linux-sg2042/arch/arm/kernel/smp.c

746 lines
17 KiB
C
Raw Normal View History

/*
* linux/arch/arm/kernel/smp.c
*
* Copyright (C) 2002 ARM Limited, All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/cache.h>
#include <linux/profile.h>
#include <linux/errno.h>
#include <linux/mm.h>
Remove fs.h from mm.h Remove fs.h from mm.h. For this, 1) Uninline vma_wants_writenotify(). It's pretty huge anyway. 2) Add back fs.h or less bloated headers (err.h) to files that need it. As result, on x86_64 allyesconfig, fs.h dependencies cut down from 3929 files rebuilt down to 3444 (-12.3%). Cross-compile tested without regressions on my two usual configs and (sigh): alpha arm-mx1ads mips-bigsur powerpc-ebony alpha-allnoconfig arm-neponset mips-capcella powerpc-g5 alpha-defconfig arm-netwinder mips-cobalt powerpc-holly alpha-up arm-netx mips-db1000 powerpc-iseries arm arm-ns9xxx mips-db1100 powerpc-linkstation arm-assabet arm-omap_h2_1610 mips-db1200 powerpc-lite5200 arm-at91rm9200dk arm-onearm mips-db1500 powerpc-maple arm-at91rm9200ek arm-picotux200 mips-db1550 powerpc-mpc7448_hpc2 arm-at91sam9260ek arm-pleb mips-ddb5477 powerpc-mpc8272_ads arm-at91sam9261ek arm-pnx4008 mips-decstation powerpc-mpc8313_rdb arm-at91sam9263ek arm-pxa255-idp mips-e55 powerpc-mpc832x_mds arm-at91sam9rlek arm-realview mips-emma2rh powerpc-mpc832x_rdb arm-ateb9200 arm-realview-smp mips-excite powerpc-mpc834x_itx arm-badge4 arm-rpc mips-fulong powerpc-mpc834x_itxgp arm-carmeva arm-s3c2410 mips-ip22 powerpc-mpc834x_mds arm-cerfcube arm-shannon mips-ip27 powerpc-mpc836x_mds arm-clps7500 arm-shark mips-ip32 powerpc-mpc8540_ads arm-collie arm-simpad mips-jazz powerpc-mpc8544_ds arm-corgi arm-spitz mips-jmr3927 powerpc-mpc8560_ads arm-csb337 arm-trizeps4 mips-malta powerpc-mpc8568mds arm-csb637 arm-versatile mips-mipssim powerpc-mpc85xx_cds arm-ebsa110 i386 mips-mpc30x powerpc-mpc8641_hpcn arm-edb7211 i386-allnoconfig mips-msp71xx powerpc-mpc866_ads arm-em_x270 i386-defconfig mips-ocelot powerpc-mpc885_ads arm-ep93xx i386-up mips-pb1100 powerpc-pasemi arm-footbridge ia64 mips-pb1500 powerpc-pmac32 arm-fortunet ia64-allnoconfig mips-pb1550 powerpc-ppc64 arm-h3600 ia64-bigsur mips-pnx8550-jbs powerpc-prpmc2800 arm-h7201 ia64-defconfig mips-pnx8550-stb810 powerpc-ps3 arm-h7202 ia64-gensparse mips-qemu powerpc-pseries arm-hackkit ia64-sim mips-rbhma4200 powerpc-up arm-integrator ia64-sn2 mips-rbhma4500 s390 arm-iop13xx ia64-tiger mips-rm200 s390-allnoconfig arm-iop32x ia64-up mips-sb1250-swarm s390-defconfig arm-iop33x ia64-zx1 mips-sead s390-up arm-ixp2000 m68k mips-tb0219 sparc arm-ixp23xx m68k-amiga mips-tb0226 sparc-allnoconfig arm-ixp4xx m68k-apollo mips-tb0287 sparc-defconfig arm-jornada720 m68k-atari mips-workpad sparc-up arm-kafa m68k-bvme6000 mips-wrppmc sparc64 arm-kb9202 m68k-hp300 mips-yosemite sparc64-allnoconfig arm-ks8695 m68k-mac parisc sparc64-defconfig arm-lart m68k-mvme147 parisc-allnoconfig sparc64-up arm-lpd270 m68k-mvme16x parisc-defconfig um-x86_64 arm-lpd7a400 m68k-q40 parisc-up x86_64 arm-lpd7a404 m68k-sun3 powerpc x86_64-allnoconfig arm-lubbock m68k-sun3x powerpc-cell x86_64-defconfig arm-lusl7200 mips powerpc-celleb x86_64-up arm-mainstone mips-atlas powerpc-chrp32 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-30 06:36:13 +08:00
#include <linux/err.h>
#include <linux/cpu.h>
#include <linux/seq_file.h>
#include <linux/irq.h>
#include <linux/percpu.h>
#include <linux/clockchips.h>
#include <linux/completion.h>
#include <linux/cpufreq.h>
#include <linux/atomic.h>
#include <asm/smp.h>
#include <asm/cacheflush.h>
#include <asm/cpu.h>
#include <asm/cputype.h>
#include <asm/exception.h>
#include <asm/idmap.h>
#include <asm/topology.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/processor.h>
#include <asm/sections.h>
#include <asm/tlbflush.h>
#include <asm/ptrace.h>
#include <asm/localtimer.h>
#include <asm/smp_plat.h>
#include <asm/virt.h>
#include <asm/mach/arch.h>
#include <asm/mpu.h>
/*
* as from 2.5, kernels no longer have an init_tasks structure
* so we need some other way of telling a new secondary core
* where to place its SVC stack
*/
struct secondary_data secondary_data;
/*
* control for which core is the next to come out of the secondary
* boot "holding pen"
*/
volatile int __cpuinitdata pen_release = -1;
enum ipi_msg_type {
IPI_WAKEUP,
IPI_TIMER,
IPI_RESCHEDULE,
IPI_CALL_FUNC,
IPI_CALL_FUNC_SINGLE,
IPI_CPU_STOP,
};
static DECLARE_COMPLETION(cpu_running);
static struct smp_operations smp_ops;
void __init smp_set_ops(struct smp_operations *ops)
{
if (ops)
smp_ops = *ops;
};
static unsigned long get_arch_pgd(pgd_t *pgd)
{
phys_addr_t pgdir = virt_to_phys(pgd);
BUG_ON(pgdir & ARCH_PGD_MASK);
return pgdir >> ARCH_PGD_SHIFT;
}
int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
{
int ret;
/*
* We need to tell the secondary core where to find
* its stack and the page tables.
*/
secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
#ifdef CONFIG_ARM_MPU
secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
#endif
#ifdef CONFIG_MMU
secondary_data.pgdir = get_arch_pgd(idmap_pgd);
secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
#endif
__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
/*
* Now bring the CPU into our world.
*/
ret = boot_secondary(cpu, idle);
if (ret == 0) {
/*
* CPU was successfully started, wait for it
* to come online or time out.
*/
wait_for_completion_timeout(&cpu_running,
msecs_to_jiffies(1000));
if (!cpu_online(cpu)) {
pr_crit("CPU%u: failed to come online\n", cpu);
ret = -EIO;
}
} else {
pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
}
memset(&secondary_data, 0, sizeof(secondary_data));
return ret;
}
/* platform specific SMP operations */
void __init smp_init_cpus(void)
{
if (smp_ops.smp_init_cpus)
smp_ops.smp_init_cpus();
}
int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
{
if (smp_ops.smp_boot_secondary)
return smp_ops.smp_boot_secondary(cpu, idle);
return -ENOSYS;
}
#ifdef CONFIG_HOTPLUG_CPU
static void percpu_timer_stop(void);
static int platform_cpu_kill(unsigned int cpu)
{
if (smp_ops.cpu_kill)
return smp_ops.cpu_kill(cpu);
return 1;
}
static int platform_cpu_disable(unsigned int cpu)
{
if (smp_ops.cpu_disable)
return smp_ops.cpu_disable(cpu);
/*
* By default, allow disabling all CPUs except the first one,
* since this is special on a lot of platforms, e.g. because
* of clock tick interrupts.
*/
return cpu == 0 ? -EPERM : 0;
}
/*
* __cpu_disable runs on the processor to be shutdown.
*/
int __cpuinit __cpu_disable(void)
{
unsigned int cpu = smp_processor_id();
int ret;
ret = platform_cpu_disable(cpu);
if (ret)
return ret;
/*
* Take this CPU offline. Once we clear this, we can't return,
* and we must not schedule until we're ready to give up the cpu.
*/
set_cpu_online(cpu, false);
/*
* OK - migrate IRQs away from this CPU
*/
migrate_irqs();
/*
* Stop the local timer for this CPU.
*/
percpu_timer_stop();
/*
* Flush user cache and TLB mappings, and then remove this CPU
* from the vm mask set of all processes.
*
* Caches are flushed to the Level of Unification Inner Shareable
* to write-back dirty lines to unified caches shared by all CPUs.
*/
flush_cache_louis();
local_flush_tlb_all();
clear_tasks_mm_cpumask(cpu);
return 0;
}
static DECLARE_COMPLETION(cpu_died);
/*
* called on the thread which is asking for a CPU to be shutdown -
* waits until shutdown has completed, or it is timed out.
*/
void __cpuinit __cpu_die(unsigned int cpu)
{
if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
pr_err("CPU%u: cpu didn't die\n", cpu);
return;
}
printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
/*
* platform_cpu_kill() is generally expected to do the powering off
* and/or cutting of clocks to the dying CPU. Optionally, this may
* be done by the CPU which is dying in preference to supporting
* this call, but that means there is _no_ synchronisation between
* the requesting CPU and the dying CPU actually losing power.
*/
if (!platform_cpu_kill(cpu))
printk("CPU%u: unable to kill\n", cpu);
}
/*
* Called from the idle thread for the CPU which has been shutdown.
*
* Note that we disable IRQs here, but do not re-enable them
* before returning to the caller. This is also the behaviour
* of the other hotplug-cpu capable cores, so presumably coming
* out of idle fixes this.
*/
ARM: Fix __cpuexit section mismatch warnings Fix: WARNING: vmlinux.o(.text+0x247c): Section mismatch in reference from the function cpu_idle() to the function .cpuexit.text:cpu_die() The function cpu_idle() references a function in an exit section. Often the function cpu_die() has valid usage outside the exit section and the fix is to remove the __cpuexit annotation of cpu_die. WARNING: vmlinux.o(.cpuexit.text+0x3c): Section mismatch in reference from the function cpu_die() to the function .cpuinit.text:secondary_start_kernel() The function __cpuexit cpu_die() references a function __cpuinit secondary_start_kernel(). This is often seen when error handling in the exit function uses functionality in the init path. The fix is often to remove the __cpuinit annotation of secondary_start_kernel() so it may be used outside an init section. Sam says: > The annotation of cpu_die() is wrong. > To be annotated __cpuexit the function shall: > - be used in exit context and only in exit context with HOTPLUG_CPU=n > - be used outside exit context with HOTPLUG_CPU=y So, this also means __cpu_disable(), __cpu_die() and twd_timer_stop() are also wrong. However, removing __cpuexit from cpu_die() creates: WARNING: vmlinux.o(.text+0x6834): Section mismatch in reference from the function cpu_die() to the function .cpuinit.text:secondary_start_kernel() The function cpu_die() references the function __cpuinit secondary_start_kernel(). This is often because cpu_die lacks a __cpuinit annotation or the annotation of secondary_start_kernel is wrong. so fix this using __ref. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> Acked-by: Sam Ravnborg <sam@ravnborg.org>
2009-09-28 04:04:48 +08:00
void __ref cpu_die(void)
{
unsigned int cpu = smp_processor_id();
idle_task_exit();
local_irq_disable();
/*
* Flush the data out of the L1 cache for this CPU. This must be
* before the completion to ensure that data is safely written out
* before platform_cpu_kill() gets called - which may disable
* *this* CPU and power down its cache.
*/
flush_cache_louis();
/*
* Tell __cpu_die() that this CPU is now safe to dispose of. Once
* this returns, power and/or clocks can be removed at any point
* from this CPU and its cache by platform_cpu_kill().
*/
complete(&cpu_died);
/*
* Ensure that the cache lines associated with that completion are
* written out. This covers the case where _this_ CPU is doing the
* powering down, to ensure that the completion is visible to the
* CPU waiting for this one.
*/
flush_cache_louis();
/*
* The actual CPU shutdown procedure is at least platform (if not
* CPU) specific. This may remove power, or it may simply spin.
*
* Platforms are generally expected *NOT* to return from this call,
* although there are some which do because they have no way to
* power down the CPU. These platforms are the _only_ reason we
* have a return path which uses the fragment of assembly below.
*
* The return path should not be used for platforms which can
* power off the CPU.
*/
if (smp_ops.cpu_die)
smp_ops.cpu_die(cpu);
/*
* Do not return to the idle loop - jump back to the secondary
* cpu initialisation. There's some initialisation which needs
* to be repeated to undo the effects of taking the CPU offline.
*/
__asm__("mov sp, %0\n"
" mov fp, #0\n"
" b secondary_start_kernel"
:
: "r" (task_stack_page(current) + THREAD_SIZE - 8));
}
#endif /* CONFIG_HOTPLUG_CPU */
/*
* Called by both boot and secondaries to move global data into
* per-processor storage.
*/
static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
{
struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
cpu_info->loops_per_jiffy = loops_per_jiffy;
cpu_info->cpuid = read_cpuid_id();
store_cpu_topology(cpuid);
}
static void percpu_timer_setup(void);
/*
* This is the secondary CPU boot entry. We're using this CPUs
* idle thread stack, but a set of temporary page tables.
*/
asmlinkage void __cpuinit secondary_start_kernel(void)
{
struct mm_struct *mm = &init_mm;
unsigned int cpu;
/*
* The identity mapping is uncached (strongly ordered), so
* switch away from it before attempting any exclusive accesses.
*/
cpu_switch_mm(mm->pgd, mm);
local_flush_bp_all();
enter_lazy_tlb(mm, current);
local_flush_tlb_all();
/*
* All kernel threads share the same mm context; grab a
* reference and switch to it.
*/
cpu = smp_processor_id();
atomic_inc(&mm->mm_count);
current->active_mm = mm;
cpumask_set_cpu(cpu, mm_cpumask(mm));
cpu_init();
printk("CPU%u: Booted secondary processor\n", cpu);
preempt_disable();
trace_hardirqs_off();
/*
* Give the platform a chance to do its own initialisation.
*/
if (smp_ops.smp_secondary_init)
smp_ops.smp_secondary_init(cpu);
notify_cpu_starting(cpu);
calibrate_delay();
smp_store_cpu_info(cpu);
/*
* OK, now it's safe to let the boot CPU continue. Wait for
* the CPU migration code to notice that the CPU is online
* before we continue - which happens after __cpu_up returns.
*/
set_cpu_online(cpu, true);
complete(&cpu_running);
/*
* Setup the percpu timer for this CPU.
*/
percpu_timer_setup();
local_irq_enable();
local_fiq_enable();
/*
* OK, it's off to the idle thread for us
*/
cpu_startup_entry(CPUHP_ONLINE);
}
void __init smp_cpus_done(unsigned int max_cpus)
{
int cpu;
unsigned long bogosum = 0;
for_each_online_cpu(cpu)
bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
printk(KERN_INFO "SMP: Total of %d processors activated "
"(%lu.%02lu BogoMIPS).\n",
num_online_cpus(),
bogosum / (500000/HZ),
(bogosum / (5000/HZ)) % 100);
hyp_mode_check();
}
void __init smp_prepare_boot_cpu(void)
{
set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
}
void __init smp_prepare_cpus(unsigned int max_cpus)
{
unsigned int ncores = num_possible_cpus();
init_cpu_topology();
smp_store_cpu_info(smp_processor_id());
/*
* are we trying to boot more cores than exist?
*/
if (max_cpus > ncores)
max_cpus = ncores;
if (ncores > 1 && max_cpus) {
/*
* Enable the local timer or broadcast device for the
* boot CPU, but only if we have more than one CPU.
*/
percpu_timer_setup();
/*
* Initialise the present map, which describes the set of CPUs
* actually populated at the present time. A platform should
* re-initialize the map in the platforms smp_prepare_cpus()
* if present != possible (e.g. physical hotplug).
*/
init_cpu_present(cpu_possible_mask);
/*
* Initialise the SCU if there are more than one CPU
* and let them know where to start.
*/
if (smp_ops.smp_prepare_cpus)
smp_ops.smp_prepare_cpus(max_cpus);
}
}
static void (*smp_cross_call)(const struct cpumask *, unsigned int);
void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
{
if (!smp_cross_call)
smp_cross_call = fn;
}
void arch_send_call_function_ipi_mask(const struct cpumask *mask)
{
smp_cross_call(mask, IPI_CALL_FUNC);
}
void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
{
smp_cross_call(mask, IPI_WAKEUP);
}
void arch_send_call_function_single_ipi(int cpu)
{
smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
}
static const char *ipi_types[NR_IPI] = {
#define S(x,s) [x] = s
S(IPI_WAKEUP, "CPU wakeup interrupts"),
S(IPI_TIMER, "Timer broadcast interrupts"),
S(IPI_RESCHEDULE, "Rescheduling interrupts"),
S(IPI_CALL_FUNC, "Function call interrupts"),
S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
S(IPI_CPU_STOP, "CPU stop interrupts"),
};
void show_ipi_list(struct seq_file *p, int prec)
{
unsigned int cpu, i;
for (i = 0; i < NR_IPI; i++) {
seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
for_each_online_cpu(cpu)
seq_printf(p, "%10u ",
__get_irq_stat(cpu, ipi_irqs[i]));
seq_printf(p, " %s\n", ipi_types[i]);
}
}
u64 smp_irq_stat_cpu(unsigned int cpu)
{
u64 sum = 0;
int i;
for (i = 0; i < NR_IPI; i++)
sum += __get_irq_stat(cpu, ipi_irqs[i]);
return sum;
}
/*
* Timer (local or broadcast) support
*/
static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
void tick_broadcast(const struct cpumask *mask)
{
smp_cross_call(mask, IPI_TIMER);
}
#endif
static void broadcast_timer_set_mode(enum clock_event_mode mode,
struct clock_event_device *evt)
{
}
static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
{
evt->name = "dummy_timer";
evt->features = CLOCK_EVT_FEAT_ONESHOT |
CLOCK_EVT_FEAT_PERIODIC |
CLOCK_EVT_FEAT_DUMMY;
evt->rating = 100;
evt->mult = 1;
evt->set_mode = broadcast_timer_set_mode;
clockevents_register_device(evt);
}
static struct local_timer_ops *lt_ops;
#ifdef CONFIG_LOCAL_TIMERS
int local_timer_register(struct local_timer_ops *ops)
{
if (!is_smp() || !setup_max_cpus)
return -ENXIO;
if (lt_ops)
return -EBUSY;
lt_ops = ops;
return 0;
}
#endif
static void __cpuinit percpu_timer_setup(void)
{
unsigned int cpu = smp_processor_id();
struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
evt->cpumask = cpumask_of(cpu);
if (!lt_ops || lt_ops->setup(evt))
broadcast_timer_setup(evt);
}
#ifdef CONFIG_HOTPLUG_CPU
/*
* The generic clock events code purposely does not stop the local timer
* on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
* manually here.
*/
static void percpu_timer_stop(void)
{
unsigned int cpu = smp_processor_id();
struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
if (lt_ops)
lt_ops->stop(evt);
}
#endif
static DEFINE_RAW_SPINLOCK(stop_lock);
/*
* ipi_cpu_stop - handle IPI from smp_send_stop()
*/
static void ipi_cpu_stop(unsigned int cpu)
{
if (system_state == SYSTEM_BOOTING ||
system_state == SYSTEM_RUNNING) {
raw_spin_lock(&stop_lock);
printk(KERN_CRIT "CPU%u: stopping\n", cpu);
dump_stack();
raw_spin_unlock(&stop_lock);
}
set_cpu_online(cpu, false);
local_fiq_disable();
local_irq_disable();
while (1)
cpu_relax();
}
/*
* Main handler for inter-processor interrupts
*/
asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
{
handle_IPI(ipinr, regs);
}
void handle_IPI(int ipinr, struct pt_regs *regs)
{
unsigned int cpu = smp_processor_id();
struct pt_regs *old_regs = set_irq_regs(regs);
if (ipinr < NR_IPI)
__inc_irq_stat(cpu, ipi_irqs[ipinr]);
switch (ipinr) {
case IPI_WAKEUP:
break;
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
case IPI_TIMER:
irq_enter();
tick_receive_broadcast();
irq_exit();
break;
#endif
case IPI_RESCHEDULE:
scheduler_ipi();
break;
case IPI_CALL_FUNC:
irq_enter();
generic_smp_call_function_interrupt();
irq_exit();
break;
case IPI_CALL_FUNC_SINGLE:
irq_enter();
generic_smp_call_function_single_interrupt();
irq_exit();
break;
case IPI_CPU_STOP:
irq_enter();
ipi_cpu_stop(cpu);
irq_exit();
break;
default:
printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
cpu, ipinr);
break;
}
set_irq_regs(old_regs);
}
void smp_send_reschedule(int cpu)
{
smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
}
void smp_send_stop(void)
{
unsigned long timeout;
struct cpumask mask;
cpumask_copy(&mask, cpu_online_mask);
cpumask_clear_cpu(smp_processor_id(), &mask);
ARM: 7480/1: only call smp_send_stop() on SMP On reboot or poweroff (machine_shutdown()) a call to smp_send_stop() is made (to stop the others CPU's) when CONFIG_SMP=y. arch/arm/kernel/process.c: void machine_shutdown(void) { #ifdef CONFIG_SMP smp_send_stop(); #endif } smp_send_stop() calls the function pointer smp_cross_call(), which is set on the smp_init_cpus() function for OMAP processors. arch/arm/mach-omap2/omap-smp.c: void __init smp_init_cpus(void) { ... set_smp_cross_call(gic_raise_softirq); ... } But the ARM setup_arch() function only calls smp_init_cpus() if CONFIG_SMP=y && is_smp(). arm/kernel/setup.c: void __init setup_arch(char **cmdline_p) { ... #ifdef CONFIG_SMP if (is_smp()) smp_init_cpus(); #endif ... } Newer OMAP CPU's are SMP machines so omap2plus_defconfig sets CONFIG_SMP=y. Unfortunately on an OMAP UP machine is_smp() returns false and smp_init_cpus() is never called and the smp_cross_call() function remains NULL. If the machine is rebooted or powered off, smp_send_stop() will be called (since CONFIG_SMP=y) leading to the following error: [ 42.815551] Restarting system. [ 42.819030] Unable to handle kernel NULL pointer dereference at virtual address 00000000 [ 42.827667] pgd = d7a74000 [ 42.830566] [00000000] *pgd=96ce7831, *pte=00000000, *ppte=00000000 [ 42.837249] Internal error: Oops: 80000007 [#1] SMP ARM [ 42.842773] Modules linked in: [ 42.846008] CPU: 0 Not tainted (3.5.0-rc3-next-20120622-00002-g62e87ba-dirty #44) [ 42.854278] PC is at 0x0 [ 42.856994] LR is at smp_send_stop+0x4c/0xe4 [ 42.861511] pc : [<00000000>] lr : [<c00183a4>] psr: 60000013 [ 42.861511] sp : d6c85e70 ip : 00000000 fp : 00000000 [ 42.873626] r10: 00000000 r9 : d6c84000 r8 : 00000002 [ 42.879150] r7 : c07235a0 r6 : c06dd2d0 r5 : 000f4241 r4 : d6c85e74 [ 42.886047] r3 : 00000000 r2 : 00000000 r1 : 00000006 r0 : d6c85e74 [ 42.892944] Flags: nZCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment user [ 42.900482] Control: 10c5387d Table: 97a74019 DAC: 00000015 [ 42.906555] Process reboot (pid: 1166, stack limit = 0xd6c842f8) [ 42.912902] Stack: (0xd6c85e70 to 0xd6c86000) [ 42.917510] 5e60: c07235a0 00000000 00000000 d6c84000 [ 42.926177] 5e80: 01234567 c00143d0 4321fedc c00511bc d6c85ebc 00000168 00000460 00000000 [ 42.934814] 5ea0: c1017950 a0000013 c1017900 d8014390 d7ec3858 c0498e48 c1017950 00000000 [ 42.943481] 5ec0: d6ddde10 d6c85f78 00000003 00000000 d6ddde10 d6c84000 00000000 00000000 [ 42.952117] 5ee0: 00000002 00000000 00000000 c0088c88 00000002 00000000 00000000 c00f4b90 [ 42.960784] 5f00: 00000000 d6c85ebc d8014390 d7e311c8 60000013 00000103 00000002 d6c84000 [ 42.969421] 5f20: c00f3274 d6e00a00 00000001 60000013 d6c84000 00000000 00000000 c00895d4 [ 42.978057] 5f40: 00000002 d8007c80 d781f000 c00f6150 d8010cc0 c00f3274 d781f000 d6c84000 [ 42.986694] 5f60: c0013020 d6e00a00 00000001 20000010 0001257c ef000000 00000000 c00895d4 [ 42.995361] 5f80: 00000002 00000001 00000003 00000000 00000001 00000003 00000000 00000058 [ 43.003997] 5fa0: c00130c8 c0012f00 00000001 00000003 fee1dead 28121969 01234567 00000002 [ 43.012634] 5fc0: 00000001 00000003 00000000 00000058 00012584 0001257c 00000001 00000000 [ 43.021270] 5fe0: 000124bc bec5cc6c 00008f9c 4a2f7c40 20000010 fee1dead 00000000 00000000 [ 43.029968] [<c00183a4>] (smp_send_stop+0x4c/0xe4) from [<c00143d0>] (machine_restart+0xc/0x4c) [ 43.039154] [<c00143d0>] (machine_restart+0xc/0x4c) from [<c00511bc>] (sys_reboot+0x144/0x1f0) [ 43.048278] [<c00511bc>] (sys_reboot+0x144/0x1f0) from [<c0012f00>] (ret_fast_syscall+0x0/0x3c) [ 43.057464] Code: bad PC value [ 43.060760] ---[ end trace c3988d1dd0b8f0fb ]--- Add a check so smp_cross_call() is only called when there is more than one CPU on-line. Cc: <stable@vger.kernel.org> Signed-off-by: Javier Martinez Canillas <javier at dowhile0.org> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2012-07-28 22:19:55 +08:00
if (!cpumask_empty(&mask))
smp_cross_call(&mask, IPI_CPU_STOP);
/* Wait up to one second for other CPUs to stop */
timeout = USEC_PER_SEC;
while (num_online_cpus() > 1 && timeout--)
udelay(1);
if (num_online_cpus() > 1)
pr_warning("SMP: failed to stop secondary CPUs\n");
}
/*
* not supported here
*/
int setup_profiling_timer(unsigned int multiplier)
{
return -EINVAL;
}
#ifdef CONFIG_CPU_FREQ
static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
static unsigned long global_l_p_j_ref;
static unsigned long global_l_p_j_ref_freq;
static int cpufreq_callback(struct notifier_block *nb,
unsigned long val, void *data)
{
struct cpufreq_freqs *freq = data;
int cpu = freq->cpu;
if (freq->flags & CPUFREQ_CONST_LOOPS)
return NOTIFY_OK;
if (!per_cpu(l_p_j_ref, cpu)) {
per_cpu(l_p_j_ref, cpu) =
per_cpu(cpu_data, cpu).loops_per_jiffy;
per_cpu(l_p_j_ref_freq, cpu) = freq->old;
if (!global_l_p_j_ref) {
global_l_p_j_ref = loops_per_jiffy;
global_l_p_j_ref_freq = freq->old;
}
}
if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
(val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
global_l_p_j_ref_freq,
freq->new);
per_cpu(cpu_data, cpu).loops_per_jiffy =
cpufreq_scale(per_cpu(l_p_j_ref, cpu),
per_cpu(l_p_j_ref_freq, cpu),
freq->new);
}
return NOTIFY_OK;
}
static struct notifier_block cpufreq_notifier = {
.notifier_call = cpufreq_callback,
};
static int __init register_cpufreq_notifier(void)
{
return cpufreq_register_notifier(&cpufreq_notifier,
CPUFREQ_TRANSITION_NOTIFIER);
}
core_initcall(register_cpufreq_notifier);
#endif