
|
|
int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
|
|
|
|
/*
|
|
|
|
* Note that if npages > 0 then i must be a multiple of npages,
|
|
|
|
* since we always put huge-page HPTEs in the rmap chain
|
|
|
|
* corresponding to their page base address.
|
|
|
|
*/
|
|
|
|
if (npages && map)
|
|
|
|
for (j = i; npages; ++j, --npages)
|
|
|
|
__set_bit_le(j, map);
|
2011-12-15 10:03:22 +08:00
|
|
|
++rmapp;
|
|
|
|
}
|
|
|
|
preempt_enable();
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2011-12-12 20:28:55 +08:00
|
|
|
void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
|
|
|
|
unsigned long *nb_ret)
|
|
|
|
{
|
|
|
|
struct kvm_memory_slot *memslot;
|
|
|
|
unsigned long gfn = gpa >> PAGE_SHIFT;
|
KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-12-12 20:38:05 +08:00
|
|
|
struct page *page, *pages[1];
|
|
|
|
int npages;
|
KVM: PPC: Book3S HV: Report VPA and DTL modifications in dirty map
At present, the KVM_GET_DIRTY_LOG ioctl doesn't report modifications
done by the host to the virtual processor areas (VPAs) and dispatch
trace logs (DTLs) registered by the guest. This is because those
modifications are done either in real mode or in the host kernel
context, and in neither case does the access go through the guest's
HPT, and thus no change (C) bit gets set in the guest's HPT.
However, the changes done by the host do need to be tracked so that
the modified pages get transferred when doing live migration. In
order to track these modifications, this adds a dirty flag to the
struct representing the VPA/DTL areas, and arranges to set the flag
when the VPA/DTL gets modified by the host. Then, when we are
collecting the dirty log, we also check the dirty flags for the
VPA and DTL for each vcpu and set the relevant bit in the dirty log
if necessary. Doing this also means we now need to keep track of
the guest physical address of the VPA/DTL areas.
So as not to lose track of modifications to a VPA/DTL area when it gets
unregistered, or when a new area gets registered in its place, we need
to transfer the dirty state to the rmap chain. This adds code to
kvmppc_unpin_guest_page() to do that if the area was dirty. To simplify
that code, we now require that all VPA, DTL and SLB shadow buffer areas
fit within a single host page. Guests already comply with this
requirement because pHyp requires that these areas not cross a 4k
boundary.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-19 03:51:04 +08:00
|
|
|
unsigned long hva, offset;
|
2012-09-11 21:27:01 +08:00
|
|
|
int srcu_idx;
|
2011-12-12 20:28:55 +08:00
|
|
|
|
2012-09-11 21:27:01 +08:00
|
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
2011-12-12 20:28:55 +08:00
|
|
|
memslot = gfn_to_memslot(kvm, gfn);
|
|
|
|
if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
|
2012-09-11 21:27:01 +08:00
|
|
|
goto err;
|
2014-12-03 10:30:38 +08:00
|
|
|
hva = gfn_to_hva_memslot(memslot, gfn);
|
|
|
|
npages = get_user_pages_fast(hva, 1, 1, pages);
|
|
|
|
if (npages < 1)
|
|
|
|
goto err;
|
|
|
|
page = pages[0];
|
2012-09-11 21:27:01 +08:00
|
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
|
|
|
KVM: PPC: Book3S HV: Report VPA and DTL modifications in dirty map
At present, the KVM_GET_DIRTY_LOG ioctl doesn't report modifications
done by the host to the virtual processor areas (VPAs) and dispatch
trace logs (DTLs) registered by the guest. This is because those
modifications are done either in real mode or in the host kernel
context, and in neither case does the access go through the guest's
HPT, and thus no change (C) bit gets set in the guest's HPT.
However, the changes done by the host do need to be tracked so that
the modified pages get transferred when doing live migration. In
order to track these modifications, this adds a dirty flag to the
struct representing the VPA/DTL areas, and arranges to set the flag
when the VPA/DTL gets modified by the host. Then, when we are
collecting the dirty log, we also check the dirty flags for the
VPA and DTL for each vcpu and set the relevant bit in the dirty log
if necessary. Doing this also means we now need to keep track of
the guest physical address of the VPA/DTL areas.
So as not to lose track of modifications to a VPA/DTL area when it gets
unregistered, or when a new area gets registered in its place, we need
to transfer the dirty state to the rmap chain. This adds code to
kvmppc_unpin_guest_page() to do that if the area was dirty. To simplify
that code, we now require that all VPA, DTL and SLB shadow buffer areas
fit within a single host page. Guests already comply with this
requirement because pHyp requires that these areas not cross a 4k
boundary.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-19 03:51:04 +08:00
|
|
|
offset = gpa & (PAGE_SIZE - 1);
|
2011-12-12 20:28:55 +08:00
|
|
|
if (nb_ret)
|
KVM: PPC: Book3S HV: Report VPA and DTL modifications in dirty map
At present, the KVM_GET_DIRTY_LOG ioctl doesn't report modifications
done by the host to the virtual processor areas (VPAs) and dispatch
trace logs (DTLs) registered by the guest. This is because those
modifications are done either in real mode or in the host kernel
context, and in neither case does the access go through the guest's
HPT, and thus no change (C) bit gets set in the guest's HPT.
However, the changes done by the host do need to be tracked so that
the modified pages get transferred when doing live migration. In
order to track these modifications, this adds a dirty flag to the
struct representing the VPA/DTL areas, and arranges to set the flag
when the VPA/DTL gets modified by the host. Then, when we are
collecting the dirty log, we also check the dirty flags for the
VPA and DTL for each vcpu and set the relevant bit in the dirty log
if necessary. Doing this also means we now need to keep track of
the guest physical address of the VPA/DTL areas.
So as not to lose track of modifications to a VPA/DTL area when it gets
unregistered, or when a new area gets registered in its place, we need
to transfer the dirty state to the rmap chain. This adds code to
kvmppc_unpin_guest_page() to do that if the area was dirty. To simplify
that code, we now require that all VPA, DTL and SLB shadow buffer areas
fit within a single host page. Guests already comply with this
requirement because pHyp requires that these areas not cross a 4k
boundary.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-19 03:51:04 +08:00
|
|
|
*nb_ret = PAGE_SIZE - offset;
|
2011-12-12 20:28:55 +08:00
|
|
|
return page_address(page) + offset;
|
2012-09-11 21:27:01 +08:00
|
|
|
|
|
|
|
err:
|
|
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
|
|
return NULL;
|
2011-12-12 20:28:55 +08:00
|
|
|
}
|
|
|
|
|
KVM: PPC: Book3S HV: Report VPA and DTL modifications in dirty map
At present, the KVM_GET_DIRTY_LOG ioctl doesn't report modifications
done by the host to the virtual processor areas (VPAs) and dispatch
trace logs (DTLs) registered by the guest. This is because those
modifications are done either in real mode or in the host kernel
context, and in neither case does the access go through the guest's
HPT, and thus no change (C) bit gets set in the guest's HPT.
However, the changes done by the host do need to be tracked so that
the modified pages get transferred when doing live migration. In
order to track these modifications, this adds a dirty flag to the
struct representing the VPA/DTL areas, and arranges to set the flag
when the VPA/DTL gets modified by the host. Then, when we are
collecting the dirty log, we also check the dirty flags for the
VPA and DTL for each vcpu and set the relevant bit in the dirty log
if necessary. Doing this also means we now need to keep track of
the guest physical address of the VPA/DTL areas.
So as not to lose track of modifications to a VPA/DTL area when it gets
unregistered, or when a new area gets registered in its place, we need
to transfer the dirty state to the rmap chain. This adds code to
kvmppc_unpin_guest_page() to do that if the area was dirty. To simplify
that code, we now require that all VPA, DTL and SLB shadow buffer areas
fit within a single host page. Guests already comply with this
requirement because pHyp requires that these areas not cross a 4k
boundary.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-19 03:51:04 +08:00
|
|
|
void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
|
|
|
|
bool dirty)
|
2011-12-12 20:28:55 +08:00
|
|
|
{
|
|
|
|
struct page *page = virt_to_page(va);
|
KVM: PPC: Book3S HV: Report VPA and DTL modifications in dirty map
At present, the KVM_GET_DIRTY_LOG ioctl doesn't report modifications
done by the host to the virtual processor areas (VPAs) and dispatch
trace logs (DTLs) registered by the guest. This is because those
modifications are done either in real mode or in the host kernel
context, and in neither case does the access go through the guest's
HPT, and thus no change (C) bit gets set in the guest's HPT.
However, the changes done by the host do need to be tracked so that
the modified pages get transferred when doing live migration. In
order to track these modifications, this adds a dirty flag to the
struct representing the VPA/DTL areas, and arranges to set the flag
when the VPA/DTL gets modified by the host. Then, when we are
collecting the dirty log, we also check the dirty flags for the
VPA and DTL for each vcpu and set the relevant bit in the dirty log
if necessary. Doing this also means we now need to keep track of
the guest physical address of the VPA/DTL areas.
So as not to lose track of modifications to a VPA/DTL area when it gets
unregistered, or when a new area gets registered in its place, we need
to transfer the dirty state to the rmap chain. This adds code to
kvmppc_unpin_guest_page() to do that if the area was dirty. To simplify
that code, we now require that all VPA, DTL and SLB shadow buffer areas
fit within a single host page. Guests already comply with this
requirement because pHyp requires that these areas not cross a 4k
boundary.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-19 03:51:04 +08:00
|
|
|
struct kvm_memory_slot *memslot;
|
|
|
|
unsigned long gfn;
|
|
|
|
unsigned long *rmap;
|
|
|
|
int srcu_idx;
|
2011-12-12 20:28:55 +08:00
|
|
|
|
|
|
|
put_page(page);
|
KVM: PPC: Book3S HV: Report VPA and DTL modifications in dirty map
At present, the KVM_GET_DIRTY_LOG ioctl doesn't report modifications
done by the host to the virtual processor areas (VPAs) and dispatch
trace logs (DTLs) registered by the guest. This is because those
modifications are done either in real mode or in the host kernel
context, and in neither case does the access go through the guest's
HPT, and thus no change (C) bit gets set in the guest's HPT.
However, the changes done by the host do need to be tracked so that
the modified pages get transferred when doing live migration. In
order to track these modifications, this adds a dirty flag to the
struct representing the VPA/DTL areas, and arranges to set the flag
when the VPA/DTL gets modified by the host. Then, when we are
collecting the dirty log, we also check the dirty flags for the
VPA and DTL for each vcpu and set the relevant bit in the dirty log
if necessary. Doing this also means we now need to keep track of
the guest physical address of the VPA/DTL areas.
So as not to lose track of modifications to a VPA/DTL area when it gets
unregistered, or when a new area gets registered in its place, we need
to transfer the dirty state to the rmap chain. This adds code to
kvmppc_unpin_guest_page() to do that if the area was dirty. To simplify
that code, we now require that all VPA, DTL and SLB shadow buffer areas
fit within a single host page. Guests already comply with this
requirement because pHyp requires that these areas not cross a 4k
boundary.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-19 03:51:04 +08:00
|
|
|
|
2014-12-03 10:30:38 +08:00
|
|
|
if (!dirty)
|
KVM: PPC: Book3S HV: Report VPA and DTL modifications in dirty map
At present, the KVM_GET_DIRTY_LOG ioctl doesn't report modifications
done by the host to the virtual processor areas (VPAs) and dispatch
trace logs (DTLs) registered by the guest. This is because those
modifications are done either in real mode or in the host kernel
context, and in neither case does the access go through the guest's
HPT, and thus no change (C) bit gets set in the guest's HPT.
However, the changes done by the host do need to be tracked so that
the modified pages get transferred when doing live migration. In
order to track these modifications, this adds a dirty flag to the
struct representing the VPA/DTL areas, and arranges to set the flag
when the VPA/DTL gets modified by the host. Then, when we are
collecting the dirty log, we also check the dirty flags for the
VPA and DTL for each vcpu and set the relevant bit in the dirty log
if necessary. Doing this also means we now need to keep track of
the guest physical address of the VPA/DTL areas.
So as not to lose track of modifications to a VPA/DTL area when it gets
unregistered, or when a new area gets registered in its place, we need
to transfer the dirty state to the rmap chain. This adds code to
kvmppc_unpin_guest_page() to do that if the area was dirty. To simplify
that code, we now require that all VPA, DTL and SLB shadow buffer areas
fit within a single host page. Guests already comply with this
requirement because pHyp requires that these areas not cross a 4k
boundary.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-19 03:51:04 +08:00
|
|
|
return;
|
|
|
|
|
|
|
|
/* We need to mark this page dirty in the rmap chain */
|
|
|
|
gfn = gpa >> PAGE_SHIFT;
|
|
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
|
|
memslot = gfn_to_memslot(kvm, gfn);
|
|
|
|
if (memslot) {
|
2017-01-30 18:21:48 +08:00
|
|
|
if (!kvm_is_radix(kvm)) {
|
|
|
|
rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
|
|
|
|
lock_rmap(rmap);
|
|
|
|
*rmap |= KVMPPC_RMAP_CHANGED;
|
|
|
|
unlock_rmap(rmap);
|
|
|
|
} else if (memslot->dirty_bitmap) {
|
|
|
|
mark_page_dirty(kvm, gfn);
|
|
|
|
}
|
KVM: PPC: Book3S HV: Report VPA and DTL modifications in dirty map
At present, the KVM_GET_DIRTY_LOG ioctl doesn't report modifications
done by the host to the virtual processor areas (VPAs) and dispatch
trace logs (DTLs) registered by the guest. This is because those
modifications are done either in real mode or in the host kernel
context, and in neither case does the access go through the guest's
HPT, and thus no change (C) bit gets set in the guest's HPT.
However, the changes done by the host do need to be tracked so that
the modified pages get transferred when doing live migration. In
order to track these modifications, this adds a dirty flag to the
struct representing the VPA/DTL areas, and arranges to set the flag
when the VPA/DTL gets modified by the host. Then, when we are
collecting the dirty log, we also check the dirty flags for the
VPA and DTL for each vcpu and set the relevant bit in the dirty log
if necessary. Doing this also means we now need to keep track of
the guest physical address of the VPA/DTL areas.
So as not to lose track of modifications to a VPA/DTL area when it gets
unregistered, or when a new area gets registered in its place, we need
to transfer the dirty state to the rmap chain. This adds code to
kvmppc_unpin_guest_page() to do that if the area was dirty. To simplify
that code, we now require that all VPA, DTL and SLB shadow buffer areas
fit within a single host page. Guests already comply with this
requirement because pHyp requires that these areas not cross a 4k
boundary.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-19 03:51:04 +08:00
|
|
|
}
|
|
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
2011-12-12 20:28:55 +08:00
|
|
|
}
|
|
|
|
|
2016-12-20 13:49:05 +08:00
|
|
|
/*
|
|
|
|
* HPT resizing
|
|
|
|
*/
|
|
|
|
static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
|
|
|
|
{
|
2016-12-20 13:49:06 +08:00
|
|
|
int rc;
|
|
|
|
|
|
|
|
rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
|
|
|
|
if (rc < 0)
|
|
|
|
return rc;
|
|
|
|
|
|
|
|
resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n",
|
|
|
|
resize->hpt.virt);
|
|
|
|
|
2016-12-20 13:49:05 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-12-20 13:49:06 +08:00
|
|
|
static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
|
|
|
|
unsigned long idx)
|
|
|
|
{
|
|
|
|
struct kvm *kvm = resize->kvm;
|
|
|
|
struct kvm_hpt_info *old = &kvm->arch.hpt;
|
|
|
|
struct kvm_hpt_info *new = &resize->hpt;
|
|
|
|
unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
|
|
|
|
unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
|
|
|
|
__be64 *hptep, *new_hptep;
|
|
|
|
unsigned long vpte, rpte, guest_rpte;
|
|
|
|
int ret;
|
|
|
|
struct revmap_entry *rev;
|
|
|
|
unsigned long apsize, psize, avpn, pteg, hash;
|
|
|
|
unsigned long new_idx, new_pteg, replace_vpte;
|
|
|
|
|
|
|
|
hptep = (__be64 *)(old->virt + (idx << 4));
|
|
|
|
|
|
|
|
/* Guest is stopped, so new HPTEs can't be added or faulted
|
|
|
|
* in, only unmapped or altered by host actions. So, it's
|
|
|
|
* safe to check this before we take the HPTE lock */
|
|
|
|
vpte = be64_to_cpu(hptep[0]);
|
|
|
|
if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
|
|
|
|
return 0; /* nothing to do */
|
|
|
|
|
|
|
|
while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
|
|
|
|
cpu_relax();
|
|
|
|
|
|
|
|
vpte = be64_to_cpu(hptep[0]);
|
|
|
|
|
|
|
|
ret = 0;
|
|
|
|
if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
|
|
|
|
/* Nothing to do */
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
/* Unmap */
|
|
|
|
rev = &old->rev[idx];
|
|
|
|
guest_rpte = rev->guest_rpte;
|
|
|
|
|
|
|
|
ret = -EIO;
|
2017-09-11 13:29:45 +08:00
|
|
|
apsize = kvmppc_actual_pgsz(vpte, guest_rpte);
|
2016-12-20 13:49:06 +08:00
|
|
|
if (!apsize)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
if (vpte & HPTE_V_VALID) {
|
|
|
|
unsigned long gfn = hpte_rpn(guest_rpte, apsize);
|
|
|
|
int srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
|
|
struct kvm_memory_slot *memslot =
|
|
|
|
__gfn_to_memslot(kvm_memslots(kvm), gfn);
|
|
|
|
|
|
|
|
if (memslot) {
|
|
|
|
unsigned long *rmapp;
|
|
|
|
rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
|
|
|
|
|
|
|
|
lock_rmap(rmapp);
|
|
|
|
kvmppc_unmap_hpte(kvm, idx, rmapp, gfn);
|
|
|
|
unlock_rmap(rmapp);
|
|
|
|
}
|
|
|
|
|
|
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Reload PTE after unmap */
|
|
|
|
vpte = be64_to_cpu(hptep[0]);
|
|
|
|
|
|
|
|
BUG_ON(vpte & HPTE_V_VALID);
|
|
|
|
BUG_ON(!(vpte & HPTE_V_ABSENT));
|
|
|
|
|
|
|
|
ret = 0;
|
|
|
|
if (!(vpte & HPTE_V_BOLTED))
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
rpte = be64_to_cpu(hptep[1]);
|
|
|
|
psize = hpte_base_page_size(vpte, rpte);
|
|
|
|
avpn = HPTE_V_AVPN_VAL(vpte) & ~((psize - 1) >> 23);
|
|
|
|
pteg = idx / HPTES_PER_GROUP;
|
|
|
|
if (vpte & HPTE_V_SECONDARY)
|
|
|
|
pteg = ~pteg;
|
|
|
|
|
|
|
|
if (!(vpte & HPTE_V_1TB_SEG)) {
|
|
|
|
unsigned long offset, vsid;
|
|
|
|
|
|
|
|
/* We only have 28 - 23 bits of offset in avpn */
|
|
|
|
offset = (avpn & 0x1f) << 23;
|
|
|
|
vsid = avpn >> 5;
|
|
|
|
/* We can find more bits from the pteg value */
|
|
|
|
if (psize < (1ULL << 23))
|
|
|
|
offset |= ((vsid ^ pteg) & old_hash_mask) * psize;
|
|
|
|
|
|
|
|
hash = vsid ^ (offset / psize);
|
|
|
|
} else {
|
|
|
|
unsigned long offset, vsid;
|
|
|
|
|
|
|
|
/* We only have 40 - 23 bits of seg_off in avpn */
|
|
|
|
offset = (avpn & 0x1ffff) << 23;
|
|
|
|
vsid = avpn >> 17;
|
|
|
|
if (psize < (1ULL << 23))
|
|
|
|
offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) * psize;
|
|
|
|
|
|
|
|
hash = vsid ^ (vsid << 25) ^ (offset / psize);
|
|
|
|
}
|
|
|
|
|
|
|
|
new_pteg = hash & new_hash_mask;
|
|
|
|
if (vpte & HPTE_V_SECONDARY) {
|
|
|
|
BUG_ON(~pteg != (hash & old_hash_mask));
|
|
|
|
new_pteg = ~new_pteg;
|
|
|
|
} else {
|
|
|
|
BUG_ON(pteg != (hash & old_hash_mask));
|
|
|
|
}
|
|
|
|
|
|
|
|
new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
|
|
|
|
new_hptep = (__be64 *)(new->virt + (new_idx << 4));
|
|
|
|
|
|
|
|
replace_vpte = be64_to_cpu(new_hptep[0]);
|
|
|
|
|
|
|
|
if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
|
|
|
|
BUG_ON(new->order >= old->order);
|
|
|
|
|
|
|
|
if (replace_vpte & HPTE_V_BOLTED) {
|
|
|
|
if (vpte & HPTE_V_BOLTED)
|
|
|
|
/* Bolted collision, nothing we can do */
|
|
|
|
ret = -ENOSPC;
|
|
|
|
/* Discard the new HPTE */
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Discard the previous HPTE */
|
|
|
|
}
|
|
|
|
|
|
|
|
new_hptep[1] = cpu_to_be64(rpte);
|
|
|
|
new->rev[new_idx].guest_rpte = guest_rpte;
|
|
|
|
/* No need for a barrier, since new HPT isn't active */
|
|
|
|
new_hptep[0] = cpu_to_be64(vpte);
|
|
|
|
unlock_hpte(new_hptep, vpte);
|
|
|
|
|
|
|
|
out:
|
|
|
|
unlock_hpte(hptep, vpte);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2016-12-20 13:49:05 +08:00
|
|
|
static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
|
|
|
|
{
|
2016-12-20 13:49:06 +08:00
|
|
|
struct kvm *kvm = resize->kvm;
|
|
|
|
unsigned long i;
|
|
|
|
int rc;
|
|
|
|
|
2017-02-18 05:30:44 +08:00
|
|
|
/*
|
|
|
|
* resize_hpt_rehash_hpte() doesn't handle the new-format HPTEs
|
|
|
|
* that POWER9 uses, and could well hit a BUG_ON on POWER9.
|
|
|
|
*/
|
|
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300))
|
|
|
|
return -EIO;
|
2016-12-20 13:49:06 +08:00
|
|
|
for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
|
|
|
|
rc = resize_hpt_rehash_hpte(resize, i);
|
|
|
|
if (rc != 0)
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
2016-12-20 13:49:05 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
|
|
|
|
{
|
2016-12-20 13:49:06 +08:00
|
|
|
struct kvm *kvm = resize->kvm;
|
|
|
|
struct kvm_hpt_info hpt_tmp;
|
|
|
|
|
|
|
|
/* Exchange the pending tables in the resize structure with
|
|
|
|
* the active tables */
|
|
|
|
|
|
|
|
resize_hpt_debug(resize, "resize_hpt_pivot()\n");
|
|
|
|
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
|
|
asm volatile("ptesync" : : : "memory");
|
|
|
|
|
|
|
|
hpt_tmp = kvm->arch.hpt;
|
|
|
|
kvmppc_set_hpt(kvm, &resize->hpt);
|
|
|
|
resize->hpt = hpt_tmp;
|
|
|
|
|
|
|
|
spin_unlock(&kvm->mmu_lock);
|
|
|
|
|
|
|
|
synchronize_srcu_expedited(&kvm->srcu);
|
|
|
|
|
|
|
|
resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
|
2016-12-20 13:49:05 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
|
|
|
|
{
|
|
|
|
BUG_ON(kvm->arch.resize_hpt != resize);
|
2016-12-20 13:49:06 +08:00
|
|
|
|
2017-02-15 11:40:04 +08:00
|
|
|
if (!resize)
|
|
|
|
return;
|
|
|
|
|
2016-12-20 13:49:06 +08:00
|
|
|
if (resize->hpt.virt)
|
|
|
|
kvmppc_free_hpt(&resize->hpt);
|
|
|
|
|
2016-12-20 13:49:05 +08:00
|
|
|
kvm->arch.resize_hpt = NULL;
|
|
|
|
kfree(resize);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void resize_hpt_prepare_work(struct work_struct *work)
|
|
|
|
{
|
|
|
|
struct kvm_resize_hpt *resize = container_of(work,
|
|
|
|
struct kvm_resize_hpt,
|
|
|
|
work);
|
|
|
|
struct kvm *kvm = resize->kvm;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n",
|
|
|
|
resize->order);
|
|
|
|
|
|
|
|
err = resize_hpt_allocate(resize);
|
|
|
|
|
|
|
|
mutex_lock(&kvm->lock);
|
|
|
|
|
|
|
|
resize->error = err;
|
|
|
|
resize->prepare_done = true;
|
|
|
|
|
|
|
|
mutex_unlock(&kvm->lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
|
|
|
|
struct kvm_ppc_resize_hpt *rhpt)
|
|
|
|
{
|
|
|
|
unsigned long flags = rhpt->flags;
|
|
|
|
unsigned long shift = rhpt->shift;
|
|
|
|
struct kvm_resize_hpt *resize;
|
|
|
|
int ret;
|
|
|
|
|
2017-09-13 14:29:22 +08:00
|
|
|
if (flags != 0 || kvm_is_radix(kvm))
|
2016-12-20 13:49:05 +08:00
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (shift && ((shift < 18) || (shift > 46)))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
mutex_lock(&kvm->lock);
|
|
|
|
|
|
|
|
resize = kvm->arch.resize_hpt;
|
|
|
|
|
|
|
|
if (resize) {
|
|
|
|
if (resize->order == shift) {
|
|
|
|
/* Suitable resize in progress */
|
|
|
|
if (resize->prepare_done) {
|
|
|
|
ret = resize->error;
|
|
|
|
if (ret != 0)
|
|
|
|
resize_hpt_release(kvm, resize);
|
|
|
|
} else {
|
|
|
|
ret = 100; /* estimated time in ms */
|
|
|
|
}
|
|
|
|
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* not suitable, cancel it */
|
|
|
|
resize_hpt_release(kvm, resize);
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = 0;
|
|
|
|
if (!shift)
|
|
|
|
goto out; /* nothing to do */
|
|
|
|
|
|
|
|
/* start new resize */
|
|
|
|
|
|
|
|
resize = kzalloc(sizeof(*resize), GFP_KERNEL);
|
2017-03-18 04:41:14 +08:00
|
|
|
if (!resize) {
|
|
|
|
ret = -ENOMEM;
|
|
|
|
goto out;
|
|
|
|
}
|
2016-12-20 13:49:05 +08:00
|
|
|
resize->order = shift;
|
|
|
|
resize->kvm = kvm;
|
|
|
|
INIT_WORK(&resize->work, resize_hpt_prepare_work);
|
|
|
|
kvm->arch.resize_hpt = resize;
|
|
|
|
|
|
|
|
schedule_work(&resize->work);
|
|
|
|
|
|
|
|
ret = 100; /* estimated time in ms */
|
|
|
|
|
|
|
|
out:
|
|
|
|
mutex_unlock(&kvm->lock);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void resize_hpt_boot_vcpu(void *opaque)
|
|
|
|
{
|
|
|
|
/* Nothing to do, just force a KVM exit */
|
|
|
|
}
|
|
|
|
|
|
|
|
long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
|
|
|
|
struct kvm_ppc_resize_hpt *rhpt)
|
|
|
|
{
|
|
|
|
unsigned long flags = rhpt->flags;
|
|
|
|
unsigned long shift = rhpt->shift;
|
|
|
|
struct kvm_resize_hpt *resize;
|
|
|
|
long ret;
|
|
|
|
|
2017-09-13 14:29:22 +08:00
|
|
|
if (flags != 0 || kvm_is_radix(kvm))
|
2016-12-20 13:49:05 +08:00
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (shift && ((shift < 18) || (shift > 46)))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
mutex_lock(&kvm->lock);
|
|
|
|
|
|
|
|
resize = kvm->arch.resize_hpt;
|
|
|
|
|
|
|
|
/* This shouldn't be possible */
|
|
|
|
ret = -EIO;
|
2017-09-13 13:53:48 +08:00
|
|
|
if (WARN_ON(!kvm->arch.mmu_ready))
|
2016-12-20 13:49:05 +08:00
|
|
|
goto out_no_hpt;
|
|
|
|
|
|
|
|
/* Stop VCPUs from running while we mess with the HPT */
|
2017-09-13 13:53:48 +08:00
|
|
|
kvm->arch.mmu_ready = 0;
|
2016-12-20 13:49:05 +08:00
|
|
|
smp_mb();
|
|
|
|
|
|
|
|
/* Boot all CPUs out of the guest so they re-read
|
2017-09-13 13:53:48 +08:00
|
|
|
* mmu_ready */
|
2016-12-20 13:49:05 +08:00
|
|
|
on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);
|
|
|
|
|
|
|
|
ret = -ENXIO;
|
|
|
|
if (!resize || (resize->order != shift))
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
ret = -EBUSY;
|
|
|
|
if (!resize->prepare_done)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
ret = resize->error;
|
|
|
|
if (ret != 0)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
ret = resize_hpt_rehash(resize);
|
|
|
|
if (ret != 0)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
resize_hpt_pivot(resize);
|
|
|
|
|
|
|
|
out:
|
|
|
|
/* Let VCPUs run again */
|
2017-09-13 13:53:48 +08:00
|
|
|
kvm->arch.mmu_ready = 1;
|
2016-12-20 13:49:05 +08:00
|
|
|
smp_mb();
|
|
|
|
out_no_hpt:
|
|
|
|
resize_hpt_release(kvm, resize);
|
|
|
|
mutex_unlock(&kvm->lock);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
/*
|
|
|
|
* Functions for reading and writing the hash table via reads and
|
|
|
|
* writes on a file descriptor.
|
|
|
|
*
|
|
|
|
* Reads return the guest view of the hash table, which has to be
|
|
|
|
* pieced together from the real hash table and the guest_rpte
|
|
|
|
* values in the revmap array.
|
|
|
|
*
|
|
|
|
* On writes, each HPTE written is considered in turn, and if it
|
|
|
|
* is valid, it is written to the HPT as if an H_ENTER with the
|
|
|
|
* exact flag set was done. When the invalid count is non-zero
|
|
|
|
* in the header written to the stream, the kernel will make
|
|
|
|
* sure that that many HPTEs are invalid, and invalidate them
|
|
|
|
* if not.
|
|
|
|
*/
|
|
|
|
|
|
|
|
struct kvm_htab_ctx {
|
|
|
|
unsigned long index;
|
|
|
|
unsigned long flags;
|
|
|
|
struct kvm *kvm;
|
|
|
|
int first_pass;
|
|
|
|
};
|
|
|
|
|
|
|
|
#define HPTE_SIZE (2 * sizeof(unsigned long))
|
|
|
|
|
2013-04-19 03:50:24 +08:00
|
|
|
/*
|
|
|
|
* Returns 1 if this HPT entry has been modified or has pending
|
|
|
|
* R/C bit changes.
|
|
|
|
*/
|
2014-06-11 16:16:06 +08:00
|
|
|
static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
|
2013-04-19 03:50:24 +08:00
|
|
|
{
|
|
|
|
unsigned long rcbits_unset;
|
|
|
|
|
|
|
|
if (revp->guest_rpte & HPTE_GR_MODIFIED)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
/* Also need to consider changes in reference and changed bits */
|
|
|
|
rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
|
2014-06-11 16:16:06 +08:00
|
|
|
if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
|
|
|
|
(be64_to_cpu(hptp[1]) & rcbits_unset))
|
2013-04-19 03:50:24 +08:00
|
|
|
return 1;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2014-06-11 16:16:06 +08:00
|
|
|
static long record_hpte(unsigned long flags, __be64 *hptp,
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
unsigned long *hpte, struct revmap_entry *revp,
|
|
|
|
int want_valid, int first_pass)
|
|
|
|
{
|
2016-11-16 13:57:24 +08:00
|
|
|
unsigned long v, r, hr;
|
2013-04-19 03:50:24 +08:00
|
|
|
unsigned long rcbits_unset;
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
int ok = 1;
|
|
|
|
int valid, dirty;
|
|
|
|
|
|
|
|
/* Unmodified entries are uninteresting except on the first pass */
|
2013-04-19 03:50:24 +08:00
|
|
|
dirty = hpte_dirty(revp, hptp);
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
if (!first_pass && !dirty)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
valid = 0;
|
2014-06-11 16:16:06 +08:00
|
|
|
if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
valid = 1;
|
|
|
|
if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
|
2014-06-11 16:16:06 +08:00
|
|
|
!(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
valid = 0;
|
|
|
|
}
|
|
|
|
if (valid != want_valid)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
v = r = 0;
|
|
|
|
if (valid || dirty) {
|
|
|
|
/* lock the HPTE so it's stable and read it */
|
|
|
|
preempt_disable();
|
|
|
|
while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
|
|
|
|
cpu_relax();
|
2014-06-11 16:16:06 +08:00
|
|
|
v = be64_to_cpu(hptp[0]);
|
2016-11-16 13:57:24 +08:00
|
|
|
hr = be64_to_cpu(hptp[1]);
|
|
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
|
|
v = hpte_new_to_old_v(v, hr);
|
|
|
|
hr = hpte_new_to_old_r(hr);
|
|
|
|
}
|
2013-04-19 03:50:24 +08:00
|
|
|
|
|
|
|
/* re-evaluate valid and dirty from synchronized HPTE value */
|
|
|
|
valid = !!(v & HPTE_V_VALID);
|
|
|
|
dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
|
|
|
|
|
|
|
|
/* Harvest R and C into guest view if necessary */
|
|
|
|
rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
|
2016-11-16 13:57:24 +08:00
|
|
|
if (valid && (rcbits_unset & hr)) {
|
|
|
|
revp->guest_rpte |= (hr &
|
2014-06-11 16:16:06 +08:00
|
|
|
(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
|
2013-04-19 03:50:24 +08:00
|
|
|
dirty = 1;
|
|
|
|
}
|
|
|
|
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
if (v & HPTE_V_ABSENT) {
|
|
|
|
v &= ~HPTE_V_ABSENT;
|
|
|
|
v |= HPTE_V_VALID;
|
2013-04-19 03:50:24 +08:00
|
|
|
valid = 1;
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
}
|
|
|
|
if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
|
|
|
|
valid = 0;
|
2013-04-19 03:50:24 +08:00
|
|
|
|
|
|
|
r = revp->guest_rpte;
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
/* only clear modified if this is the right sort of entry */
|
|
|
|
if (valid == want_valid && dirty) {
|
|
|
|
r &= ~HPTE_GR_MODIFIED;
|
|
|
|
revp->guest_rpte = r;
|
|
|
|
}
|
2015-03-20 17:39:43 +08:00
|
|
|
unlock_hpte(hptp, be64_to_cpu(hptp[0]));
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
preempt_enable();
|
|
|
|
if (!(valid == want_valid && (first_pass || dirty)))
|
|
|
|
ok = 0;
|
|
|
|
}
|
2014-06-11 16:16:06 +08:00
|
|
|
hpte[0] = cpu_to_be64(v);
|
|
|
|
hpte[1] = cpu_to_be64(r);
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
return ok;
|
|
|
|
}
|
|
|
|
|
|
|
|
static ssize_t kvm_htab_read(struct file *file, char __user *buf,
|
|
|
|
size_t count, loff_t *ppos)
|
|
|
|
{
|
|
|
|
struct kvm_htab_ctx *ctx = file->private_data;
|
|
|
|
struct kvm *kvm = ctx->kvm;
|
|
|
|
struct kvm_get_htab_header hdr;
|
2014-06-11 16:16:06 +08:00
|
|
|
__be64 *hptp;
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
struct revmap_entry *revp;
|
|
|
|
unsigned long i, nb, nw;
|
|
|
|
unsigned long __user *lbuf;
|
|
|
|
struct kvm_get_htab_header __user *hptr;
|
|
|
|
unsigned long flags;
|
|
|
|
int first_pass;
|
|
|
|
unsigned long hpte[2];
|
|
|
|
|
|
|
|
if (!access_ok(VERIFY_WRITE, buf, count))
|
|
|
|
return -EFAULT;
|
2017-09-13 14:29:22 +08:00
|
|
|
if (kvm_is_radix(kvm))
|
|
|
|
return 0;
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
|
|
|
|
first_pass = ctx->first_pass;
|
|
|
|
flags = ctx->flags;
|
|
|
|
|
|
|
|
i = ctx->index;
|
2016-12-20 13:49:00 +08:00
|
|
|
hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
|
|
|
|
revp = kvm->arch.hpt.rev + i;
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
lbuf = (unsigned long __user *)buf;
|
|
|
|
|
|
|
|
nb = 0;
|
|
|
|
while (nb + sizeof(hdr) + HPTE_SIZE < count) {
|
|
|
|
/* Initialize header */
|
|
|
|
hptr = (struct kvm_get_htab_header __user *)buf;
|
|
|
|
hdr.n_valid = 0;
|
|
|
|
hdr.n_invalid = 0;
|
|
|
|
nw = nb;
|
|
|
|
nb += sizeof(hdr);
|
|
|
|
lbuf = (unsigned long __user *)(buf + sizeof(hdr));
|
|
|
|
|
|
|
|
/* Skip uninteresting entries, i.e. clean on not-first pass */
|
|
|
|
if (!first_pass) {
|
2016-12-20 13:49:01 +08:00
|
|
|
while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
|
2013-04-19 03:50:24 +08:00
|
|
|
!hpte_dirty(revp, hptp)) {
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
++i;
|
|
|
|
hptp += 2;
|
|
|
|
++revp;
|
|
|
|
}
|
|
|
|
}
|
2012-11-22 07:29:12 +08:00
|
|
|
hdr.index = i;
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
|
|
|
|
/* Grab a series of valid entries */
|
2016-12-20 13:49:01 +08:00
|
|
|
while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
hdr.n_valid < 0xffff &&
|
|
|
|
nb + HPTE_SIZE < count &&
|
|
|
|
record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
|
|
|
|
/* valid entry, write it out */
|
|
|
|
++hdr.n_valid;
|
|
|
|
if (__put_user(hpte[0], lbuf) ||
|
|
|
|
__put_user(hpte[1], lbuf + 1))
|
|
|
|
return -EFAULT;
|
|
|
|
nb += HPTE_SIZE;
|
|
|
|
lbuf += 2;
|
|
|
|
++i;
|
|
|
|
hptp += 2;
|
|
|
|
++revp;
|
|
|
|
}
|
|
|
|
/* Now skip invalid entries while we can */
|
2016-12-20 13:49:01 +08:00
|
|
|
while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
hdr.n_invalid < 0xffff &&
|
|
|
|
record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
|
|
|
|
/* found an invalid entry */
|
|
|
|
++hdr.n_invalid;
|
|
|
|
++i;
|
|
|
|
hptp += 2;
|
|
|
|
++revp;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (hdr.n_valid || hdr.n_invalid) {
|
|
|
|
/* write back the header */
|
|
|
|
if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
|
|
|
|
return -EFAULT;
|
|
|
|
nw = nb;
|
|
|
|
buf = (char __user *)lbuf;
|
|
|
|
} else {
|
|
|
|
nb = nw;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check if we've wrapped around the hash table */
|
2016-12-20 13:49:01 +08:00
|
|
|
if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
i = 0;
|
|
|
|
ctx->first_pass = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ctx->index = i;
|
|
|
|
|
|
|
|
return nb;
|
|
|
|
}
|
|
|
|
|
|
|
|
static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
|
|
|
|
size_t count, loff_t *ppos)
|
|
|
|
{
|
|
|
|
struct kvm_htab_ctx *ctx = file->private_data;
|
|
|
|
struct kvm *kvm = ctx->kvm;
|
|
|
|
struct kvm_get_htab_header hdr;
|
|
|
|
unsigned long i, j;
|
|
|
|
unsigned long v, r;
|
|
|
|
unsigned long __user *lbuf;
|
2014-06-11 16:16:06 +08:00
|
|
|
__be64 *hptp;
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
unsigned long tmp[2];
|
|
|
|
ssize_t nb;
|
|
|
|
long int err, ret;
|
2017-09-13 13:53:48 +08:00
|
|
|
int mmu_ready;
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
|
|
|
|
if (!access_ok(VERIFY_READ, buf, count))
|
|
|
|
return -EFAULT;
|
2017-09-13 14:29:22 +08:00
|
|
|
if (kvm_is_radix(kvm))
|
|
|
|
return -EINVAL;
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
|
|
|
|
/* lock out vcpus from running while we're doing this */
|
|
|
|
mutex_lock(&kvm->lock);
|
2017-09-13 13:53:48 +08:00
|
|
|
mmu_ready = kvm->arch.mmu_ready;
|
|
|
|
if (mmu_ready) {
|
|
|
|
kvm->arch.mmu_ready = 0; /* temporarily */
|
|
|
|
/* order mmu_ready vs. vcpus_running */
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
smp_mb();
|
|
|
|
if (atomic_read(&kvm->arch.vcpus_running)) {
|
2017-09-13 13:53:48 +08:00
|
|
|
kvm->arch.mmu_ready = 1;
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
mutex_unlock(&kvm->lock);
|
|
|
|
return -EBUSY;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
err = 0;
|
|
|
|
for (nb = 0; nb + sizeof(hdr) <= count; ) {
|
|
|
|
err = -EFAULT;
|
|
|
|
if (__copy_from_user(&hdr, buf, sizeof(hdr)))
|
|
|
|
break;
|
|
|
|
|
|
|
|
err = 0;
|
|
|
|
if (nb + hdr.n_valid * HPTE_SIZE > count)
|
|
|
|
break;
|
|
|
|
|
|
|
|
nb += sizeof(hdr);
|
|
|
|
buf += sizeof(hdr);
|
|
|
|
|
|
|
|
err = -EINVAL;
|
|
|
|
i = hdr.index;
|
2016-12-20 13:49:01 +08:00
|
|
|
if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
|
|
|
|
i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
break;
|
|
|
|
|
2016-12-20 13:49:00 +08:00
|
|
|
hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
lbuf = (unsigned long __user *)buf;
|
|
|
|
for (j = 0; j < hdr.n_valid; ++j) {
|
2014-11-21 07:45:59 +08:00
|
|
|
__be64 hpte_v;
|
|
|
|
__be64 hpte_r;
|
|
|
|
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
err = -EFAULT;
|
2014-11-21 07:45:59 +08:00
|
|
|
if (__get_user(hpte_v, lbuf) ||
|
|
|
|
__get_user(hpte_r, lbuf + 1))
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
goto out;
|
2014-11-21 07:45:59 +08:00
|
|
|
v = be64_to_cpu(hpte_v);
|
|
|
|
r = be64_to_cpu(hpte_r);
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
err = -EINVAL;
|
|
|
|
if (!(v & HPTE_V_VALID))
|
|
|
|
goto out;
|
|
|
|
lbuf += 2;
|
|
|
|
nb += HPTE_SIZE;
|
|
|
|
|
2014-06-11 16:16:06 +08:00
|
|
|
if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
|
|
|
|
err = -EIO;
|
|
|
|
ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
|
|
|
|
tmp);
|
|
|
|
if (ret != H_SUCCESS) {
|
|
|
|
pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
|
|
|
|
"r=%lx\n", ret, i, v, r);
|
|
|
|
goto out;
|
|
|
|
}
|
2017-09-13 13:53:48 +08:00
|
|
|
if (!mmu_ready && is_vrma_hpte(v)) {
|
2014-06-16 02:47:07 +08:00
|
|
|
unsigned long psize = hpte_base_page_size(v, r);
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
unsigned long senc = slb_pgsize_encoding(psize);
|
|
|
|
unsigned long lpcr;
|
|
|
|
|
|
|
|
kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
|
|
|
|
(VRMA_VSID << SLB_VSID_SHIFT_1T);
|
2013-09-20 12:52:38 +08:00
|
|
|
lpcr = senc << (LPCR_VRMASD_SH - 4);
|
|
|
|
kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
|
2017-09-13 13:53:48 +08:00
|
|
|
mmu_ready = 1;
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
}
|
|
|
|
++i;
|
|
|
|
hptp += 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (j = 0; j < hdr.n_invalid; ++j) {
|
2014-06-11 16:16:06 +08:00
|
|
|
if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
|
|
|
|
++i;
|
|
|
|
hptp += 2;
|
|
|
|
}
|
|
|
|
err = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
out:
|
2017-09-13 13:53:48 +08:00
|
|
|
/* Order HPTE updates vs. mmu_ready */
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
smp_wmb();
|
2017-09-13 13:53:48 +08:00
|
|
|
kvm->arch.mmu_ready = mmu_ready;
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
mutex_unlock(&kvm->lock);
|
|
|
|
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
return nb;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int kvm_htab_release(struct inode *inode, struct file *filp)
|
|
|
|
{
|
|
|
|
struct kvm_htab_ctx *ctx = filp->private_data;
|
|
|
|
|
|
|
|
filp->private_data = NULL;
|
|
|
|
if (!(ctx->flags & KVM_GET_HTAB_WRITE))
|
|
|
|
atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
|
|
|
|
kvm_put_kvm(ctx->kvm);
|
|
|
|
kfree(ctx);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2013-04-05 07:09:41 +08:00
|
|
|
static const struct file_operations kvm_htab_fops = {
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
.read = kvm_htab_read,
|
|
|
|
.write = kvm_htab_write,
|
|
|
|
.llseek = default_llseek,
|
|
|
|
.release = kvm_htab_release,
|
|
|
|
};
|
|
|
|
|
|
|
|
int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
struct kvm_htab_ctx *ctx;
|
|
|
|
int rwflag;
|
|
|
|
|
|
|
|
/* reject flags we don't recognize */
|
|
|
|
if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
|
|
|
|
return -EINVAL;
|
|
|
|
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
|
|
|
|
if (!ctx)
|
|
|
|
return -ENOMEM;
|
|
|
|
kvm_get_kvm(kvm);
|
|
|
|
ctx->kvm = kvm;
|
|
|
|
ctx->index = ghf->start_index;
|
|
|
|
ctx->flags = ghf->flags;
|
|
|
|
ctx->first_pass = 1;
|
|
|
|
|
|
|
|
rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
|
2013-08-25 04:14:08 +08:00
|
|
|
ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
if (ret < 0) {
|
2017-08-31 18:51:09 +08:00
|
|
|
kfree(ctx);
|
KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT
A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor. Reads on
this fd return the contents of the HPT (hashed page table), writes
create and/or remove entries in the HPT. There is a new capability,
KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl. The ioctl
takes an argument structure with the index of the first HPT entry to
read out and a set of flags. The flags indicate whether the user is
intending to read or write the HPT, and whether to return all entries
or only the "bolted" entries (those with the bolted bit, 0x10, set in
the first doubleword).
This is intended for use in implementing qemu's savevm/loadvm and for
live migration. Therefore, on reads, the first pass returns information
about all HPTEs (or all bolted HPTEs). When the first pass reaches the
end of the HPT, it returns from the read. Subsequent reads only return
information about HPTEs that have changed since they were last read.
A read that finds no changed HPTEs in the HPT following where the last
read finished will return 0 bytes.
The format of the data provides a simple run-length compression of the
invalid entries. Each block of data starts with a header that indicates
the index (position in the HPT, which is just an array), the number of
valid entries starting at that index (may be zero), and the number of
invalid entries following those valid entries. The valid entries, 16
bytes each, follow the header. The invalid entries are not explicitly
represented.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-20 06:57:20 +08:00
|
|
|
kvm_put_kvm(kvm);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (rwflag == O_RDONLY) {
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
|
|
atomic_inc(&kvm->arch.hpte_mod_interest);
|
|
|
|
/* make sure kvmppc_do_h_enter etc. see the increment */
|
|
|
|
synchronize_srcu_expedited(&kvm->srcu);
|
|
|
|
mutex_unlock(&kvm->slots_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2015-03-28 11:21:01 +08:00
|
|
|
struct debugfs_htab_state {
|
|
|
|
struct kvm *kvm;
|
|
|
|
struct mutex mutex;
|
|
|
|
unsigned long hpt_index;
|
|
|
|
int chars_left;
|
|
|
|
int buf_index;
|
|
|
|
char buf[64];
|
|
|
|
};
|
|
|
|
|
|
|
|
static int debugfs_htab_open(struct inode *inode, struct file *file)
|
|
|
|
{
|
|
|
|
struct kvm *kvm = inode->i_private;
|
|
|
|
struct debugfs_htab_state *p;
|
|
|
|
|
|
|
|
p = kzalloc(sizeof(*p), GFP_KERNEL);
|
|
|
|
if (!p)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
kvm_get_kvm(kvm);
|
|
|
|
p->kvm = kvm;
|
|
|
|
mutex_init(&p->mutex);
|
|
|
|
file->private_data = p;
|
|
|
|
|
|
|
|
return nonseekable_open(inode, file);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int debugfs_htab_release(struct inode *inode, struct file *file)
|
|
|
|
{
|
|
|
|
struct debugfs_htab_state *p = file->private_data;
|
|
|
|
|
|
|
|
kvm_put_kvm(p->kvm);
|
|
|
|
kfree(p);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
|
|
|
|
size_t len, loff_t *ppos)
|
|
|
|
{
|
|
|
|
struct debugfs_htab_state *p = file->private_data;
|
|
|
|
ssize_t ret, r;
|
|
|
|
unsigned long i, n;
|
|
|
|
unsigned long v, hr, gr;
|
|
|
|
struct kvm *kvm;
|
|
|
|
__be64 *hptp;
|
|
|
|
|
2017-09-13 14:29:22 +08:00
|
|
|
kvm = p->kvm;
|
|
|
|
if (kvm_is_radix(kvm))
|
|
|
|
return 0;
|
|
|
|
|
2015-03-28 11:21:01 +08:00
|
|
|
ret = mutex_lock_interruptible(&p->mutex);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
if (p->chars_left) {
|
|
|
|
n = p->chars_left;
|
|
|
|
if (n > len)
|
|
|
|
n = len;
|
|
|
|
r = copy_to_user(buf, p->buf + p->buf_index, n);
|
|
|
|
n -= r;
|
|
|
|
p->chars_left -= n;
|
|
|
|
p->buf_index += n;
|
|
|
|
buf += n;
|
|
|
|
len -= n;
|
|
|
|
ret = n;
|
|
|
|
if (r) {
|
|
|
|
if (!n)
|
|
|
|
ret = -EFAULT;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
i = p->hpt_index;
|
2016-12-20 13:49:00 +08:00
|
|
|
hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
|
2016-12-20 13:49:01 +08:00
|
|
|
for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
|
|
|
|
++i, hptp += 2) {
|
2015-03-28 11:21:01 +08:00
|
|
|
if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/* lock the HPTE so it's stable and read it */
|
|
|
|
preempt_disable();
|
|
|
|
while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
|
|
|
|
cpu_relax();
|
|
|
|
v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
|
|
|
|
hr = be64_to_cpu(hptp[1]);
|
2016-12-20 13:49:00 +08:00
|
|
|
gr = kvm->arch.hpt.rev[i].guest_rpte;
|
2015-03-28 11:21:01 +08:00
|
|
|
unlock_hpte(hptp, v);
|
|
|
|
preempt_enable();
|
|
|
|
|
|
|
|
if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
n = scnprintf(p->buf, sizeof(p->buf),
|
|
|
|
"%6lx %.16lx %.16lx %.16lx\n",
|
|
|
|
i, v, hr, gr);
|
|
|
|
p->chars_left = n;
|
|
|
|
if (n > len)
|
|
|
|
n = len;
|
|
|
|
r = copy_to_user(buf, p->buf, n);
|
|
|
|
n -= r;
|
|
|
|
p->chars_left -= n;
|
|
|
|
p->buf_index = n;
|
|
|
|
buf += n;
|
|
|
|
len -= n;
|
|
|
|
ret += n;
|
|
|
|
if (r) {
|
|
|
|
if (!ret)
|
|
|
|
ret = -EFAULT;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
p->hpt_index = i;
|
|
|
|
|
|
|
|
out:
|
|
|
|
mutex_unlock(&p->mutex);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2016-10-10 08:31:19 +08:00
|
|
|
static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
|
2015-03-28 11:21:01 +08:00
|
|
|
size_t len, loff_t *ppos)
|
|
|
|
{
|
|
|
|
return -EACCES;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct file_operations debugfs_htab_fops = {
|
|
|
|
.owner = THIS_MODULE,
|
|
|
|
.open = debugfs_htab_open,
|
|
|
|
.release = debugfs_htab_release,
|
|
|
|
.read = debugfs_htab_read,
|
|
|
|
.write = debugfs_htab_write,
|
|
|
|
.llseek = generic_file_llseek,
|
|
|
|
};
|
|
|
|
|
|
|
|
void kvmppc_mmu_debugfs_init(struct kvm *kvm)
|
|
|
|
{
|
|
|
|
kvm->arch.htab_dentry = debugfs_create_file("htab", 0400,
|
|
|
|
kvm->arch.debugfs_dir, kvm,
|
|
|
|
&debugfs_htab_fops);
|
|
|
|
}
|
|
|
|
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
|
|
|
struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
|
|
|
|
|
2014-12-03 10:30:38 +08:00
|
|
|
vcpu->arch.slb_nr = 32; /* POWER7/POWER8 */
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
|
2017-01-30 18:21:44 +08:00
|
|
|
if (kvm_is_radix(vcpu->kvm))
|
|
|
|
mmu->xlate = kvmppc_mmu_radix_xlate;
|
|
|
|
else
|
|
|
|
mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
|
KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-29 08:21:34 +08:00
|
|
|
mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
|
|
|
|
|
|
|
|
vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
|
|
|
|
}
|