linux-sg2042/arch/blackfin/kernel/bfin_dma_5xx.c

954 lines
25 KiB
C
Raw Normal View History

blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
/*
* File: arch/blackfin/kernel/bfin_dma_5xx.c
* Based on:
* Author:
*
* Created:
* Description: This file contains the simple DMA Implementation for Blackfin
*
* Modified:
* Copyright 2004-2006 Analog Devices Inc.
*
* Bugs: Enter bugs at http://blackfin.uclinux.org/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see the file COPYING, or write
* to the Free Software Foundation, Inc.,
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <asm/dma.h>
#include <asm/cacheflush.h>
/* Remove unused code not exported by symbol or internally called */
#define REMOVE_DEAD_CODE
/**************************************************************************
* Global Variables
***************************************************************************/
static struct dma_channel dma_ch[MAX_BLACKFIN_DMA_CHANNEL];
#if defined (CONFIG_BF561)
static struct dma_register *base_addr[MAX_BLACKFIN_DMA_CHANNEL] = {
(struct dma_register *) DMA1_0_NEXT_DESC_PTR,
(struct dma_register *) DMA1_1_NEXT_DESC_PTR,
(struct dma_register *) DMA1_2_NEXT_DESC_PTR,
(struct dma_register *) DMA1_3_NEXT_DESC_PTR,
(struct dma_register *) DMA1_4_NEXT_DESC_PTR,
(struct dma_register *) DMA1_5_NEXT_DESC_PTR,
(struct dma_register *) DMA1_6_NEXT_DESC_PTR,
(struct dma_register *) DMA1_7_NEXT_DESC_PTR,
(struct dma_register *) DMA1_8_NEXT_DESC_PTR,
(struct dma_register *) DMA1_9_NEXT_DESC_PTR,
(struct dma_register *) DMA1_10_NEXT_DESC_PTR,
(struct dma_register *) DMA1_11_NEXT_DESC_PTR,
(struct dma_register *) DMA2_0_NEXT_DESC_PTR,
(struct dma_register *) DMA2_1_NEXT_DESC_PTR,
(struct dma_register *) DMA2_2_NEXT_DESC_PTR,
(struct dma_register *) DMA2_3_NEXT_DESC_PTR,
(struct dma_register *) DMA2_4_NEXT_DESC_PTR,
(struct dma_register *) DMA2_5_NEXT_DESC_PTR,
(struct dma_register *) DMA2_6_NEXT_DESC_PTR,
(struct dma_register *) DMA2_7_NEXT_DESC_PTR,
(struct dma_register *) DMA2_8_NEXT_DESC_PTR,
(struct dma_register *) DMA2_9_NEXT_DESC_PTR,
(struct dma_register *) DMA2_10_NEXT_DESC_PTR,
(struct dma_register *) DMA2_11_NEXT_DESC_PTR,
(struct dma_register *) MDMA1_D0_NEXT_DESC_PTR,
(struct dma_register *) MDMA1_S0_NEXT_DESC_PTR,
(struct dma_register *) MDMA1_D1_NEXT_DESC_PTR,
(struct dma_register *) MDMA1_S1_NEXT_DESC_PTR,
(struct dma_register *) MDMA2_D0_NEXT_DESC_PTR,
(struct dma_register *) MDMA2_S0_NEXT_DESC_PTR,
(struct dma_register *) MDMA2_D1_NEXT_DESC_PTR,
(struct dma_register *) MDMA2_S1_NEXT_DESC_PTR,
(struct dma_register *) IMDMA_D0_NEXT_DESC_PTR,
(struct dma_register *) IMDMA_S0_NEXT_DESC_PTR,
(struct dma_register *) IMDMA_D1_NEXT_DESC_PTR,
(struct dma_register *) IMDMA_S1_NEXT_DESC_PTR,
};
#else
static struct dma_register *base_addr[MAX_BLACKFIN_DMA_CHANNEL] = {
(struct dma_register *) DMA0_NEXT_DESC_PTR,
(struct dma_register *) DMA1_NEXT_DESC_PTR,
(struct dma_register *) DMA2_NEXT_DESC_PTR,
(struct dma_register *) DMA3_NEXT_DESC_PTR,
(struct dma_register *) DMA4_NEXT_DESC_PTR,
(struct dma_register *) DMA5_NEXT_DESC_PTR,
(struct dma_register *) DMA6_NEXT_DESC_PTR,
(struct dma_register *) DMA7_NEXT_DESC_PTR,
#if (defined(CONFIG_BF537) || defined(CONFIG_BF534) || defined(CONFIG_BF536))
(struct dma_register *) DMA8_NEXT_DESC_PTR,
(struct dma_register *) DMA9_NEXT_DESC_PTR,
(struct dma_register *) DMA10_NEXT_DESC_PTR,
(struct dma_register *) DMA11_NEXT_DESC_PTR,
#endif
(struct dma_register *) MDMA_D0_NEXT_DESC_PTR,
(struct dma_register *) MDMA_S0_NEXT_DESC_PTR,
(struct dma_register *) MDMA_D1_NEXT_DESC_PTR,
(struct dma_register *) MDMA_S1_NEXT_DESC_PTR,
};
#endif
/*------------------------------------------------------------------------------
* Set the Buffer Clear bit in the Configuration register of specific DMA
* channel. This will stop the descriptor based DMA operation.
*-----------------------------------------------------------------------------*/
static void clear_dma_buffer(unsigned int channel)
{
dma_ch[channel].regs->cfg |= RESTART;
SSYNC();
dma_ch[channel].regs->cfg &= ~RESTART;
SSYNC();
}
static int __init blackfin_dma_init(void)
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
{
int i;
printk(KERN_INFO "Blackfin DMA Controller\n");
for (i = 0; i < MAX_BLACKFIN_DMA_CHANNEL; i++) {
dma_ch[i].chan_status = DMA_CHANNEL_FREE;
dma_ch[i].regs = base_addr[i];
mutex_init(&(dma_ch[i].dmalock));
}
/* Mark MEMDMA Channel 0 as requested since we're using it internally */
dma_ch[CH_MEM_STREAM0_DEST].chan_status = DMA_CHANNEL_REQUESTED;
dma_ch[CH_MEM_STREAM0_SRC].chan_status = DMA_CHANNEL_REQUESTED;
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
return 0;
}
arch_initcall(blackfin_dma_init);
/*
* Form the channel find the irq number for that channel.
*/
#if !defined(CONFIG_BF561)
static int bf533_channel2irq(unsigned int channel)
{
int ret_irq = -1;
switch (channel) {
case CH_PPI:
ret_irq = IRQ_PPI;
break;
#if (defined(CONFIG_BF537) || defined(CONFIG_BF534) || defined(CONFIG_BF536))
case CH_EMAC_RX:
ret_irq = IRQ_MAC_RX;
break;
case CH_EMAC_TX:
ret_irq = IRQ_MAC_TX;
break;
case CH_UART1_RX:
ret_irq = IRQ_UART1_RX;
break;
case CH_UART1_TX:
ret_irq = IRQ_UART1_TX;
break;
#endif
case CH_SPORT0_RX:
ret_irq = IRQ_SPORT0_RX;
break;
case CH_SPORT0_TX:
ret_irq = IRQ_SPORT0_TX;
break;
case CH_SPORT1_RX:
ret_irq = IRQ_SPORT1_RX;
break;
case CH_SPORT1_TX:
ret_irq = IRQ_SPORT1_TX;
break;
case CH_SPI:
ret_irq = IRQ_SPI;
break;
case CH_UART_RX:
ret_irq = IRQ_UART_RX;
break;
case CH_UART_TX:
ret_irq = IRQ_UART_TX;
break;
case CH_MEM_STREAM0_SRC:
case CH_MEM_STREAM0_DEST:
ret_irq = IRQ_MEM_DMA0;
break;
case CH_MEM_STREAM1_SRC:
case CH_MEM_STREAM1_DEST:
ret_irq = IRQ_MEM_DMA1;
break;
}
return ret_irq;
}
# define channel2irq(channel) bf533_channel2irq(channel)
#else
static int bf561_channel2irq(unsigned int channel)
{
int ret_irq = -1;
switch (channel) {
case CH_PPI0:
ret_irq = IRQ_PPI0;
break;
case CH_PPI1:
ret_irq = IRQ_PPI1;
break;
case CH_SPORT0_RX:
ret_irq = IRQ_SPORT0_RX;
break;
case CH_SPORT0_TX:
ret_irq = IRQ_SPORT0_TX;
break;
case CH_SPORT1_RX:
ret_irq = IRQ_SPORT1_RX;
break;
case CH_SPORT1_TX:
ret_irq = IRQ_SPORT1_TX;
break;
case CH_SPI:
ret_irq = IRQ_SPI;
break;
case CH_UART_RX:
ret_irq = IRQ_UART_RX;
break;
case CH_UART_TX:
ret_irq = IRQ_UART_TX;
break;
case CH_MEM_STREAM0_SRC:
case CH_MEM_STREAM0_DEST:
ret_irq = IRQ_MEM_DMA0;
break;
case CH_MEM_STREAM1_SRC:
case CH_MEM_STREAM1_DEST:
ret_irq = IRQ_MEM_DMA1;
break;
case CH_MEM_STREAM2_SRC:
case CH_MEM_STREAM2_DEST:
ret_irq = IRQ_MEM_DMA2;
break;
case CH_MEM_STREAM3_SRC:
case CH_MEM_STREAM3_DEST:
ret_irq = IRQ_MEM_DMA3;
break;
case CH_IMEM_STREAM0_SRC:
case CH_IMEM_STREAM0_DEST:
ret_irq = IRQ_IMEM_DMA0;
break;
case CH_IMEM_STREAM1_SRC:
case CH_IMEM_STREAM1_DEST:
ret_irq = IRQ_IMEM_DMA1;
break;
}
return ret_irq;
}
# define channel2irq(channel) bf561_channel2irq(channel)
#endif
/*------------------------------------------------------------------------------
* Request the specific DMA channel from the system.
*-----------------------------------------------------------------------------*/
int request_dma(unsigned int channel, char *device_id)
{
pr_debug("request_dma() : BEGIN \n");
mutex_lock(&(dma_ch[channel].dmalock));
if ((dma_ch[channel].chan_status == DMA_CHANNEL_REQUESTED)
|| (dma_ch[channel].chan_status == DMA_CHANNEL_ENABLED)) {
mutex_unlock(&(dma_ch[channel].dmalock));
pr_debug("DMA CHANNEL IN USE \n");
return -EBUSY;
} else {
dma_ch[channel].chan_status = DMA_CHANNEL_REQUESTED;
pr_debug("DMA CHANNEL IS ALLOCATED \n");
}
mutex_unlock(&(dma_ch[channel].dmalock));
dma_ch[channel].device_id = device_id;
dma_ch[channel].irq_callback = NULL;
/* This is to be enabled by putting a restriction -
* you have to request DMA, before doing any operations on
* descriptor/channel
*/
pr_debug("request_dma() : END \n");
return channel;
}
EXPORT_SYMBOL(request_dma);
int set_dma_callback(unsigned int channel, dma_interrupt_t callback, void *data)
{
int ret_irq = 0;
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
if (callback != NULL) {
int ret_val;
ret_irq = channel2irq(channel);
dma_ch[channel].data = data;
ret_val =
request_irq(ret_irq, (void *)callback, IRQF_DISABLED,
dma_ch[channel].device_id, data);
if (ret_val) {
printk(KERN_NOTICE
"Request irq in DMA engine failed.\n");
return -EPERM;
}
dma_ch[channel].irq_callback = callback;
}
return 0;
}
EXPORT_SYMBOL(set_dma_callback);
void free_dma(unsigned int channel)
{
int ret_irq;
pr_debug("freedma() : BEGIN \n");
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
/* Halt the DMA */
disable_dma(channel);
clear_dma_buffer(channel);
if (dma_ch[channel].irq_callback != NULL) {
ret_irq = channel2irq(channel);
free_irq(ret_irq, dma_ch[channel].data);
}
/* Clear the DMA Variable in the Channel */
mutex_lock(&(dma_ch[channel].dmalock));
dma_ch[channel].chan_status = DMA_CHANNEL_FREE;
mutex_unlock(&(dma_ch[channel].dmalock));
pr_debug("freedma() : END \n");
}
EXPORT_SYMBOL(free_dma);
void dma_enable_irq(unsigned int channel)
{
int ret_irq;
pr_debug("dma_enable_irq() : BEGIN \n");
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
ret_irq = channel2irq(channel);
enable_irq(ret_irq);
}
EXPORT_SYMBOL(dma_enable_irq);
void dma_disable_irq(unsigned int channel)
{
int ret_irq;
pr_debug("dma_disable_irq() : BEGIN \n");
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
ret_irq = channel2irq(channel);
disable_irq(ret_irq);
}
EXPORT_SYMBOL(dma_disable_irq);
int dma_channel_active(unsigned int channel)
{
if (dma_ch[channel].chan_status == DMA_CHANNEL_FREE) {
return 0;
} else {
return 1;
}
}
EXPORT_SYMBOL(dma_channel_active);
/*------------------------------------------------------------------------------
* stop the specific DMA channel.
*-----------------------------------------------------------------------------*/
void disable_dma(unsigned int channel)
{
pr_debug("stop_dma() : BEGIN \n");
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
dma_ch[channel].regs->cfg &= ~DMAEN; /* Clean the enable bit */
SSYNC();
dma_ch[channel].chan_status = DMA_CHANNEL_REQUESTED;
/* Needs to be enabled Later */
pr_debug("stop_dma() : END \n");
return;
}
EXPORT_SYMBOL(disable_dma);
void enable_dma(unsigned int channel)
{
pr_debug("enable_dma() : BEGIN \n");
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
dma_ch[channel].chan_status = DMA_CHANNEL_ENABLED;
dma_ch[channel].regs->curr_x_count = 0;
dma_ch[channel].regs->curr_y_count = 0;
dma_ch[channel].regs->cfg |= DMAEN; /* Set the enable bit */
SSYNC();
pr_debug("enable_dma() : END \n");
return;
}
EXPORT_SYMBOL(enable_dma);
/*------------------------------------------------------------------------------
* Set the Start Address register for the specific DMA channel
* This function can be used for register based DMA,
* to setup the start address
* addr: Starting address of the DMA Data to be transferred.
*-----------------------------------------------------------------------------*/
void set_dma_start_addr(unsigned int channel, unsigned long addr)
{
pr_debug("set_dma_start_addr() : BEGIN \n");
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
dma_ch[channel].regs->start_addr = addr;
SSYNC();
pr_debug("set_dma_start_addr() : END\n");
}
EXPORT_SYMBOL(set_dma_start_addr);
void set_dma_next_desc_addr(unsigned int channel, unsigned long addr)
{
pr_debug("set_dma_next_desc_addr() : BEGIN \n");
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
dma_ch[channel].regs->next_desc_ptr = addr;
SSYNC();
pr_debug("set_dma_start_addr() : END\n");
}
EXPORT_SYMBOL(set_dma_next_desc_addr);
void set_dma_x_count(unsigned int channel, unsigned short x_count)
{
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
dma_ch[channel].regs->x_count = x_count;
SSYNC();
}
EXPORT_SYMBOL(set_dma_x_count);
void set_dma_y_count(unsigned int channel, unsigned short y_count)
{
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
dma_ch[channel].regs->y_count = y_count;
SSYNC();
}
EXPORT_SYMBOL(set_dma_y_count);
void set_dma_x_modify(unsigned int channel, short x_modify)
{
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
dma_ch[channel].regs->x_modify = x_modify;
SSYNC();
}
EXPORT_SYMBOL(set_dma_x_modify);
void set_dma_y_modify(unsigned int channel, short y_modify)
{
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
dma_ch[channel].regs->y_modify = y_modify;
SSYNC();
}
EXPORT_SYMBOL(set_dma_y_modify);
void set_dma_config(unsigned int channel, unsigned short config)
{
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
dma_ch[channel].regs->cfg = config;
SSYNC();
}
EXPORT_SYMBOL(set_dma_config);
unsigned short
set_bfin_dma_config(char direction, char flow_mode,
char intr_mode, char dma_mode, char width)
{
unsigned short config;
config =
((direction << 1) | (width << 2) | (dma_mode << 4) |
(intr_mode << 6) | (flow_mode << 12) | RESTART);
return config;
}
EXPORT_SYMBOL(set_bfin_dma_config);
void set_dma_sg(unsigned int channel, struct dmasg * sg, int nr_sg)
{
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
dma_ch[channel].regs->cfg |= ((nr_sg & 0x0F) << 8);
dma_ch[channel].regs->next_desc_ptr = (unsigned int)sg;
SSYNC();
}
EXPORT_SYMBOL(set_dma_sg);
/*------------------------------------------------------------------------------
* Get the DMA status of a specific DMA channel from the system.
*-----------------------------------------------------------------------------*/
unsigned short get_dma_curr_irqstat(unsigned int channel)
{
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
return dma_ch[channel].regs->irq_status;
}
EXPORT_SYMBOL(get_dma_curr_irqstat);
/*------------------------------------------------------------------------------
* Clear the DMA_DONE bit in DMA status. Stop the DMA completion interrupt.
*-----------------------------------------------------------------------------*/
void clear_dma_irqstat(unsigned int channel)
{
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
dma_ch[channel].regs->irq_status |= 3;
}
EXPORT_SYMBOL(clear_dma_irqstat);
/*------------------------------------------------------------------------------
* Get current DMA xcount of a specific DMA channel from the system.
*-----------------------------------------------------------------------------*/
unsigned short get_dma_curr_xcount(unsigned int channel)
{
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
return dma_ch[channel].regs->curr_x_count;
}
EXPORT_SYMBOL(get_dma_curr_xcount);
/*------------------------------------------------------------------------------
* Get current DMA ycount of a specific DMA channel from the system.
*-----------------------------------------------------------------------------*/
unsigned short get_dma_curr_ycount(unsigned int channel)
{
BUG_ON(!(dma_ch[channel].chan_status != DMA_CHANNEL_FREE
&& channel < MAX_BLACKFIN_DMA_CHANNEL));
return dma_ch[channel].regs->curr_y_count;
}
EXPORT_SYMBOL(get_dma_curr_ycount);
static void *__dma_memcpy(void *dest, const void *src, size_t size)
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
{
int direction; /* 1 - address decrease, 0 - address increase */
int flag_align; /* 1 - address aligned, 0 - address unaligned */
int flag_2D; /* 1 - 2D DMA needed, 0 - 1D DMA needed */
unsigned long flags;
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
if (size <= 0)
return NULL;
local_irq_save(flags);
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
if ((unsigned long)src < memory_end)
blackfin_dcache_flush_range((unsigned int)src,
(unsigned int)(src + size));
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
if ((unsigned long)src < (unsigned long)dest)
direction = 1;
else
direction = 0;
if ((((unsigned long)dest % 2) == 0) && (((unsigned long)src % 2) == 0)
&& ((size % 2) == 0))
flag_align = 1;
else
flag_align = 0;
if (size > 0x10000) /* size > 64K */
flag_2D = 1;
else
flag_2D = 0;
/* Setup destination and source start address */
if (direction) {
if (flag_align) {
bfin_write_MDMA_D0_START_ADDR(dest + size - 2);
bfin_write_MDMA_S0_START_ADDR(src + size - 2);
} else {
bfin_write_MDMA_D0_START_ADDR(dest + size - 1);
bfin_write_MDMA_S0_START_ADDR(src + size - 1);
}
} else {
bfin_write_MDMA_D0_START_ADDR(dest);
bfin_write_MDMA_S0_START_ADDR(src);
}
/* Setup destination and source xcount */
if (flag_2D) {
if (flag_align) {
bfin_write_MDMA_D0_X_COUNT(1024 / 2);
bfin_write_MDMA_S0_X_COUNT(1024 / 2);
} else {
bfin_write_MDMA_D0_X_COUNT(1024);
bfin_write_MDMA_S0_X_COUNT(1024);
}
bfin_write_MDMA_D0_Y_COUNT(size >> 10);
bfin_write_MDMA_S0_Y_COUNT(size >> 10);
} else {
if (flag_align) {
bfin_write_MDMA_D0_X_COUNT(size / 2);
bfin_write_MDMA_S0_X_COUNT(size / 2);
} else {
bfin_write_MDMA_D0_X_COUNT(size);
bfin_write_MDMA_S0_X_COUNT(size);
}
}
/* Setup destination and source xmodify and ymodify */
if (direction) {
if (flag_align) {
bfin_write_MDMA_D0_X_MODIFY(-2);
bfin_write_MDMA_S0_X_MODIFY(-2);
if (flag_2D) {
bfin_write_MDMA_D0_Y_MODIFY(-2);
bfin_write_MDMA_S0_Y_MODIFY(-2);
}
} else {
bfin_write_MDMA_D0_X_MODIFY(-1);
bfin_write_MDMA_S0_X_MODIFY(-1);
if (flag_2D) {
bfin_write_MDMA_D0_Y_MODIFY(-1);
bfin_write_MDMA_S0_Y_MODIFY(-1);
}
}
} else {
if (flag_align) {
bfin_write_MDMA_D0_X_MODIFY(2);
bfin_write_MDMA_S0_X_MODIFY(2);
if (flag_2D) {
bfin_write_MDMA_D0_Y_MODIFY(2);
bfin_write_MDMA_S0_Y_MODIFY(2);
}
} else {
bfin_write_MDMA_D0_X_MODIFY(1);
bfin_write_MDMA_S0_X_MODIFY(1);
if (flag_2D) {
bfin_write_MDMA_D0_Y_MODIFY(1);
bfin_write_MDMA_S0_Y_MODIFY(1);
}
}
}
/* Enable source DMA */
if (flag_2D) {
if (flag_align) {
bfin_write_MDMA_S0_CONFIG(DMAEN | DMA2D | WDSIZE_16);
bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | DMA2D | WDSIZE_16);
} else {
bfin_write_MDMA_S0_CONFIG(DMAEN | DMA2D);
bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | DMA2D);
}
} else {
if (flag_align) {
bfin_write_MDMA_S0_CONFIG(DMAEN | WDSIZE_16);
bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | WDSIZE_16);
} else {
bfin_write_MDMA_S0_CONFIG(DMAEN);
bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN);
}
}
while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE))
;
bfin_write_MDMA_D0_IRQ_STATUS(bfin_read_MDMA_D0_IRQ_STATUS() |
(DMA_DONE | DMA_ERR));
bfin_write_MDMA_S0_CONFIG(0);
bfin_write_MDMA_D0_CONFIG(0);
if ((unsigned long)dest < memory_end)
blackfin_dcache_invalidate_range((unsigned int)dest,
(unsigned int)(dest + size));
local_irq_restore(flags);
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
return dest;
}
void *dma_memcpy(void *dest, const void *src, size_t size)
{
size_t bulk;
size_t rest;
void * addr;
bulk = (size >> 16) << 16;
rest = size - bulk;
if (bulk)
__dma_memcpy(dest, src, bulk);
addr = __dma_memcpy(dest+bulk, src+bulk, rest);
return addr;
}
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 05:50:22 +08:00
EXPORT_SYMBOL(dma_memcpy);
void *safe_dma_memcpy(void *dest, const void *src, size_t size)
{
void *addr;
addr = dma_memcpy(dest, src, size);
return addr;
}
EXPORT_SYMBOL(safe_dma_memcpy);
void dma_outsb(void __iomem *addr, const void *buf, unsigned short len)
{
unsigned long flags;
local_irq_save(flags);
blackfin_dcache_flush_range((unsigned int)buf,(unsigned int)(buf) + len);
bfin_write_MDMA_D0_START_ADDR(addr);
bfin_write_MDMA_D0_X_COUNT(len);
bfin_write_MDMA_D0_X_MODIFY(0);
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_START_ADDR(buf);
bfin_write_MDMA_S0_X_COUNT(len);
bfin_write_MDMA_S0_X_MODIFY(1);
bfin_write_MDMA_S0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_CONFIG(DMAEN | WDSIZE_8);
bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | WDSIZE_8);
while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE));
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_CONFIG(0);
bfin_write_MDMA_D0_CONFIG(0);
local_irq_restore(flags);
}
EXPORT_SYMBOL(dma_outsb);
void dma_insb(const void __iomem *addr, void *buf, unsigned short len)
{
unsigned long flags;
local_irq_save(flags);
bfin_write_MDMA_D0_START_ADDR(buf);
bfin_write_MDMA_D0_X_COUNT(len);
bfin_write_MDMA_D0_X_MODIFY(1);
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_START_ADDR(addr);
bfin_write_MDMA_S0_X_COUNT(len);
bfin_write_MDMA_S0_X_MODIFY(0);
bfin_write_MDMA_S0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_CONFIG(DMAEN | WDSIZE_8);
bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | WDSIZE_8);
blackfin_dcache_invalidate_range((unsigned int)buf, (unsigned int)(buf) + len);
while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE));
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_CONFIG(0);
bfin_write_MDMA_D0_CONFIG(0);
local_irq_restore(flags);
}
EXPORT_SYMBOL(dma_insb);
void dma_outsw(void __iomem *addr, const void *buf, unsigned short len)
{
unsigned long flags;
local_irq_save(flags);
blackfin_dcache_flush_range((unsigned int)buf,(unsigned int)(buf) + len);
bfin_write_MDMA_D0_START_ADDR(addr);
bfin_write_MDMA_D0_X_COUNT(len);
bfin_write_MDMA_D0_X_MODIFY(0);
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_START_ADDR(buf);
bfin_write_MDMA_S0_X_COUNT(len);
bfin_write_MDMA_S0_X_MODIFY(2);
bfin_write_MDMA_S0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_CONFIG(DMAEN | WDSIZE_16);
bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | WDSIZE_16);
while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE));
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_CONFIG(0);
bfin_write_MDMA_D0_CONFIG(0);
local_irq_restore(flags);
}
EXPORT_SYMBOL(dma_outsw);
void dma_insw(const void __iomem *addr, void *buf, unsigned short len)
{
unsigned long flags;
local_irq_save(flags);
bfin_write_MDMA_D0_START_ADDR(buf);
bfin_write_MDMA_D0_X_COUNT(len);
bfin_write_MDMA_D0_X_MODIFY(2);
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_START_ADDR(addr);
bfin_write_MDMA_S0_X_COUNT(len);
bfin_write_MDMA_S0_X_MODIFY(0);
bfin_write_MDMA_S0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_CONFIG(DMAEN | WDSIZE_16);
bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | WDSIZE_16);
blackfin_dcache_invalidate_range((unsigned int)buf, (unsigned int)(buf) + len);
while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE));
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_CONFIG(0);
bfin_write_MDMA_D0_CONFIG(0);
local_irq_restore(flags);
}
EXPORT_SYMBOL(dma_insw);
void dma_outsl(void __iomem *addr, const void *buf, unsigned short len)
{
unsigned long flags;
local_irq_save(flags);
blackfin_dcache_flush_range((unsigned int)buf,(unsigned int)(buf) + len);
bfin_write_MDMA_D0_START_ADDR(addr);
bfin_write_MDMA_D0_X_COUNT(len);
bfin_write_MDMA_D0_X_MODIFY(0);
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_START_ADDR(buf);
bfin_write_MDMA_S0_X_COUNT(len);
bfin_write_MDMA_S0_X_MODIFY(4);
bfin_write_MDMA_S0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_CONFIG(DMAEN | WDSIZE_32);
bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | WDSIZE_32);
while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE));
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_CONFIG(0);
bfin_write_MDMA_D0_CONFIG(0);
local_irq_restore(flags);
}
EXPORT_SYMBOL(dma_outsl);
void dma_insl(const void __iomem *addr, void *buf, unsigned short len)
{
unsigned long flags;
local_irq_save(flags);
bfin_write_MDMA_D0_START_ADDR(buf);
bfin_write_MDMA_D0_X_COUNT(len);
bfin_write_MDMA_D0_X_MODIFY(4);
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_START_ADDR(addr);
bfin_write_MDMA_S0_X_COUNT(len);
bfin_write_MDMA_S0_X_MODIFY(0);
bfin_write_MDMA_S0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_CONFIG(DMAEN | WDSIZE_32);
bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | WDSIZE_32);
blackfin_dcache_invalidate_range((unsigned int)buf, (unsigned int)(buf) + len);
while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE));
bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
bfin_write_MDMA_S0_CONFIG(0);
bfin_write_MDMA_D0_CONFIG(0);
local_irq_restore(flags);
}
EXPORT_SYMBOL(dma_insl);