linux-sg2042/arch/x86/kernel/setup_64.c

1248 lines
31 KiB
C
Raw Normal View History

/*
* Copyright (C) 1995 Linus Torvalds
*/
/*
* This file handles the architecture-dependent parts of initialization
*/
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/a.out.h>
#include <linux/screen_info.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/initrd.h>
#include <linux/highmem.h>
#include <linux/bootmem.h>
#include <linux/module.h>
#include <asm/processor.h>
#include <linux/console.h>
#include <linux/seq_file.h>
#include <linux/crash_dump.h>
#include <linux/root_dev.h>
#include <linux/pci.h>
#include <linux/efi.h>
#include <linux/acpi.h>
#include <linux/kallsyms.h>
#include <linux/edd.h>
#include <linux/mmzone.h>
#include <linux/kexec.h>
#include <linux/cpufreq.h>
#include <linux/dmi.h>
#include <linux/dma-mapping.h>
#include <linux/ctype.h>
#include <linux/uaccess.h>
#include <asm/mtrr.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/vsyscall.h>
#include <asm/io.h>
#include <asm/smp.h>
#include <asm/msr.h>
#include <asm/desc.h>
#include <video/edid.h>
#include <asm/e820.h>
#include <asm/dma.h>
x86: disable the GART early, 64-bit For K8 system: 4G RAM with memory hole remapping enabled, or more than 4G RAM installed. when try to use kexec second kernel, and the first doesn't include gart_shutdown. the second kernel could have different aper position than the first kernel. and second kernel could use that hole as RAM that is still used by GART set by the first kernel. esp. when try to kexec 2.6.24 with sparse mem enable from previous kernel (from RHEL 5 or SLES 10). the new kernel will use aper by GART (set by first kernel) for vmemmap. and after new kernel setting one new GART. the position will be real RAM. the _mapcount set is lost. Bad page state in process 'swapper' page:ffffe2000e600020 flags:0x0000000000000000 mapping:0000000000000000 mapcount:1 count:0 Trying to fix it up, but a reboot is needed Backtrace: Pid: 0, comm: swapper Not tainted 2.6.24-rc7-smp-gcdf71a10-dirty #13 Call Trace: [<ffffffff8026401f>] bad_page+0x63/0x8d [<ffffffff80264169>] __free_pages_ok+0x7c/0x2a5 [<ffffffff80ba75d1>] free_all_bootmem_core+0xd0/0x198 [<ffffffff80ba3a42>] numa_free_all_bootmem+0x3b/0x76 [<ffffffff80ba3461>] mem_init+0x3b/0x152 [<ffffffff80b959d3>] start_kernel+0x236/0x2c2 [<ffffffff80b9511a>] _sinittext+0x11a/0x121 and [ffffe2000e600000-ffffe2000e7fffff] PMD ->ffff81001c200000 on node 0 phys addr is : 0x1c200000 RHEL 5.1 kernel -53 said: PCI-DMA: aperture base @ 1c000000 size 65536 KB new kernel said: Mapping aperture over 65536 KB of RAM @ 3c000000 So could try to disable that GART if possible. According to Ingo > hm, i'm wondering, instead of modifying the GART, why dont we simply > _detect_ whatever GART settings we have inherited, and propagate that > into our e820 maps? I.e. if there's inconsistency, then punch that out > from the memory maps and just dont use that memory. > > that way it would not matter whether the GART settings came from a [old > or crashing] Linux kernel that has not called gart_iommu_shutdown(), or > whether it's a BIOS that has set up an aperture hole inconsistent with > the memory map it passed. (or the memory map we _think_ i tried to pass > us) > > it would also be more robust to only read and do a memory map quirk > based on that, than actively trying to change the GART so early in the > bootup. Later on we have to re-enable the GART _anyway_ and have to > punch a hole for it. > > and as a bonus, we would have shored up our defenses against crappy > BIOSes as well. add e820 modification for gart inconsistent setting. gart_fix_e820=off could be used to disable e820 fix. Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:33:09 +08:00
#include <asm/gart.h>
#include <asm/mpspec.h>
#include <asm/mmu_context.h>
#include <asm/proto.h>
#include <asm/setup.h>
#include <asm/mach_apic.h>
#include <asm/numa.h>
#include <asm/sections.h>
#include <asm/dmi.h>
#include <asm/cacheflush.h>
#include <asm/mce.h>
#include <asm/ds.h>
#include <asm/topology.h>
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#else
#define ARCH_SETUP
#endif
/*
* Machine setup..
*/
struct cpuinfo_x86 boot_cpu_data __read_mostly;
EXPORT_SYMBOL(boot_cpu_data);
__u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
unsigned long mmu_cr4_features;
/* Boot loader ID as an integer, for the benefit of proc_dointvec */
int bootloader_type;
unsigned long saved_video_mode;
int force_mwait __cpuinitdata;
/*
* Early DMI memory
*/
int dmi_alloc_index;
char dmi_alloc_data[DMI_MAX_DATA];
/*
* Setup options
*/
struct screen_info screen_info;
EXPORT_SYMBOL(screen_info);
struct sys_desc_table_struct {
unsigned short length;
unsigned char table[0];
};
struct edid_info edid_info;
EXPORT_SYMBOL_GPL(edid_info);
extern int root_mountflags;
char __initdata command_line[COMMAND_LINE_SIZE];
struct resource standard_io_resources[] = {
{ .name = "dma1", .start = 0x00, .end = 0x1f,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "pic1", .start = 0x20, .end = 0x21,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "timer0", .start = 0x40, .end = 0x43,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "timer1", .start = 0x50, .end = 0x53,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "keyboard", .start = 0x60, .end = 0x6f,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "pic2", .start = 0xa0, .end = 0xa1,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "dma2", .start = 0xc0, .end = 0xdf,
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
{ .name = "fpu", .start = 0xf0, .end = 0xff,
.flags = IORESOURCE_BUSY | IORESOURCE_IO }
};
#define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
static struct resource data_resource = {
.name = "Kernel data",
.start = 0,
.end = 0,
.flags = IORESOURCE_RAM,
};
static struct resource code_resource = {
.name = "Kernel code",
.start = 0,
.end = 0,
.flags = IORESOURCE_RAM,
};
static struct resource bss_resource = {
.name = "Kernel bss",
.start = 0,
.end = 0,
.flags = IORESOURCE_RAM,
};
static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c);
#ifdef CONFIG_PROC_VMCORE
/* elfcorehdr= specifies the location of elf core header
* stored by the crashed kernel. This option will be passed
* by kexec loader to the capture kernel.
*/
static int __init setup_elfcorehdr(char *arg)
{
char *end;
if (!arg)
return -EINVAL;
elfcorehdr_addr = memparse(arg, &end);
return end > arg ? 0 : -EINVAL;
}
early_param("elfcorehdr", setup_elfcorehdr);
#endif
#ifndef CONFIG_NUMA
static void __init
contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long bootmap_size, bootmap;
bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
if (bootmap == -1L)
panic("Cannot find bootmem map of size %ld\n", bootmap_size);
bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
e820_register_active_regions(0, start_pfn, end_pfn);
free_bootmem_with_active_regions(0, end_pfn);
reserve_bootmem(bootmap, bootmap_size);
}
#endif
#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
struct edd edd;
#ifdef CONFIG_EDD_MODULE
EXPORT_SYMBOL(edd);
#endif
/**
* copy_edd() - Copy the BIOS EDD information
* from boot_params into a safe place.
*
*/
static inline void copy_edd(void)
{
memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
sizeof(edd.mbr_signature));
memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
edd.edd_info_nr = boot_params.eddbuf_entries;
}
#else
static inline void copy_edd(void)
{
}
#endif
#ifdef CONFIG_KEXEC
static void __init reserve_crashkernel(void)
{
unsigned long long free_mem;
unsigned long long crash_size, crash_base;
int ret;
free_mem =
((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
ret = parse_crashkernel(boot_command_line, free_mem,
&crash_size, &crash_base);
if (ret == 0 && crash_size) {
if (crash_base > 0) {
printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
"for crashkernel (System RAM: %ldMB)\n",
(unsigned long)(crash_size >> 20),
(unsigned long)(crash_base >> 20),
(unsigned long)(free_mem >> 20));
crashk_res.start = crash_base;
crashk_res.end = crash_base + crash_size - 1;
reserve_bootmem(crash_base, crash_size);
} else
printk(KERN_INFO "crashkernel reservation failed - "
"you have to specify a base address\n");
}
}
#else
static inline void __init reserve_crashkernel(void)
{}
#endif
/* Overridden in paravirt.c if CONFIG_PARAVIRT */
void __attribute__((weak)) __init memory_setup(void)
{
machine_specific_memory_setup();
}
void __init setup_arch(char **cmdline_p)
{
unsigned i;
printk(KERN_INFO "Command line: %s\n", boot_command_line);
ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
screen_info = boot_params.screen_info;
edid_info = boot_params.edid_info;
saved_video_mode = boot_params.hdr.vid_mode;
bootloader_type = boot_params.hdr.type_of_loader;
#ifdef CONFIG_BLK_DEV_RAM
rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
#endif
#ifdef CONFIG_EFI
if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
"EL64", 4))
efi_enabled = 1;
#endif
ARCH_SETUP
memory_setup();
copy_edd();
if (!boot_params.hdr.root_flags)
root_mountflags &= ~MS_RDONLY;
init_mm.start_code = (unsigned long) &_text;
init_mm.end_code = (unsigned long) &_etext;
init_mm.end_data = (unsigned long) &_edata;
init_mm.brk = (unsigned long) &_end;
code_resource.start = virt_to_phys(&_text);
code_resource.end = virt_to_phys(&_etext)-1;
data_resource.start = virt_to_phys(&_etext);
data_resource.end = virt_to_phys(&_edata)-1;
bss_resource.start = virt_to_phys(&__bss_start);
bss_resource.end = virt_to_phys(&__bss_stop)-1;
early_identify_cpu(&boot_cpu_data);
strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
*cmdline_p = command_line;
parse_early_param();
finish_e820_parsing();
x86: disable the GART early, 64-bit For K8 system: 4G RAM with memory hole remapping enabled, or more than 4G RAM installed. when try to use kexec second kernel, and the first doesn't include gart_shutdown. the second kernel could have different aper position than the first kernel. and second kernel could use that hole as RAM that is still used by GART set by the first kernel. esp. when try to kexec 2.6.24 with sparse mem enable from previous kernel (from RHEL 5 or SLES 10). the new kernel will use aper by GART (set by first kernel) for vmemmap. and after new kernel setting one new GART. the position will be real RAM. the _mapcount set is lost. Bad page state in process 'swapper' page:ffffe2000e600020 flags:0x0000000000000000 mapping:0000000000000000 mapcount:1 count:0 Trying to fix it up, but a reboot is needed Backtrace: Pid: 0, comm: swapper Not tainted 2.6.24-rc7-smp-gcdf71a10-dirty #13 Call Trace: [<ffffffff8026401f>] bad_page+0x63/0x8d [<ffffffff80264169>] __free_pages_ok+0x7c/0x2a5 [<ffffffff80ba75d1>] free_all_bootmem_core+0xd0/0x198 [<ffffffff80ba3a42>] numa_free_all_bootmem+0x3b/0x76 [<ffffffff80ba3461>] mem_init+0x3b/0x152 [<ffffffff80b959d3>] start_kernel+0x236/0x2c2 [<ffffffff80b9511a>] _sinittext+0x11a/0x121 and [ffffe2000e600000-ffffe2000e7fffff] PMD ->ffff81001c200000 on node 0 phys addr is : 0x1c200000 RHEL 5.1 kernel -53 said: PCI-DMA: aperture base @ 1c000000 size 65536 KB new kernel said: Mapping aperture over 65536 KB of RAM @ 3c000000 So could try to disable that GART if possible. According to Ingo > hm, i'm wondering, instead of modifying the GART, why dont we simply > _detect_ whatever GART settings we have inherited, and propagate that > into our e820 maps? I.e. if there's inconsistency, then punch that out > from the memory maps and just dont use that memory. > > that way it would not matter whether the GART settings came from a [old > or crashing] Linux kernel that has not called gart_iommu_shutdown(), or > whether it's a BIOS that has set up an aperture hole inconsistent with > the memory map it passed. (or the memory map we _think_ i tried to pass > us) > > it would also be more robust to only read and do a memory map quirk > based on that, than actively trying to change the GART so early in the > bootup. Later on we have to re-enable the GART _anyway_ and have to > punch a hole for it. > > and as a bonus, we would have shored up our defenses against crappy > BIOSes as well. add e820 modification for gart inconsistent setting. gart_fix_e820=off could be used to disable e820 fix. Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:33:09 +08:00
early_gart_iommu_check();
e820_register_active_regions(0, 0, -1UL);
/*
* partially used pages are not usable - thus
* we are rounding upwards:
*/
end_pfn = e820_end_of_ram();
x86, 32-bit: trim memory not covered by wb mtrrs On some machines, buggy BIOSes don't properly setup WB MTRRs to cover all available RAM, meaning the last few megs (or even gigs) of memory will be marked uncached. Since Linux tends to allocate from high memory addresses first, this causes the machine to be unusably slow as soon as the kernel starts really using memory (i.e. right around init time). This patch works around the problem by scanning the MTRRs at boot and figuring out whether the current end_pfn value (setup by early e820 code) goes beyond the highest WB MTRR range, and if so, trimming it to match. A fairly obnoxious KERN_WARNING is printed too, letting the user know that not all of their memory is available due to a likely BIOS bug. Something similar could be done on i386 if needed, but the boot ordering would be slightly different, since the MTRR code on i386 depends on the boot_cpu_data structure being setup. This patch fixes a bug in the last patch that caused the code to run on non-Intel machines (AMD machines apparently don't need it and it's untested on other non-Intel machines, so best keep it off). Further enhancements and fixes from: Yinghai Lu <Yinghai.Lu@Sun.COM> Andi Kleen <ak@suse.de> Signed-off-by: Jesse Barnes <jesse.barnes@intel.com> Tested-by: Justin Piszcz <jpiszcz@lucidpixels.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Yinghai Lu <yhlu.kernel@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:33:18 +08:00
/* update e820 for memory not covered by WB MTRRs */
mtrr_bp_init();
if (mtrr_trim_uncached_memory(end_pfn)) {
e820_register_active_regions(0, 0, -1UL);
end_pfn = e820_end_of_ram();
}
num_physpages = end_pfn;
check_efer();
init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
if (efi_enabled)
efi_init();
dmi_scan_machine();
x86: provide a DMI based port 0x80 I/O delay override. x86: provide a DMI based port 0x80 I/O delay override. Certain (HP) laptops experience trouble from our port 0x80 I/O delay writes. This patch provides for a DMI based switch to the "alternate diagnostic port" 0xed (as used by some BIOSes as well) for these. David P. Reed confirmed that port 0xed works for him and provides a proper delay. The symptoms of _not_ working are a hanging machine, with "hwclock" use being a direct trigger. Earlier versions of this attempted to simply use udelay(2), with the 2 being a value tested to be a nicely conservative upper-bound with help from many on the linux-kernel mailinglist but that approach has two problems. First, pre-loops_per_jiffy calibration (which is post PIT init while some implementations of the PIT are actually one of the historically problematic devices that need the delay) udelay() isn't particularly well-defined. We could initialise loops_per_jiffy conservatively (and based on CPU family so as to not unduly delay old machines) which would sort of work, but... Second, delaying isn't the only effect that a write to port 0x80 has. It's also a PCI posting barrier which some devices may be explicitly or implicitly relying on. Alan Cox did a survey and found evidence that additionally some drivers may be racy on SMP without the bus locking outb. Switching to an inb() makes the timing too unpredictable and as such, this DMI based switch should be the safest approach for now. Any more invasive changes should get more rigid testing first. It's moreover only very few machines with the problem and a DMI based hack seems to fit that situation. This also introduces a command-line parameter "io_delay" to override the DMI based choice again: io_delay=<standard|alternate> where "standard" means using the standard port 0x80 and "alternate" port 0xed. This retains the udelay method as a config (CONFIG_UDELAY_IO_DELAY) and command-line ("io_delay=udelay") choice for testing purposes as well. This does not change the io_delay() in the boot code which is using the same port 0x80 I/O delay but those do not appear to be a problem as David P. Reed reported the problem was already gone after using the udelay version. He moreover reported that booting with "acpi=off" also fixed things and seeing as how ACPI isn't touched until after this DMI based I/O port switch I believe it's safe to leave the ones in the boot code be. The DMI strings from David's HP Pavilion dv9000z are in there already and we need to get/verify the DMI info from other machines with the problem, notably the HP Pavilion dv6000z. This patch is partly based on earlier patches from Pavel Machek and David P. Reed. Signed-off-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 20:30:05 +08:00
io_delay_init();
#ifdef CONFIG_SMP
/* setup to use the early static init tables during kernel startup */
x86_cpu_to_apicid_early_ptr = (void *)&x86_cpu_to_apicid_init;
#ifdef CONFIG_NUMA
x86_cpu_to_node_map_early_ptr = (void *)&x86_cpu_to_node_map_init;
#endif
x86_bios_cpu_apicid_early_ptr = (void *)&x86_bios_cpu_apicid_init;
#endif
#ifdef CONFIG_ACPI
/*
* Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
* Call this early for SRAT node setup.
*/
acpi_boot_table_init();
#endif
/* How many end-of-memory variables you have, grandma! */
max_low_pfn = end_pfn;
max_pfn = end_pfn;
high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
/* Remove active ranges so rediscovery with NUMA-awareness happens */
remove_all_active_ranges();
#ifdef CONFIG_ACPI_NUMA
/*
* Parse SRAT to discover nodes.
*/
acpi_numa_init();
#endif
#ifdef CONFIG_NUMA
numa_initmem_init(0, end_pfn);
#else
contig_initmem_init(0, end_pfn);
#endif
early_res_to_bootmem();
#ifdef CONFIG_ACPI_SLEEP
/*
* Reserve low memory region for sleep support.
*/
acpi_reserve_bootmem();
#endif
if (efi_enabled) {
efi_map_memmap();
efi_reserve_bootmem();
}
/*
* Find and reserve possible boot-time SMP configuration:
*/
find_smp_config();
#ifdef CONFIG_BLK_DEV_INITRD
if (boot_params.hdr.type_of_loader && boot_params.hdr.ramdisk_image) {
unsigned long ramdisk_image = boot_params.hdr.ramdisk_image;
unsigned long ramdisk_size = boot_params.hdr.ramdisk_size;
unsigned long ramdisk_end = ramdisk_image + ramdisk_size;
unsigned long end_of_mem = end_pfn << PAGE_SHIFT;
if (ramdisk_end <= end_of_mem) {
reserve_bootmem_generic(ramdisk_image, ramdisk_size);
initrd_start = ramdisk_image + PAGE_OFFSET;
initrd_end = initrd_start+ramdisk_size;
} else {
/* Assumes everything on node 0 */
free_bootmem(ramdisk_image, ramdisk_size);
printk(KERN_ERR "initrd extends beyond end of memory "
"(0x%08lx > 0x%08lx)\ndisabling initrd\n",
ramdisk_end, end_of_mem);
initrd_start = 0;
}
}
#endif
reserve_crashkernel();
paging_init();
map_vsyscall();
early_quirks();
/*
* set this early, so we dont allocate cpu0
* if MADT list doesnt list BSP first
* mpparse.c/MP_processor_info() allocates logical cpu numbers.
*/
cpu_set(0, cpu_present_map);
#ifdef CONFIG_ACPI
/*
* Read APIC and some other early information from ACPI tables.
*/
acpi_boot_init();
#endif
init_cpu_to_node();
/*
* get boot-time SMP configuration:
*/
if (smp_found_config)
get_smp_config();
init_apic_mappings();
ioapic_init_mappings();
/*
* We trust e820 completely. No explicit ROM probing in memory.
*/
e820_reserve_resources(&code_resource, &data_resource, &bss_resource);
e820_mark_nosave_regions();
/* request I/O space for devices used on all i[345]86 PCs */
for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
request_resource(&ioport_resource, &standard_io_resources[i]);
e820_setup_gap();
#ifdef CONFIG_VT
#if defined(CONFIG_VGA_CONSOLE)
if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
conswitchp = &vga_con;
#elif defined(CONFIG_DUMMY_CONSOLE)
conswitchp = &dummy_con;
#endif
#endif
}
static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
{
unsigned int *v;
if (c->extended_cpuid_level < 0x80000004)
return 0;
v = (unsigned int *) c->x86_model_id;
cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
c->x86_model_id[48] = 0;
return 1;
}
static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
{
unsigned int n, dummy, eax, ebx, ecx, edx;
n = c->extended_cpuid_level;
if (n >= 0x80000005) {
cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), "
"D cache %dK (%d bytes/line)\n",
edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
c->x86_cache_size = (ecx>>24) + (edx>>24);
/* On K8 L1 TLB is inclusive, so don't count it */
c->x86_tlbsize = 0;
}
if (n >= 0x80000006) {
cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
ecx = cpuid_ecx(0x80000006);
c->x86_cache_size = ecx >> 16;
c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
c->x86_cache_size, ecx & 0xFF);
}
if (n >= 0x80000008) {
cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
c->x86_virt_bits = (eax >> 8) & 0xff;
c->x86_phys_bits = eax & 0xff;
}
}
#ifdef CONFIG_NUMA
static int nearby_node(int apicid)
{
int i, node;
for (i = apicid - 1; i >= 0; i--) {
node = apicid_to_node[i];
if (node != NUMA_NO_NODE && node_online(node))
return node;
}
for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
node = apicid_to_node[i];
if (node != NUMA_NO_NODE && node_online(node))
return node;
}
return first_node(node_online_map); /* Shouldn't happen */
}
#endif
/*
* On a AMD dual core setup the lower bits of the APIC id distingush the cores.
* Assumes number of cores is a power of two.
*/
static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_SMP
unsigned bits;
#ifdef CONFIG_NUMA
int cpu = smp_processor_id();
int node = 0;
unsigned apicid = hard_smp_processor_id();
#endif
bits = c->x86_coreid_bits;
/* Low order bits define the core id (index of core in socket) */
c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
/* Convert the APIC ID into the socket ID */
c->phys_proc_id = phys_pkg_id(bits);
#ifdef CONFIG_NUMA
node = c->phys_proc_id;
if (apicid_to_node[apicid] != NUMA_NO_NODE)
node = apicid_to_node[apicid];
if (!node_online(node)) {
/* Two possibilities here:
- The CPU is missing memory and no node was created.
In that case try picking one from a nearby CPU
- The APIC IDs differ from the HyperTransport node IDs
which the K8 northbridge parsing fills in.
Assume they are all increased by a constant offset,
but in the same order as the HT nodeids.
If that doesn't result in a usable node fall back to the
path for the previous case. */
int ht_nodeid = apicid - (cpu_data(0).phys_proc_id << bits);
if (ht_nodeid >= 0 &&
apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
node = apicid_to_node[ht_nodeid];
/* Pick a nearby node */
if (!node_online(node))
node = nearby_node(apicid);
}
numa_set_node(cpu, node);
printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
#endif
#endif
}
static void __cpuinit early_init_amd_mc(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_SMP
unsigned bits, ecx;
/* Multi core CPU? */
if (c->extended_cpuid_level < 0x80000008)
return;
ecx = cpuid_ecx(0x80000008);
c->x86_max_cores = (ecx & 0xff) + 1;
/* CPU telling us the core id bits shift? */
bits = (ecx >> 12) & 0xF;
/* Otherwise recompute */
if (bits == 0) {
while ((1 << bits) < c->x86_max_cores)
bits++;
}
c->x86_coreid_bits = bits;
#endif
}
#define ENABLE_C1E_MASK 0x18000000
#define CPUID_PROCESSOR_SIGNATURE 1
#define CPUID_XFAM 0x0ff00000
#define CPUID_XFAM_K8 0x00000000
#define CPUID_XFAM_10H 0x00100000
#define CPUID_XFAM_11H 0x00200000
#define CPUID_XMOD 0x000f0000
#define CPUID_XMOD_REV_F 0x00040000
/* AMD systems with C1E don't have a working lAPIC timer. Check for that. */
static __cpuinit int amd_apic_timer_broken(void)
{
u32 lo, hi, eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
switch (eax & CPUID_XFAM) {
case CPUID_XFAM_K8:
if ((eax & CPUID_XMOD) < CPUID_XMOD_REV_F)
break;
case CPUID_XFAM_10H:
case CPUID_XFAM_11H:
rdmsr(MSR_K8_ENABLE_C1E, lo, hi);
if (lo & ENABLE_C1E_MASK)
return 1;
break;
default:
/* err on the side of caution */
return 1;
}
return 0;
}
static void __cpuinit early_init_amd(struct cpuinfo_x86 *c)
{
early_init_amd_mc(c);
/* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
if (c->x86_power & (1<<8))
set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
}
static void __cpuinit init_amd(struct cpuinfo_x86 *c)
{
unsigned level;
#ifdef CONFIG_SMP
unsigned long value;
/*
* Disable TLB flush filter by setting HWCR.FFDIS on K8
* bit 6 of msr C001_0015
*
* Errata 63 for SH-B3 steppings
* Errata 122 for all steppings (F+ have it disabled by default)
*/
if (c->x86 == 15) {
rdmsrl(MSR_K8_HWCR, value);
value |= 1 << 6;
wrmsrl(MSR_K8_HWCR, value);
}
#endif
/* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
clear_bit(0*32+31, (unsigned long *)&c->x86_capability);
/* On C+ stepping K8 rep microcode works well for copy/memset */
level = cpuid_eax(1);
if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) ||
level >= 0x0f58))
set_cpu_cap(c, X86_FEATURE_REP_GOOD);
if (c->x86 == 0x10 || c->x86 == 0x11)
set_cpu_cap(c, X86_FEATURE_REP_GOOD);
/* Enable workaround for FXSAVE leak */
if (c->x86 >= 6)
set_cpu_cap(c, X86_FEATURE_FXSAVE_LEAK);
level = get_model_name(c);
if (!level) {
switch (c->x86) {
case 15:
/* Should distinguish Models here, but this is only
a fallback anyways. */
strcpy(c->x86_model_id, "Hammer");
break;
}
}
display_cacheinfo(c);
/* Multi core CPU? */
if (c->extended_cpuid_level >= 0x80000008)
amd_detect_cmp(c);
if (c->extended_cpuid_level >= 0x80000006 &&
(cpuid_edx(0x80000006) & 0xf000))
num_cache_leaves = 4;
else
num_cache_leaves = 3;
if (c->x86 == 0xf || c->x86 == 0x10 || c->x86 == 0x11)
set_cpu_cap(c, X86_FEATURE_K8);
/* MFENCE stops RDTSC speculation */
set_cpu_cap(c, X86_FEATURE_MFENCE_RDTSC);
if (amd_apic_timer_broken())
disable_apic_timer = 1;
}
void __cpuinit detect_ht(struct cpuinfo_x86 *c)
{
#ifdef CONFIG_SMP
u32 eax, ebx, ecx, edx;
int index_msb, core_bits;
cpuid(1, &eax, &ebx, &ecx, &edx);
if (!cpu_has(c, X86_FEATURE_HT))
return;
if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
goto out;
smp_num_siblings = (ebx & 0xff0000) >> 16;
if (smp_num_siblings == 1) {
printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
} else if (smp_num_siblings > 1) {
if (smp_num_siblings > NR_CPUS) {
printk(KERN_WARNING "CPU: Unsupported number of "
"siblings %d", smp_num_siblings);
smp_num_siblings = 1;
return;
}
index_msb = get_count_order(smp_num_siblings);
c->phys_proc_id = phys_pkg_id(index_msb);
smp_num_siblings = smp_num_siblings / c->x86_max_cores;
index_msb = get_count_order(smp_num_siblings);
core_bits = get_count_order(c->x86_max_cores);
c->cpu_core_id = phys_pkg_id(index_msb) &
((1 << core_bits) - 1);
}
out:
if ((c->x86_max_cores * smp_num_siblings) > 1) {
printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
c->phys_proc_id);
printk(KERN_INFO "CPU: Processor Core ID: %d\n",
c->cpu_core_id);
}
#endif
}
/*
* find out the number of processor cores on the die
*/
static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
{
unsigned int eax, t;
if (c->cpuid_level < 4)
return 1;
cpuid_count(4, 0, &eax, &t, &t, &t);
if (eax & 0x1f)
return ((eax >> 26) + 1);
else
return 1;
}
static void srat_detect_node(void)
{
#ifdef CONFIG_NUMA
unsigned node;
int cpu = smp_processor_id();
int apicid = hard_smp_processor_id();
/* Don't do the funky fallback heuristics the AMD version employs
for now. */
node = apicid_to_node[apicid];
if (node == NUMA_NO_NODE)
node = first_node(node_online_map);
numa_set_node(cpu, node);
printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
#endif
}
static void __cpuinit early_init_intel(struct cpuinfo_x86 *c)
{
if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
(c->x86 == 0x6 && c->x86_model >= 0x0e))
set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
}
static void __cpuinit init_intel(struct cpuinfo_x86 *c)
{
/* Cache sizes */
unsigned n;
init_intel_cacheinfo(c);
if (c->cpuid_level > 9) {
unsigned eax = cpuid_eax(10);
/* Check for version and the number of counters */
if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
}
if (cpu_has_ds) {
unsigned int l1, l2;
rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
if (!(l1 & (1<<11)))
set_cpu_cap(c, X86_FEATURE_BTS);
if (!(l1 & (1<<12)))
set_cpu_cap(c, X86_FEATURE_PEBS);
}
if (cpu_has_bts)
ds_init_intel(c);
n = c->extended_cpuid_level;
if (n >= 0x80000008) {
unsigned eax = cpuid_eax(0x80000008);
c->x86_virt_bits = (eax >> 8) & 0xff;
c->x86_phys_bits = eax & 0xff;
/* CPUID workaround for Intel 0F34 CPU */
if (c->x86_vendor == X86_VENDOR_INTEL &&
c->x86 == 0xF && c->x86_model == 0x3 &&
c->x86_mask == 0x4)
c->x86_phys_bits = 36;
}
if (c->x86 == 15)
c->x86_cache_alignment = c->x86_clflush_size * 2;
if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
(c->x86 == 0x6 && c->x86_model >= 0x0e))
set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
if (c->x86 == 6)
set_cpu_cap(c, X86_FEATURE_REP_GOOD);
set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
c->x86_max_cores = intel_num_cpu_cores(c);
srat_detect_node();
}
static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
{
char *v = c->x86_vendor_id;
if (!strcmp(v, "AuthenticAMD"))
c->x86_vendor = X86_VENDOR_AMD;
else if (!strcmp(v, "GenuineIntel"))
c->x86_vendor = X86_VENDOR_INTEL;
else
c->x86_vendor = X86_VENDOR_UNKNOWN;
}
struct cpu_model_info {
int vendor;
int family;
char *model_names[16];
};
/* Do some early cpuid on the boot CPU to get some parameter that are
needed before check_bugs. Everything advanced is in identify_cpu
below. */
static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
{
u32 tfms, xlvl;
c->loops_per_jiffy = loops_per_jiffy;
c->x86_cache_size = -1;
c->x86_vendor = X86_VENDOR_UNKNOWN;
c->x86_model = c->x86_mask = 0; /* So far unknown... */
c->x86_vendor_id[0] = '\0'; /* Unset */
c->x86_model_id[0] = '\0'; /* Unset */
c->x86_clflush_size = 64;
c->x86_cache_alignment = c->x86_clflush_size;
c->x86_max_cores = 1;
c->x86_coreid_bits = 0;
c->extended_cpuid_level = 0;
memset(&c->x86_capability, 0, sizeof c->x86_capability);
/* Get vendor name */
cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
(unsigned int *)&c->x86_vendor_id[0],
(unsigned int *)&c->x86_vendor_id[8],
(unsigned int *)&c->x86_vendor_id[4]);
get_cpu_vendor(c);
/* Initialize the standard set of capabilities */
/* Note that the vendor-specific code below might override */
/* Intel-defined flags: level 0x00000001 */
if (c->cpuid_level >= 0x00000001) {
__u32 misc;
cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
&c->x86_capability[0]);
c->x86 = (tfms >> 8) & 0xf;
c->x86_model = (tfms >> 4) & 0xf;
c->x86_mask = tfms & 0xf;
if (c->x86 == 0xf)
c->x86 += (tfms >> 20) & 0xff;
if (c->x86 >= 0x6)
c->x86_model += ((tfms >> 16) & 0xF) << 4;
if (c->x86_capability[0] & (1<<19))
c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
} else {
/* Have CPUID level 0 only - unheard of */
c->x86 = 4;
}
#ifdef CONFIG_SMP
c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
#endif
/* AMD-defined flags: level 0x80000001 */
xlvl = cpuid_eax(0x80000000);
c->extended_cpuid_level = xlvl;
if ((xlvl & 0xffff0000) == 0x80000000) {
if (xlvl >= 0x80000001) {
c->x86_capability[1] = cpuid_edx(0x80000001);
c->x86_capability[6] = cpuid_ecx(0x80000001);
}
if (xlvl >= 0x80000004)
get_model_name(c); /* Default name */
}
/* Transmeta-defined flags: level 0x80860001 */
xlvl = cpuid_eax(0x80860000);
if ((xlvl & 0xffff0000) == 0x80860000) {
/* Don't set x86_cpuid_level here for now to not confuse. */
if (xlvl >= 0x80860001)
c->x86_capability[2] = cpuid_edx(0x80860001);
}
c->extended_cpuid_level = cpuid_eax(0x80000000);
if (c->extended_cpuid_level >= 0x80000007)
c->x86_power = cpuid_edx(0x80000007);
switch (c->x86_vendor) {
case X86_VENDOR_AMD:
early_init_amd(c);
break;
case X86_VENDOR_INTEL:
early_init_intel(c);
break;
}
}
/*
* This does the hard work of actually picking apart the CPU stuff...
*/
void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
{
int i;
early_identify_cpu(c);
init_scattered_cpuid_features(c);
c->apicid = phys_pkg_id(0);
/*
* Vendor-specific initialization. In this section we
* canonicalize the feature flags, meaning if there are
* features a certain CPU supports which CPUID doesn't
* tell us, CPUID claiming incorrect flags, or other bugs,
* we handle them here.
*
* At the end of this section, c->x86_capability better
* indicate the features this CPU genuinely supports!
*/
switch (c->x86_vendor) {
case X86_VENDOR_AMD:
init_amd(c);
break;
case X86_VENDOR_INTEL:
init_intel(c);
break;
case X86_VENDOR_UNKNOWN:
default:
display_cacheinfo(c);
break;
}
detect_ht(c);
/*
* On SMP, boot_cpu_data holds the common feature set between
* all CPUs; so make sure that we indicate which features are
* common between the CPUs. The first time this routine gets
* executed, c == &boot_cpu_data.
*/
if (c != &boot_cpu_data) {
/* AND the already accumulated flags with these */
for (i = 0; i < NCAPINTS; i++)
boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
}
/* Clear all flags overriden by options */
for (i = 0; i < NCAPINTS; i++)
c->x86_capability[i] ^= cleared_cpu_caps[i];
#ifdef CONFIG_X86_MCE
mcheck_init(c);
#endif
select_idle_routine(c);
if (c != &boot_cpu_data)
mtrr_ap_init();
#ifdef CONFIG_NUMA
numa_add_cpu(smp_processor_id());
#endif
}
static __init int setup_noclflush(char *arg)
{
setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
return 1;
}
__setup("noclflush", setup_noclflush);
void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
{
if (c->x86_model_id[0])
printk(KERN_INFO "%s", c->x86_model_id);
if (c->x86_mask || c->cpuid_level >= 0)
printk(KERN_CONT " stepping %02x\n", c->x86_mask);
else
printk(KERN_CONT "\n");
}
/*
* Get CPU information for use by the procfs.
*/
static int show_cpuinfo(struct seq_file *m, void *v)
{
struct cpuinfo_x86 *c = v;
int cpu = 0, i;
/*
* These flag bits must match the definitions in <asm/cpufeature.h>.
* NULL means this bit is undefined or reserved; either way it doesn't
* have meaning as far as Linux is concerned. Note that it's important
* to realize there is a difference between this table and CPUID -- if
* applications want to get the raw CPUID data, they should access
* /dev/cpu/<cpu_nr>/cpuid instead.
*/
static const char *const x86_cap_flags[] = {
/* Intel-defined */
"fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
"cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
"pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
"fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", "pbe",
/* AMD-defined */
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
NULL, "fxsr_opt", "pdpe1gb", "rdtscp", NULL, "lm",
"3dnowext", "3dnow",
/* Transmeta-defined */
"recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
/* Other (Linux-defined) */
"cxmmx", "k6_mtrr", "cyrix_arr", "centaur_mcr",
NULL, NULL, NULL, NULL,
"constant_tsc", "up", NULL, "arch_perfmon",
"pebs", "bts", NULL, "sync_rdtsc",
"rep_good", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
/* Intel-defined (#2) */
"pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
"tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL,
NULL, NULL, "dca", "sse4_1", "sse4_2", NULL, NULL, "popcnt",
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
/* VIA/Cyrix/Centaur-defined */
NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
"ace2", "ace2_en", "phe", "phe_en", "pmm", "pmm_en", NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
/* AMD-defined (#2) */
"lahf_lm", "cmp_legacy", "svm", "extapic",
"cr8_legacy", "abm", "sse4a", "misalignsse",
"3dnowprefetch", "osvw", "ibs", "sse5",
"skinit", "wdt", NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
/* Auxiliary (Linux-defined) */
"ida", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
};
static const char *const x86_power_flags[] = {
"ts", /* temperature sensor */
"fid", /* frequency id control */
"vid", /* voltage id control */
"ttp", /* thermal trip */
"tm",
"stc",
"100mhzsteps",
"hwpstate",
"", /* tsc invariant mapped to constant_tsc */
/* nothing */
};
#ifdef CONFIG_SMP
cpu = c->cpu_index;
#endif
seq_printf(m, "processor\t: %u\n"
"vendor_id\t: %s\n"
"cpu family\t: %d\n"
"model\t\t: %d\n"
"model name\t: %s\n",
(unsigned)cpu,
c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
c->x86,
(int)c->x86_model,
c->x86_model_id[0] ? c->x86_model_id : "unknown");
if (c->x86_mask || c->cpuid_level >= 0)
seq_printf(m, "stepping\t: %d\n", c->x86_mask);
else
seq_printf(m, "stepping\t: unknown\n");
if (cpu_has(c, X86_FEATURE_TSC)) {
unsigned int freq = cpufreq_quick_get((unsigned)cpu);
if (!freq)
freq = cpu_khz;
seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
freq / 1000, (freq % 1000));
}
/* Cache size */
if (c->x86_cache_size >= 0)
seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
#ifdef CONFIG_SMP
if (smp_num_siblings * c->x86_max_cores > 1) {
seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
seq_printf(m, "siblings\t: %d\n",
cpus_weight(per_cpu(cpu_core_map, cpu)));
seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
}
#endif
seq_printf(m,
"fpu\t\t: yes\n"
"fpu_exception\t: yes\n"
"cpuid level\t: %d\n"
"wp\t\t: yes\n"
"flags\t\t:",
c->cpuid_level);
for (i = 0; i < 32*NCAPINTS; i++)
if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
seq_printf(m, " %s", x86_cap_flags[i]);
seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
c->loops_per_jiffy/(500000/HZ),
(c->loops_per_jiffy/(5000/HZ)) % 100);
if (c->x86_tlbsize > 0)
seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
c->x86_phys_bits, c->x86_virt_bits);
seq_printf(m, "power management:");
for (i = 0; i < 32; i++) {
if (c->x86_power & (1 << i)) {
if (i < ARRAY_SIZE(x86_power_flags) &&
x86_power_flags[i])
seq_printf(m, "%s%s",
x86_power_flags[i][0]?" ":"",
x86_power_flags[i]);
else
seq_printf(m, " [%d]", i);
}
}
seq_printf(m, "\n\n");
return 0;
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
if (*pos == 0) /* just in case, cpu 0 is not the first */
*pos = first_cpu(cpu_online_map);
if ((*pos) < NR_CPUS && cpu_online(*pos))
return &cpu_data(*pos);
return NULL;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
*pos = next_cpu(*pos, cpu_online_map);
return c_start(m, pos);
}
static void c_stop(struct seq_file *m, void *v)
{
}
struct seq_operations cpuinfo_op = {
.start = c_start,
.next = c_next,
.stop = c_stop,
.show = show_cpuinfo,
};