linux-sg2042/drivers/hwmon/adm1031.c

1001 lines
30 KiB
C
Raw Normal View History

/*
adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
monitoring
Based on lm75.c and lm85.c
Supports adm1030 / adm1031
Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
Reworked by Jean Delvare <khali@linux-fr.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
/* Following macros takes channel parameter starting from 0 to 2 */
#define ADM1031_REG_FAN_SPEED(nr) (0x08 + (nr))
#define ADM1031_REG_FAN_DIV(nr) (0x20 + (nr))
#define ADM1031_REG_PWM (0x22)
#define ADM1031_REG_FAN_MIN(nr) (0x10 + (nr))
#define ADM1031_REG_TEMP_MAX(nr) (0x14 + 4 * (nr))
#define ADM1031_REG_TEMP_MIN(nr) (0x15 + 4 * (nr))
#define ADM1031_REG_TEMP_CRIT(nr) (0x16 + 4 * (nr))
#define ADM1031_REG_TEMP(nr) (0x0a + (nr))
#define ADM1031_REG_AUTO_TEMP(nr) (0x24 + (nr))
#define ADM1031_REG_STATUS(nr) (0x2 + (nr))
#define ADM1031_REG_CONF1 0x00
#define ADM1031_REG_CONF2 0x01
#define ADM1031_REG_EXT_TEMP 0x06
#define ADM1031_CONF1_MONITOR_ENABLE 0x01 /* Monitoring enable */
#define ADM1031_CONF1_PWM_INVERT 0x08 /* PWM Invert */
#define ADM1031_CONF1_AUTO_MODE 0x80 /* Auto FAN */
#define ADM1031_CONF2_PWM1_ENABLE 0x01
#define ADM1031_CONF2_PWM2_ENABLE 0x02
#define ADM1031_CONF2_TACH1_ENABLE 0x04
#define ADM1031_CONF2_TACH2_ENABLE 0x08
#define ADM1031_CONF2_TEMP_ENABLE(chan) (0x10 << (chan))
/* Addresses to scan */
static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
/* Insmod parameters */
I2C_CLIENT_INSMOD_2(adm1030, adm1031);
typedef u8 auto_chan_table_t[8][2];
/* Each client has this additional data */
struct adm1031_data {
struct device *hwmon_dev;
struct mutex update_lock;
int chip_type;
char valid; /* !=0 if following fields are valid */
unsigned long last_updated; /* In jiffies */
/* The chan_select_table contains the possible configurations for
* auto fan control.
*/
const auto_chan_table_t *chan_select_table;
u16 alarm;
u8 conf1;
u8 conf2;
u8 fan[2];
u8 fan_div[2];
u8 fan_min[2];
u8 pwm[2];
u8 old_pwm[2];
s8 temp[3];
u8 ext_temp[3];
u8 auto_temp[3];
u8 auto_temp_min[3];
u8 auto_temp_off[3];
u8 auto_temp_max[3];
s8 temp_min[3];
s8 temp_max[3];
s8 temp_crit[3];
};
static int adm1031_probe(struct i2c_client *client,
const struct i2c_device_id *id);
static int adm1031_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info);
static void adm1031_init_client(struct i2c_client *client);
static int adm1031_remove(struct i2c_client *client);
static struct adm1031_data *adm1031_update_device(struct device *dev);
static const struct i2c_device_id adm1031_id[] = {
{ "adm1030", adm1030 },
{ "adm1031", adm1031 },
{ }
};
MODULE_DEVICE_TABLE(i2c, adm1031_id);
/* This is the driver that will be inserted */
static struct i2c_driver adm1031_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "adm1031",
},
.probe = adm1031_probe,
.remove = adm1031_remove,
.id_table = adm1031_id,
.detect = adm1031_detect,
.address_data = &addr_data,
};
static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
{
return i2c_smbus_read_byte_data(client, reg);
}
static inline int
adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
{
return i2c_smbus_write_byte_data(client, reg, value);
}
#define TEMP_TO_REG(val) (((val) < 0 ? ((val - 500) / 1000) : \
((val + 500) / 1000)))
#define TEMP_FROM_REG(val) ((val) * 1000)
#define TEMP_FROM_REG_EXT(val, ext) (TEMP_FROM_REG(val) + (ext) * 125)
#define FAN_FROM_REG(reg, div) ((reg) ? (11250 * 60) / ((reg) * (div)) : 0)
static int FAN_TO_REG(int reg, int div)
{
int tmp;
tmp = FAN_FROM_REG(SENSORS_LIMIT(reg, 0, 65535), div);
return tmp > 255 ? 255 : tmp;
}
#define FAN_DIV_FROM_REG(reg) (1<<(((reg)&0xc0)>>6))
#define PWM_TO_REG(val) (SENSORS_LIMIT((val), 0, 255) >> 4)
#define PWM_FROM_REG(val) ((val) << 4)
#define FAN_CHAN_FROM_REG(reg) (((reg) >> 5) & 7)
#define FAN_CHAN_TO_REG(val, reg) \
(((reg) & 0x1F) | (((val) << 5) & 0xe0))
#define AUTO_TEMP_MIN_TO_REG(val, reg) \
((((val)/500) & 0xf8)|((reg) & 0x7))
#define AUTO_TEMP_RANGE_FROM_REG(reg) (5000 * (1<< ((reg)&0x7)))
#define AUTO_TEMP_MIN_FROM_REG(reg) (1000 * ((((reg) >> 3) & 0x1f) << 2))
#define AUTO_TEMP_MIN_FROM_REG_DEG(reg) ((((reg) >> 3) & 0x1f) << 2)
#define AUTO_TEMP_OFF_FROM_REG(reg) \
(AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
#define AUTO_TEMP_MAX_FROM_REG(reg) \
(AUTO_TEMP_RANGE_FROM_REG(reg) + \
AUTO_TEMP_MIN_FROM_REG(reg))
static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
{
int ret;
int range = val - AUTO_TEMP_MIN_FROM_REG(reg);
range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm);
ret = ((reg & 0xf8) |
(range < 10000 ? 0 :
range < 20000 ? 1 :
range < 40000 ? 2 : range < 80000 ? 3 : 4));
return ret;
}
/* FAN auto control */
#define GET_FAN_AUTO_BITFIELD(data, idx) \
(*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx%2]
/* The tables below contains the possible values for the auto fan
* control bitfields. the index in the table is the register value.
* MSb is the auto fan control enable bit, so the four first entries
* in the table disables auto fan control when both bitfields are zero.
*/
static const auto_chan_table_t auto_channel_select_table_adm1031 = {
{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
{ 2 /* 0b010 */ , 4 /* 0b100 */ },
{ 2 /* 0b010 */ , 2 /* 0b010 */ },
{ 4 /* 0b100 */ , 4 /* 0b100 */ },
{ 7 /* 0b111 */ , 7 /* 0b111 */ },
};
static const auto_chan_table_t auto_channel_select_table_adm1030 = {
{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
{ 2 /* 0b10 */ , 0 },
{ 0xff /* invalid */ , 0 },
{ 0xff /* invalid */ , 0 },
{ 3 /* 0b11 */ , 0 },
};
/* That function checks if a bitfield is valid and returns the other bitfield
* nearest match if no exact match where found.
*/
static int
get_fan_auto_nearest(struct adm1031_data *data,
int chan, u8 val, u8 reg, u8 * new_reg)
{
int i;
int first_match = -1, exact_match = -1;
u8 other_reg_val =
(*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
if (val == 0) {
*new_reg = 0;
return 0;
}
for (i = 0; i < 8; i++) {
if ((val == (*data->chan_select_table)[i][chan]) &&
((*data->chan_select_table)[i][chan ? 0 : 1] ==
other_reg_val)) {
/* We found an exact match */
exact_match = i;
break;
} else if (val == (*data->chan_select_table)[i][chan] &&
first_match == -1) {
/* Save the first match in case of an exact match has
* not been found
*/
first_match = i;
}
}
if (exact_match >= 0) {
*new_reg = exact_match;
} else if (first_match >= 0) {
*new_reg = first_match;
} else {
return -EINVAL;
}
return 0;
}
static ssize_t show_fan_auto_channel(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
}
static ssize_t
set_fan_auto_channel(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1031_data *data = i2c_get_clientdata(client);
int nr = to_sensor_dev_attr(attr)->index;
int val = simple_strtol(buf, NULL, 10);
u8 reg;
int ret;
u8 old_fan_mode;
old_fan_mode = data->conf1;
mutex_lock(&data->update_lock);
if ((ret = get_fan_auto_nearest(data, nr, val, data->conf1, &reg))) {
mutex_unlock(&data->update_lock);
return ret;
}
data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
(old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
if (data->conf1 & ADM1031_CONF1_AUTO_MODE){
/* Switch to Auto Fan Mode
* Save PWM registers
* Set PWM registers to 33% Both */
data->old_pwm[0] = data->pwm[0];
data->old_pwm[1] = data->pwm[1];
adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
} else {
/* Switch to Manual Mode */
data->pwm[0] = data->old_pwm[0];
data->pwm[1] = data->old_pwm[1];
/* Restore PWM registers */
adm1031_write_value(client, ADM1031_REG_PWM,
data->pwm[0] | (data->pwm[1] << 4));
}
}
data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR(auto_fan1_channel, S_IRUGO | S_IWUSR,
show_fan_auto_channel, set_fan_auto_channel, 0);
static SENSOR_DEVICE_ATTR(auto_fan2_channel, S_IRUGO | S_IWUSR,
show_fan_auto_channel, set_fan_auto_channel, 1);
/* Auto Temps */
static ssize_t show_auto_temp_off(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n",
AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
}
static ssize_t show_auto_temp_min(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n",
AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
}
static ssize_t
set_auto_temp_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1031_data *data = i2c_get_clientdata(client);
int nr = to_sensor_dev_attr(attr)->index;
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
data->auto_temp[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_auto_temp_max(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n",
AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
}
static ssize_t
set_auto_temp_max(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1031_data *data = i2c_get_clientdata(client);
int nr = to_sensor_dev_attr(attr)->index;
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr], data->pwm[nr]);
adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
data->temp_max[nr]);
mutex_unlock(&data->update_lock);
return count;
}
#define auto_temp_reg(offset) \
static SENSOR_DEVICE_ATTR(auto_temp##offset##_off, S_IRUGO, \
show_auto_temp_off, NULL, offset - 1); \
static SENSOR_DEVICE_ATTR(auto_temp##offset##_min, S_IRUGO | S_IWUSR, \
show_auto_temp_min, set_auto_temp_min, offset - 1); \
static SENSOR_DEVICE_ATTR(auto_temp##offset##_max, S_IRUGO | S_IWUSR, \
show_auto_temp_max, set_auto_temp_max, offset - 1)
auto_temp_reg(1);
auto_temp_reg(2);
auto_temp_reg(3);
/* pwm */
static ssize_t show_pwm(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
}
static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1031_data *data = i2c_get_clientdata(client);
int nr = to_sensor_dev_attr(attr)->index;
int val = simple_strtol(buf, NULL, 10);
int reg;
mutex_lock(&data->update_lock);
if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
(((val>>4) & 0xf) != 5)) {
/* In automatic mode, the only PWM accepted is 33% */
mutex_unlock(&data->update_lock);
return -EINVAL;
}
data->pwm[nr] = PWM_TO_REG(val);
reg = adm1031_read_value(client, ADM1031_REG_PWM);
adm1031_write_value(client, ADM1031_REG_PWM,
nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
: (data->pwm[nr] & 0xf) | (reg & 0xf0));
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 0);
static SENSOR_DEVICE_ATTR(pwm2, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 1);
static SENSOR_DEVICE_ATTR(auto_fan1_min_pwm, S_IRUGO | S_IWUSR,
show_pwm, set_pwm, 0);
static SENSOR_DEVICE_ATTR(auto_fan2_min_pwm, S_IRUGO | S_IWUSR,
show_pwm, set_pwm, 1);
/* Fans */
/*
* That function checks the cases where the fan reading is not
* relevant. It is used to provide 0 as fan reading when the fan is
* not supposed to run
*/
static int trust_fan_readings(struct adm1031_data *data, int chan)
{
int res = 0;
if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
switch (data->conf1 & 0x60) {
case 0x00: /* remote temp1 controls fan1 remote temp2 controls fan2 */
res = data->temp[chan+1] >=
AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
break;
case 0x20: /* remote temp1 controls both fans */
res =
data->temp[1] >=
AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
break;
case 0x40: /* remote temp2 controls both fans */
res =
data->temp[2] >=
AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
break;
case 0x60: /* max controls both fans */
res =
data->temp[0] >=
AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
|| data->temp[1] >=
AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
|| (data->chip_type == adm1031
&& data->temp[2] >=
AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
break;
}
} else {
res = data->pwm[chan] > 0;
}
return res;
}
static ssize_t show_fan(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
int value;
value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
return sprintf(buf, "%d\n", value);
}
static ssize_t show_fan_div(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
}
static ssize_t show_fan_min(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n",
FAN_FROM_REG(data->fan_min[nr],
FAN_DIV_FROM_REG(data->fan_div[nr])));
}
static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1031_data *data = i2c_get_clientdata(client);
int nr = to_sensor_dev_attr(attr)->index;
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
if (val) {
data->fan_min[nr] =
FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
} else {
data->fan_min[nr] = 0xff;
}
adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1031_data *data = i2c_get_clientdata(client);
int nr = to_sensor_dev_attr(attr)->index;
int val = simple_strtol(buf, NULL, 10);
u8 tmp;
int old_div;
int new_min;
tmp = val == 8 ? 0xc0 :
val == 4 ? 0x80 :
val == 2 ? 0x40 :
val == 1 ? 0x00 :
0xff;
if (tmp == 0xff)
return -EINVAL;
mutex_lock(&data->update_lock);
/* Get fresh readings */
data->fan_div[nr] = adm1031_read_value(client,
ADM1031_REG_FAN_DIV(nr));
data->fan_min[nr] = adm1031_read_value(client,
ADM1031_REG_FAN_MIN(nr));
/* Write the new clock divider and fan min */
old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
new_min = data->fan_min[nr] * old_div / val;
data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
data->fan_div[nr]);
adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
data->fan_min[nr]);
/* Invalidate the cache: fan speed is no longer valid */
data->valid = 0;
mutex_unlock(&data->update_lock);
return count;
}
#define fan_offset(offset) \
static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
show_fan, NULL, offset - 1); \
static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
show_fan_min, set_fan_min, offset - 1); \
static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
show_fan_div, set_fan_div, offset - 1)
fan_offset(1);
fan_offset(2);
/* Temps */
static ssize_t show_temp(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
int ext;
ext = nr == 0 ?
((data->ext_temp[nr] >> 6) & 0x3) * 2 :
(((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
}
static ssize_t show_temp_min(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
}
static ssize_t show_temp_max(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
}
static ssize_t show_temp_crit(struct device *dev,
struct device_attribute *attr, char *buf)
{
int nr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
}
static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1031_data *data = i2c_get_clientdata(client);
int nr = to_sensor_dev_attr(attr)->index;
int val;
val = simple_strtol(buf, NULL, 10);
val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
mutex_lock(&data->update_lock);
data->temp_min[nr] = TEMP_TO_REG(val);
adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
data->temp_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1031_data *data = i2c_get_clientdata(client);
int nr = to_sensor_dev_attr(attr)->index;
int val;
val = simple_strtol(buf, NULL, 10);
val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
mutex_lock(&data->update_lock);
data->temp_max[nr] = TEMP_TO_REG(val);
adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
data->temp_max[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_temp_crit(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1031_data *data = i2c_get_clientdata(client);
int nr = to_sensor_dev_attr(attr)->index;
int val;
val = simple_strtol(buf, NULL, 10);
val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
mutex_lock(&data->update_lock);
data->temp_crit[nr] = TEMP_TO_REG(val);
adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
data->temp_crit[nr]);
mutex_unlock(&data->update_lock);
return count;
}
#define temp_reg(offset) \
static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
show_temp, NULL, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
show_temp_min, set_temp_min, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
show_temp_max, set_temp_max, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_crit, S_IRUGO | S_IWUSR, \
show_temp_crit, set_temp_crit, offset - 1)
temp_reg(1);
temp_reg(2);
temp_reg(3);
/* Alarms */
static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n", data->alarm);
}
static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
static ssize_t show_alarm(struct device *dev,
struct device_attribute *attr, char *buf)
{
int bitnr = to_sensor_dev_attr(attr)->index;
struct adm1031_data *data = adm1031_update_device(dev);
return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
}
static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 0);
static SENSOR_DEVICE_ATTR(fan1_fault, S_IRUGO, show_alarm, NULL, 1);
static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 2);
static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 4);
static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 5);
static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 7);
static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 8);
static SENSOR_DEVICE_ATTR(fan2_fault, S_IRUGO, show_alarm, NULL, 9);
static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 10);
static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 12);
static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 13);
static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 14);
static struct attribute *adm1031_attributes[] = {
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan1_div.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan1_alarm.dev_attr.attr,
&sensor_dev_attr_fan1_fault.dev_attr.attr,
&sensor_dev_attr_pwm1.dev_attr.attr,
&sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp1_min.dev_attr.attr,
&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_crit.dev_attr.attr,
&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp2_min.dev_attr.attr,
&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_crit.dev_attr.attr,
&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_fault.dev_attr.attr,
&sensor_dev_attr_auto_temp1_off.dev_attr.attr,
&sensor_dev_attr_auto_temp1_min.dev_attr.attr,
&sensor_dev_attr_auto_temp1_max.dev_attr.attr,
&sensor_dev_attr_auto_temp2_off.dev_attr.attr,
&sensor_dev_attr_auto_temp2_min.dev_attr.attr,
&sensor_dev_attr_auto_temp2_max.dev_attr.attr,
&sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
&dev_attr_alarms.attr,
NULL
};
static const struct attribute_group adm1031_group = {
.attrs = adm1031_attributes,
};
static struct attribute *adm1031_attributes_opt[] = {
&sensor_dev_attr_fan2_input.dev_attr.attr,
&sensor_dev_attr_fan2_div.dev_attr.attr,
&sensor_dev_attr_fan2_min.dev_attr.attr,
&sensor_dev_attr_fan2_alarm.dev_attr.attr,
&sensor_dev_attr_fan2_fault.dev_attr.attr,
&sensor_dev_attr_pwm2.dev_attr.attr,
&sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp3_min.dev_attr.attr,
&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_max.dev_attr.attr,
&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_crit.dev_attr.attr,
&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_fault.dev_attr.attr,
&sensor_dev_attr_auto_temp3_off.dev_attr.attr,
&sensor_dev_attr_auto_temp3_min.dev_attr.attr,
&sensor_dev_attr_auto_temp3_max.dev_attr.attr,
&sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
NULL
};
static const struct attribute_group adm1031_group_opt = {
.attrs = adm1031_attributes_opt,
};
/* Return 0 if detection is successful, -ENODEV otherwise */
static int adm1031_detect(struct i2c_client *client, int kind,
struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
const char *name = "";
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
if (kind < 0) {
int id, co;
id = i2c_smbus_read_byte_data(client, 0x3d);
co = i2c_smbus_read_byte_data(client, 0x3e);
if (!((id == 0x31 || id == 0x30) && co == 0x41))
return -ENODEV;
kind = (id == 0x30) ? adm1030 : adm1031;
}
if (kind <= 0)
kind = adm1031;
/* Given the detected chip type, set the chip name and the
* auto fan control helper table. */
if (kind == adm1030) {
name = "adm1030";
} else if (kind == adm1031) {
name = "adm1031";
}
strlcpy(info->type, name, I2C_NAME_SIZE);
return 0;
}
static int adm1031_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct adm1031_data *data;
int err;
data = kzalloc(sizeof(struct adm1031_data), GFP_KERNEL);
if (!data) {
err = -ENOMEM;
goto exit;
}
i2c_set_clientdata(client, data);
data->chip_type = id->driver_data;
mutex_init(&data->update_lock);
if (data->chip_type == adm1030)
data->chan_select_table = &auto_channel_select_table_adm1030;
else
data->chan_select_table = &auto_channel_select_table_adm1031;
/* Initialize the ADM1031 chip */
adm1031_init_client(client);
/* Register sysfs hooks */
if ((err = sysfs_create_group(&client->dev.kobj, &adm1031_group)))
goto exit_free;
if (data->chip_type == adm1031) {
if ((err = sysfs_create_group(&client->dev.kobj,
&adm1031_group_opt)))
goto exit_remove;
}
data->hwmon_dev = hwmon_device_register(&client->dev);
if (IS_ERR(data->hwmon_dev)) {
err = PTR_ERR(data->hwmon_dev);
goto exit_remove;
}
return 0;
exit_remove:
sysfs_remove_group(&client->dev.kobj, &adm1031_group);
sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
exit_free:
kfree(data);
exit:
return err;
}
static int adm1031_remove(struct i2c_client *client)
{
struct adm1031_data *data = i2c_get_clientdata(client);
hwmon_device_unregister(data->hwmon_dev);
sysfs_remove_group(&client->dev.kobj, &adm1031_group);
sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
kfree(data);
return 0;
}
static void adm1031_init_client(struct i2c_client *client)
{
unsigned int read_val;
unsigned int mask;
struct adm1031_data *data = i2c_get_clientdata(client);
mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
if (data->chip_type == adm1031) {
mask |= (ADM1031_CONF2_PWM2_ENABLE |
ADM1031_CONF2_TACH2_ENABLE);
}
/* Initialize the ADM1031 chip (enables fan speed reading ) */
read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
if ((read_val | mask) != read_val) {
adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
}
read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
adm1031_write_value(client, ADM1031_REG_CONF1, read_val |
ADM1031_CONF1_MONITOR_ENABLE);
}
}
static struct adm1031_data *adm1031_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm1031_data *data = i2c_get_clientdata(client);
int chan;
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
|| !data->valid) {
dev_dbg(&client->dev, "Starting adm1031 update\n");
for (chan = 0;
chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
u8 oldh, newh;
oldh =
adm1031_read_value(client, ADM1031_REG_TEMP(chan));
data->ext_temp[chan] =
adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
newh =
adm1031_read_value(client, ADM1031_REG_TEMP(chan));
if (newh != oldh) {
data->ext_temp[chan] =
adm1031_read_value(client,
ADM1031_REG_EXT_TEMP);
#ifdef DEBUG
oldh =
adm1031_read_value(client,
ADM1031_REG_TEMP(chan));
/* oldh is actually newer */
if (newh != oldh)
dev_warn(&client->dev,
"Remote temperature may be "
"wrong.\n");
#endif
}
data->temp[chan] = newh;
data->temp_min[chan] =
adm1031_read_value(client,
ADM1031_REG_TEMP_MIN(chan));
data->temp_max[chan] =
adm1031_read_value(client,
ADM1031_REG_TEMP_MAX(chan));
data->temp_crit[chan] =
adm1031_read_value(client,
ADM1031_REG_TEMP_CRIT(chan));
data->auto_temp[chan] =
adm1031_read_value(client,
ADM1031_REG_AUTO_TEMP(chan));
}
data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
| (adm1031_read_value(client, ADM1031_REG_STATUS(1))
<< 8);
if (data->chip_type == adm1030) {
data->alarm &= 0xc0ff;
}
for (chan=0; chan<(data->chip_type == adm1030 ? 1 : 2); chan++) {
data->fan_div[chan] =
adm1031_read_value(client, ADM1031_REG_FAN_DIV(chan));
data->fan_min[chan] =
adm1031_read_value(client, ADM1031_REG_FAN_MIN(chan));
data->fan[chan] =
adm1031_read_value(client, ADM1031_REG_FAN_SPEED(chan));
data->pwm[chan] =
0xf & (adm1031_read_value(client, ADM1031_REG_PWM) >>
(4*chan));
}
data->last_updated = jiffies;
data->valid = 1;
}
mutex_unlock(&data->update_lock);
return data;
}
static int __init sensors_adm1031_init(void)
{
return i2c_add_driver(&adm1031_driver);
}
static void __exit sensors_adm1031_exit(void)
{
i2c_del_driver(&adm1031_driver);
}
MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
MODULE_LICENSE("GPL");
module_init(sensors_adm1031_init);
module_exit(sensors_adm1031_exit);