linux-sg2042/include/linux/rwsem.h

192 lines
5.8 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
/* rwsem.h: R/W semaphores, public interface
*
* Written by David Howells (dhowells@redhat.com).
* Derived from asm-i386/semaphore.h
*/
#ifndef _LINUX_RWSEM_H
#define _LINUX_RWSEM_H
#include <linux/linkage.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/atomic.h>
locking/rwsem: Introduce basis for down_write_killable() Introduce a generic implementation necessary for down_write_killable(). This is a trivial extension of the already existing down_write() call which can be interrupted by SIGKILL. This patch doesn't provide down_write_killable() yet because arches have to provide the necessary pieces before. rwsem_down_write_failed() which is a generic slow path for the write lock is extended to take a task state and renamed to __rwsem_down_write_failed_common(). The return value is either a valid semaphore pointer or ERR_PTR(-EINTR). rwsem_down_write_failed_killable() is exported as a new way to wait for the lock and be killable. For rwsem-spinlock implementation the current __down_write() it updated in a similar way as __rwsem_down_write_failed_common() except it doesn't need new exports just visible __down_write_killable(). Architectures which are not using the generic rwsem implementation are supposed to provide their __down_write_killable() implementation and use rwsem_down_write_failed_killable() for the slow path. Signed-off-by: Michal Hocko <mhocko@suse.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Chris Zankel <chris@zankel.net> Cc: David S. Miller <davem@davemloft.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Cc: Signed-off-by: Jason Low <jason.low2@hp.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: linux-alpha@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linux-ia64@vger.kernel.org Cc: linux-s390@vger.kernel.org Cc: linux-sh@vger.kernel.org Cc: linux-xtensa@linux-xtensa.org Cc: sparclinux@vger.kernel.org Link: http://lkml.kernel.org/r/1460041951-22347-7-git-send-email-mhocko@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-07 23:12:26 +08:00
#include <linux/err.h>
#ifdef CONFIG_RWSEM_SPIN_ON_OWNER
locking/spinlocks/mcs: Convert osq lock to atomic_t to reduce overhead The cancellable MCS spinlock is currently used to queue threads that are doing optimistic spinning. It uses per-cpu nodes, where a thread obtaining the lock would access and queue the local node corresponding to the CPU that it's running on. Currently, the cancellable MCS lock is implemented by using pointers to these nodes. In this patch, instead of operating on pointers to the per-cpu nodes, we store the CPU numbers in which the per-cpu nodes correspond to in atomic_t. A similar concept is used with the qspinlock. By operating on the CPU # of the nodes using atomic_t instead of pointers to those nodes, this can reduce the overhead of the cancellable MCS spinlock by 32 bits (on 64 bit systems). Signed-off-by: Jason Low <jason.low2@hp.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Scott Norton <scott.norton@hp.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Waiman Long <waiman.long@hp.com> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: Rik van Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Aswin Chandramouleeswaran <aswin@hp.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Chris Mason <clm@fb.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Josef Bacik <jbacik@fusionio.com> Link: http://lkml.kernel.org/r/1405358872-3732-3-git-send-email-jason.low2@hp.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-15 01:27:49 +08:00
#include <linux/osq_lock.h>
#endif
locking/rwsem: Optimize rwsem structure for uncontended lock acquisition For an uncontended rwsem, count and owner are the only fields a task needs to touch when acquiring the rwsem. So they are put next to each other to increase the chance that they will share the same cacheline. On a ThunderX2 99xx (arm64) system with 32K L1 cache and 256K L2 cache, a rwsem locking microbenchmark with one locking thread was run to write-lock and write-unlock an array of rwsems separated 2 cachelines apart in a 1M byte memory block. The locking rates (kops/s) of the microbenchmark when the rwsems are at various "long" (8-byte) offsets from beginning of the cacheline before and after the patch were as follows: Cacheline Offset Pre-patch Post-patch ---------------- --------- ---------- 0 17,449 16,588 1 17,450 16,465 2 17,450 16,460 3 17,453 16,462 4 14,867 16,471 5 14,867 16,470 6 14,853 16,464 7 14,867 13,172 Before the patch, the count and owner are 4 "long"s apart. After the patch, they are only 1 "long" apart. The rwsem data have to be loaded from the L3 cache for each access. It can be seen that the locking rates are more consistent after the patch than before. Note that for this particular system, the performance drop happens whenever the count and owner are at an odd multiples of "long"s apart. No performance drop was observed when only a single rwsem was used (hot cache). So the drop is likely just an idiosyncrasy of the cache architecture of this chip than an inherent problem with the patch. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Waiman Long <longman@redhat.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Will Deacon <will.deacon@arm.com> Link: http://lkml.kernel.org/r/20190404174320.22416-12-longman@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-05 01:43:20 +08:00
/*
* For an uncontended rwsem, count and owner are the only fields a task
* needs to touch when acquiring the rwsem. So they are put next to each
* other to increase the chance that they will share the same cacheline.
*
* In a contended rwsem, the owner is likely the most frequently accessed
* field in the structure as the optimistic waiter that holds the osq lock
* will spin on owner. For an embedded rwsem, other hot fields in the
* containing structure should be moved further away from the rwsem to
* reduce the chance that they will share the same cacheline causing
* cacheline bouncing problem.
*/
struct rw_semaphore {
atomic_long_t count;
#ifdef CONFIG_RWSEM_SPIN_ON_OWNER
locking/rwsem: Support optimistic spinning We have reached the point where our mutexes are quite fine tuned for a number of situations. This includes the use of heuristics and optimistic spinning, based on MCS locking techniques. Exclusive ownership of read-write semaphores are, conceptually, just about the same as mutexes, making them close cousins. To this end we need to make them both perform similarly, and right now, rwsems are simply not up to it. This was discovered by both reverting commit 4fc3f1d6 (mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable) and similarly, converting some other mutexes (ie: i_mmap_mutex) to rwsems. This creates a situation where users have to choose between a rwsem and mutex taking into account this important performance difference. Specifically, biggest difference between both locks is when we fail to acquire a mutex in the fastpath, optimistic spinning comes in to play and we can avoid a large amount of unnecessary sleeping and overhead of moving tasks in and out of wait queue. Rwsems do not have such logic. This patch, based on the work from Tim Chen and I, adds support for write-side optimistic spinning when the lock is contended. It also includes support for the recently added cancelable MCS locking for adaptive spinning. Note that is is only applicable to the xadd method, and the spinlock rwsem variant remains intact. Allowing optimistic spinning before putting the writer on the wait queue reduces wait queue contention and provided greater chance for the rwsem to get acquired. With these changes, rwsem is on par with mutex. The performance benefits can be seen on a number of workloads. For instance, on a 8 socket, 80 core 64bit Westmere box, aim7 shows the following improvements in throughput: +--------------+---------------------+-----------------+ | Workload | throughput-increase | number of users | +--------------+---------------------+-----------------+ | alltests | 20% | >1000 | | custom | 27%, 60% | 10-100, >1000 | | high_systime | 36%, 30% | >100, >1000 | | shared | 58%, 29% | 10-100, >1000 | +--------------+---------------------+-----------------+ There was also improvement on smaller systems, such as a quad-core x86-64 laptop running a 30Gb PostgreSQL (pgbench) workload for up to +60% in throughput for over 50 clients. Additionally, benefits were also noticed in exim (mail server) workloads. Furthermore, no performance regression have been seen at all. Based-on-work-from: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Davidlohr Bueso <davidlohr@hp.com> [peterz: rej fixup due to comment patches, sched/rt.h header] Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Alex Shi <alex.shi@linaro.org> Cc: Andi Kleen <andi@firstfloor.org> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Hurley <peter@hurleysoftware.com> Cc: "Paul E.McKenney" <paulmck@linux.vnet.ibm.com> Cc: Jason Low <jason.low2@hp.com> Cc: Aswin Chandramouleeswaran <aswin@hp.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: "Scott J Norton" <scott.norton@hp.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Chris Mason <clm@fb.com> Cc: Josef Bacik <jbacik@fusionio.com> Link: http://lkml.kernel.org/r/1399055055.6275.15.camel@buesod1.americas.hpqcorp.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-05-03 02:24:15 +08:00
/*
* Write owner. Used as a speculative check to see
* if the owner is running on the cpu.
*/
struct task_struct *owner;
locking/rwsem: Optimize rwsem structure for uncontended lock acquisition For an uncontended rwsem, count and owner are the only fields a task needs to touch when acquiring the rwsem. So they are put next to each other to increase the chance that they will share the same cacheline. On a ThunderX2 99xx (arm64) system with 32K L1 cache and 256K L2 cache, a rwsem locking microbenchmark with one locking thread was run to write-lock and write-unlock an array of rwsems separated 2 cachelines apart in a 1M byte memory block. The locking rates (kops/s) of the microbenchmark when the rwsems are at various "long" (8-byte) offsets from beginning of the cacheline before and after the patch were as follows: Cacheline Offset Pre-patch Post-patch ---------------- --------- ---------- 0 17,449 16,588 1 17,450 16,465 2 17,450 16,460 3 17,453 16,462 4 14,867 16,471 5 14,867 16,470 6 14,853 16,464 7 14,867 13,172 Before the patch, the count and owner are 4 "long"s apart. After the patch, they are only 1 "long" apart. The rwsem data have to be loaded from the L3 cache for each access. It can be seen that the locking rates are more consistent after the patch than before. Note that for this particular system, the performance drop happens whenever the count and owner are at an odd multiples of "long"s apart. No performance drop was observed when only a single rwsem was used (hot cache). So the drop is likely just an idiosyncrasy of the cache architecture of this chip than an inherent problem with the patch. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Waiman Long <longman@redhat.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Will Deacon <will.deacon@arm.com> Link: http://lkml.kernel.org/r/20190404174320.22416-12-longman@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-05 01:43:20 +08:00
struct optimistic_spin_queue osq; /* spinner MCS lock */
locking/rwsem: Support optimistic spinning We have reached the point where our mutexes are quite fine tuned for a number of situations. This includes the use of heuristics and optimistic spinning, based on MCS locking techniques. Exclusive ownership of read-write semaphores are, conceptually, just about the same as mutexes, making them close cousins. To this end we need to make them both perform similarly, and right now, rwsems are simply not up to it. This was discovered by both reverting commit 4fc3f1d6 (mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable) and similarly, converting some other mutexes (ie: i_mmap_mutex) to rwsems. This creates a situation where users have to choose between a rwsem and mutex taking into account this important performance difference. Specifically, biggest difference between both locks is when we fail to acquire a mutex in the fastpath, optimistic spinning comes in to play and we can avoid a large amount of unnecessary sleeping and overhead of moving tasks in and out of wait queue. Rwsems do not have such logic. This patch, based on the work from Tim Chen and I, adds support for write-side optimistic spinning when the lock is contended. It also includes support for the recently added cancelable MCS locking for adaptive spinning. Note that is is only applicable to the xadd method, and the spinlock rwsem variant remains intact. Allowing optimistic spinning before putting the writer on the wait queue reduces wait queue contention and provided greater chance for the rwsem to get acquired. With these changes, rwsem is on par with mutex. The performance benefits can be seen on a number of workloads. For instance, on a 8 socket, 80 core 64bit Westmere box, aim7 shows the following improvements in throughput: +--------------+---------------------+-----------------+ | Workload | throughput-increase | number of users | +--------------+---------------------+-----------------+ | alltests | 20% | >1000 | | custom | 27%, 60% | 10-100, >1000 | | high_systime | 36%, 30% | >100, >1000 | | shared | 58%, 29% | 10-100, >1000 | +--------------+---------------------+-----------------+ There was also improvement on smaller systems, such as a quad-core x86-64 laptop running a 30Gb PostgreSQL (pgbench) workload for up to +60% in throughput for over 50 clients. Additionally, benefits were also noticed in exim (mail server) workloads. Furthermore, no performance regression have been seen at all. Based-on-work-from: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Davidlohr Bueso <davidlohr@hp.com> [peterz: rej fixup due to comment patches, sched/rt.h header] Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Alex Shi <alex.shi@linaro.org> Cc: Andi Kleen <andi@firstfloor.org> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Hurley <peter@hurleysoftware.com> Cc: "Paul E.McKenney" <paulmck@linux.vnet.ibm.com> Cc: Jason Low <jason.low2@hp.com> Cc: Aswin Chandramouleeswaran <aswin@hp.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: "Scott J Norton" <scott.norton@hp.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Chris Mason <clm@fb.com> Cc: Josef Bacik <jbacik@fusionio.com> Link: http://lkml.kernel.org/r/1399055055.6275.15.camel@buesod1.americas.hpqcorp.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-05-03 02:24:15 +08:00
#endif
locking/rwsem: Optimize rwsem structure for uncontended lock acquisition For an uncontended rwsem, count and owner are the only fields a task needs to touch when acquiring the rwsem. So they are put next to each other to increase the chance that they will share the same cacheline. On a ThunderX2 99xx (arm64) system with 32K L1 cache and 256K L2 cache, a rwsem locking microbenchmark with one locking thread was run to write-lock and write-unlock an array of rwsems separated 2 cachelines apart in a 1M byte memory block. The locking rates (kops/s) of the microbenchmark when the rwsems are at various "long" (8-byte) offsets from beginning of the cacheline before and after the patch were as follows: Cacheline Offset Pre-patch Post-patch ---------------- --------- ---------- 0 17,449 16,588 1 17,450 16,465 2 17,450 16,460 3 17,453 16,462 4 14,867 16,471 5 14,867 16,470 6 14,853 16,464 7 14,867 13,172 Before the patch, the count and owner are 4 "long"s apart. After the patch, they are only 1 "long" apart. The rwsem data have to be loaded from the L3 cache for each access. It can be seen that the locking rates are more consistent after the patch than before. Note that for this particular system, the performance drop happens whenever the count and owner are at an odd multiples of "long"s apart. No performance drop was observed when only a single rwsem was used (hot cache). So the drop is likely just an idiosyncrasy of the cache architecture of this chip than an inherent problem with the patch. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Waiman Long <longman@redhat.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Will Deacon <will.deacon@arm.com> Link: http://lkml.kernel.org/r/20190404174320.22416-12-longman@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-05 01:43:20 +08:00
raw_spinlock_t wait_lock;
struct list_head wait_list;
#ifdef CONFIG_DEBUG_LOCK_ALLOC
struct lockdep_map dep_map;
#endif
};
locking/percpu-rwsem: Annotate rwsem ownership transfer by setting RWSEM_OWNER_UNKNOWN The filesystem freezing code needs to transfer ownership of a rwsem embedded in a percpu-rwsem from the task that does the freezing to another one that does the thawing by calling percpu_rwsem_release() after freezing and percpu_rwsem_acquire() before thawing. However, the new rwsem debug code runs afoul with this scheme by warning that the task that releases the rwsem isn't the one that acquires it, as reported by Amir Goldstein: DEBUG_LOCKS_WARN_ON(sem->owner != get_current()) WARNING: CPU: 1 PID: 1401 at /home/amir/build/src/linux/kernel/locking/rwsem.c:133 up_write+0x59/0x79 Call Trace: percpu_up_write+0x1f/0x28 thaw_super_locked+0xdf/0x120 do_vfs_ioctl+0x270/0x5f1 ksys_ioctl+0x52/0x71 __x64_sys_ioctl+0x16/0x19 do_syscall_64+0x5d/0x167 entry_SYSCALL_64_after_hwframe+0x49/0xbe To work properly with the rwsem debug code, we need to annotate that the rwsem ownership is unknown during the tranfer period until a brave soul comes forward to acquire the ownership. During that period, optimistic spinning will be disabled. Reported-by: Amir Goldstein <amir73il@gmail.com> Tested-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Waiman Long <longman@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Jan Kara <jack@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Theodore Y. Ts'o <tytso@mit.edu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-fsdevel@vger.kernel.org Link: http://lkml.kernel.org/r/1526420991-21213-3-git-send-email-longman@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-16 05:49:51 +08:00
/*
locking/rwsem: Make owner store task pointer of last owning reader Currently, when a reader acquires a lock, it only sets the RWSEM_READER_OWNED bit in the owner field. The other bits are simply not used. When debugging hanging cases involving rwsems and readers, the owner value does not provide much useful information at all. This patch modifies the current behavior to always store the task_struct pointer of the last rwsem-acquiring reader in a reader-owned rwsem. This may be useful in debugging rwsem hanging cases especially if only one reader is involved. However, the task in the owner field may not the real owner or one of the real owners at all when the owner value is examined, for example, in a crash dump. So it is just an additional hint about the past history. If CONFIG_DEBUG_RWSEMS=y is enabled, the owner field will be checked at unlock time too to make sure the task pointer value is valid. That does have a slight performance cost and so is only enabled as part of that debug option. From the performance point of view, it is expected that the changes shouldn't have any noticeable performance impact. A rwsem microbenchmark (with 48 worker threads and 1:1 reader/writer ratio) was ran on a 2-socket 24-core 48-thread Haswell system. The locking rates on a 4.19-rc1 based kernel were as follows: 1) Unpatched kernel: 543.3 kops/s 2) Patched kernel: 549.2 kops/s 3) Patched kernel (CONFIG_DEBUG_RWSEMS on): 546.6 kops/s There was actually a slight increase in performance (1.1%) in this particular case. Maybe it was caused by the elimination of a branch or just a testing noise. Turning on the CONFIG_DEBUG_RWSEMS option also had less than the expected impact on performance. The least significant 2 bits of the owner value are now used to designate the rwsem is readers owned and the owners are anonymous. Signed-off-by: Waiman Long <longman@redhat.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Link: http://lkml.kernel.org/r/1536265114-10842-1-git-send-email-longman@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-09-07 04:18:34 +08:00
* Setting bit 1 of the owner field but not bit 0 will indicate
locking/percpu-rwsem: Annotate rwsem ownership transfer by setting RWSEM_OWNER_UNKNOWN The filesystem freezing code needs to transfer ownership of a rwsem embedded in a percpu-rwsem from the task that does the freezing to another one that does the thawing by calling percpu_rwsem_release() after freezing and percpu_rwsem_acquire() before thawing. However, the new rwsem debug code runs afoul with this scheme by warning that the task that releases the rwsem isn't the one that acquires it, as reported by Amir Goldstein: DEBUG_LOCKS_WARN_ON(sem->owner != get_current()) WARNING: CPU: 1 PID: 1401 at /home/amir/build/src/linux/kernel/locking/rwsem.c:133 up_write+0x59/0x79 Call Trace: percpu_up_write+0x1f/0x28 thaw_super_locked+0xdf/0x120 do_vfs_ioctl+0x270/0x5f1 ksys_ioctl+0x52/0x71 __x64_sys_ioctl+0x16/0x19 do_syscall_64+0x5d/0x167 entry_SYSCALL_64_after_hwframe+0x49/0xbe To work properly with the rwsem debug code, we need to annotate that the rwsem ownership is unknown during the tranfer period until a brave soul comes forward to acquire the ownership. During that period, optimistic spinning will be disabled. Reported-by: Amir Goldstein <amir73il@gmail.com> Tested-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Waiman Long <longman@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Jan Kara <jack@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Theodore Y. Ts'o <tytso@mit.edu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-fsdevel@vger.kernel.org Link: http://lkml.kernel.org/r/1526420991-21213-3-git-send-email-longman@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-16 05:49:51 +08:00
* that the rwsem is writer-owned with an unknown owner.
*/
locking/rwsem: Make owner store task pointer of last owning reader Currently, when a reader acquires a lock, it only sets the RWSEM_READER_OWNED bit in the owner field. The other bits are simply not used. When debugging hanging cases involving rwsems and readers, the owner value does not provide much useful information at all. This patch modifies the current behavior to always store the task_struct pointer of the last rwsem-acquiring reader in a reader-owned rwsem. This may be useful in debugging rwsem hanging cases especially if only one reader is involved. However, the task in the owner field may not the real owner or one of the real owners at all when the owner value is examined, for example, in a crash dump. So it is just an additional hint about the past history. If CONFIG_DEBUG_RWSEMS=y is enabled, the owner field will be checked at unlock time too to make sure the task pointer value is valid. That does have a slight performance cost and so is only enabled as part of that debug option. From the performance point of view, it is expected that the changes shouldn't have any noticeable performance impact. A rwsem microbenchmark (with 48 worker threads and 1:1 reader/writer ratio) was ran on a 2-socket 24-core 48-thread Haswell system. The locking rates on a 4.19-rc1 based kernel were as follows: 1) Unpatched kernel: 543.3 kops/s 2) Patched kernel: 549.2 kops/s 3) Patched kernel (CONFIG_DEBUG_RWSEMS on): 546.6 kops/s There was actually a slight increase in performance (1.1%) in this particular case. Maybe it was caused by the elimination of a branch or just a testing noise. Turning on the CONFIG_DEBUG_RWSEMS option also had less than the expected impact on performance. The least significant 2 bits of the owner value are now used to designate the rwsem is readers owned and the owners are anonymous. Signed-off-by: Waiman Long <longman@redhat.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Link: http://lkml.kernel.org/r/1536265114-10842-1-git-send-email-longman@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-09-07 04:18:34 +08:00
#define RWSEM_OWNER_UNKNOWN ((struct task_struct *)-2L)
locking/percpu-rwsem: Annotate rwsem ownership transfer by setting RWSEM_OWNER_UNKNOWN The filesystem freezing code needs to transfer ownership of a rwsem embedded in a percpu-rwsem from the task that does the freezing to another one that does the thawing by calling percpu_rwsem_release() after freezing and percpu_rwsem_acquire() before thawing. However, the new rwsem debug code runs afoul with this scheme by warning that the task that releases the rwsem isn't the one that acquires it, as reported by Amir Goldstein: DEBUG_LOCKS_WARN_ON(sem->owner != get_current()) WARNING: CPU: 1 PID: 1401 at /home/amir/build/src/linux/kernel/locking/rwsem.c:133 up_write+0x59/0x79 Call Trace: percpu_up_write+0x1f/0x28 thaw_super_locked+0xdf/0x120 do_vfs_ioctl+0x270/0x5f1 ksys_ioctl+0x52/0x71 __x64_sys_ioctl+0x16/0x19 do_syscall_64+0x5d/0x167 entry_SYSCALL_64_after_hwframe+0x49/0xbe To work properly with the rwsem debug code, we need to annotate that the rwsem ownership is unknown during the tranfer period until a brave soul comes forward to acquire the ownership. During that period, optimistic spinning will be disabled. Reported-by: Amir Goldstein <amir73il@gmail.com> Tested-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Waiman Long <longman@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Jan Kara <jack@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Theodore Y. Ts'o <tytso@mit.edu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-fsdevel@vger.kernel.org Link: http://lkml.kernel.org/r/1526420991-21213-3-git-send-email-longman@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-16 05:49:51 +08:00
/* In all implementations count != 0 means locked */
static inline int rwsem_is_locked(struct rw_semaphore *sem)
{
return atomic_long_read(&sem->count) != 0;
}
locking/rwsem: Remove arch specific rwsem files As the generic rwsem-xadd code is using the appropriate acquire and release versions of the atomic operations, the arch specific rwsem.h files will not be that much faster than the generic code as long as the atomic functions are properly implemented. So we can remove those arch specific rwsem.h and stop building asm/rwsem.h to reduce maintenance effort. Currently, only x86, alpha and ia64 have implemented architecture specific fast paths. I don't have access to alpha and ia64 systems for testing, but they are legacy systems that are not likely to be updated to the latest kernel anyway. By using a rwsem microbenchmark, the total locking rates on a 4-socket 56-core 112-thread x86-64 system before and after the patch were as follows (mixed means equal # of read and write locks): Before Patch After Patch # of Threads wlock rlock mixed wlock rlock mixed ------------ ----- ----- ----- ----- ----- ----- 1 29,201 30,143 29,458 28,615 30,172 29,201 2 6,807 13,299 1,171 7,725 15,025 1,804 4 6,504 12,755 1,520 7,127 14,286 1,345 8 6,762 13,412 764 6,826 13,652 726 16 6,693 15,408 662 6,599 15,938 626 32 6,145 15,286 496 5,549 15,487 511 64 5,812 15,495 60 5,858 15,572 60 There were some run-to-run variations for the multi-thread tests. For x86-64, using the generic C code fast path seems to be a little bit faster than the assembly version with low lock contention. Looking at the assembly version of the fast paths, there are assembly to/from C code wrappers that save and restore all the callee-clobbered registers (7 registers on x86-64). The assembly generated from the generic C code doesn't need to do that. That may explain the slight performance gain here. The generic asm rwsem.h can also be merged into kernel/locking/rwsem.h with no code change as no other code other than those under kernel/locking needs to access the internal rwsem macros and functions. Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-c6x-dev@linux-c6x.org Cc: linux-m68k@lists.linux-m68k.org Cc: linux-riscv@lists.infradead.org Cc: linux-um@lists.infradead.org Cc: linux-xtensa@linux-xtensa.org Cc: linuxppc-dev@lists.ozlabs.org Cc: nios2-dev@lists.rocketboards.org Cc: openrisc@lists.librecores.org Cc: uclinux-h8-devel@lists.sourceforge.jp Link: https://lkml.kernel.org/r/20190322143008.21313-2-longman@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-03-22 22:30:06 +08:00
#define RWSEM_UNLOCKED_VALUE 0L
#define __RWSEM_INIT_COUNT(name) .count = ATOMIC_LONG_INIT(RWSEM_UNLOCKED_VALUE)
/* Common initializer macros and functions */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
# define __RWSEM_DEP_MAP_INIT(lockname) , .dep_map = { .name = #lockname }
#else
# define __RWSEM_DEP_MAP_INIT(lockname)
#endif
#ifdef CONFIG_RWSEM_SPIN_ON_OWNER
locking/rwsem: Reduce the size of struct rw_semaphore Recent optimistic spinning additions to rwsem provide significant performance benefits on many workloads on large machines. The cost of it was increasing the size of the rwsem structure by up to 128 bits. However, now that the previous patches in this series bring the overhead of struct optimistic_spin_queue to 32 bits, this patch reorders some fields in struct rw_semaphore such that we can reduce the overhead of the rwsem structure by 64 bits (on 64 bit systems). The extra overhead required for rwsem optimistic spinning would now be up to 8 additional bytes instead of up to 16 bytes. Additionally, the size of rwsem would now be more in line with mutexes. Signed-off-by: Jason Low <jason.low2@hp.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Scott Norton <scott.norton@hp.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Waiman Long <waiman.long@hp.com> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: Rik van Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Aswin Chandramouleeswaran <aswin@hp.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Chris Mason <clm@fb.com> Cc: Josef Bacik <jbacik@fusionio.com> Link: http://lkml.kernel.org/r/1405358872-3732-6-git-send-email-jason.low2@hp.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-15 01:27:52 +08:00
#define __RWSEM_OPT_INIT(lockname) , .osq = OSQ_LOCK_UNLOCKED, .owner = NULL
locking/rwsem: Support optimistic spinning We have reached the point where our mutexes are quite fine tuned for a number of situations. This includes the use of heuristics and optimistic spinning, based on MCS locking techniques. Exclusive ownership of read-write semaphores are, conceptually, just about the same as mutexes, making them close cousins. To this end we need to make them both perform similarly, and right now, rwsems are simply not up to it. This was discovered by both reverting commit 4fc3f1d6 (mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable) and similarly, converting some other mutexes (ie: i_mmap_mutex) to rwsems. This creates a situation where users have to choose between a rwsem and mutex taking into account this important performance difference. Specifically, biggest difference between both locks is when we fail to acquire a mutex in the fastpath, optimistic spinning comes in to play and we can avoid a large amount of unnecessary sleeping and overhead of moving tasks in and out of wait queue. Rwsems do not have such logic. This patch, based on the work from Tim Chen and I, adds support for write-side optimistic spinning when the lock is contended. It also includes support for the recently added cancelable MCS locking for adaptive spinning. Note that is is only applicable to the xadd method, and the spinlock rwsem variant remains intact. Allowing optimistic spinning before putting the writer on the wait queue reduces wait queue contention and provided greater chance for the rwsem to get acquired. With these changes, rwsem is on par with mutex. The performance benefits can be seen on a number of workloads. For instance, on a 8 socket, 80 core 64bit Westmere box, aim7 shows the following improvements in throughput: +--------------+---------------------+-----------------+ | Workload | throughput-increase | number of users | +--------------+---------------------+-----------------+ | alltests | 20% | >1000 | | custom | 27%, 60% | 10-100, >1000 | | high_systime | 36%, 30% | >100, >1000 | | shared | 58%, 29% | 10-100, >1000 | +--------------+---------------------+-----------------+ There was also improvement on smaller systems, such as a quad-core x86-64 laptop running a 30Gb PostgreSQL (pgbench) workload for up to +60% in throughput for over 50 clients. Additionally, benefits were also noticed in exim (mail server) workloads. Furthermore, no performance regression have been seen at all. Based-on-work-from: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Davidlohr Bueso <davidlohr@hp.com> [peterz: rej fixup due to comment patches, sched/rt.h header] Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Alex Shi <alex.shi@linaro.org> Cc: Andi Kleen <andi@firstfloor.org> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Hurley <peter@hurleysoftware.com> Cc: "Paul E.McKenney" <paulmck@linux.vnet.ibm.com> Cc: Jason Low <jason.low2@hp.com> Cc: Aswin Chandramouleeswaran <aswin@hp.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: "Scott J Norton" <scott.norton@hp.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Chris Mason <clm@fb.com> Cc: Josef Bacik <jbacik@fusionio.com> Link: http://lkml.kernel.org/r/1399055055.6275.15.camel@buesod1.americas.hpqcorp.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-05-03 02:24:15 +08:00
#else
locking/rwsem: Reduce the size of struct rw_semaphore Recent optimistic spinning additions to rwsem provide significant performance benefits on many workloads on large machines. The cost of it was increasing the size of the rwsem structure by up to 128 bits. However, now that the previous patches in this series bring the overhead of struct optimistic_spin_queue to 32 bits, this patch reorders some fields in struct rw_semaphore such that we can reduce the overhead of the rwsem structure by 64 bits (on 64 bit systems). The extra overhead required for rwsem optimistic spinning would now be up to 8 additional bytes instead of up to 16 bytes. Additionally, the size of rwsem would now be more in line with mutexes. Signed-off-by: Jason Low <jason.low2@hp.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Scott Norton <scott.norton@hp.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Waiman Long <waiman.long@hp.com> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: Rik van Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Aswin Chandramouleeswaran <aswin@hp.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Chris Mason <clm@fb.com> Cc: Josef Bacik <jbacik@fusionio.com> Link: http://lkml.kernel.org/r/1405358872-3732-6-git-send-email-jason.low2@hp.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-15 01:27:52 +08:00
#define __RWSEM_OPT_INIT(lockname)
locking/rwsem: Support optimistic spinning We have reached the point where our mutexes are quite fine tuned for a number of situations. This includes the use of heuristics and optimistic spinning, based on MCS locking techniques. Exclusive ownership of read-write semaphores are, conceptually, just about the same as mutexes, making them close cousins. To this end we need to make them both perform similarly, and right now, rwsems are simply not up to it. This was discovered by both reverting commit 4fc3f1d6 (mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable) and similarly, converting some other mutexes (ie: i_mmap_mutex) to rwsems. This creates a situation where users have to choose between a rwsem and mutex taking into account this important performance difference. Specifically, biggest difference between both locks is when we fail to acquire a mutex in the fastpath, optimistic spinning comes in to play and we can avoid a large amount of unnecessary sleeping and overhead of moving tasks in and out of wait queue. Rwsems do not have such logic. This patch, based on the work from Tim Chen and I, adds support for write-side optimistic spinning when the lock is contended. It also includes support for the recently added cancelable MCS locking for adaptive spinning. Note that is is only applicable to the xadd method, and the spinlock rwsem variant remains intact. Allowing optimistic spinning before putting the writer on the wait queue reduces wait queue contention and provided greater chance for the rwsem to get acquired. With these changes, rwsem is on par with mutex. The performance benefits can be seen on a number of workloads. For instance, on a 8 socket, 80 core 64bit Westmere box, aim7 shows the following improvements in throughput: +--------------+---------------------+-----------------+ | Workload | throughput-increase | number of users | +--------------+---------------------+-----------------+ | alltests | 20% | >1000 | | custom | 27%, 60% | 10-100, >1000 | | high_systime | 36%, 30% | >100, >1000 | | shared | 58%, 29% | 10-100, >1000 | +--------------+---------------------+-----------------+ There was also improvement on smaller systems, such as a quad-core x86-64 laptop running a 30Gb PostgreSQL (pgbench) workload for up to +60% in throughput for over 50 clients. Additionally, benefits were also noticed in exim (mail server) workloads. Furthermore, no performance regression have been seen at all. Based-on-work-from: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Davidlohr Bueso <davidlohr@hp.com> [peterz: rej fixup due to comment patches, sched/rt.h header] Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Alex Shi <alex.shi@linaro.org> Cc: Andi Kleen <andi@firstfloor.org> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Hurley <peter@hurleysoftware.com> Cc: "Paul E.McKenney" <paulmck@linux.vnet.ibm.com> Cc: Jason Low <jason.low2@hp.com> Cc: Aswin Chandramouleeswaran <aswin@hp.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: "Scott J Norton" <scott.norton@hp.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Chris Mason <clm@fb.com> Cc: Josef Bacik <jbacik@fusionio.com> Link: http://lkml.kernel.org/r/1399055055.6275.15.camel@buesod1.americas.hpqcorp.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-05-03 02:24:15 +08:00
#endif
locking/rwsem: Reduce the size of struct rw_semaphore Recent optimistic spinning additions to rwsem provide significant performance benefits on many workloads on large machines. The cost of it was increasing the size of the rwsem structure by up to 128 bits. However, now that the previous patches in this series bring the overhead of struct optimistic_spin_queue to 32 bits, this patch reorders some fields in struct rw_semaphore such that we can reduce the overhead of the rwsem structure by 64 bits (on 64 bit systems). The extra overhead required for rwsem optimistic spinning would now be up to 8 additional bytes instead of up to 16 bytes. Additionally, the size of rwsem would now be more in line with mutexes. Signed-off-by: Jason Low <jason.low2@hp.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Scott Norton <scott.norton@hp.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Waiman Long <waiman.long@hp.com> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: Rik van Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Aswin Chandramouleeswaran <aswin@hp.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Chris Mason <clm@fb.com> Cc: Josef Bacik <jbacik@fusionio.com> Link: http://lkml.kernel.org/r/1405358872-3732-6-git-send-email-jason.low2@hp.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-15 01:27:52 +08:00
#define __RWSEM_INITIALIZER(name) \
{ __RWSEM_INIT_COUNT(name), \
locking/rwsem: Reduce the size of struct rw_semaphore Recent optimistic spinning additions to rwsem provide significant performance benefits on many workloads on large machines. The cost of it was increasing the size of the rwsem structure by up to 128 bits. However, now that the previous patches in this series bring the overhead of struct optimistic_spin_queue to 32 bits, this patch reorders some fields in struct rw_semaphore such that we can reduce the overhead of the rwsem structure by 64 bits (on 64 bit systems). The extra overhead required for rwsem optimistic spinning would now be up to 8 additional bytes instead of up to 16 bytes. Additionally, the size of rwsem would now be more in line with mutexes. Signed-off-by: Jason Low <jason.low2@hp.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Scott Norton <scott.norton@hp.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Waiman Long <waiman.long@hp.com> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: Rik van Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Aswin Chandramouleeswaran <aswin@hp.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Chris Mason <clm@fb.com> Cc: Josef Bacik <jbacik@fusionio.com> Link: http://lkml.kernel.org/r/1405358872-3732-6-git-send-email-jason.low2@hp.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-15 01:27:52 +08:00
.wait_list = LIST_HEAD_INIT((name).wait_list), \
.wait_lock = __RAW_SPIN_LOCK_UNLOCKED(name.wait_lock) \
__RWSEM_OPT_INIT(name) \
__RWSEM_DEP_MAP_INIT(name) }
#define DECLARE_RWSEM(name) \
struct rw_semaphore name = __RWSEM_INITIALIZER(name)
extern void __init_rwsem(struct rw_semaphore *sem, const char *name,
struct lock_class_key *key);
#define init_rwsem(sem) \
do { \
static struct lock_class_key __key; \
\
__init_rwsem((sem), #sem, &__key); \
} while (0)
/*
* This is the same regardless of which rwsem implementation that is being used.
* It is just a heuristic meant to be called by somebody alreadying holding the
* rwsem to see if somebody from an incompatible type is wanting access to the
* lock.
*/
static inline int rwsem_is_contended(struct rw_semaphore *sem)
{
return !list_empty(&sem->wait_list);
}
/*
* lock for reading
*/
extern void down_read(struct rw_semaphore *sem);
extern int __must_check down_read_killable(struct rw_semaphore *sem);
/*
* trylock for reading -- returns 1 if successful, 0 if contention
*/
extern int down_read_trylock(struct rw_semaphore *sem);
/*
* lock for writing
*/
extern void down_write(struct rw_semaphore *sem);
extern int __must_check down_write_killable(struct rw_semaphore *sem);
/*
* trylock for writing -- returns 1 if successful, 0 if contention
*/
extern int down_write_trylock(struct rw_semaphore *sem);
/*
* release a read lock
*/
extern void up_read(struct rw_semaphore *sem);
/*
* release a write lock
*/
extern void up_write(struct rw_semaphore *sem);
/*
* downgrade write lock to read lock
*/
extern void downgrade_write(struct rw_semaphore *sem);
#ifdef CONFIG_DEBUG_LOCK_ALLOC
/*
* nested locking. NOTE: rwsems are not allowed to recurse
* (which occurs if the same task tries to acquire the same
* lock instance multiple times), but multiple locks of the
* same lock class might be taken, if the order of the locks
* is always the same. This ordering rule can be expressed
* to lockdep via the _nested() APIs, but enumerating the
* subclasses that are used. (If the nesting relationship is
* static then another method for expressing nested locking is
* the explicit definition of lock class keys and the use of
* lockdep_set_class() at lock initialization time.
locking/Documentation: Move locking related docs into Documentation/locking/ Specifically: Documentation/locking/lockdep-design.txt Documentation/locking/lockstat.txt Documentation/locking/mutex-design.txt Documentation/locking/rt-mutex-design.txt Documentation/locking/rt-mutex.txt Documentation/locking/spinlocks.txt Documentation/locking/ww-mutex-design.txt Signed-off-by: Davidlohr Bueso <davidlohr@hp.com> Acked-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: jason.low2@hp.com Cc: aswin@hp.com Cc: Alexei Starovoitov <ast@plumgrid.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Chris Mason <clm@fb.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: David Airlie <airlied@linux.ie> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: David S. Miller <davem@davemloft.net> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Jason Low <jason.low2@hp.com> Cc: Josef Bacik <jbacik@fusionio.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Lubomir Rintel <lkundrak@v3.sk> Cc: Masanari Iida <standby24x7@gmail.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: fengguang.wu@intel.com Link: http://lkml.kernel.org/r/1406752916-3341-6-git-send-email-davidlohr@hp.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-31 04:41:55 +08:00
* See Documentation/locking/lockdep-design.txt for more details.)
*/
extern void down_read_nested(struct rw_semaphore *sem, int subclass);
extern void down_write_nested(struct rw_semaphore *sem, int subclass);
extern int down_write_killable_nested(struct rw_semaphore *sem, int subclass);
extern void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest_lock);
# define down_write_nest_lock(sem, nest_lock) \
do { \
typecheck(struct lockdep_map *, &(nest_lock)->dep_map); \
_down_write_nest_lock(sem, &(nest_lock)->dep_map); \
} while (0);
/*
* Take/release a lock when not the owner will release it.
*
* [ This API should be avoided as much as possible - the
* proper abstraction for this case is completions. ]
*/
extern void down_read_non_owner(struct rw_semaphore *sem);
extern void up_read_non_owner(struct rw_semaphore *sem);
#else
# define down_read_nested(sem, subclass) down_read(sem)
# define down_write_nest_lock(sem, nest_lock) down_write(sem)
# define down_write_nested(sem, subclass) down_write(sem)
# define down_write_killable_nested(sem, subclass) down_write_killable(sem)
# define down_read_non_owner(sem) down_read(sem)
# define up_read_non_owner(sem) up_read(sem)
#endif
#endif /* _LINUX_RWSEM_H */