linux-sg2042/drivers/greybus/es2.c

1466 lines
33 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Greybus "AP" USB driver for "ES2" controller chips
*
* Copyright 2014-2015 Google Inc.
* Copyright 2014-2015 Linaro Ltd.
*/
#include <linux/kthread.h>
#include <linux/sizes.h>
#include <linux/usb.h>
#include <linux/kfifo.h>
#include <linux/debugfs.h>
#include <linux/list.h>
#include <linux/greybus.h>
#include <asm/unaligned.h>
#include "arpc.h"
#include "greybus_trace.h"
/* Default timeout for USB vendor requests. */
#define ES2_USB_CTRL_TIMEOUT 500
/* Default timeout for ARPC CPort requests */
#define ES2_ARPC_CPORT_TIMEOUT 500
/* Fixed CPort numbers */
#define ES2_CPORT_CDSI0 16
#define ES2_CPORT_CDSI1 17
/* Memory sizes for the buffers sent to/from the ES2 controller */
#define ES2_GBUF_MSG_SIZE_MAX 2048
/* Memory sizes for the ARPC buffers */
#define ARPC_OUT_SIZE_MAX U16_MAX
#define ARPC_IN_SIZE_MAX 128
static const struct usb_device_id id_table[] = {
{ USB_DEVICE(0x18d1, 0x1eaf) },
{ },
};
MODULE_DEVICE_TABLE(usb, id_table);
#define APB1_LOG_SIZE SZ_16K
/*
* Number of CPort IN urbs in flight at any point in time.
* Adjust if we are having stalls in the USB buffer due to not enough urbs in
* flight.
*/
#define NUM_CPORT_IN_URB 4
/* Number of CPort OUT urbs in flight at any point in time.
* Adjust if we get messages saying we are out of urbs in the system log.
*/
#define NUM_CPORT_OUT_URB 8
/*
* Number of ARPC in urbs in flight at any point in time.
*/
#define NUM_ARPC_IN_URB 2
/*
* @endpoint: bulk in endpoint for CPort data
* @urb: array of urbs for the CPort in messages
* @buffer: array of buffers for the @cport_in_urb urbs
*/
struct es2_cport_in {
__u8 endpoint;
struct urb *urb[NUM_CPORT_IN_URB];
u8 *buffer[NUM_CPORT_IN_URB];
};
/**
* es2_ap_dev - ES2 USB Bridge to AP structure
* @usb_dev: pointer to the USB device we are.
* @usb_intf: pointer to the USB interface we are bound to.
* @hd: pointer to our gb_host_device structure
* @cport_in: endpoint, urbs and buffer for cport in messages
* @cport_out_endpoint: endpoint for for cport out messages
* @cport_out_urb: array of urbs for the CPort out messages
* @cport_out_urb_busy: array of flags to see if the @cport_out_urb is busy or
* not.
* @cport_out_urb_cancelled: array of flags indicating whether the
* corresponding @cport_out_urb is being cancelled
* @cport_out_urb_lock: locks the @cport_out_urb_busy "list"
*
* @apb_log_task: task pointer for logging thread
* @apb_log_dentry: file system entry for the log file interface
* @apb_log_enable_dentry: file system entry for enabling logging
* @apb_log_fifo: kernel FIFO to carry logged data
* @arpc_urb: array of urbs for the ARPC in messages
* @arpc_buffer: array of buffers for the @arpc_urb urbs
* @arpc_endpoint_in: bulk in endpoint for APBridgeA RPC
* @arpc_id_cycle: gives an unique id to ARPC
* @arpc_lock: locks ARPC list
* @arpcs: list of in progress ARPCs
*/
struct es2_ap_dev {
struct usb_device *usb_dev;
struct usb_interface *usb_intf;
struct gb_host_device *hd;
struct es2_cport_in cport_in;
__u8 cport_out_endpoint;
struct urb *cport_out_urb[NUM_CPORT_OUT_URB];
bool cport_out_urb_busy[NUM_CPORT_OUT_URB];
bool cport_out_urb_cancelled[NUM_CPORT_OUT_URB];
spinlock_t cport_out_urb_lock;
bool cdsi1_in_use;
struct task_struct *apb_log_task;
struct dentry *apb_log_dentry;
struct dentry *apb_log_enable_dentry;
DECLARE_KFIFO(apb_log_fifo, char, APB1_LOG_SIZE);
__u8 arpc_endpoint_in;
struct urb *arpc_urb[NUM_ARPC_IN_URB];
u8 *arpc_buffer[NUM_ARPC_IN_URB];
int arpc_id_cycle;
spinlock_t arpc_lock;
struct list_head arpcs;
};
struct arpc {
struct list_head list;
struct arpc_request_message *req;
struct arpc_response_message *resp;
struct completion response_received;
bool active;
};
static inline struct es2_ap_dev *hd_to_es2(struct gb_host_device *hd)
{
return (struct es2_ap_dev *)&hd->hd_priv;
}
static void cport_out_callback(struct urb *urb);
static void usb_log_enable(struct es2_ap_dev *es2);
static void usb_log_disable(struct es2_ap_dev *es2);
static int arpc_sync(struct es2_ap_dev *es2, u8 type, void *payload,
size_t size, int *result, unsigned int timeout);
static int output_sync(struct es2_ap_dev *es2, void *req, u16 size, u8 cmd)
{
struct usb_device *udev = es2->usb_dev;
u8 *data;
int retval;
data = kmemdup(req, size, GFP_KERNEL);
if (!data)
return -ENOMEM;
retval = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
cmd,
USB_DIR_OUT | USB_TYPE_VENDOR |
USB_RECIP_INTERFACE,
0, 0, data, size, ES2_USB_CTRL_TIMEOUT);
if (retval < 0)
dev_err(&udev->dev, "%s: return error %d\n", __func__, retval);
else
retval = 0;
kfree(data);
return retval;
}
static void ap_urb_complete(struct urb *urb)
{
struct usb_ctrlrequest *dr = urb->context;
kfree(dr);
usb_free_urb(urb);
}
static int output_async(struct es2_ap_dev *es2, void *req, u16 size, u8 cmd)
{
struct usb_device *udev = es2->usb_dev;
struct urb *urb;
struct usb_ctrlrequest *dr;
u8 *buf;
int retval;
urb = usb_alloc_urb(0, GFP_ATOMIC);
if (!urb)
return -ENOMEM;
dr = kmalloc(sizeof(*dr) + size, GFP_ATOMIC);
if (!dr) {
usb_free_urb(urb);
return -ENOMEM;
}
buf = (u8 *)dr + sizeof(*dr);
memcpy(buf, req, size);
dr->bRequest = cmd;
dr->bRequestType = USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE;
dr->wValue = 0;
dr->wIndex = 0;
dr->wLength = cpu_to_le16(size);
usb_fill_control_urb(urb, udev, usb_sndctrlpipe(udev, 0),
(unsigned char *)dr, buf, size,
ap_urb_complete, dr);
retval = usb_submit_urb(urb, GFP_ATOMIC);
if (retval) {
usb_free_urb(urb);
kfree(dr);
}
return retval;
}
static int output(struct gb_host_device *hd, void *req, u16 size, u8 cmd,
bool async)
{
struct es2_ap_dev *es2 = hd_to_es2(hd);
if (async)
return output_async(es2, req, size, cmd);
return output_sync(es2, req, size, cmd);
}
static int es2_cport_in_enable(struct es2_ap_dev *es2,
struct es2_cport_in *cport_in)
{
struct urb *urb;
int ret;
int i;
for (i = 0; i < NUM_CPORT_IN_URB; ++i) {
urb = cport_in->urb[i];
ret = usb_submit_urb(urb, GFP_KERNEL);
if (ret) {
dev_err(&es2->usb_dev->dev,
"failed to submit in-urb: %d\n", ret);
goto err_kill_urbs;
}
}
return 0;
err_kill_urbs:
for (--i; i >= 0; --i) {
urb = cport_in->urb[i];
usb_kill_urb(urb);
}
return ret;
}
static void es2_cport_in_disable(struct es2_ap_dev *es2,
struct es2_cport_in *cport_in)
{
struct urb *urb;
int i;
for (i = 0; i < NUM_CPORT_IN_URB; ++i) {
urb = cport_in->urb[i];
usb_kill_urb(urb);
}
}
static int es2_arpc_in_enable(struct es2_ap_dev *es2)
{
struct urb *urb;
int ret;
int i;
for (i = 0; i < NUM_ARPC_IN_URB; ++i) {
urb = es2->arpc_urb[i];
ret = usb_submit_urb(urb, GFP_KERNEL);
if (ret) {
dev_err(&es2->usb_dev->dev,
"failed to submit arpc in-urb: %d\n", ret);
goto err_kill_urbs;
}
}
return 0;
err_kill_urbs:
for (--i; i >= 0; --i) {
urb = es2->arpc_urb[i];
usb_kill_urb(urb);
}
return ret;
}
static void es2_arpc_in_disable(struct es2_ap_dev *es2)
{
struct urb *urb;
int i;
for (i = 0; i < NUM_ARPC_IN_URB; ++i) {
urb = es2->arpc_urb[i];
usb_kill_urb(urb);
}
}
static struct urb *next_free_urb(struct es2_ap_dev *es2, gfp_t gfp_mask)
{
struct urb *urb = NULL;
unsigned long flags;
int i;
spin_lock_irqsave(&es2->cport_out_urb_lock, flags);
/* Look in our pool of allocated urbs first, as that's the "fastest" */
for (i = 0; i < NUM_CPORT_OUT_URB; ++i) {
if (!es2->cport_out_urb_busy[i] &&
!es2->cport_out_urb_cancelled[i]) {
es2->cport_out_urb_busy[i] = true;
urb = es2->cport_out_urb[i];
break;
}
}
spin_unlock_irqrestore(&es2->cport_out_urb_lock, flags);
if (urb)
return urb;
/*
* Crap, pool is empty, complain to the syslog and go allocate one
* dynamically as we have to succeed.
*/
dev_dbg(&es2->usb_dev->dev,
"No free CPort OUT urbs, having to dynamically allocate one!\n");
return usb_alloc_urb(0, gfp_mask);
}
static void free_urb(struct es2_ap_dev *es2, struct urb *urb)
{
unsigned long flags;
int i;
/*
* See if this was an urb in our pool, if so mark it "free", otherwise
* we need to free it ourselves.
*/
spin_lock_irqsave(&es2->cport_out_urb_lock, flags);
for (i = 0; i < NUM_CPORT_OUT_URB; ++i) {
if (urb == es2->cport_out_urb[i]) {
es2->cport_out_urb_busy[i] = false;
urb = NULL;
break;
}
}
spin_unlock_irqrestore(&es2->cport_out_urb_lock, flags);
/* If urb is not NULL, then we need to free this urb */
usb_free_urb(urb);
}
/*
* We (ab)use the operation-message header pad bytes to transfer the
* cport id in order to minimise overhead.
*/
static void
gb_message_cport_pack(struct gb_operation_msg_hdr *header, u16 cport_id)
{
header->pad[0] = cport_id;
}
/* Clear the pad bytes used for the CPort id */
static void gb_message_cport_clear(struct gb_operation_msg_hdr *header)
{
header->pad[0] = 0;
}
/* Extract the CPort id packed into the header, and clear it */
static u16 gb_message_cport_unpack(struct gb_operation_msg_hdr *header)
{
u16 cport_id = header->pad[0];
gb_message_cport_clear(header);
return cport_id;
}
/*
* Returns zero if the message was successfully queued, or a negative errno
* otherwise.
*/
static int message_send(struct gb_host_device *hd, u16 cport_id,
struct gb_message *message, gfp_t gfp_mask)
{
struct es2_ap_dev *es2 = hd_to_es2(hd);
struct usb_device *udev = es2->usb_dev;
size_t buffer_size;
int retval;
struct urb *urb;
unsigned long flags;
/*
* The data actually transferred will include an indication
* of where the data should be sent. Do one last check of
* the target CPort id before filling it in.
*/
if (!cport_id_valid(hd, cport_id)) {
dev_err(&udev->dev, "invalid cport %u\n", cport_id);
return -EINVAL;
}
/* Find a free urb */
urb = next_free_urb(es2, gfp_mask);
if (!urb)
return -ENOMEM;
spin_lock_irqsave(&es2->cport_out_urb_lock, flags);
message->hcpriv = urb;
spin_unlock_irqrestore(&es2->cport_out_urb_lock, flags);
/* Pack the cport id into the message header */
gb_message_cport_pack(message->header, cport_id);
buffer_size = sizeof(*message->header) + message->payload_size;
usb_fill_bulk_urb(urb, udev,
usb_sndbulkpipe(udev,
es2->cport_out_endpoint),
message->buffer, buffer_size,
cport_out_callback, message);
urb->transfer_flags |= URB_ZERO_PACKET;
trace_gb_message_submit(message);
retval = usb_submit_urb(urb, gfp_mask);
if (retval) {
dev_err(&udev->dev, "failed to submit out-urb: %d\n", retval);
spin_lock_irqsave(&es2->cport_out_urb_lock, flags);
message->hcpriv = NULL;
spin_unlock_irqrestore(&es2->cport_out_urb_lock, flags);
free_urb(es2, urb);
gb_message_cport_clear(message->header);
return retval;
}
return 0;
}
/*
* Can not be called in atomic context.
*/
static void message_cancel(struct gb_message *message)
{
struct gb_host_device *hd = message->operation->connection->hd;
struct es2_ap_dev *es2 = hd_to_es2(hd);
struct urb *urb;
int i;
might_sleep();
spin_lock_irq(&es2->cport_out_urb_lock);
urb = message->hcpriv;
/* Prevent dynamically allocated urb from being deallocated. */
usb_get_urb(urb);
/* Prevent pre-allocated urb from being reused. */
for (i = 0; i < NUM_CPORT_OUT_URB; ++i) {
if (urb == es2->cport_out_urb[i]) {
es2->cport_out_urb_cancelled[i] = true;
break;
}
}
spin_unlock_irq(&es2->cport_out_urb_lock);
usb_kill_urb(urb);
if (i < NUM_CPORT_OUT_URB) {
spin_lock_irq(&es2->cport_out_urb_lock);
es2->cport_out_urb_cancelled[i] = false;
spin_unlock_irq(&es2->cport_out_urb_lock);
}
usb_free_urb(urb);
}
static int es2_cport_allocate(struct gb_host_device *hd, int cport_id,
unsigned long flags)
{
struct es2_ap_dev *es2 = hd_to_es2(hd);
struct ida *id_map = &hd->cport_id_map;
int ida_start, ida_end;
switch (cport_id) {
case ES2_CPORT_CDSI0:
case ES2_CPORT_CDSI1:
dev_err(&hd->dev, "cport %d not available\n", cport_id);
return -EBUSY;
}
if (flags & GB_CONNECTION_FLAG_OFFLOADED &&
flags & GB_CONNECTION_FLAG_CDSI1) {
if (es2->cdsi1_in_use) {
dev_err(&hd->dev, "CDSI1 already in use\n");
return -EBUSY;
}
es2->cdsi1_in_use = true;
return ES2_CPORT_CDSI1;
}
if (cport_id < 0) {
ida_start = 0;
ida_end = hd->num_cports;
} else if (cport_id < hd->num_cports) {
ida_start = cport_id;
ida_end = cport_id + 1;
} else {
dev_err(&hd->dev, "cport %d not available\n", cport_id);
return -EINVAL;
}
return ida_simple_get(id_map, ida_start, ida_end, GFP_KERNEL);
}
static void es2_cport_release(struct gb_host_device *hd, u16 cport_id)
{
struct es2_ap_dev *es2 = hd_to_es2(hd);
switch (cport_id) {
case ES2_CPORT_CDSI1:
es2->cdsi1_in_use = false;
return;
}
ida_simple_remove(&hd->cport_id_map, cport_id);
}
static int cport_enable(struct gb_host_device *hd, u16 cport_id,
unsigned long flags)
{
struct es2_ap_dev *es2 = hd_to_es2(hd);
struct usb_device *udev = es2->usb_dev;
struct gb_apb_request_cport_flags *req;
u32 connection_flags;
int ret;
req = kzalloc(sizeof(*req), GFP_KERNEL);
if (!req)
return -ENOMEM;
connection_flags = 0;
if (flags & GB_CONNECTION_FLAG_CONTROL)
connection_flags |= GB_APB_CPORT_FLAG_CONTROL;
if (flags & GB_CONNECTION_FLAG_HIGH_PRIO)
connection_flags |= GB_APB_CPORT_FLAG_HIGH_PRIO;
req->flags = cpu_to_le32(connection_flags);
dev_dbg(&hd->dev, "%s - cport = %u, flags = %02x\n", __func__,
cport_id, connection_flags);
ret = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
GB_APB_REQUEST_CPORT_FLAGS,
USB_DIR_OUT | USB_TYPE_VENDOR |
USB_RECIP_INTERFACE, cport_id, 0,
req, sizeof(*req), ES2_USB_CTRL_TIMEOUT);
if (ret != sizeof(*req)) {
dev_err(&udev->dev, "failed to set cport flags for port %d\n",
cport_id);
if (ret >= 0)
ret = -EIO;
goto out;
}
ret = 0;
out:
kfree(req);
return ret;
}
static int es2_cport_connected(struct gb_host_device *hd, u16 cport_id)
{
struct es2_ap_dev *es2 = hd_to_es2(hd);
struct device *dev = &es2->usb_dev->dev;
struct arpc_cport_connected_req req;
int ret;
req.cport_id = cpu_to_le16(cport_id);
ret = arpc_sync(es2, ARPC_TYPE_CPORT_CONNECTED, &req, sizeof(req),
NULL, ES2_ARPC_CPORT_TIMEOUT);
if (ret) {
dev_err(dev, "failed to set connected state for cport %u: %d\n",
cport_id, ret);
return ret;
}
return 0;
}
static int es2_cport_flush(struct gb_host_device *hd, u16 cport_id)
{
struct es2_ap_dev *es2 = hd_to_es2(hd);
struct device *dev = &es2->usb_dev->dev;
struct arpc_cport_flush_req req;
int ret;
req.cport_id = cpu_to_le16(cport_id);
ret = arpc_sync(es2, ARPC_TYPE_CPORT_FLUSH, &req, sizeof(req),
NULL, ES2_ARPC_CPORT_TIMEOUT);
if (ret) {
dev_err(dev, "failed to flush cport %u: %d\n", cport_id, ret);
return ret;
}
return 0;
}
static int es2_cport_shutdown(struct gb_host_device *hd, u16 cport_id,
u8 phase, unsigned int timeout)
{
struct es2_ap_dev *es2 = hd_to_es2(hd);
struct device *dev = &es2->usb_dev->dev;
struct arpc_cport_shutdown_req req;
int result;
int ret;
if (timeout > U16_MAX)
return -EINVAL;
req.cport_id = cpu_to_le16(cport_id);
req.timeout = cpu_to_le16(timeout);
req.phase = phase;
ret = arpc_sync(es2, ARPC_TYPE_CPORT_SHUTDOWN, &req, sizeof(req),
&result, ES2_ARPC_CPORT_TIMEOUT + timeout);
if (ret) {
dev_err(dev, "failed to send shutdown over cport %u: %d (%d)\n",
cport_id, ret, result);
return ret;
}
return 0;
}
static int es2_cport_quiesce(struct gb_host_device *hd, u16 cport_id,
size_t peer_space, unsigned int timeout)
{
struct es2_ap_dev *es2 = hd_to_es2(hd);
struct device *dev = &es2->usb_dev->dev;
struct arpc_cport_quiesce_req req;
int result;
int ret;
if (peer_space > U16_MAX)
return -EINVAL;
if (timeout > U16_MAX)
return -EINVAL;
req.cport_id = cpu_to_le16(cport_id);
req.peer_space = cpu_to_le16(peer_space);
req.timeout = cpu_to_le16(timeout);
ret = arpc_sync(es2, ARPC_TYPE_CPORT_QUIESCE, &req, sizeof(req),
&result, ES2_ARPC_CPORT_TIMEOUT + timeout);
if (ret) {
dev_err(dev, "failed to quiesce cport %u: %d (%d)\n",
cport_id, ret, result);
return ret;
}
return 0;
}
static int es2_cport_clear(struct gb_host_device *hd, u16 cport_id)
{
struct es2_ap_dev *es2 = hd_to_es2(hd);
struct device *dev = &es2->usb_dev->dev;
struct arpc_cport_clear_req req;
int ret;
req.cport_id = cpu_to_le16(cport_id);
ret = arpc_sync(es2, ARPC_TYPE_CPORT_CLEAR, &req, sizeof(req),
NULL, ES2_ARPC_CPORT_TIMEOUT);
if (ret) {
dev_err(dev, "failed to clear cport %u: %d\n", cport_id, ret);
return ret;
}
return 0;
}
static int latency_tag_enable(struct gb_host_device *hd, u16 cport_id)
{
int retval;
struct es2_ap_dev *es2 = hd_to_es2(hd);
struct usb_device *udev = es2->usb_dev;
retval = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
GB_APB_REQUEST_LATENCY_TAG_EN,
USB_DIR_OUT | USB_TYPE_VENDOR |
USB_RECIP_INTERFACE, cport_id, 0, NULL,
0, ES2_USB_CTRL_TIMEOUT);
if (retval < 0)
dev_err(&udev->dev, "Cannot enable latency tag for cport %d\n",
cport_id);
return retval;
}
static int latency_tag_disable(struct gb_host_device *hd, u16 cport_id)
{
int retval;
struct es2_ap_dev *es2 = hd_to_es2(hd);
struct usb_device *udev = es2->usb_dev;
retval = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
GB_APB_REQUEST_LATENCY_TAG_DIS,
USB_DIR_OUT | USB_TYPE_VENDOR |
USB_RECIP_INTERFACE, cport_id, 0, NULL,
0, ES2_USB_CTRL_TIMEOUT);
if (retval < 0)
dev_err(&udev->dev, "Cannot disable latency tag for cport %d\n",
cport_id);
return retval;
}
static struct gb_hd_driver es2_driver = {
greybus: hd: Add TimeSync APBridge commands This patch adds a number of USB Vendor commands to es2.c to enable TimeSync in the bridge. Adds: - es2.c::timesync_enable(u8 count, u64 frame_time, u32 strobe_delay, u32 refclk); Commands APBx to enable timers and clocks to track a pulse-train of incoming TIME_SYNC strobes with strobe_delay microseconds between each. Provides the reference clock the AP is using to track FrameTime. It is the responsibility of APBx to adequately track the FrameTime based on the indicated AP refclk. Once this command has succeeded APBx may not transition to a low-power state were FrameTime counters stop. This function is initiated from the timesync worker thread logic when re-synchronizing frame-time throughout the system. TimeSync is at this time enabled for all APBx active in the system i.e. currently APB2 will not receive TimeSync commands until it becomes a registered host-device in Greybus. - es2.c::timesync_disable(void) Commands APBx to discontinue tracking of FrameTime. After this operation completes APBx may transition to a low-power state where timer-clocks stop operating. - es2.c::timesync_authoritative(u64 *frame_time) Provides an authoritative time for each TIME_SYNC strobe to APBx. APBx must align its local FrameTime to the authoritative clock. - es2.c::timesync_get_last_event(u64 *frame_time) Returns the FrameTime at the last SVC_TIMESYNC_PING to the AP Module. Signed-off-by: Bryan O'Donoghue <bryan.odonoghue@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
2016-05-16 02:37:48 +08:00
.hd_priv_size = sizeof(struct es2_ap_dev),
.message_send = message_send,
.message_cancel = message_cancel,
.cport_allocate = es2_cport_allocate,
.cport_release = es2_cport_release,
.cport_enable = cport_enable,
.cport_connected = es2_cport_connected,
.cport_flush = es2_cport_flush,
.cport_shutdown = es2_cport_shutdown,
.cport_quiesce = es2_cport_quiesce,
.cport_clear = es2_cport_clear,
greybus: hd: Add TimeSync APBridge commands This patch adds a number of USB Vendor commands to es2.c to enable TimeSync in the bridge. Adds: - es2.c::timesync_enable(u8 count, u64 frame_time, u32 strobe_delay, u32 refclk); Commands APBx to enable timers and clocks to track a pulse-train of incoming TIME_SYNC strobes with strobe_delay microseconds between each. Provides the reference clock the AP is using to track FrameTime. It is the responsibility of APBx to adequately track the FrameTime based on the indicated AP refclk. Once this command has succeeded APBx may not transition to a low-power state were FrameTime counters stop. This function is initiated from the timesync worker thread logic when re-synchronizing frame-time throughout the system. TimeSync is at this time enabled for all APBx active in the system i.e. currently APB2 will not receive TimeSync commands until it becomes a registered host-device in Greybus. - es2.c::timesync_disable(void) Commands APBx to discontinue tracking of FrameTime. After this operation completes APBx may transition to a low-power state where timer-clocks stop operating. - es2.c::timesync_authoritative(u64 *frame_time) Provides an authoritative time for each TIME_SYNC strobe to APBx. APBx must align its local FrameTime to the authoritative clock. - es2.c::timesync_get_last_event(u64 *frame_time) Returns the FrameTime at the last SVC_TIMESYNC_PING to the AP Module. Signed-off-by: Bryan O'Donoghue <bryan.odonoghue@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
2016-05-16 02:37:48 +08:00
.latency_tag_enable = latency_tag_enable,
.latency_tag_disable = latency_tag_disable,
.output = output,
};
/* Common function to report consistent warnings based on URB status */
static int check_urb_status(struct urb *urb)
{
struct device *dev = &urb->dev->dev;
int status = urb->status;
switch (status) {
case 0:
return 0;
case -EOVERFLOW:
dev_err(dev, "%s: overflow actual length is %d\n",
__func__, urb->actual_length);
/* fall through */
case -ECONNRESET:
case -ENOENT:
case -ESHUTDOWN:
case -EILSEQ:
case -EPROTO:
/* device is gone, stop sending */
return status;
}
dev_err(dev, "%s: unknown status %d\n", __func__, status);
return -EAGAIN;
}
static void es2_destroy(struct es2_ap_dev *es2)
{
struct usb_device *udev;
struct urb *urb;
int i;
debugfs_remove(es2->apb_log_enable_dentry);
usb_log_disable(es2);
/* Tear down everything! */
for (i = 0; i < NUM_CPORT_OUT_URB; ++i) {
urb = es2->cport_out_urb[i];
usb_kill_urb(urb);
usb_free_urb(urb);
es2->cport_out_urb[i] = NULL;
es2->cport_out_urb_busy[i] = false; /* just to be anal */
}
for (i = 0; i < NUM_ARPC_IN_URB; ++i) {
usb_free_urb(es2->arpc_urb[i]);
kfree(es2->arpc_buffer[i]);
es2->arpc_buffer[i] = NULL;
}
for (i = 0; i < NUM_CPORT_IN_URB; ++i) {
usb_free_urb(es2->cport_in.urb[i]);
kfree(es2->cport_in.buffer[i]);
es2->cport_in.buffer[i] = NULL;
}
/* release reserved CDSI0 and CDSI1 cports */
gb_hd_cport_release_reserved(es2->hd, ES2_CPORT_CDSI1);
gb_hd_cport_release_reserved(es2->hd, ES2_CPORT_CDSI0);
udev = es2->usb_dev;
gb_hd_put(es2->hd);
usb_put_dev(udev);
}
static void cport_in_callback(struct urb *urb)
{
struct gb_host_device *hd = urb->context;
struct device *dev = &urb->dev->dev;
struct gb_operation_msg_hdr *header;
int status = check_urb_status(urb);
int retval;
u16 cport_id;
if (status) {
if ((status == -EAGAIN) || (status == -EPROTO))
goto exit;
/* The urb is being unlinked */
if (status == -ENOENT || status == -ESHUTDOWN)
return;
dev_err(dev, "urb cport in error %d (dropped)\n", status);
return;
}
if (urb->actual_length < sizeof(*header)) {
dev_err(dev, "short message received\n");
goto exit;
}
/* Extract the CPort id, which is packed in the message header */
header = urb->transfer_buffer;
cport_id = gb_message_cport_unpack(header);
if (cport_id_valid(hd, cport_id)) {
greybus_data_rcvd(hd, cport_id, urb->transfer_buffer,
urb->actual_length);
} else {
dev_err(dev, "invalid cport id %u received\n", cport_id);
}
exit:
/* put our urb back in the request pool */
retval = usb_submit_urb(urb, GFP_ATOMIC);
if (retval)
dev_err(dev, "failed to resubmit in-urb: %d\n", retval);
}
static void cport_out_callback(struct urb *urb)
{
struct gb_message *message = urb->context;
struct gb_host_device *hd = message->operation->connection->hd;
struct es2_ap_dev *es2 = hd_to_es2(hd);
int status = check_urb_status(urb);
unsigned long flags;
gb_message_cport_clear(message->header);
spin_lock_irqsave(&es2->cport_out_urb_lock, flags);
message->hcpriv = NULL;
spin_unlock_irqrestore(&es2->cport_out_urb_lock, flags);
/*
* Tell the submitter that the message send (attempt) is
* complete, and report the status.
*/
greybus_message_sent(hd, message, status);
free_urb(es2, urb);
}
static struct arpc *arpc_alloc(void *payload, u16 size, u8 type)
{
struct arpc *rpc;
if (size + sizeof(*rpc->req) > ARPC_OUT_SIZE_MAX)
return NULL;
rpc = kzalloc(sizeof(*rpc), GFP_KERNEL);
if (!rpc)
return NULL;
INIT_LIST_HEAD(&rpc->list);
rpc->req = kzalloc(sizeof(*rpc->req) + size, GFP_KERNEL);
if (!rpc->req)
goto err_free_rpc;
rpc->resp = kzalloc(sizeof(*rpc->resp), GFP_KERNEL);
if (!rpc->resp)
goto err_free_req;
rpc->req->type = type;
rpc->req->size = cpu_to_le16(sizeof(*rpc->req) + size);
memcpy(rpc->req->data, payload, size);
init_completion(&rpc->response_received);
return rpc;
err_free_req:
kfree(rpc->req);
err_free_rpc:
kfree(rpc);
return NULL;
}
static void arpc_free(struct arpc *rpc)
{
kfree(rpc->req);
kfree(rpc->resp);
kfree(rpc);
}
static struct arpc *arpc_find(struct es2_ap_dev *es2, __le16 id)
{
struct arpc *rpc;
list_for_each_entry(rpc, &es2->arpcs, list) {
if (rpc->req->id == id)
return rpc;
}
return NULL;
}
static void arpc_add(struct es2_ap_dev *es2, struct arpc *rpc)
{
rpc->active = true;
rpc->req->id = cpu_to_le16(es2->arpc_id_cycle++);
list_add_tail(&rpc->list, &es2->arpcs);
}
static void arpc_del(struct es2_ap_dev *es2, struct arpc *rpc)
{
if (rpc->active) {
rpc->active = false;
list_del(&rpc->list);
}
}
static int arpc_send(struct es2_ap_dev *es2, struct arpc *rpc, int timeout)
{
struct usb_device *udev = es2->usb_dev;
int retval;
retval = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
GB_APB_REQUEST_ARPC_RUN,
USB_DIR_OUT | USB_TYPE_VENDOR |
USB_RECIP_INTERFACE,
0, 0,
rpc->req, le16_to_cpu(rpc->req->size),
ES2_USB_CTRL_TIMEOUT);
if (retval != le16_to_cpu(rpc->req->size)) {
dev_err(&udev->dev,
"failed to send ARPC request %d: %d\n",
rpc->req->type, retval);
if (retval > 0)
retval = -EIO;
return retval;
}
return 0;
}
static int arpc_sync(struct es2_ap_dev *es2, u8 type, void *payload,
size_t size, int *result, unsigned int timeout)
{
struct arpc *rpc;
unsigned long flags;
int retval;
if (result)
*result = 0;
rpc = arpc_alloc(payload, size, type);
if (!rpc)
return -ENOMEM;
spin_lock_irqsave(&es2->arpc_lock, flags);
arpc_add(es2, rpc);
spin_unlock_irqrestore(&es2->arpc_lock, flags);
retval = arpc_send(es2, rpc, timeout);
if (retval)
goto out_arpc_del;
retval = wait_for_completion_interruptible_timeout(
&rpc->response_received,
msecs_to_jiffies(timeout));
if (retval <= 0) {
if (!retval)
retval = -ETIMEDOUT;
goto out_arpc_del;
}
if (rpc->resp->result) {
retval = -EREMOTEIO;
if (result)
*result = rpc->resp->result;
} else {
retval = 0;
}
out_arpc_del:
spin_lock_irqsave(&es2->arpc_lock, flags);
arpc_del(es2, rpc);
spin_unlock_irqrestore(&es2->arpc_lock, flags);
arpc_free(rpc);
if (retval < 0 && retval != -EREMOTEIO) {
dev_err(&es2->usb_dev->dev,
"failed to execute ARPC: %d\n", retval);
}
return retval;
}
static void arpc_in_callback(struct urb *urb)
{
struct es2_ap_dev *es2 = urb->context;
struct device *dev = &urb->dev->dev;
int status = check_urb_status(urb);
struct arpc *rpc;
struct arpc_response_message *resp;
unsigned long flags;
int retval;
if (status) {
if ((status == -EAGAIN) || (status == -EPROTO))
goto exit;
/* The urb is being unlinked */
if (status == -ENOENT || status == -ESHUTDOWN)
return;
dev_err(dev, "arpc in-urb error %d (dropped)\n", status);
return;
}
if (urb->actual_length < sizeof(*resp)) {
dev_err(dev, "short aprc response received\n");
goto exit;
}
resp = urb->transfer_buffer;
spin_lock_irqsave(&es2->arpc_lock, flags);
rpc = arpc_find(es2, resp->id);
if (!rpc) {
dev_err(dev, "invalid arpc response id received: %u\n",
le16_to_cpu(resp->id));
spin_unlock_irqrestore(&es2->arpc_lock, flags);
goto exit;
}
arpc_del(es2, rpc);
memcpy(rpc->resp, resp, sizeof(*resp));
complete(&rpc->response_received);
spin_unlock_irqrestore(&es2->arpc_lock, flags);
exit:
/* put our urb back in the request pool */
retval = usb_submit_urb(urb, GFP_ATOMIC);
if (retval)
dev_err(dev, "failed to resubmit arpc in-urb: %d\n", retval);
}
#define APB1_LOG_MSG_SIZE 64
static void apb_log_get(struct es2_ap_dev *es2, char *buf)
{
int retval;
do {
retval = usb_control_msg(es2->usb_dev,
usb_rcvctrlpipe(es2->usb_dev, 0),
GB_APB_REQUEST_LOG,
USB_DIR_IN | USB_TYPE_VENDOR |
USB_RECIP_INTERFACE,
0x00, 0x00,
buf,
APB1_LOG_MSG_SIZE,
ES2_USB_CTRL_TIMEOUT);
if (retval > 0)
kfifo_in(&es2->apb_log_fifo, buf, retval);
} while (retval > 0);
}
static int apb_log_poll(void *data)
{
struct es2_ap_dev *es2 = data;
char *buf;
buf = kmalloc(APB1_LOG_MSG_SIZE, GFP_KERNEL);
if (!buf)
return -ENOMEM;
while (!kthread_should_stop()) {
msleep(1000);
apb_log_get(es2, buf);
}
kfree(buf);
return 0;
}
static ssize_t apb_log_read(struct file *f, char __user *buf,
size_t count, loff_t *ppos)
{
struct es2_ap_dev *es2 = file_inode(f)->i_private;
ssize_t ret;
size_t copied;
char *tmp_buf;
if (count > APB1_LOG_SIZE)
count = APB1_LOG_SIZE;
tmp_buf = kmalloc(count, GFP_KERNEL);
if (!tmp_buf)
return -ENOMEM;
copied = kfifo_out(&es2->apb_log_fifo, tmp_buf, count);
ret = simple_read_from_buffer(buf, count, ppos, tmp_buf, copied);
kfree(tmp_buf);
return ret;
}
static const struct file_operations apb_log_fops = {
.read = apb_log_read,
};
static void usb_log_enable(struct es2_ap_dev *es2)
{
if (!IS_ERR_OR_NULL(es2->apb_log_task))
return;
/* get log from APB1 */
es2->apb_log_task = kthread_run(apb_log_poll, es2, "apb_log");
if (IS_ERR(es2->apb_log_task))
return;
/* XXX We will need to rename this per APB */
es2->apb_log_dentry = debugfs_create_file("apb_log", 0444,
gb_debugfs_get(), es2,
&apb_log_fops);
}
static void usb_log_disable(struct es2_ap_dev *es2)
{
if (IS_ERR_OR_NULL(es2->apb_log_task))
return;
debugfs_remove(es2->apb_log_dentry);
es2->apb_log_dentry = NULL;
kthread_stop(es2->apb_log_task);
es2->apb_log_task = NULL;
}
static ssize_t apb_log_enable_read(struct file *f, char __user *buf,
size_t count, loff_t *ppos)
{
struct es2_ap_dev *es2 = file_inode(f)->i_private;
int enable = !IS_ERR_OR_NULL(es2->apb_log_task);
char tmp_buf[3];
sprintf(tmp_buf, "%d\n", enable);
return simple_read_from_buffer(buf, count, ppos, tmp_buf, 3);
}
static ssize_t apb_log_enable_write(struct file *f, const char __user *buf,
size_t count, loff_t *ppos)
{
int enable;
ssize_t retval;
struct es2_ap_dev *es2 = file_inode(f)->i_private;
retval = kstrtoint_from_user(buf, count, 10, &enable);
if (retval)
return retval;
if (enable)
usb_log_enable(es2);
else
usb_log_disable(es2);
return count;
}
static const struct file_operations apb_log_enable_fops = {
.read = apb_log_enable_read,
.write = apb_log_enable_write,
};
static int apb_get_cport_count(struct usb_device *udev)
{
int retval;
__le16 *cport_count;
cport_count = kzalloc(sizeof(*cport_count), GFP_KERNEL);
if (!cport_count)
return -ENOMEM;
retval = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
GB_APB_REQUEST_CPORT_COUNT,
USB_DIR_IN | USB_TYPE_VENDOR |
USB_RECIP_INTERFACE, 0, 0, cport_count,
sizeof(*cport_count), ES2_USB_CTRL_TIMEOUT);
if (retval != sizeof(*cport_count)) {
dev_err(&udev->dev, "Cannot retrieve CPort count: %d\n",
retval);
if (retval >= 0)
retval = -EIO;
goto out;
}
retval = le16_to_cpu(*cport_count);
/* We need to fit a CPort ID in one byte of a message header */
if (retval > U8_MAX) {
retval = U8_MAX;
dev_warn(&udev->dev, "Limiting number of CPorts to U8_MAX\n");
}
out:
kfree(cport_count);
return retval;
}
/*
* The ES2 USB Bridge device has 15 endpoints
* 1 Control - usual USB stuff + AP -> APBridgeA messages
* 7 Bulk IN - CPort data in
* 7 Bulk OUT - CPort data out
*/
static int ap_probe(struct usb_interface *interface,
const struct usb_device_id *id)
{
struct es2_ap_dev *es2;
struct gb_host_device *hd;
struct usb_device *udev;
struct usb_host_interface *iface_desc;
struct usb_endpoint_descriptor *endpoint;
__u8 ep_addr;
int retval;
int i;
int num_cports;
bool bulk_out_found = false;
bool bulk_in_found = false;
bool arpc_in_found = false;
udev = usb_get_dev(interface_to_usbdev(interface));
num_cports = apb_get_cport_count(udev);
if (num_cports < 0) {
usb_put_dev(udev);
dev_err(&udev->dev, "Cannot retrieve CPort count: %d\n",
num_cports);
return num_cports;
}
hd = gb_hd_create(&es2_driver, &udev->dev, ES2_GBUF_MSG_SIZE_MAX,
num_cports);
if (IS_ERR(hd)) {
usb_put_dev(udev);
return PTR_ERR(hd);
}
es2 = hd_to_es2(hd);
es2->hd = hd;
es2->usb_intf = interface;
es2->usb_dev = udev;
spin_lock_init(&es2->cport_out_urb_lock);
INIT_KFIFO(es2->apb_log_fifo);
usb_set_intfdata(interface, es2);
/*
* Reserve the CDSI0 and CDSI1 CPorts so they won't be allocated
* dynamically.
*/
retval = gb_hd_cport_reserve(hd, ES2_CPORT_CDSI0);
if (retval)
goto error;
retval = gb_hd_cport_reserve(hd, ES2_CPORT_CDSI1);
if (retval)
goto error;
/* find all bulk endpoints */
iface_desc = interface->cur_altsetting;
for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
endpoint = &iface_desc->endpoint[i].desc;
ep_addr = endpoint->bEndpointAddress;
if (usb_endpoint_is_bulk_in(endpoint)) {
if (!bulk_in_found) {
es2->cport_in.endpoint = ep_addr;
bulk_in_found = true;
} else if (!arpc_in_found) {
es2->arpc_endpoint_in = ep_addr;
arpc_in_found = true;
} else {
dev_warn(&udev->dev,
"Unused bulk IN endpoint found: 0x%02x\n",
ep_addr);
}
continue;
}
if (usb_endpoint_is_bulk_out(endpoint)) {
if (!bulk_out_found) {
es2->cport_out_endpoint = ep_addr;
bulk_out_found = true;
} else {
dev_warn(&udev->dev,
"Unused bulk OUT endpoint found: 0x%02x\n",
ep_addr);
}
continue;
}
dev_warn(&udev->dev,
"Unknown endpoint type found, address 0x%02x\n",
ep_addr);
}
if (!bulk_in_found || !arpc_in_found || !bulk_out_found) {
dev_err(&udev->dev, "Not enough endpoints found in device, aborting!\n");
retval = -ENODEV;
goto error;
}
/* Allocate buffers for our cport in messages */
for (i = 0; i < NUM_CPORT_IN_URB; ++i) {
struct urb *urb;
u8 *buffer;
urb = usb_alloc_urb(0, GFP_KERNEL);
if (!urb) {
retval = -ENOMEM;
goto error;
}
es2->cport_in.urb[i] = urb;
buffer = kmalloc(ES2_GBUF_MSG_SIZE_MAX, GFP_KERNEL);
if (!buffer) {
retval = -ENOMEM;
goto error;
}
usb_fill_bulk_urb(urb, udev,
usb_rcvbulkpipe(udev, es2->cport_in.endpoint),
buffer, ES2_GBUF_MSG_SIZE_MAX,
cport_in_callback, hd);
es2->cport_in.buffer[i] = buffer;
}
/* Allocate buffers for ARPC in messages */
for (i = 0; i < NUM_ARPC_IN_URB; ++i) {
struct urb *urb;
u8 *buffer;
urb = usb_alloc_urb(0, GFP_KERNEL);
if (!urb) {
retval = -ENOMEM;
goto error;
}
es2->arpc_urb[i] = urb;
buffer = kmalloc(ARPC_IN_SIZE_MAX, GFP_KERNEL);
if (!buffer) {
retval = -ENOMEM;
goto error;
}
usb_fill_bulk_urb(urb, udev,
usb_rcvbulkpipe(udev,
es2->arpc_endpoint_in),
buffer, ARPC_IN_SIZE_MAX,
arpc_in_callback, es2);
es2->arpc_buffer[i] = buffer;
}
/* Allocate urbs for our CPort OUT messages */
for (i = 0; i < NUM_CPORT_OUT_URB; ++i) {
struct urb *urb;
urb = usb_alloc_urb(0, GFP_KERNEL);
if (!urb) {
retval = -ENOMEM;
goto error;
}
es2->cport_out_urb[i] = urb;
es2->cport_out_urb_busy[i] = false; /* just to be anal */
}
/* XXX We will need to rename this per APB */
es2->apb_log_enable_dentry = debugfs_create_file("apb_log_enable",
0644,
gb_debugfs_get(), es2,
&apb_log_enable_fops);
INIT_LIST_HEAD(&es2->arpcs);
spin_lock_init(&es2->arpc_lock);
retval = es2_arpc_in_enable(es2);
if (retval)
goto error;
retval = gb_hd_add(hd);
if (retval)
goto err_disable_arpc_in;
retval = es2_cport_in_enable(es2, &es2->cport_in);
if (retval)
goto err_hd_del;
return 0;
err_hd_del:
gb_hd_del(hd);
err_disable_arpc_in:
es2_arpc_in_disable(es2);
error:
es2_destroy(es2);
return retval;
}
static void ap_disconnect(struct usb_interface *interface)
{
struct es2_ap_dev *es2 = usb_get_intfdata(interface);
gb_hd_del(es2->hd);
es2_cport_in_disable(es2, &es2->cport_in);
es2_arpc_in_disable(es2);
es2_destroy(es2);
}
static struct usb_driver es2_ap_driver = {
.name = "es2_ap_driver",
.probe = ap_probe,
.disconnect = ap_disconnect,
.id_table = id_table,
.soft_unbind = 1,
};
module_usb_driver(es2_ap_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Greg Kroah-Hartman <gregkh@linuxfoundation.org>");