linux-sg2042/drivers/rapidio/rio.c

1942 lines
52 KiB
C
Raw Normal View History

/*
* RapidIO interconnect services
* (RapidIO Interconnect Specification, http://www.rapidio.org)
*
* Copyright 2005 MontaVista Software, Inc.
* Matt Porter <mporter@kernel.crashing.org>
*
* Copyright 2009 - 2013 Integrated Device Technology, Inc.
* Alex Bounine <alexandre.bounine@idt.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/rio.h>
#include <linux/rio_drv.h>
#include <linux/rio_ids.h>
#include <linux/rio_regs.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include "rio.h"
MODULE_DESCRIPTION("RapidIO Subsystem Core");
MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>");
MODULE_AUTHOR("Alexandre Bounine <alexandre.bounine@idt.com>");
MODULE_LICENSE("GPL");
static int hdid[RIO_MAX_MPORTS];
static int ids_num;
module_param_array(hdid, int, &ids_num, 0);
MODULE_PARM_DESC(hdid,
"Destination ID assignment to local RapidIO controllers");
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
static LIST_HEAD(rio_devices);
static DEFINE_SPINLOCK(rio_global_list_lock);
static LIST_HEAD(rio_mports);
rapidio: update enumerator registration mechanism Update enumeration/discovery method registration mechanism to allow loading enumeration/discovery methods before all mports are registered. Existing statically linked RapidIO subsystem expects that all available RapidIO mport devices are initialized and registered before the enumeration/discovery method is registered. Switching to loadable mport device drivers creates situation when mport device driver can be loaded after enumeration/discovery method is attached (e.g., loadable mport driver in a system with statically linked RapidIO core and enumerator). This also will happen in a system with hot-pluggable RapidIO controllers. To remove the dependency on the initialization/registration order this patch introduces enumeration/discovery registration mechanism that supports arbitrary registration order of mports and enumerator/discovery methods. The following registration rules are implemented: - only one enumeration/discovery method can be registered for given mport ID (including RIO_MPORT_ANY); - when new enumeration/discovery methods tries to attach to the registered mport device, method with matching mport ID will replace a default method previously registered for given mport (if any); - enumeration/discovery method with target ID=RIO_MPORT_ANY will be attached only to mports that do not have another enumerator attached to them; - when new mport device is registered with RapidIO subsystem, registration routine searches for the enumeration/discovery method with the best matching mport ID; Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:53 +08:00
static LIST_HEAD(rio_scans);
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
static DEFINE_MUTEX(rio_mport_list_lock);
static unsigned char next_portid;
static DEFINE_SPINLOCK(rio_mmap_lock);
/**
* rio_local_get_device_id - Get the base/extended device id for a port
* @port: RIO master port from which to get the deviceid
*
* Reads the base/extended device id from the local device
* implementing the master port. Returns the 8/16-bit device
* id.
*/
u16 rio_local_get_device_id(struct rio_mport *port)
{
u32 result;
rio_local_read_config_32(port, RIO_DID_CSR, &result);
return (RIO_GET_DID(port->sys_size, result));
}
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
/**
* rio_add_device- Adds a RIO device to the device model
* @rdev: RIO device
*
* Adds the RIO device to the global device list and adds the RIO
* device to the RIO device list. Creates the generic sysfs nodes
* for an RIO device.
*/
int rio_add_device(struct rio_dev *rdev)
{
int err;
err = device_add(&rdev->dev);
if (err)
return err;
spin_lock(&rio_global_list_lock);
list_add_tail(&rdev->global_list, &rio_devices);
spin_unlock(&rio_global_list_lock);
rio_create_sysfs_dev_files(rdev);
return 0;
}
EXPORT_SYMBOL_GPL(rio_add_device);
/**
* rio_request_inb_mbox - request inbound mailbox service
* @mport: RIO master port from which to allocate the mailbox resource
* @dev_id: Device specific pointer to pass on event
* @mbox: Mailbox number to claim
* @entries: Number of entries in inbound mailbox queue
* @minb: Callback to execute when inbound message is received
*
* Requests ownership of an inbound mailbox resource and binds
* a callback function to the resource. Returns %0 on success.
*/
int rio_request_inb_mbox(struct rio_mport *mport,
void *dev_id,
int mbox,
int entries,
void (*minb) (struct rio_mport * mport, void *dev_id, int mbox,
int slot))
{
int rc = -ENOSYS;
struct resource *res;
if (mport->ops->open_inb_mbox == NULL)
goto out;
res = kmalloc(sizeof(struct resource), GFP_KERNEL);
if (res) {
rio_init_mbox_res(res, mbox, mbox);
/* Make sure this mailbox isn't in use */
if ((rc =
request_resource(&mport->riores[RIO_INB_MBOX_RESOURCE],
res)) < 0) {
kfree(res);
goto out;
}
mport->inb_msg[mbox].res = res;
/* Hook the inbound message callback */
mport->inb_msg[mbox].mcback = minb;
rc = mport->ops->open_inb_mbox(mport, dev_id, mbox, entries);
} else
rc = -ENOMEM;
out:
return rc;
}
/**
* rio_release_inb_mbox - release inbound mailbox message service
* @mport: RIO master port from which to release the mailbox resource
* @mbox: Mailbox number to release
*
* Releases ownership of an inbound mailbox resource. Returns 0
* if the request has been satisfied.
*/
int rio_release_inb_mbox(struct rio_mport *mport, int mbox)
{
if (mport->ops->close_inb_mbox) {
mport->ops->close_inb_mbox(mport, mbox);
/* Release the mailbox resource */
return release_resource(mport->inb_msg[mbox].res);
} else
return -ENOSYS;
}
/**
* rio_request_outb_mbox - request outbound mailbox service
* @mport: RIO master port from which to allocate the mailbox resource
* @dev_id: Device specific pointer to pass on event
* @mbox: Mailbox number to claim
* @entries: Number of entries in outbound mailbox queue
* @moutb: Callback to execute when outbound message is sent
*
* Requests ownership of an outbound mailbox resource and binds
* a callback function to the resource. Returns 0 on success.
*/
int rio_request_outb_mbox(struct rio_mport *mport,
void *dev_id,
int mbox,
int entries,
void (*moutb) (struct rio_mport * mport, void *dev_id, int mbox, int slot))
{
int rc = -ENOSYS;
struct resource *res;
if (mport->ops->open_outb_mbox == NULL)
goto out;
res = kmalloc(sizeof(struct resource), GFP_KERNEL);
if (res) {
rio_init_mbox_res(res, mbox, mbox);
/* Make sure this outbound mailbox isn't in use */
if ((rc =
request_resource(&mport->riores[RIO_OUTB_MBOX_RESOURCE],
res)) < 0) {
kfree(res);
goto out;
}
mport->outb_msg[mbox].res = res;
/* Hook the inbound message callback */
mport->outb_msg[mbox].mcback = moutb;
rc = mport->ops->open_outb_mbox(mport, dev_id, mbox, entries);
} else
rc = -ENOMEM;
out:
return rc;
}
/**
* rio_release_outb_mbox - release outbound mailbox message service
* @mport: RIO master port from which to release the mailbox resource
* @mbox: Mailbox number to release
*
* Releases ownership of an inbound mailbox resource. Returns 0
* if the request has been satisfied.
*/
int rio_release_outb_mbox(struct rio_mport *mport, int mbox)
{
if (mport->ops->close_outb_mbox) {
mport->ops->close_outb_mbox(mport, mbox);
/* Release the mailbox resource */
return release_resource(mport->outb_msg[mbox].res);
} else
return -ENOSYS;
}
/**
* rio_setup_inb_dbell - bind inbound doorbell callback
* @mport: RIO master port to bind the doorbell callback
* @dev_id: Device specific pointer to pass on event
* @res: Doorbell message resource
* @dinb: Callback to execute when doorbell is received
*
* Adds a doorbell resource/callback pair into a port's
* doorbell event list. Returns 0 if the request has been
* satisfied.
*/
static int
rio_setup_inb_dbell(struct rio_mport *mport, void *dev_id, struct resource *res,
void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, u16 dst,
u16 info))
{
int rc = 0;
struct rio_dbell *dbell;
if (!(dbell = kmalloc(sizeof(struct rio_dbell), GFP_KERNEL))) {
rc = -ENOMEM;
goto out;
}
dbell->res = res;
dbell->dinb = dinb;
dbell->dev_id = dev_id;
list_add_tail(&dbell->node, &mport->dbells);
out:
return rc;
}
/**
* rio_request_inb_dbell - request inbound doorbell message service
* @mport: RIO master port from which to allocate the doorbell resource
* @dev_id: Device specific pointer to pass on event
* @start: Doorbell info range start
* @end: Doorbell info range end
* @dinb: Callback to execute when doorbell is received
*
* Requests ownership of an inbound doorbell resource and binds
* a callback function to the resource. Returns 0 if the request
* has been satisfied.
*/
int rio_request_inb_dbell(struct rio_mport *mport,
void *dev_id,
u16 start,
u16 end,
void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src,
u16 dst, u16 info))
{
int rc = 0;
struct resource *res = kmalloc(sizeof(struct resource), GFP_KERNEL);
if (res) {
rio_init_dbell_res(res, start, end);
/* Make sure these doorbells aren't in use */
if ((rc =
request_resource(&mport->riores[RIO_DOORBELL_RESOURCE],
res)) < 0) {
kfree(res);
goto out;
}
/* Hook the doorbell callback */
rc = rio_setup_inb_dbell(mport, dev_id, res, dinb);
} else
rc = -ENOMEM;
out:
return rc;
}
/**
* rio_release_inb_dbell - release inbound doorbell message service
* @mport: RIO master port from which to release the doorbell resource
* @start: Doorbell info range start
* @end: Doorbell info range end
*
* Releases ownership of an inbound doorbell resource and removes
* callback from the doorbell event list. Returns 0 if the request
* has been satisfied.
*/
int rio_release_inb_dbell(struct rio_mport *mport, u16 start, u16 end)
{
int rc = 0, found = 0;
struct rio_dbell *dbell;
list_for_each_entry(dbell, &mport->dbells, node) {
if ((dbell->res->start == start) && (dbell->res->end == end)) {
found = 1;
break;
}
}
/* If we can't find an exact match, fail */
if (!found) {
rc = -EINVAL;
goto out;
}
/* Delete from list */
list_del(&dbell->node);
/* Release the doorbell resource */
rc = release_resource(dbell->res);
/* Free the doorbell event */
kfree(dbell);
out:
return rc;
}
/**
* rio_request_outb_dbell - request outbound doorbell message range
* @rdev: RIO device from which to allocate the doorbell resource
* @start: Doorbell message range start
* @end: Doorbell message range end
*
* Requests ownership of a doorbell message range. Returns a resource
* if the request has been satisfied or %NULL on failure.
*/
struct resource *rio_request_outb_dbell(struct rio_dev *rdev, u16 start,
u16 end)
{
struct resource *res = kmalloc(sizeof(struct resource), GFP_KERNEL);
if (res) {
rio_init_dbell_res(res, start, end);
/* Make sure these doorbells aren't in use */
if (request_resource(&rdev->riores[RIO_DOORBELL_RESOURCE], res)
< 0) {
kfree(res);
res = NULL;
}
}
return res;
}
/**
* rio_release_outb_dbell - release outbound doorbell message range
* @rdev: RIO device from which to release the doorbell resource
* @res: Doorbell resource to be freed
*
* Releases ownership of a doorbell message range. Returns 0 if the
* request has been satisfied.
*/
int rio_release_outb_dbell(struct rio_dev *rdev, struct resource *res)
{
int rc = release_resource(res);
kfree(res);
return rc;
}
/**
* rio_request_inb_pwrite - request inbound port-write message service
rapidio: fix new kernel-doc warnings Fix a bunch of new rapidio kernel-doc warnings: Warning(include/linux/rio.h:123): No description found for parameter 'comp_tag' Warning(include/linux/rio.h:123): No description found for parameter 'phys_efptr' Warning(include/linux/rio.h:123): No description found for parameter 'em_efptr' Warning(include/linux/rio.h:123): No description found for parameter 'pwcback' Warning(include/linux/rio.h:247): No description found for parameter 'set_domain' Warning(include/linux/rio.h:247): No description found for parameter 'get_domain' Warning(drivers/rapidio/rio-scan.c:1133): No description found for parameter 'rdev' Warning(drivers/rapidio/rio-scan.c:1133): Excess function parameter 'port' description in 'rio_init_em' Warning(drivers/rapidio/rio.c:349): No description found for parameter 'rdev' Warning(drivers/rapidio/rio.c:349): Excess function parameter 'mport' description in 'rio_request_inb_pwrite' Warning(drivers/rapidio/rio.c:393): No description found for parameter 'port' Warning(drivers/rapidio/rio.c:393): No description found for parameter 'local' Warning(drivers/rapidio/rio.c:393): No description found for parameter 'destid' Warning(drivers/rapidio/rio.c:393): No description found for parameter 'hopcount' Warning(drivers/rapidio/rio.c:393): Excess function parameter 'rdev' description in 'rio_mport_get_physefb' Warning(drivers/rapidio/rio.c:845): Excess function parameter 'local' description in 'rio_std_route_clr_table' Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Alexandre Bounine <alexandre.bounine@idt.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-29 06:08:08 +08:00
* @rdev: RIO device to which register inbound port-write callback routine
* @pwcback: Callback routine to execute when port-write is received
*
* Binds a port-write callback function to the RapidIO device.
* Returns 0 if the request has been satisfied.
*/
int rio_request_inb_pwrite(struct rio_dev *rdev,
int (*pwcback)(struct rio_dev *rdev, union rio_pw_msg *msg, int step))
{
int rc = 0;
spin_lock(&rio_global_list_lock);
if (rdev->pwcback != NULL)
rc = -ENOMEM;
else
rdev->pwcback = pwcback;
spin_unlock(&rio_global_list_lock);
return rc;
}
EXPORT_SYMBOL_GPL(rio_request_inb_pwrite);
/**
* rio_release_inb_pwrite - release inbound port-write message service
* @rdev: RIO device which registered for inbound port-write callback
*
* Removes callback from the rio_dev structure. Returns 0 if the request
* has been satisfied.
*/
int rio_release_inb_pwrite(struct rio_dev *rdev)
{
int rc = -ENOMEM;
spin_lock(&rio_global_list_lock);
if (rdev->pwcback) {
rdev->pwcback = NULL;
rc = 0;
}
spin_unlock(&rio_global_list_lock);
return rc;
}
EXPORT_SYMBOL_GPL(rio_release_inb_pwrite);
/**
* rio_map_inb_region -- Map inbound memory region.
* @mport: Master port.
* @local: physical address of memory region to be mapped
* @rbase: RIO base address assigned to this window
* @size: Size of the memory region
* @rflags: Flags for mapping.
*
* Return: 0 -- Success.
*
* This function will create the mapping from RIO space to local memory.
*/
int rio_map_inb_region(struct rio_mport *mport, dma_addr_t local,
u64 rbase, u32 size, u32 rflags)
{
int rc = 0;
unsigned long flags;
if (!mport->ops->map_inb)
return -1;
spin_lock_irqsave(&rio_mmap_lock, flags);
rc = mport->ops->map_inb(mport, local, rbase, size, rflags);
spin_unlock_irqrestore(&rio_mmap_lock, flags);
return rc;
}
EXPORT_SYMBOL_GPL(rio_map_inb_region);
/**
* rio_unmap_inb_region -- Unmap the inbound memory region
* @mport: Master port
* @lstart: physical address of memory region to be unmapped
*/
void rio_unmap_inb_region(struct rio_mport *mport, dma_addr_t lstart)
{
unsigned long flags;
if (!mport->ops->unmap_inb)
return;
spin_lock_irqsave(&rio_mmap_lock, flags);
mport->ops->unmap_inb(mport, lstart);
spin_unlock_irqrestore(&rio_mmap_lock, flags);
}
EXPORT_SYMBOL_GPL(rio_unmap_inb_region);
/**
* rio_mport_get_physefb - Helper function that returns register offset
* for Physical Layer Extended Features Block.
rapidio: fix new kernel-doc warnings Fix a bunch of new rapidio kernel-doc warnings: Warning(include/linux/rio.h:123): No description found for parameter 'comp_tag' Warning(include/linux/rio.h:123): No description found for parameter 'phys_efptr' Warning(include/linux/rio.h:123): No description found for parameter 'em_efptr' Warning(include/linux/rio.h:123): No description found for parameter 'pwcback' Warning(include/linux/rio.h:247): No description found for parameter 'set_domain' Warning(include/linux/rio.h:247): No description found for parameter 'get_domain' Warning(drivers/rapidio/rio-scan.c:1133): No description found for parameter 'rdev' Warning(drivers/rapidio/rio-scan.c:1133): Excess function parameter 'port' description in 'rio_init_em' Warning(drivers/rapidio/rio.c:349): No description found for parameter 'rdev' Warning(drivers/rapidio/rio.c:349): Excess function parameter 'mport' description in 'rio_request_inb_pwrite' Warning(drivers/rapidio/rio.c:393): No description found for parameter 'port' Warning(drivers/rapidio/rio.c:393): No description found for parameter 'local' Warning(drivers/rapidio/rio.c:393): No description found for parameter 'destid' Warning(drivers/rapidio/rio.c:393): No description found for parameter 'hopcount' Warning(drivers/rapidio/rio.c:393): Excess function parameter 'rdev' description in 'rio_mport_get_physefb' Warning(drivers/rapidio/rio.c:845): Excess function parameter 'local' description in 'rio_std_route_clr_table' Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Alexandre Bounine <alexandre.bounine@idt.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-29 06:08:08 +08:00
* @port: Master port to issue transaction
* @local: Indicate a local master port or remote device access
* @destid: Destination ID of the device
* @hopcount: Number of switch hops to the device
*/
u32
rio_mport_get_physefb(struct rio_mport *port, int local,
u16 destid, u8 hopcount)
{
u32 ext_ftr_ptr;
u32 ftr_header;
ext_ftr_ptr = rio_mport_get_efb(port, local, destid, hopcount, 0);
while (ext_ftr_ptr) {
if (local)
rio_local_read_config_32(port, ext_ftr_ptr,
&ftr_header);
else
rio_mport_read_config_32(port, destid, hopcount,
ext_ftr_ptr, &ftr_header);
ftr_header = RIO_GET_BLOCK_ID(ftr_header);
switch (ftr_header) {
case RIO_EFB_SER_EP_ID_V13P:
case RIO_EFB_SER_EP_REC_ID_V13P:
case RIO_EFB_SER_EP_FREE_ID_V13P:
case RIO_EFB_SER_EP_ID:
case RIO_EFB_SER_EP_REC_ID:
case RIO_EFB_SER_EP_FREE_ID:
case RIO_EFB_SER_EP_FREC_ID:
return ext_ftr_ptr;
default:
break;
}
ext_ftr_ptr = rio_mport_get_efb(port, local, destid,
hopcount, ext_ftr_ptr);
}
return ext_ftr_ptr;
}
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
EXPORT_SYMBOL_GPL(rio_mport_get_physefb);
/**
* rio_get_comptag - Begin or continue searching for a RIO device by component tag
rapidio: fix new kernel-doc warnings Fix a bunch of new rapidio kernel-doc warnings: Warning(include/linux/rio.h:123): No description found for parameter 'comp_tag' Warning(include/linux/rio.h:123): No description found for parameter 'phys_efptr' Warning(include/linux/rio.h:123): No description found for parameter 'em_efptr' Warning(include/linux/rio.h:123): No description found for parameter 'pwcback' Warning(include/linux/rio.h:247): No description found for parameter 'set_domain' Warning(include/linux/rio.h:247): No description found for parameter 'get_domain' Warning(drivers/rapidio/rio-scan.c:1133): No description found for parameter 'rdev' Warning(drivers/rapidio/rio-scan.c:1133): Excess function parameter 'port' description in 'rio_init_em' Warning(drivers/rapidio/rio.c:349): No description found for parameter 'rdev' Warning(drivers/rapidio/rio.c:349): Excess function parameter 'mport' description in 'rio_request_inb_pwrite' Warning(drivers/rapidio/rio.c:393): No description found for parameter 'port' Warning(drivers/rapidio/rio.c:393): No description found for parameter 'local' Warning(drivers/rapidio/rio.c:393): No description found for parameter 'destid' Warning(drivers/rapidio/rio.c:393): No description found for parameter 'hopcount' Warning(drivers/rapidio/rio.c:393): Excess function parameter 'rdev' description in 'rio_mport_get_physefb' Warning(drivers/rapidio/rio.c:845): Excess function parameter 'local' description in 'rio_std_route_clr_table' Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Alexandre Bounine <alexandre.bounine@idt.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-29 06:08:08 +08:00
* @comp_tag: RIO component tag to match
* @from: Previous RIO device found in search, or %NULL for new search
*
* Iterates through the list of known RIO devices. If a RIO device is
* found with a matching @comp_tag, a pointer to its device
* structure is returned. Otherwise, %NULL is returned. A new search
* is initiated by passing %NULL to the @from argument. Otherwise, if
* @from is not %NULL, searches continue from next device on the global
* list.
*/
struct rio_dev *rio_get_comptag(u32 comp_tag, struct rio_dev *from)
{
struct list_head *n;
struct rio_dev *rdev;
spin_lock(&rio_global_list_lock);
n = from ? from->global_list.next : rio_devices.next;
while (n && (n != &rio_devices)) {
rdev = rio_dev_g(n);
if (rdev->comp_tag == comp_tag)
goto exit;
n = n->next;
}
rdev = NULL;
exit:
spin_unlock(&rio_global_list_lock);
return rdev;
}
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
EXPORT_SYMBOL_GPL(rio_get_comptag);
/**
* rio_set_port_lockout - Sets/clears LOCKOUT bit (RIO EM 1.3) for a switch port.
* @rdev: Pointer to RIO device control structure
* @pnum: Switch port number to set LOCKOUT bit
* @lock: Operation : set (=1) or clear (=0)
*/
int rio_set_port_lockout(struct rio_dev *rdev, u32 pnum, int lock)
{
u32 regval;
rio_read_config_32(rdev,
rdev->phys_efptr + RIO_PORT_N_CTL_CSR(pnum),
&regval);
if (lock)
regval |= RIO_PORT_N_CTL_LOCKOUT;
else
regval &= ~RIO_PORT_N_CTL_LOCKOUT;
rio_write_config_32(rdev,
rdev->phys_efptr + RIO_PORT_N_CTL_CSR(pnum),
regval);
return 0;
}
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
EXPORT_SYMBOL_GPL(rio_set_port_lockout);
/**
* rio_enable_rx_tx_port - enable input receiver and output transmitter of
* given port
* @port: Master port associated with the RIO network
* @local: local=1 select local port otherwise a far device is reached
* @destid: Destination ID of the device to check host bit
* @hopcount: Number of hops to reach the target
* @port_num: Port (-number on switch) to enable on a far end device
*
* Returns 0 or 1 from on General Control Command and Status Register
* (EXT_PTR+0x3C)
*/
int rio_enable_rx_tx_port(struct rio_mport *port,
int local, u16 destid,
u8 hopcount, u8 port_num)
{
#ifdef CONFIG_RAPIDIO_ENABLE_RX_TX_PORTS
u32 regval;
u32 ext_ftr_ptr;
/*
* enable rx input tx output port
*/
pr_debug("rio_enable_rx_tx_port(local = %d, destid = %d, hopcount = "
"%d, port_num = %d)\n", local, destid, hopcount, port_num);
ext_ftr_ptr = rio_mport_get_physefb(port, local, destid, hopcount);
if (local) {
rio_local_read_config_32(port, ext_ftr_ptr +
RIO_PORT_N_CTL_CSR(0),
&regval);
} else {
if (rio_mport_read_config_32(port, destid, hopcount,
ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num), &regval) < 0)
return -EIO;
}
if (regval & RIO_PORT_N_CTL_P_TYP_SER) {
/* serial */
regval = regval | RIO_PORT_N_CTL_EN_RX_SER
| RIO_PORT_N_CTL_EN_TX_SER;
} else {
/* parallel */
regval = regval | RIO_PORT_N_CTL_EN_RX_PAR
| RIO_PORT_N_CTL_EN_TX_PAR;
}
if (local) {
rio_local_write_config_32(port, ext_ftr_ptr +
RIO_PORT_N_CTL_CSR(0), regval);
} else {
if (rio_mport_write_config_32(port, destid, hopcount,
ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num), regval) < 0)
return -EIO;
}
#endif
return 0;
}
EXPORT_SYMBOL_GPL(rio_enable_rx_tx_port);
/**
* rio_chk_dev_route - Validate route to the specified device.
* @rdev: RIO device failed to respond
* @nrdev: Last active device on the route to rdev
* @npnum: nrdev's port number on the route to rdev
*
* Follows a route to the specified RIO device to determine the last available
* device (and corresponding RIO port) on the route.
*/
static int
rio_chk_dev_route(struct rio_dev *rdev, struct rio_dev **nrdev, int *npnum)
{
u32 result;
int p_port, rc = -EIO;
struct rio_dev *prev = NULL;
/* Find switch with failed RIO link */
while (rdev->prev && (rdev->prev->pef & RIO_PEF_SWITCH)) {
if (!rio_read_config_32(rdev->prev, RIO_DEV_ID_CAR, &result)) {
prev = rdev->prev;
break;
}
rdev = rdev->prev;
}
if (prev == NULL)
goto err_out;
p_port = prev->rswitch->route_table[rdev->destid];
if (p_port != RIO_INVALID_ROUTE) {
pr_debug("RIO: link failed on [%s]-P%d\n",
rio_name(prev), p_port);
*nrdev = prev;
*npnum = p_port;
rc = 0;
} else
pr_debug("RIO: failed to trace route to %s\n", rio_name(rdev));
err_out:
return rc;
}
/**
* rio_mport_chk_dev_access - Validate access to the specified device.
* @mport: Master port to send transactions
* @destid: Device destination ID in network
* @hopcount: Number of hops into the network
*/
int
rio_mport_chk_dev_access(struct rio_mport *mport, u16 destid, u8 hopcount)
{
int i = 0;
u32 tmp;
while (rio_mport_read_config_32(mport, destid, hopcount,
RIO_DEV_ID_CAR, &tmp)) {
i++;
if (i == RIO_MAX_CHK_RETRY)
return -EIO;
mdelay(1);
}
return 0;
}
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
EXPORT_SYMBOL_GPL(rio_mport_chk_dev_access);
/**
* rio_chk_dev_access - Validate access to the specified device.
* @rdev: Pointer to RIO device control structure
*/
static int rio_chk_dev_access(struct rio_dev *rdev)
{
return rio_mport_chk_dev_access(rdev->net->hport,
rdev->destid, rdev->hopcount);
}
/**
* rio_get_input_status - Sends a Link-Request/Input-Status control symbol and
* returns link-response (if requested).
* @rdev: RIO devive to issue Input-status command
* @pnum: Device port number to issue the command
* @lnkresp: Response from a link partner
*/
static int
rio_get_input_status(struct rio_dev *rdev, int pnum, u32 *lnkresp)
{
u32 regval;
int checkcount;
if (lnkresp) {
/* Read from link maintenance response register
* to clear valid bit */
rio_read_config_32(rdev,
rdev->phys_efptr + RIO_PORT_N_MNT_RSP_CSR(pnum),
&regval);
udelay(50);
}
/* Issue Input-status command */
rio_write_config_32(rdev,
rdev->phys_efptr + RIO_PORT_N_MNT_REQ_CSR(pnum),
RIO_MNT_REQ_CMD_IS);
/* Exit if the response is not expected */
if (lnkresp == NULL)
return 0;
checkcount = 3;
while (checkcount--) {
udelay(50);
rio_read_config_32(rdev,
rdev->phys_efptr + RIO_PORT_N_MNT_RSP_CSR(pnum),
&regval);
if (regval & RIO_PORT_N_MNT_RSP_RVAL) {
*lnkresp = regval;
return 0;
}
}
return -EIO;
}
/**
* rio_clr_err_stopped - Clears port Error-stopped states.
* @rdev: Pointer to RIO device control structure
* @pnum: Switch port number to clear errors
* @err_status: port error status (if 0 reads register from device)
*/
static int rio_clr_err_stopped(struct rio_dev *rdev, u32 pnum, u32 err_status)
{
struct rio_dev *nextdev = rdev->rswitch->nextdev[pnum];
u32 regval;
u32 far_ackid, far_linkstat, near_ackid;
if (err_status == 0)
rio_read_config_32(rdev,
rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum),
&err_status);
if (err_status & RIO_PORT_N_ERR_STS_PW_OUT_ES) {
pr_debug("RIO_EM: servicing Output Error-Stopped state\n");
/*
* Send a Link-Request/Input-Status control symbol
*/
if (rio_get_input_status(rdev, pnum, &regval)) {
pr_debug("RIO_EM: Input-status response timeout\n");
goto rd_err;
}
pr_debug("RIO_EM: SP%d Input-status response=0x%08x\n",
pnum, regval);
far_ackid = (regval & RIO_PORT_N_MNT_RSP_ASTAT) >> 5;
far_linkstat = regval & RIO_PORT_N_MNT_RSP_LSTAT;
rio_read_config_32(rdev,
rdev->phys_efptr + RIO_PORT_N_ACK_STS_CSR(pnum),
&regval);
pr_debug("RIO_EM: SP%d_ACK_STS_CSR=0x%08x\n", pnum, regval);
near_ackid = (regval & RIO_PORT_N_ACK_INBOUND) >> 24;
pr_debug("RIO_EM: SP%d far_ackID=0x%02x far_linkstat=0x%02x" \
" near_ackID=0x%02x\n",
pnum, far_ackid, far_linkstat, near_ackid);
/*
* If required, synchronize ackIDs of near and
* far sides.
*/
if ((far_ackid != ((regval & RIO_PORT_N_ACK_OUTSTAND) >> 8)) ||
(far_ackid != (regval & RIO_PORT_N_ACK_OUTBOUND))) {
/* Align near outstanding/outbound ackIDs with
* far inbound.
*/
rio_write_config_32(rdev,
rdev->phys_efptr + RIO_PORT_N_ACK_STS_CSR(pnum),
(near_ackid << 24) |
(far_ackid << 8) | far_ackid);
/* Align far outstanding/outbound ackIDs with
* near inbound.
*/
far_ackid++;
if (nextdev)
rio_write_config_32(nextdev,
nextdev->phys_efptr +
RIO_PORT_N_ACK_STS_CSR(RIO_GET_PORT_NUM(nextdev->swpinfo)),
(far_ackid << 24) |
(near_ackid << 8) | near_ackid);
else
pr_debug("RIO_EM: Invalid nextdev pointer (NULL)\n");
}
rd_err:
rio_read_config_32(rdev,
rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum),
&err_status);
pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
}
if ((err_status & RIO_PORT_N_ERR_STS_PW_INP_ES) && nextdev) {
pr_debug("RIO_EM: servicing Input Error-Stopped state\n");
rio_get_input_status(nextdev,
RIO_GET_PORT_NUM(nextdev->swpinfo), NULL);
udelay(50);
rio_read_config_32(rdev,
rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum),
&err_status);
pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
}
return (err_status & (RIO_PORT_N_ERR_STS_PW_OUT_ES |
RIO_PORT_N_ERR_STS_PW_INP_ES)) ? 1 : 0;
}
/**
* rio_inb_pwrite_handler - process inbound port-write message
* @pw_msg: pointer to inbound port-write message
*
* Processes an inbound port-write message. Returns 0 if the request
* has been satisfied.
*/
int rio_inb_pwrite_handler(union rio_pw_msg *pw_msg)
{
struct rio_dev *rdev;
u32 err_status, em_perrdet, em_ltlerrdet;
int rc, portnum;
rdev = rio_get_comptag((pw_msg->em.comptag & RIO_CTAG_UDEVID), NULL);
if (rdev == NULL) {
/* Device removed or enumeration error */
pr_debug("RIO: %s No matching device for CTag 0x%08x\n",
__func__, pw_msg->em.comptag);
return -EIO;
}
pr_debug("RIO: Port-Write message from %s\n", rio_name(rdev));
#ifdef DEBUG_PW
{
u32 i;
for (i = 0; i < RIO_PW_MSG_SIZE/sizeof(u32);) {
pr_debug("0x%02x: %08x %08x %08x %08x\n",
i*4, pw_msg->raw[i], pw_msg->raw[i + 1],
pw_msg->raw[i + 2], pw_msg->raw[i + 3]);
i += 4;
}
}
#endif
/* Call an external service function (if such is registered
* for this device). This may be the service for endpoints that send
* device-specific port-write messages. End-point messages expected
* to be handled completely by EP specific device driver.
* For switches rc==0 signals that no standard processing required.
*/
if (rdev->pwcback != NULL) {
rc = rdev->pwcback(rdev, pw_msg, 0);
if (rc == 0)
return 0;
}
portnum = pw_msg->em.is_port & 0xFF;
/* Check if device and route to it are functional:
* Sometimes devices may send PW message(s) just before being
* powered down (or link being lost).
*/
if (rio_chk_dev_access(rdev)) {
pr_debug("RIO: device access failed - get link partner\n");
/* Scan route to the device and identify failed link.
* This will replace device and port reported in PW message.
* PW message should not be used after this point.
*/
if (rio_chk_dev_route(rdev, &rdev, &portnum)) {
pr_err("RIO: Route trace for %s failed\n",
rio_name(rdev));
return -EIO;
}
pw_msg = NULL;
}
/* For End-point devices processing stops here */
if (!(rdev->pef & RIO_PEF_SWITCH))
return 0;
if (rdev->phys_efptr == 0) {
pr_err("RIO_PW: Bad switch initialization for %s\n",
rio_name(rdev));
return 0;
}
/*
* Process the port-write notification from switch
*/
rapidio: convert switch drivers to modules Rework RapidIO switch drivers to add an option to build them as loadable kernel modules. This patch removes RapidIO-specific vmlinux section and converts switch drivers to be compatible with LDM driver registration method. To simplify registration of device-specific callback routines this patch introduces rio_switch_ops data structure. The sw_sysfs() callback is removed from the list of device-specific operations because under the new structure its functions can be handled by switch driver's probe() and remove() routines. If a specific switch device driver is not loaded the RapidIO subsystem core will use default standard-based operations to configure a switch. Because the current implementation of RapidIO enumeration/discovery method relies on availability of device-specific operations for error management, switch device drivers must be loaded before the RapidIO enumeration/discovery starts. This patch also moves several common routines from enumeration/discovery module into the RapidIO core code to make switch-specific operations accessible to all components of RapidIO subsystem. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:50 +08:00
if (rdev->rswitch->ops && rdev->rswitch->ops->em_handle)
rdev->rswitch->ops->em_handle(rdev, portnum);
rio_read_config_32(rdev,
rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(portnum),
&err_status);
pr_debug("RIO_PW: SP%d_ERR_STS_CSR=0x%08x\n", portnum, err_status);
if (err_status & RIO_PORT_N_ERR_STS_PORT_OK) {
if (!(rdev->rswitch->port_ok & (1 << portnum))) {
rdev->rswitch->port_ok |= (1 << portnum);
rio_set_port_lockout(rdev, portnum, 0);
/* Schedule Insertion Service */
pr_debug("RIO_PW: Device Insertion on [%s]-P%d\n",
rio_name(rdev), portnum);
}
/* Clear error-stopped states (if reported).
* Depending on the link partner state, two attempts
* may be needed for successful recovery.
*/
if (err_status & (RIO_PORT_N_ERR_STS_PW_OUT_ES |
RIO_PORT_N_ERR_STS_PW_INP_ES)) {
if (rio_clr_err_stopped(rdev, portnum, err_status))
rio_clr_err_stopped(rdev, portnum, 0);
}
} else { /* if (err_status & RIO_PORT_N_ERR_STS_PORT_UNINIT) */
if (rdev->rswitch->port_ok & (1 << portnum)) {
rdev->rswitch->port_ok &= ~(1 << portnum);
rio_set_port_lockout(rdev, portnum, 1);
rio_write_config_32(rdev,
rdev->phys_efptr +
RIO_PORT_N_ACK_STS_CSR(portnum),
RIO_PORT_N_ACK_CLEAR);
/* Schedule Extraction Service */
pr_debug("RIO_PW: Device Extraction on [%s]-P%d\n",
rio_name(rdev), portnum);
}
}
rio_read_config_32(rdev,
rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), &em_perrdet);
if (em_perrdet) {
pr_debug("RIO_PW: RIO_EM_P%d_ERR_DETECT=0x%08x\n",
portnum, em_perrdet);
/* Clear EM Port N Error Detect CSR */
rio_write_config_32(rdev,
rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), 0);
}
rio_read_config_32(rdev,
rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, &em_ltlerrdet);
if (em_ltlerrdet) {
pr_debug("RIO_PW: RIO_EM_LTL_ERR_DETECT=0x%08x\n",
em_ltlerrdet);
/* Clear EM L/T Layer Error Detect CSR */
rio_write_config_32(rdev,
rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, 0);
}
/* Clear remaining error bits and Port-Write Pending bit */
rio_write_config_32(rdev,
rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(portnum),
err_status);
return 0;
}
EXPORT_SYMBOL_GPL(rio_inb_pwrite_handler);
/**
* rio_mport_get_efb - get pointer to next extended features block
* @port: Master port to issue transaction
* @local: Indicate a local master port or remote device access
* @destid: Destination ID of the device
* @hopcount: Number of switch hops to the device
* @from: Offset of current Extended Feature block header (if 0 starts
* from ExtFeaturePtr)
*/
u32
rio_mport_get_efb(struct rio_mport *port, int local, u16 destid,
u8 hopcount, u32 from)
{
u32 reg_val;
if (from == 0) {
if (local)
rio_local_read_config_32(port, RIO_ASM_INFO_CAR,
&reg_val);
else
rio_mport_read_config_32(port, destid, hopcount,
RIO_ASM_INFO_CAR, &reg_val);
return reg_val & RIO_EXT_FTR_PTR_MASK;
} else {
if (local)
rio_local_read_config_32(port, from, &reg_val);
else
rio_mport_read_config_32(port, destid, hopcount,
from, &reg_val);
return RIO_GET_BLOCK_ID(reg_val);
}
}
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
EXPORT_SYMBOL_GPL(rio_mport_get_efb);
/**
* rio_mport_get_feature - query for devices' extended features
* @port: Master port to issue transaction
* @local: Indicate a local master port or remote device access
* @destid: Destination ID of the device
* @hopcount: Number of switch hops to the device
* @ftr: Extended feature code
*
* Tell if a device supports a given RapidIO capability.
* Returns the offset of the requested extended feature
* block within the device's RIO configuration space or
* 0 in case the device does not support it. Possible
* values for @ftr:
*
* %RIO_EFB_PAR_EP_ID LP/LVDS EP Devices
*
* %RIO_EFB_PAR_EP_REC_ID LP/LVDS EP Recovery Devices
*
* %RIO_EFB_PAR_EP_FREE_ID LP/LVDS EP Free Devices
*
* %RIO_EFB_SER_EP_ID LP/Serial EP Devices
*
* %RIO_EFB_SER_EP_REC_ID LP/Serial EP Recovery Devices
*
* %RIO_EFB_SER_EP_FREE_ID LP/Serial EP Free Devices
*/
u32
rio_mport_get_feature(struct rio_mport * port, int local, u16 destid,
u8 hopcount, int ftr)
{
u32 asm_info, ext_ftr_ptr, ftr_header;
if (local)
rio_local_read_config_32(port, RIO_ASM_INFO_CAR, &asm_info);
else
rio_mport_read_config_32(port, destid, hopcount,
RIO_ASM_INFO_CAR, &asm_info);
ext_ftr_ptr = asm_info & RIO_EXT_FTR_PTR_MASK;
while (ext_ftr_ptr) {
if (local)
rio_local_read_config_32(port, ext_ftr_ptr,
&ftr_header);
else
rio_mport_read_config_32(port, destid, hopcount,
ext_ftr_ptr, &ftr_header);
if (RIO_GET_BLOCK_ID(ftr_header) == ftr)
return ext_ftr_ptr;
if (!(ext_ftr_ptr = RIO_GET_BLOCK_PTR(ftr_header)))
break;
}
return 0;
}
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
EXPORT_SYMBOL_GPL(rio_mport_get_feature);
/**
* rio_get_asm - Begin or continue searching for a RIO device by vid/did/asm_vid/asm_did
* @vid: RIO vid to match or %RIO_ANY_ID to match all vids
* @did: RIO did to match or %RIO_ANY_ID to match all dids
* @asm_vid: RIO asm_vid to match or %RIO_ANY_ID to match all asm_vids
* @asm_did: RIO asm_did to match or %RIO_ANY_ID to match all asm_dids
* @from: Previous RIO device found in search, or %NULL for new search
*
* Iterates through the list of known RIO devices. If a RIO device is
* found with a matching @vid, @did, @asm_vid, @asm_did, the reference
* count to the device is incrememted and a pointer to its device
* structure is returned. Otherwise, %NULL is returned. A new search
* is initiated by passing %NULL to the @from argument. Otherwise, if
* @from is not %NULL, searches continue from next device on the global
* list. The reference count for @from is always decremented if it is
* not %NULL.
*/
struct rio_dev *rio_get_asm(u16 vid, u16 did,
u16 asm_vid, u16 asm_did, struct rio_dev *from)
{
struct list_head *n;
struct rio_dev *rdev;
WARN_ON(in_interrupt());
spin_lock(&rio_global_list_lock);
n = from ? from->global_list.next : rio_devices.next;
while (n && (n != &rio_devices)) {
rdev = rio_dev_g(n);
if ((vid == RIO_ANY_ID || rdev->vid == vid) &&
(did == RIO_ANY_ID || rdev->did == did) &&
(asm_vid == RIO_ANY_ID || rdev->asm_vid == asm_vid) &&
(asm_did == RIO_ANY_ID || rdev->asm_did == asm_did))
goto exit;
n = n->next;
}
rdev = NULL;
exit:
rio_dev_put(from);
rdev = rio_dev_get(rdev);
spin_unlock(&rio_global_list_lock);
return rdev;
}
/**
* rio_get_device - Begin or continue searching for a RIO device by vid/did
* @vid: RIO vid to match or %RIO_ANY_ID to match all vids
* @did: RIO did to match or %RIO_ANY_ID to match all dids
* @from: Previous RIO device found in search, or %NULL for new search
*
* Iterates through the list of known RIO devices. If a RIO device is
* found with a matching @vid and @did, the reference count to the
* device is incrememted and a pointer to its device structure is returned.
* Otherwise, %NULL is returned. A new search is initiated by passing %NULL
* to the @from argument. Otherwise, if @from is not %NULL, searches
* continue from next device on the global list. The reference count for
* @from is always decremented if it is not %NULL.
*/
struct rio_dev *rio_get_device(u16 vid, u16 did, struct rio_dev *from)
{
return rio_get_asm(vid, did, RIO_ANY_ID, RIO_ANY_ID, from);
}
/**
* rio_std_route_add_entry - Add switch route table entry using standard
* registers defined in RIO specification rev.1.3
* @mport: Master port to issue transaction
* @destid: Destination ID of the device
* @hopcount: Number of switch hops to the device
* @table: routing table ID (global or port-specific)
* @route_destid: destID entry in the RT
* @route_port: destination port for specified destID
*/
rapidio: convert switch drivers to modules Rework RapidIO switch drivers to add an option to build them as loadable kernel modules. This patch removes RapidIO-specific vmlinux section and converts switch drivers to be compatible with LDM driver registration method. To simplify registration of device-specific callback routines this patch introduces rio_switch_ops data structure. The sw_sysfs() callback is removed from the list of device-specific operations because under the new structure its functions can be handled by switch driver's probe() and remove() routines. If a specific switch device driver is not loaded the RapidIO subsystem core will use default standard-based operations to configure a switch. Because the current implementation of RapidIO enumeration/discovery method relies on availability of device-specific operations for error management, switch device drivers must be loaded before the RapidIO enumeration/discovery starts. This patch also moves several common routines from enumeration/discovery module into the RapidIO core code to make switch-specific operations accessible to all components of RapidIO subsystem. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:50 +08:00
static int
rio_std_route_add_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
u16 table, u16 route_destid, u8 route_port)
{
if (table == RIO_GLOBAL_TABLE) {
rio_mport_write_config_32(mport, destid, hopcount,
RIO_STD_RTE_CONF_DESTID_SEL_CSR,
(u32)route_destid);
rio_mport_write_config_32(mport, destid, hopcount,
RIO_STD_RTE_CONF_PORT_SEL_CSR,
(u32)route_port);
}
udelay(10);
return 0;
}
/**
* rio_std_route_get_entry - Read switch route table entry (port number)
* associated with specified destID using standard registers defined in RIO
* specification rev.1.3
* @mport: Master port to issue transaction
* @destid: Destination ID of the device
* @hopcount: Number of switch hops to the device
* @table: routing table ID (global or port-specific)
* @route_destid: destID entry in the RT
* @route_port: returned destination port for specified destID
*/
rapidio: convert switch drivers to modules Rework RapidIO switch drivers to add an option to build them as loadable kernel modules. This patch removes RapidIO-specific vmlinux section and converts switch drivers to be compatible with LDM driver registration method. To simplify registration of device-specific callback routines this patch introduces rio_switch_ops data structure. The sw_sysfs() callback is removed from the list of device-specific operations because under the new structure its functions can be handled by switch driver's probe() and remove() routines. If a specific switch device driver is not loaded the RapidIO subsystem core will use default standard-based operations to configure a switch. Because the current implementation of RapidIO enumeration/discovery method relies on availability of device-specific operations for error management, switch device drivers must be loaded before the RapidIO enumeration/discovery starts. This patch also moves several common routines from enumeration/discovery module into the RapidIO core code to make switch-specific operations accessible to all components of RapidIO subsystem. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:50 +08:00
static int
rio_std_route_get_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
u16 table, u16 route_destid, u8 *route_port)
{
u32 result;
if (table == RIO_GLOBAL_TABLE) {
rio_mport_write_config_32(mport, destid, hopcount,
RIO_STD_RTE_CONF_DESTID_SEL_CSR, route_destid);
rio_mport_read_config_32(mport, destid, hopcount,
RIO_STD_RTE_CONF_PORT_SEL_CSR, &result);
*route_port = (u8)result;
}
return 0;
}
/**
* rio_std_route_clr_table - Clear swotch route table using standard registers
* defined in RIO specification rev.1.3.
* @mport: Master port to issue transaction
* @destid: Destination ID of the device
* @hopcount: Number of switch hops to the device
* @table: routing table ID (global or port-specific)
*/
rapidio: convert switch drivers to modules Rework RapidIO switch drivers to add an option to build them as loadable kernel modules. This patch removes RapidIO-specific vmlinux section and converts switch drivers to be compatible with LDM driver registration method. To simplify registration of device-specific callback routines this patch introduces rio_switch_ops data structure. The sw_sysfs() callback is removed from the list of device-specific operations because under the new structure its functions can be handled by switch driver's probe() and remove() routines. If a specific switch device driver is not loaded the RapidIO subsystem core will use default standard-based operations to configure a switch. Because the current implementation of RapidIO enumeration/discovery method relies on availability of device-specific operations for error management, switch device drivers must be loaded before the RapidIO enumeration/discovery starts. This patch also moves several common routines from enumeration/discovery module into the RapidIO core code to make switch-specific operations accessible to all components of RapidIO subsystem. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:50 +08:00
static int
rio_std_route_clr_table(struct rio_mport *mport, u16 destid, u8 hopcount,
u16 table)
{
u32 max_destid = 0xff;
u32 i, pef, id_inc = 1, ext_cfg = 0;
u32 port_sel = RIO_INVALID_ROUTE;
if (table == RIO_GLOBAL_TABLE) {
rio_mport_read_config_32(mport, destid, hopcount,
RIO_PEF_CAR, &pef);
if (mport->sys_size) {
rio_mport_read_config_32(mport, destid, hopcount,
RIO_SWITCH_RT_LIMIT,
&max_destid);
max_destid &= RIO_RT_MAX_DESTID;
}
if (pef & RIO_PEF_EXT_RT) {
ext_cfg = 0x80000000;
id_inc = 4;
port_sel = (RIO_INVALID_ROUTE << 24) |
(RIO_INVALID_ROUTE << 16) |
(RIO_INVALID_ROUTE << 8) |
RIO_INVALID_ROUTE;
}
for (i = 0; i <= max_destid;) {
rio_mport_write_config_32(mport, destid, hopcount,
RIO_STD_RTE_CONF_DESTID_SEL_CSR,
ext_cfg | i);
rio_mport_write_config_32(mport, destid, hopcount,
RIO_STD_RTE_CONF_PORT_SEL_CSR,
port_sel);
i += id_inc;
}
}
udelay(10);
return 0;
}
rapidio: convert switch drivers to modules Rework RapidIO switch drivers to add an option to build them as loadable kernel modules. This patch removes RapidIO-specific vmlinux section and converts switch drivers to be compatible with LDM driver registration method. To simplify registration of device-specific callback routines this patch introduces rio_switch_ops data structure. The sw_sysfs() callback is removed from the list of device-specific operations because under the new structure its functions can be handled by switch driver's probe() and remove() routines. If a specific switch device driver is not loaded the RapidIO subsystem core will use default standard-based operations to configure a switch. Because the current implementation of RapidIO enumeration/discovery method relies on availability of device-specific operations for error management, switch device drivers must be loaded before the RapidIO enumeration/discovery starts. This patch also moves several common routines from enumeration/discovery module into the RapidIO core code to make switch-specific operations accessible to all components of RapidIO subsystem. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:50 +08:00
/**
* rio_lock_device - Acquires host device lock for specified device
* @port: Master port to send transaction
* @destid: Destination ID for device/switch
* @hopcount: Hopcount to reach switch
* @wait_ms: Max wait time in msec (0 = no timeout)
*
* Attepts to acquire host device lock for specified device
* Returns 0 if device lock acquired or EINVAL if timeout expires.
*/
int rio_lock_device(struct rio_mport *port, u16 destid,
u8 hopcount, int wait_ms)
{
u32 result;
int tcnt = 0;
/* Attempt to acquire device lock */
rio_mport_write_config_32(port, destid, hopcount,
RIO_HOST_DID_LOCK_CSR, port->host_deviceid);
rio_mport_read_config_32(port, destid, hopcount,
RIO_HOST_DID_LOCK_CSR, &result);
while (result != port->host_deviceid) {
if (wait_ms != 0 && tcnt == wait_ms) {
pr_debug("RIO: timeout when locking device %x:%x\n",
destid, hopcount);
return -EINVAL;
}
/* Delay a bit */
mdelay(1);
tcnt++;
/* Try to acquire device lock again */
rio_mport_write_config_32(port, destid,
hopcount,
RIO_HOST_DID_LOCK_CSR,
port->host_deviceid);
rio_mport_read_config_32(port, destid,
hopcount,
RIO_HOST_DID_LOCK_CSR, &result);
}
return 0;
}
EXPORT_SYMBOL_GPL(rio_lock_device);
/**
* rio_unlock_device - Releases host device lock for specified device
* @port: Master port to send transaction
* @destid: Destination ID for device/switch
* @hopcount: Hopcount to reach switch
*
* Returns 0 if device lock released or EINVAL if fails.
*/
int rio_unlock_device(struct rio_mport *port, u16 destid, u8 hopcount)
{
u32 result;
/* Release device lock */
rio_mport_write_config_32(port, destid,
hopcount,
RIO_HOST_DID_LOCK_CSR,
port->host_deviceid);
rio_mport_read_config_32(port, destid, hopcount,
RIO_HOST_DID_LOCK_CSR, &result);
if ((result & 0xffff) != 0xffff) {
pr_debug("RIO: badness when releasing device lock %x:%x\n",
destid, hopcount);
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL_GPL(rio_unlock_device);
/**
* rio_route_add_entry- Add a route entry to a switch routing table
* @rdev: RIO device
* @table: Routing table ID
* @route_destid: Destination ID to be routed
* @route_port: Port number to be routed
* @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
*
* If available calls the switch specific add_entry() method to add a route
* entry into a switch routing table. Otherwise uses standard RT update method
* as defined by RapidIO specification. A specific routing table can be selected
* using the @table argument if a switch has per port routing tables or
* the standard (or global) table may be used by passing
* %RIO_GLOBAL_TABLE in @table.
*
* Returns %0 on success or %-EINVAL on failure.
*/
int rio_route_add_entry(struct rio_dev *rdev,
u16 table, u16 route_destid, u8 route_port, int lock)
{
int rc = -EINVAL;
struct rio_switch_ops *ops = rdev->rswitch->ops;
if (lock) {
rc = rio_lock_device(rdev->net->hport, rdev->destid,
rdev->hopcount, 1000);
if (rc)
return rc;
}
spin_lock(&rdev->rswitch->lock);
if (ops == NULL || ops->add_entry == NULL) {
rc = rio_std_route_add_entry(rdev->net->hport, rdev->destid,
rdev->hopcount, table,
route_destid, route_port);
} else if (try_module_get(ops->owner)) {
rc = ops->add_entry(rdev->net->hport, rdev->destid,
rdev->hopcount, table, route_destid,
route_port);
module_put(ops->owner);
}
spin_unlock(&rdev->rswitch->lock);
if (lock)
rio_unlock_device(rdev->net->hport, rdev->destid,
rdev->hopcount);
return rc;
}
EXPORT_SYMBOL_GPL(rio_route_add_entry);
/**
* rio_route_get_entry- Read an entry from a switch routing table
* @rdev: RIO device
* @table: Routing table ID
* @route_destid: Destination ID to be routed
* @route_port: Pointer to read port number into
* @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
*
* If available calls the switch specific get_entry() method to fetch a route
* entry from a switch routing table. Otherwise uses standard RT read method
* as defined by RapidIO specification. A specific routing table can be selected
* using the @table argument if a switch has per port routing tables or
* the standard (or global) table may be used by passing
* %RIO_GLOBAL_TABLE in @table.
*
* Returns %0 on success or %-EINVAL on failure.
*/
int rio_route_get_entry(struct rio_dev *rdev, u16 table,
u16 route_destid, u8 *route_port, int lock)
{
int rc = -EINVAL;
struct rio_switch_ops *ops = rdev->rswitch->ops;
if (lock) {
rc = rio_lock_device(rdev->net->hport, rdev->destid,
rdev->hopcount, 1000);
if (rc)
return rc;
}
spin_lock(&rdev->rswitch->lock);
if (ops == NULL || ops->get_entry == NULL) {
rc = rio_std_route_get_entry(rdev->net->hport, rdev->destid,
rdev->hopcount, table,
route_destid, route_port);
} else if (try_module_get(ops->owner)) {
rc = ops->get_entry(rdev->net->hport, rdev->destid,
rdev->hopcount, table, route_destid,
route_port);
module_put(ops->owner);
}
spin_unlock(&rdev->rswitch->lock);
if (lock)
rio_unlock_device(rdev->net->hport, rdev->destid,
rdev->hopcount);
return rc;
}
EXPORT_SYMBOL_GPL(rio_route_get_entry);
/**
* rio_route_clr_table - Clear a switch routing table
* @rdev: RIO device
* @table: Routing table ID
* @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
*
* If available calls the switch specific clr_table() method to clear a switch
* routing table. Otherwise uses standard RT write method as defined by RapidIO
* specification. A specific routing table can be selected using the @table
* argument if a switch has per port routing tables or the standard (or global)
* table may be used by passing %RIO_GLOBAL_TABLE in @table.
*
* Returns %0 on success or %-EINVAL on failure.
*/
int rio_route_clr_table(struct rio_dev *rdev, u16 table, int lock)
{
int rc = -EINVAL;
struct rio_switch_ops *ops = rdev->rswitch->ops;
if (lock) {
rc = rio_lock_device(rdev->net->hport, rdev->destid,
rdev->hopcount, 1000);
if (rc)
return rc;
}
spin_lock(&rdev->rswitch->lock);
if (ops == NULL || ops->clr_table == NULL) {
rc = rio_std_route_clr_table(rdev->net->hport, rdev->destid,
rdev->hopcount, table);
} else if (try_module_get(ops->owner)) {
rc = ops->clr_table(rdev->net->hport, rdev->destid,
rdev->hopcount, table);
module_put(ops->owner);
}
spin_unlock(&rdev->rswitch->lock);
if (lock)
rio_unlock_device(rdev->net->hport, rdev->destid,
rdev->hopcount);
return rc;
}
EXPORT_SYMBOL_GPL(rio_route_clr_table);
#ifdef CONFIG_RAPIDIO_DMA_ENGINE
static bool rio_chan_filter(struct dma_chan *chan, void *arg)
{
struct rio_dev *rdev = arg;
/* Check that DMA device belongs to the right MPORT */
return (rdev->net->hport ==
container_of(chan->device, struct rio_mport, dma));
}
/**
* rio_request_dma - request RapidIO capable DMA channel that supports
* specified target RapidIO device.
* @rdev: RIO device control structure
*
* Returns pointer to allocated DMA channel or NULL if failed.
*/
struct dma_chan *rio_request_dma(struct rio_dev *rdev)
{
dma_cap_mask_t mask;
struct dma_chan *dchan;
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
dchan = dma_request_channel(mask, rio_chan_filter, rdev);
return dchan;
}
EXPORT_SYMBOL_GPL(rio_request_dma);
/**
* rio_release_dma - release specified DMA channel
* @dchan: DMA channel to release
*/
void rio_release_dma(struct dma_chan *dchan)
{
dma_release_channel(dchan);
}
EXPORT_SYMBOL_GPL(rio_release_dma);
/**
* rio_dma_prep_slave_sg - RapidIO specific wrapper
* for device_prep_slave_sg callback defined by DMAENGINE.
* @rdev: RIO device control structure
* @dchan: DMA channel to configure
* @data: RIO specific data descriptor
* @direction: DMA data transfer direction (TO or FROM the device)
* @flags: dmaengine defined flags
*
* Initializes RapidIO capable DMA channel for the specified data transfer.
* Uses DMA channel private extension to pass information related to remote
* target RIO device.
* Returns pointer to DMA transaction descriptor or NULL if failed.
*/
struct dma_async_tx_descriptor *rio_dma_prep_slave_sg(struct rio_dev *rdev,
struct dma_chan *dchan, struct rio_dma_data *data,
enum dma_transfer_direction direction, unsigned long flags)
{
struct dma_async_tx_descriptor *txd = NULL;
struct rio_dma_ext rio_ext;
if (dchan->device->device_prep_slave_sg == NULL) {
pr_err("%s: prep_rio_sg == NULL\n", __func__);
return NULL;
}
rio_ext.destid = rdev->destid;
rio_ext.rio_addr_u = data->rio_addr_u;
rio_ext.rio_addr = data->rio_addr;
rio_ext.wr_type = data->wr_type;
txd = dmaengine_prep_rio_sg(dchan, data->sg, data->sg_len,
direction, flags, &rio_ext);
return txd;
}
EXPORT_SYMBOL_GPL(rio_dma_prep_slave_sg);
#endif /* CONFIG_RAPIDIO_DMA_ENGINE */
/**
* rio_find_mport - find RIO mport by its ID
* @mport_id: number (ID) of mport device
*
* Given a RIO mport number, the desired mport is located
* in the global list of mports. If the mport is found, a pointer to its
* data structure is returned. If no mport is found, %NULL is returned.
*/
struct rio_mport *rio_find_mport(int mport_id)
{
struct rio_mport *port;
mutex_lock(&rio_mport_list_lock);
list_for_each_entry(port, &rio_mports, node) {
if (port->id == mport_id)
goto found;
}
port = NULL;
found:
mutex_unlock(&rio_mport_list_lock);
return port;
}
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
/**
* rio_register_scan - enumeration/discovery method registration interface
* @mport_id: mport device ID for which fabric scan routine has to be set
* (RIO_MPORT_ANY = set for all available mports)
rapidio: update enumerator registration mechanism Update enumeration/discovery method registration mechanism to allow loading enumeration/discovery methods before all mports are registered. Existing statically linked RapidIO subsystem expects that all available RapidIO mport devices are initialized and registered before the enumeration/discovery method is registered. Switching to loadable mport device drivers creates situation when mport device driver can be loaded after enumeration/discovery method is attached (e.g., loadable mport driver in a system with statically linked RapidIO core and enumerator). This also will happen in a system with hot-pluggable RapidIO controllers. To remove the dependency on the initialization/registration order this patch introduces enumeration/discovery registration mechanism that supports arbitrary registration order of mports and enumerator/discovery methods. The following registration rules are implemented: - only one enumeration/discovery method can be registered for given mport ID (including RIO_MPORT_ANY); - when new enumeration/discovery methods tries to attach to the registered mport device, method with matching mport ID will replace a default method previously registered for given mport (if any); - enumeration/discovery method with target ID=RIO_MPORT_ANY will be attached only to mports that do not have another enumerator attached to them; - when new mport device is registered with RapidIO subsystem, registration routine searches for the enumeration/discovery method with the best matching mport ID; Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:53 +08:00
* @scan_ops: enumeration/discovery operations structure
*
* Registers enumeration/discovery operations with RapidIO subsystem and
* attaches it to the specified mport device (or all available mports
* if RIO_MPORT_ANY is specified).
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
*
* Returns error if the mport already has an enumerator attached to it.
rapidio: update enumerator registration mechanism Update enumeration/discovery method registration mechanism to allow loading enumeration/discovery methods before all mports are registered. Existing statically linked RapidIO subsystem expects that all available RapidIO mport devices are initialized and registered before the enumeration/discovery method is registered. Switching to loadable mport device drivers creates situation when mport device driver can be loaded after enumeration/discovery method is attached (e.g., loadable mport driver in a system with statically linked RapidIO core and enumerator). This also will happen in a system with hot-pluggable RapidIO controllers. To remove the dependency on the initialization/registration order this patch introduces enumeration/discovery registration mechanism that supports arbitrary registration order of mports and enumerator/discovery methods. The following registration rules are implemented: - only one enumeration/discovery method can be registered for given mport ID (including RIO_MPORT_ANY); - when new enumeration/discovery methods tries to attach to the registered mport device, method with matching mport ID will replace a default method previously registered for given mport (if any); - enumeration/discovery method with target ID=RIO_MPORT_ANY will be attached only to mports that do not have another enumerator attached to them; - when new mport device is registered with RapidIO subsystem, registration routine searches for the enumeration/discovery method with the best matching mport ID; Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:53 +08:00
* In case of RIO_MPORT_ANY skips mports with valid scan routines (no error).
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
*/
int rio_register_scan(int mport_id, struct rio_scan *scan_ops)
{
struct rio_mport *port;
rapidio: update enumerator registration mechanism Update enumeration/discovery method registration mechanism to allow loading enumeration/discovery methods before all mports are registered. Existing statically linked RapidIO subsystem expects that all available RapidIO mport devices are initialized and registered before the enumeration/discovery method is registered. Switching to loadable mport device drivers creates situation when mport device driver can be loaded after enumeration/discovery method is attached (e.g., loadable mport driver in a system with statically linked RapidIO core and enumerator). This also will happen in a system with hot-pluggable RapidIO controllers. To remove the dependency on the initialization/registration order this patch introduces enumeration/discovery registration mechanism that supports arbitrary registration order of mports and enumerator/discovery methods. The following registration rules are implemented: - only one enumeration/discovery method can be registered for given mport ID (including RIO_MPORT_ANY); - when new enumeration/discovery methods tries to attach to the registered mport device, method with matching mport ID will replace a default method previously registered for given mport (if any); - enumeration/discovery method with target ID=RIO_MPORT_ANY will be attached only to mports that do not have another enumerator attached to them; - when new mport device is registered with RapidIO subsystem, registration routine searches for the enumeration/discovery method with the best matching mport ID; Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:53 +08:00
struct rio_scan_node *scan;
int rc = 0;
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
rapidio: update enumerator registration mechanism Update enumeration/discovery method registration mechanism to allow loading enumeration/discovery methods before all mports are registered. Existing statically linked RapidIO subsystem expects that all available RapidIO mport devices are initialized and registered before the enumeration/discovery method is registered. Switching to loadable mport device drivers creates situation when mport device driver can be loaded after enumeration/discovery method is attached (e.g., loadable mport driver in a system with statically linked RapidIO core and enumerator). This also will happen in a system with hot-pluggable RapidIO controllers. To remove the dependency on the initialization/registration order this patch introduces enumeration/discovery registration mechanism that supports arbitrary registration order of mports and enumerator/discovery methods. The following registration rules are implemented: - only one enumeration/discovery method can be registered for given mport ID (including RIO_MPORT_ANY); - when new enumeration/discovery methods tries to attach to the registered mport device, method with matching mport ID will replace a default method previously registered for given mport (if any); - enumeration/discovery method with target ID=RIO_MPORT_ANY will be attached only to mports that do not have another enumerator attached to them; - when new mport device is registered with RapidIO subsystem, registration routine searches for the enumeration/discovery method with the best matching mport ID; Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:53 +08:00
pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
rapidio: update enumerator registration mechanism Update enumeration/discovery method registration mechanism to allow loading enumeration/discovery methods before all mports are registered. Existing statically linked RapidIO subsystem expects that all available RapidIO mport devices are initialized and registered before the enumeration/discovery method is registered. Switching to loadable mport device drivers creates situation when mport device driver can be loaded after enumeration/discovery method is attached (e.g., loadable mport driver in a system with statically linked RapidIO core and enumerator). This also will happen in a system with hot-pluggable RapidIO controllers. To remove the dependency on the initialization/registration order this patch introduces enumeration/discovery registration mechanism that supports arbitrary registration order of mports and enumerator/discovery methods. The following registration rules are implemented: - only one enumeration/discovery method can be registered for given mport ID (including RIO_MPORT_ANY); - when new enumeration/discovery methods tries to attach to the registered mport device, method with matching mport ID will replace a default method previously registered for given mport (if any); - enumeration/discovery method with target ID=RIO_MPORT_ANY will be attached only to mports that do not have another enumerator attached to them; - when new mport device is registered with RapidIO subsystem, registration routine searches for the enumeration/discovery method with the best matching mport ID; Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:53 +08:00
if ((mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) ||
!scan_ops)
return -EINVAL;
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
rapidio: update enumerator registration mechanism Update enumeration/discovery method registration mechanism to allow loading enumeration/discovery methods before all mports are registered. Existing statically linked RapidIO subsystem expects that all available RapidIO mport devices are initialized and registered before the enumeration/discovery method is registered. Switching to loadable mport device drivers creates situation when mport device driver can be loaded after enumeration/discovery method is attached (e.g., loadable mport driver in a system with statically linked RapidIO core and enumerator). This also will happen in a system with hot-pluggable RapidIO controllers. To remove the dependency on the initialization/registration order this patch introduces enumeration/discovery registration mechanism that supports arbitrary registration order of mports and enumerator/discovery methods. The following registration rules are implemented: - only one enumeration/discovery method can be registered for given mport ID (including RIO_MPORT_ANY); - when new enumeration/discovery methods tries to attach to the registered mport device, method with matching mport ID will replace a default method previously registered for given mport (if any); - enumeration/discovery method with target ID=RIO_MPORT_ANY will be attached only to mports that do not have another enumerator attached to them; - when new mport device is registered with RapidIO subsystem, registration routine searches for the enumeration/discovery method with the best matching mport ID; Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:53 +08:00
mutex_lock(&rio_mport_list_lock);
/*
* Check if there is another enumerator already registered for
* the same mport ID (including RIO_MPORT_ANY). Multiple enumerators
* for the same mport ID are not supported.
*/
list_for_each_entry(scan, &rio_scans, node) {
if (scan->mport_id == mport_id) {
rc = -EBUSY;
goto err_out;
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
}
}
rapidio: update enumerator registration mechanism Update enumeration/discovery method registration mechanism to allow loading enumeration/discovery methods before all mports are registered. Existing statically linked RapidIO subsystem expects that all available RapidIO mport devices are initialized and registered before the enumeration/discovery method is registered. Switching to loadable mport device drivers creates situation when mport device driver can be loaded after enumeration/discovery method is attached (e.g., loadable mport driver in a system with statically linked RapidIO core and enumerator). This also will happen in a system with hot-pluggable RapidIO controllers. To remove the dependency on the initialization/registration order this patch introduces enumeration/discovery registration mechanism that supports arbitrary registration order of mports and enumerator/discovery methods. The following registration rules are implemented: - only one enumeration/discovery method can be registered for given mport ID (including RIO_MPORT_ANY); - when new enumeration/discovery methods tries to attach to the registered mport device, method with matching mport ID will replace a default method previously registered for given mport (if any); - enumeration/discovery method with target ID=RIO_MPORT_ANY will be attached only to mports that do not have another enumerator attached to them; - when new mport device is registered with RapidIO subsystem, registration routine searches for the enumeration/discovery method with the best matching mport ID; Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:53 +08:00
/*
* Allocate and initialize new scan registration node.
*/
scan = kzalloc(sizeof(*scan), GFP_KERNEL);
if (!scan) {
rc = -ENOMEM;
goto err_out;
}
scan->mport_id = mport_id;
scan->ops = scan_ops;
/*
* Traverse the list of registered mports to attach this new scan.
*
* The new scan with matching mport ID overrides any previously attached
* scan assuming that old scan (if any) is the default one (based on the
* enumerator registration check above).
* If the new scan is the global one, it will be attached only to mports
* that do not have their own individual operations already attached.
*/
list_for_each_entry(port, &rio_mports, node) {
if (port->id == mport_id) {
port->nscan = scan_ops;
break;
} else if (mport_id == RIO_MPORT_ANY && !port->nscan)
port->nscan = scan_ops;
}
list_add_tail(&scan->node, &rio_scans);
err_out:
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
mutex_unlock(&rio_mport_list_lock);
return rc;
}
EXPORT_SYMBOL_GPL(rio_register_scan);
/**
* rio_unregister_scan - removes enumeration/discovery method from mport
* @mport_id: mport device ID for which fabric scan routine has to be
rapidio: update enumerator registration mechanism Update enumeration/discovery method registration mechanism to allow loading enumeration/discovery methods before all mports are registered. Existing statically linked RapidIO subsystem expects that all available RapidIO mport devices are initialized and registered before the enumeration/discovery method is registered. Switching to loadable mport device drivers creates situation when mport device driver can be loaded after enumeration/discovery method is attached (e.g., loadable mport driver in a system with statically linked RapidIO core and enumerator). This also will happen in a system with hot-pluggable RapidIO controllers. To remove the dependency on the initialization/registration order this patch introduces enumeration/discovery registration mechanism that supports arbitrary registration order of mports and enumerator/discovery methods. The following registration rules are implemented: - only one enumeration/discovery method can be registered for given mport ID (including RIO_MPORT_ANY); - when new enumeration/discovery methods tries to attach to the registered mport device, method with matching mport ID will replace a default method previously registered for given mport (if any); - enumeration/discovery method with target ID=RIO_MPORT_ANY will be attached only to mports that do not have another enumerator attached to them; - when new mport device is registered with RapidIO subsystem, registration routine searches for the enumeration/discovery method with the best matching mport ID; Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:53 +08:00
* unregistered (RIO_MPORT_ANY = apply to all mports that use
* the specified scan_ops)
* @scan_ops: enumeration/discovery operations structure
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
*
* Removes enumeration or discovery method assigned to the specified mport
rapidio: update enumerator registration mechanism Update enumeration/discovery method registration mechanism to allow loading enumeration/discovery methods before all mports are registered. Existing statically linked RapidIO subsystem expects that all available RapidIO mport devices are initialized and registered before the enumeration/discovery method is registered. Switching to loadable mport device drivers creates situation when mport device driver can be loaded after enumeration/discovery method is attached (e.g., loadable mport driver in a system with statically linked RapidIO core and enumerator). This also will happen in a system with hot-pluggable RapidIO controllers. To remove the dependency on the initialization/registration order this patch introduces enumeration/discovery registration mechanism that supports arbitrary registration order of mports and enumerator/discovery methods. The following registration rules are implemented: - only one enumeration/discovery method can be registered for given mport ID (including RIO_MPORT_ANY); - when new enumeration/discovery methods tries to attach to the registered mport device, method with matching mport ID will replace a default method previously registered for given mport (if any); - enumeration/discovery method with target ID=RIO_MPORT_ANY will be attached only to mports that do not have another enumerator attached to them; - when new mport device is registered with RapidIO subsystem, registration routine searches for the enumeration/discovery method with the best matching mport ID; Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:53 +08:00
* device. If RIO_MPORT_ANY is specified, removes the specified operations from
* all mports that have them attached.
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
*/
rapidio: update enumerator registration mechanism Update enumeration/discovery method registration mechanism to allow loading enumeration/discovery methods before all mports are registered. Existing statically linked RapidIO subsystem expects that all available RapidIO mport devices are initialized and registered before the enumeration/discovery method is registered. Switching to loadable mport device drivers creates situation when mport device driver can be loaded after enumeration/discovery method is attached (e.g., loadable mport driver in a system with statically linked RapidIO core and enumerator). This also will happen in a system with hot-pluggable RapidIO controllers. To remove the dependency on the initialization/registration order this patch introduces enumeration/discovery registration mechanism that supports arbitrary registration order of mports and enumerator/discovery methods. The following registration rules are implemented: - only one enumeration/discovery method can be registered for given mport ID (including RIO_MPORT_ANY); - when new enumeration/discovery methods tries to attach to the registered mport device, method with matching mport ID will replace a default method previously registered for given mport (if any); - enumeration/discovery method with target ID=RIO_MPORT_ANY will be attached only to mports that do not have another enumerator attached to them; - when new mport device is registered with RapidIO subsystem, registration routine searches for the enumeration/discovery method with the best matching mport ID; Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:53 +08:00
int rio_unregister_scan(int mport_id, struct rio_scan *scan_ops)
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
{
struct rio_mport *port;
rapidio: update enumerator registration mechanism Update enumeration/discovery method registration mechanism to allow loading enumeration/discovery methods before all mports are registered. Existing statically linked RapidIO subsystem expects that all available RapidIO mport devices are initialized and registered before the enumeration/discovery method is registered. Switching to loadable mport device drivers creates situation when mport device driver can be loaded after enumeration/discovery method is attached (e.g., loadable mport driver in a system with statically linked RapidIO core and enumerator). This also will happen in a system with hot-pluggable RapidIO controllers. To remove the dependency on the initialization/registration order this patch introduces enumeration/discovery registration mechanism that supports arbitrary registration order of mports and enumerator/discovery methods. The following registration rules are implemented: - only one enumeration/discovery method can be registered for given mport ID (including RIO_MPORT_ANY); - when new enumeration/discovery methods tries to attach to the registered mport device, method with matching mport ID will replace a default method previously registered for given mport (if any); - enumeration/discovery method with target ID=RIO_MPORT_ANY will be attached only to mports that do not have another enumerator attached to them; - when new mport device is registered with RapidIO subsystem, registration routine searches for the enumeration/discovery method with the best matching mport ID; Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:53 +08:00
struct rio_scan_node *scan;
pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
if (mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS)
return -EINVAL;
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
mutex_lock(&rio_mport_list_lock);
rapidio: update enumerator registration mechanism Update enumeration/discovery method registration mechanism to allow loading enumeration/discovery methods before all mports are registered. Existing statically linked RapidIO subsystem expects that all available RapidIO mport devices are initialized and registered before the enumeration/discovery method is registered. Switching to loadable mport device drivers creates situation when mport device driver can be loaded after enumeration/discovery method is attached (e.g., loadable mport driver in a system with statically linked RapidIO core and enumerator). This also will happen in a system with hot-pluggable RapidIO controllers. To remove the dependency on the initialization/registration order this patch introduces enumeration/discovery registration mechanism that supports arbitrary registration order of mports and enumerator/discovery methods. The following registration rules are implemented: - only one enumeration/discovery method can be registered for given mport ID (including RIO_MPORT_ANY); - when new enumeration/discovery methods tries to attach to the registered mport device, method with matching mport ID will replace a default method previously registered for given mport (if any); - enumeration/discovery method with target ID=RIO_MPORT_ANY will be attached only to mports that do not have another enumerator attached to them; - when new mport device is registered with RapidIO subsystem, registration routine searches for the enumeration/discovery method with the best matching mport ID; Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:53 +08:00
list_for_each_entry(port, &rio_mports, node)
if (port->id == mport_id ||
(mport_id == RIO_MPORT_ANY && port->nscan == scan_ops))
port->nscan = NULL;
list_for_each_entry(scan, &rio_scans, node) {
rapidio: update enumerator registration mechanism Update enumeration/discovery method registration mechanism to allow loading enumeration/discovery methods before all mports are registered. Existing statically linked RapidIO subsystem expects that all available RapidIO mport devices are initialized and registered before the enumeration/discovery method is registered. Switching to loadable mport device drivers creates situation when mport device driver can be loaded after enumeration/discovery method is attached (e.g., loadable mport driver in a system with statically linked RapidIO core and enumerator). This also will happen in a system with hot-pluggable RapidIO controllers. To remove the dependency on the initialization/registration order this patch introduces enumeration/discovery registration mechanism that supports arbitrary registration order of mports and enumerator/discovery methods. The following registration rules are implemented: - only one enumeration/discovery method can be registered for given mport ID (including RIO_MPORT_ANY); - when new enumeration/discovery methods tries to attach to the registered mport device, method with matching mport ID will replace a default method previously registered for given mport (if any); - enumeration/discovery method with target ID=RIO_MPORT_ANY will be attached only to mports that do not have another enumerator attached to them; - when new mport device is registered with RapidIO subsystem, registration routine searches for the enumeration/discovery method with the best matching mport ID; Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:53 +08:00
if (scan->mport_id == mport_id) {
list_del(&scan->node);
kfree(scan);
break;
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
}
}
rapidio: update enumerator registration mechanism Update enumeration/discovery method registration mechanism to allow loading enumeration/discovery methods before all mports are registered. Existing statically linked RapidIO subsystem expects that all available RapidIO mport devices are initialized and registered before the enumeration/discovery method is registered. Switching to loadable mport device drivers creates situation when mport device driver can be loaded after enumeration/discovery method is attached (e.g., loadable mport driver in a system with statically linked RapidIO core and enumerator). This also will happen in a system with hot-pluggable RapidIO controllers. To remove the dependency on the initialization/registration order this patch introduces enumeration/discovery registration mechanism that supports arbitrary registration order of mports and enumerator/discovery methods. The following registration rules are implemented: - only one enumeration/discovery method can be registered for given mport ID (including RIO_MPORT_ANY); - when new enumeration/discovery methods tries to attach to the registered mport device, method with matching mport ID will replace a default method previously registered for given mport (if any); - enumeration/discovery method with target ID=RIO_MPORT_ANY will be attached only to mports that do not have another enumerator attached to them; - when new mport device is registered with RapidIO subsystem, registration routine searches for the enumeration/discovery method with the best matching mport ID; Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:53 +08:00
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
mutex_unlock(&rio_mport_list_lock);
return 0;
}
EXPORT_SYMBOL_GPL(rio_unregister_scan);
rapidio: update enumerator registration mechanism Update enumeration/discovery method registration mechanism to allow loading enumeration/discovery methods before all mports are registered. Existing statically linked RapidIO subsystem expects that all available RapidIO mport devices are initialized and registered before the enumeration/discovery method is registered. Switching to loadable mport device drivers creates situation when mport device driver can be loaded after enumeration/discovery method is attached (e.g., loadable mport driver in a system with statically linked RapidIO core and enumerator). This also will happen in a system with hot-pluggable RapidIO controllers. To remove the dependency on the initialization/registration order this patch introduces enumeration/discovery registration mechanism that supports arbitrary registration order of mports and enumerator/discovery methods. The following registration rules are implemented: - only one enumeration/discovery method can be registered for given mport ID (including RIO_MPORT_ANY); - when new enumeration/discovery methods tries to attach to the registered mport device, method with matching mport ID will replace a default method previously registered for given mport (if any); - enumeration/discovery method with target ID=RIO_MPORT_ANY will be attached only to mports that do not have another enumerator attached to them; - when new mport device is registered with RapidIO subsystem, registration routine searches for the enumeration/discovery method with the best matching mport ID; Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:53 +08:00
/**
* rio_mport_scan - execute enumeration/discovery on the specified mport
* @mport_id: number (ID) of mport device
*/
int rio_mport_scan(int mport_id)
{
struct rio_mport *port = NULL;
int rc;
mutex_lock(&rio_mport_list_lock);
list_for_each_entry(port, &rio_mports, node) {
if (port->id == mport_id)
goto found;
}
mutex_unlock(&rio_mport_list_lock);
return -ENODEV;
found:
if (!port->nscan) {
mutex_unlock(&rio_mport_list_lock);
return -EINVAL;
}
if (!try_module_get(port->nscan->owner)) {
mutex_unlock(&rio_mport_list_lock);
return -ENODEV;
}
mutex_unlock(&rio_mport_list_lock);
if (port->host_deviceid >= 0)
rc = port->nscan->enumerate(port, 0);
else
rc = port->nscan->discover(port, RIO_SCAN_ENUM_NO_WAIT);
module_put(port->nscan->owner);
return rc;
}
static void rio_fixup_device(struct rio_dev *dev)
{
}
static int rio_init(void)
{
struct rio_dev *dev = NULL;
while ((dev = rio_get_device(RIO_ANY_ID, RIO_ANY_ID, dev)) != NULL) {
rio_fixup_device(dev);
}
return 0;
}
static struct workqueue_struct *rio_wq;
struct rio_disc_work {
struct work_struct work;
struct rio_mport *mport;
};
static void disc_work_handler(struct work_struct *_work)
{
struct rio_disc_work *work;
work = container_of(_work, struct rio_disc_work, work);
pr_debug("RIO: discovery work for mport %d %s\n",
work->mport->id, work->mport->name);
rapidio: update enumerator registration mechanism Update enumeration/discovery method registration mechanism to allow loading enumeration/discovery methods before all mports are registered. Existing statically linked RapidIO subsystem expects that all available RapidIO mport devices are initialized and registered before the enumeration/discovery method is registered. Switching to loadable mport device drivers creates situation when mport device driver can be loaded after enumeration/discovery method is attached (e.g., loadable mport driver in a system with statically linked RapidIO core and enumerator). This also will happen in a system with hot-pluggable RapidIO controllers. To remove the dependency on the initialization/registration order this patch introduces enumeration/discovery registration mechanism that supports arbitrary registration order of mports and enumerator/discovery methods. The following registration rules are implemented: - only one enumeration/discovery method can be registered for given mport ID (including RIO_MPORT_ANY); - when new enumeration/discovery methods tries to attach to the registered mport device, method with matching mport ID will replace a default method previously registered for given mport (if any); - enumeration/discovery method with target ID=RIO_MPORT_ANY will be attached only to mports that do not have another enumerator attached to them; - when new mport device is registered with RapidIO subsystem, registration routine searches for the enumeration/discovery method with the best matching mport ID; Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:53 +08:00
if (try_module_get(work->mport->nscan->owner)) {
work->mport->nscan->discover(work->mport, 0);
module_put(work->mport->nscan->owner);
}
}
int rio_init_mports(void)
{
struct rio_mport *port;
struct rio_disc_work *work;
int n = 0;
if (!next_portid)
return -ENODEV;
/*
* First, run enumerations and check if we need to perform discovery
* on any of the registered mports.
*/
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
mutex_lock(&rio_mport_list_lock);
list_for_each_entry(port, &rio_mports, node) {
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
if (port->host_deviceid >= 0) {
rapidio: update enumerator registration mechanism Update enumeration/discovery method registration mechanism to allow loading enumeration/discovery methods before all mports are registered. Existing statically linked RapidIO subsystem expects that all available RapidIO mport devices are initialized and registered before the enumeration/discovery method is registered. Switching to loadable mport device drivers creates situation when mport device driver can be loaded after enumeration/discovery method is attached (e.g., loadable mport driver in a system with statically linked RapidIO core and enumerator). This also will happen in a system with hot-pluggable RapidIO controllers. To remove the dependency on the initialization/registration order this patch introduces enumeration/discovery registration mechanism that supports arbitrary registration order of mports and enumerator/discovery methods. The following registration rules are implemented: - only one enumeration/discovery method can be registered for given mport ID (including RIO_MPORT_ANY); - when new enumeration/discovery methods tries to attach to the registered mport device, method with matching mport ID will replace a default method previously registered for given mport (if any); - enumeration/discovery method with target ID=RIO_MPORT_ANY will be attached only to mports that do not have another enumerator attached to them; - when new mport device is registered with RapidIO subsystem, registration routine searches for the enumeration/discovery method with the best matching mport ID; Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:53 +08:00
if (port->nscan && try_module_get(port->nscan->owner)) {
port->nscan->enumerate(port, 0);
rapidio: update enumerator registration mechanism Update enumeration/discovery method registration mechanism to allow loading enumeration/discovery methods before all mports are registered. Existing statically linked RapidIO subsystem expects that all available RapidIO mport devices are initialized and registered before the enumeration/discovery method is registered. Switching to loadable mport device drivers creates situation when mport device driver can be loaded after enumeration/discovery method is attached (e.g., loadable mport driver in a system with statically linked RapidIO core and enumerator). This also will happen in a system with hot-pluggable RapidIO controllers. To remove the dependency on the initialization/registration order this patch introduces enumeration/discovery registration mechanism that supports arbitrary registration order of mports and enumerator/discovery methods. The following registration rules are implemented: - only one enumeration/discovery method can be registered for given mport ID (including RIO_MPORT_ANY); - when new enumeration/discovery methods tries to attach to the registered mport device, method with matching mport ID will replace a default method previously registered for given mport (if any); - enumeration/discovery method with target ID=RIO_MPORT_ANY will be attached only to mports that do not have another enumerator attached to them; - when new mport device is registered with RapidIO subsystem, registration routine searches for the enumeration/discovery method with the best matching mport ID; Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:53 +08:00
module_put(port->nscan->owner);
}
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
} else
n++;
}
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
mutex_unlock(&rio_mport_list_lock);
if (!n)
goto no_disc;
/*
* If we have mports that require discovery schedule a discovery work
* for each of them. If the code below fails to allocate needed
* resources, exit without error to keep results of enumeration
* process (if any).
rapidio: update enumerator registration mechanism Update enumeration/discovery method registration mechanism to allow loading enumeration/discovery methods before all mports are registered. Existing statically linked RapidIO subsystem expects that all available RapidIO mport devices are initialized and registered before the enumeration/discovery method is registered. Switching to loadable mport device drivers creates situation when mport device driver can be loaded after enumeration/discovery method is attached (e.g., loadable mport driver in a system with statically linked RapidIO core and enumerator). This also will happen in a system with hot-pluggable RapidIO controllers. To remove the dependency on the initialization/registration order this patch introduces enumeration/discovery registration mechanism that supports arbitrary registration order of mports and enumerator/discovery methods. The following registration rules are implemented: - only one enumeration/discovery method can be registered for given mport ID (including RIO_MPORT_ANY); - when new enumeration/discovery methods tries to attach to the registered mport device, method with matching mport ID will replace a default method previously registered for given mport (if any); - enumeration/discovery method with target ID=RIO_MPORT_ANY will be attached only to mports that do not have another enumerator attached to them; - when new mport device is registered with RapidIO subsystem, registration routine searches for the enumeration/discovery method with the best matching mport ID; Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:53 +08:00
* TODO: Implement restart of discovery process for all or
* individual discovering mports.
*/
rio_wq = alloc_workqueue("riodisc", 0, 0);
if (!rio_wq) {
pr_err("RIO: unable allocate rio_wq\n");
goto no_disc;
}
work = kcalloc(n, sizeof *work, GFP_KERNEL);
if (!work) {
pr_err("RIO: no memory for work struct\n");
destroy_workqueue(rio_wq);
goto no_disc;
}
n = 0;
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
mutex_lock(&rio_mport_list_lock);
list_for_each_entry(port, &rio_mports, node) {
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
if (port->host_deviceid < 0 && port->nscan) {
work[n].mport = port;
INIT_WORK(&work[n].work, disc_work_handler);
queue_work(rio_wq, &work[n].work);
n++;
}
}
flush_workqueue(rio_wq);
rapidio: update enumerator registration mechanism Update enumeration/discovery method registration mechanism to allow loading enumeration/discovery methods before all mports are registered. Existing statically linked RapidIO subsystem expects that all available RapidIO mport devices are initialized and registered before the enumeration/discovery method is registered. Switching to loadable mport device drivers creates situation when mport device driver can be loaded after enumeration/discovery method is attached (e.g., loadable mport driver in a system with statically linked RapidIO core and enumerator). This also will happen in a system with hot-pluggable RapidIO controllers. To remove the dependency on the initialization/registration order this patch introduces enumeration/discovery registration mechanism that supports arbitrary registration order of mports and enumerator/discovery methods. The following registration rules are implemented: - only one enumeration/discovery method can be registered for given mport ID (including RIO_MPORT_ANY); - when new enumeration/discovery methods tries to attach to the registered mport device, method with matching mport ID will replace a default method previously registered for given mport (if any); - enumeration/discovery method with target ID=RIO_MPORT_ANY will be attached only to mports that do not have another enumerator attached to them; - when new mport device is registered with RapidIO subsystem, registration routine searches for the enumeration/discovery method with the best matching mport ID; Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:53 +08:00
mutex_unlock(&rio_mport_list_lock);
pr_debug("RIO: destroy discovery workqueue\n");
destroy_workqueue(rio_wq);
kfree(work);
no_disc:
rio_init();
return 0;
}
static int rio_get_hdid(int index)
{
if (ids_num == 0 || ids_num <= index || index >= RIO_MAX_MPORTS)
return -1;
return hdid[index];
}
int rio_register_mport(struct rio_mport *port)
{
rapidio: update enumerator registration mechanism Update enumeration/discovery method registration mechanism to allow loading enumeration/discovery methods before all mports are registered. Existing statically linked RapidIO subsystem expects that all available RapidIO mport devices are initialized and registered before the enumeration/discovery method is registered. Switching to loadable mport device drivers creates situation when mport device driver can be loaded after enumeration/discovery method is attached (e.g., loadable mport driver in a system with statically linked RapidIO core and enumerator). This also will happen in a system with hot-pluggable RapidIO controllers. To remove the dependency on the initialization/registration order this patch introduces enumeration/discovery registration mechanism that supports arbitrary registration order of mports and enumerator/discovery methods. The following registration rules are implemented: - only one enumeration/discovery method can be registered for given mport ID (including RIO_MPORT_ANY); - when new enumeration/discovery methods tries to attach to the registered mport device, method with matching mport ID will replace a default method previously registered for given mport (if any); - enumeration/discovery method with target ID=RIO_MPORT_ANY will be attached only to mports that do not have another enumerator attached to them; - when new mport device is registered with RapidIO subsystem, registration routine searches for the enumeration/discovery method with the best matching mport ID; Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:53 +08:00
struct rio_scan_node *scan = NULL;
int res = 0;
rapidio: update enumerator registration mechanism Update enumeration/discovery method registration mechanism to allow loading enumeration/discovery methods before all mports are registered. Existing statically linked RapidIO subsystem expects that all available RapidIO mport devices are initialized and registered before the enumeration/discovery method is registered. Switching to loadable mport device drivers creates situation when mport device driver can be loaded after enumeration/discovery method is attached (e.g., loadable mport driver in a system with statically linked RapidIO core and enumerator). This also will happen in a system with hot-pluggable RapidIO controllers. To remove the dependency on the initialization/registration order this patch introduces enumeration/discovery registration mechanism that supports arbitrary registration order of mports and enumerator/discovery methods. The following registration rules are implemented: - only one enumeration/discovery method can be registered for given mport ID (including RIO_MPORT_ANY); - when new enumeration/discovery methods tries to attach to the registered mport device, method with matching mport ID will replace a default method previously registered for given mport (if any); - enumeration/discovery method with target ID=RIO_MPORT_ANY will be attached only to mports that do not have another enumerator attached to them; - when new mport device is registered with RapidIO subsystem, registration routine searches for the enumeration/discovery method with the best matching mport ID; Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:53 +08:00
if (next_portid >= RIO_MAX_MPORTS) {
pr_err("RIO: reached specified max number of mports\n");
return 1;
}
port->id = next_portid++;
port->host_deviceid = rio_get_hdid(port->id);
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
port->nscan = NULL;
rapidio: update enumerator registration mechanism Update enumeration/discovery method registration mechanism to allow loading enumeration/discovery methods before all mports are registered. Existing statically linked RapidIO subsystem expects that all available RapidIO mport devices are initialized and registered before the enumeration/discovery method is registered. Switching to loadable mport device drivers creates situation when mport device driver can be loaded after enumeration/discovery method is attached (e.g., loadable mport driver in a system with statically linked RapidIO core and enumerator). This also will happen in a system with hot-pluggable RapidIO controllers. To remove the dependency on the initialization/registration order this patch introduces enumeration/discovery registration mechanism that supports arbitrary registration order of mports and enumerator/discovery methods. The following registration rules are implemented: - only one enumeration/discovery method can be registered for given mport ID (including RIO_MPORT_ANY); - when new enumeration/discovery methods tries to attach to the registered mport device, method with matching mport ID will replace a default method previously registered for given mport (if any); - enumeration/discovery method with target ID=RIO_MPORT_ANY will be attached only to mports that do not have another enumerator attached to them; - when new mport device is registered with RapidIO subsystem, registration routine searches for the enumeration/discovery method with the best matching mport ID; Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:53 +08:00
dev_set_name(&port->dev, "rapidio%d", port->id);
port->dev.class = &rio_mport_class;
res = device_register(&port->dev);
if (res)
dev_err(&port->dev, "RIO: mport%d registration failed ERR=%d\n",
port->id, res);
else
dev_dbg(&port->dev, "RIO: mport%d registered\n", port->id);
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
mutex_lock(&rio_mport_list_lock);
list_add_tail(&port->node, &rio_mports);
rapidio: update enumerator registration mechanism Update enumeration/discovery method registration mechanism to allow loading enumeration/discovery methods before all mports are registered. Existing statically linked RapidIO subsystem expects that all available RapidIO mport devices are initialized and registered before the enumeration/discovery method is registered. Switching to loadable mport device drivers creates situation when mport device driver can be loaded after enumeration/discovery method is attached (e.g., loadable mport driver in a system with statically linked RapidIO core and enumerator). This also will happen in a system with hot-pluggable RapidIO controllers. To remove the dependency on the initialization/registration order this patch introduces enumeration/discovery registration mechanism that supports arbitrary registration order of mports and enumerator/discovery methods. The following registration rules are implemented: - only one enumeration/discovery method can be registered for given mport ID (including RIO_MPORT_ANY); - when new enumeration/discovery methods tries to attach to the registered mport device, method with matching mport ID will replace a default method previously registered for given mport (if any); - enumeration/discovery method with target ID=RIO_MPORT_ANY will be attached only to mports that do not have another enumerator attached to them; - when new mport device is registered with RapidIO subsystem, registration routine searches for the enumeration/discovery method with the best matching mport ID; Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:53 +08:00
/*
* Check if there are any registered enumeration/discovery operations
* that have to be attached to the added mport.
*/
list_for_each_entry(scan, &rio_scans, node) {
if (port->id == scan->mport_id ||
scan->mport_id == RIO_MPORT_ANY) {
port->nscan = scan->ops;
if (port->id == scan->mport_id)
break;
}
}
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
mutex_unlock(&rio_mport_list_lock);
rapidio: update enumerator registration mechanism Update enumeration/discovery method registration mechanism to allow loading enumeration/discovery methods before all mports are registered. Existing statically linked RapidIO subsystem expects that all available RapidIO mport devices are initialized and registered before the enumeration/discovery method is registered. Switching to loadable mport device drivers creates situation when mport device driver can be loaded after enumeration/discovery method is attached (e.g., loadable mport driver in a system with statically linked RapidIO core and enumerator). This also will happen in a system with hot-pluggable RapidIO controllers. To remove the dependency on the initialization/registration order this patch introduces enumeration/discovery registration mechanism that supports arbitrary registration order of mports and enumerator/discovery methods. The following registration rules are implemented: - only one enumeration/discovery method can be registered for given mport ID (including RIO_MPORT_ANY); - when new enumeration/discovery methods tries to attach to the registered mport device, method with matching mport ID will replace a default method previously registered for given mport (if any); - enumeration/discovery method with target ID=RIO_MPORT_ANY will be attached only to mports that do not have another enumerator attached to them; - when new mport device is registered with RapidIO subsystem, registration routine searches for the enumeration/discovery method with the best matching mport ID; Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Cc: Stef van Os <stef.van.os@Prodrive.nl> Cc: Jean Delvare <jdelvare@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-04 06:08:53 +08:00
pr_debug("RIO: %s %s id=%d\n", __func__, port->name, port->id);
return 0;
}
EXPORT_SYMBOL_GPL(rio_register_mport);
EXPORT_SYMBOL_GPL(rio_local_get_device_id);
EXPORT_SYMBOL_GPL(rio_get_device);
EXPORT_SYMBOL_GPL(rio_get_asm);
EXPORT_SYMBOL_GPL(rio_request_inb_dbell);
EXPORT_SYMBOL_GPL(rio_release_inb_dbell);
EXPORT_SYMBOL_GPL(rio_request_outb_dbell);
EXPORT_SYMBOL_GPL(rio_release_outb_dbell);
EXPORT_SYMBOL_GPL(rio_request_inb_mbox);
EXPORT_SYMBOL_GPL(rio_release_inb_mbox);
EXPORT_SYMBOL_GPL(rio_request_outb_mbox);
EXPORT_SYMBOL_GPL(rio_release_outb_mbox);
rapidio: make enumeration/discovery configurable Systems that use RapidIO fabric may need to implement their own enumeration and discovery methods which are better suitable for needs of a target application. The following set of patches is intended to simplify process of introduction of new RapidIO fabric enumeration/discovery methods. The first patch offers ability to add new RapidIO enumeration/discovery methods using kernel configuration options. This new configuration option mechanism allows to select statically linked or modular enumeration/discovery method(s) from the list of existing methods or use external module(s). This patch also updates the currently existing enumeration/discovery code to be used as a statically linked or modular method. The corresponding configuration option is named "Basic enumeration/discovery" method. This is the only one configuration option available today but new methods are expected to be introduced after adoption of provided patches. The second patch address a long time complaint of RapidIO subsystem users regarding fabric enumeration/discovery start sequence. Existing implementation offers only a boot-time enumeration/discovery start which requires synchronized boot of all endpoints in RapidIO network. While it works for small closed configurations with limited number of endpoints, using this approach in systems with large number of endpoints is quite challenging. To eliminate requirement for synchronized start the second patch introduces RapidIO enumeration/discovery start from user space. For compatibility with the existing RapidIO subsystem implementation, automatic boot time enumeration/discovery start can be configured in by specifying "rio-scan.scan=1" command line parameter if statically linked basic enumeration method is selected. This patch: Rework to implement RapidIO enumeration/discovery method selection combined with ability to use enumeration/discovery as a kernel module. This patch adds ability to introduce new RapidIO enumeration/discovery methods using kernel configuration options. Configuration option mechanism allows to select statically linked or modular enumeration/discovery method from the list of existing methods or use external modules. If a modular enumeration/discovery is selected each RapidIO mport device can have its own method attached to it. The existing enumeration/discovery code was updated to be used as statically linked or modular method. This configuration option is named "Basic enumeration/discovery" method. Several common routines have been moved from rio-scan.c to make them available to other enumeration methods and reduce number of exported symbols. Signed-off-by: Alexandre Bounine <alexandre.bounine@idt.com> Cc: Matt Porter <mporter@kernel.crashing.org> Cc: Li Yang <leoli@freescale.com> Cc: Kumar Gala <galak@kernel.crashing.org> Cc: Andre van Herk <andre.van.herk@Prodrive.nl> Cc: Micha Nelissen <micha.nelissen@Prodrive.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-25 06:55:05 +08:00
EXPORT_SYMBOL_GPL(rio_init_mports);