linux-sg2042/include/linux/cdrom.h

318 lines
8.8 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* -- <linux/cdrom.h>
* General header file for linux CD-ROM drivers
* Copyright (C) 1992 David Giller, rafetmad@oxy.edu
* 1994, 1995 Eberhard Mönkeberg, emoenke@gwdg.de
* 1996 David van Leeuwen, david@tm.tno.nl
* 1997, 1998 Erik Andersen, andersee@debian.org
* 1998-2002 Jens Axboe, axboe@suse.de
*/
#ifndef _LINUX_CDROM_H
#define _LINUX_CDROM_H
#include <linux/fs.h> /* not really needed, later.. */
#include <linux/list.h>
#include <scsi/scsi_common.h>
#include <uapi/linux/cdrom.h>
struct packet_command
{
unsigned char cmd[CDROM_PACKET_SIZE];
unsigned char *buffer;
unsigned int buflen;
int stat;
struct scsi_sense_hdr *sshdr;
unsigned char data_direction;
int quiet;
int timeout;
void *reserved[1];
};
/*
* _OLD will use PIO transfer on atapi devices, _BPC_* will use DMA
*/
#define CDDA_OLD 0 /* old style */
#define CDDA_BPC_SINGLE 1 /* single frame block pc */
#define CDDA_BPC_FULL 2 /* multi frame block pc */
/* Uniform cdrom data structures for cdrom.c */
struct cdrom_device_info {
const struct cdrom_device_ops *ops; /* link to device_ops */
struct list_head list; /* linked list of all device_info */
struct gendisk *disk; /* matching block layer disk */
void *handle; /* driver-dependent data */
/* specifications */
int mask; /* mask of capability: disables them */
int speed; /* maximum speed for reading data */
int capacity; /* number of discs in jukebox */
/* device-related storage */
unsigned int options : 30; /* options flags */
unsigned mc_flags : 2; /* media change buffer flags */
unsigned int vfs_events; /* cached events for vfs path */
unsigned int ioctl_events; /* cached events for ioctl path */
int use_count; /* number of times device opened */
char name[20]; /* name of the device type */
/* per-device flags */
__u8 sanyo_slot : 2; /* Sanyo 3 CD changer support */
__u8 keeplocked : 1; /* CDROM_LOCKDOOR status */
__u8 reserved : 5; /* not used yet */
int cdda_method; /* see flags */
__u8 last_sense;
__u8 media_written; /* dirty flag, DVD+RW bookkeeping */
unsigned short mmc3_profile; /* current MMC3 profile */
int for_data;
int (*exit)(struct cdrom_device_info *);
int mrw_mode_page;
};
struct cdrom_device_ops {
/* routines */
int (*open) (struct cdrom_device_info *, int);
void (*release) (struct cdrom_device_info *);
int (*drive_status) (struct cdrom_device_info *, int);
unsigned int (*check_events) (struct cdrom_device_info *cdi,
unsigned int clearing, int slot);
int (*media_changed) (struct cdrom_device_info *, int);
int (*tray_move) (struct cdrom_device_info *, int);
int (*lock_door) (struct cdrom_device_info *, int);
int (*select_speed) (struct cdrom_device_info *, int);
int (*select_disc) (struct cdrom_device_info *, int);
int (*get_last_session) (struct cdrom_device_info *,
struct cdrom_multisession *);
int (*get_mcn) (struct cdrom_device_info *,
struct cdrom_mcn *);
/* hard reset device */
int (*reset) (struct cdrom_device_info *);
/* play stuff */
int (*audio_ioctl) (struct cdrom_device_info *,unsigned int, void *);
/* driver specifications */
const int capability; /* capability flags */
/* handle uniform packets for scsi type devices (scsi,atapi) */
int (*generic_packet) (struct cdrom_device_info *,
struct packet_command *);
};
/* the general block_device operations structure: */
extern int cdrom_open(struct cdrom_device_info *cdi, struct block_device *bdev,
fmode_t mode);
extern void cdrom_release(struct cdrom_device_info *cdi, fmode_t mode);
extern int cdrom_ioctl(struct cdrom_device_info *cdi, struct block_device *bdev,
fmode_t mode, unsigned int cmd, unsigned long arg);
extern unsigned int cdrom_check_events(struct cdrom_device_info *cdi,
unsigned int clearing);
extern int cdrom_media_changed(struct cdrom_device_info *);
extern int register_cdrom(struct gendisk *disk, struct cdrom_device_info *cdi);
extern void unregister_cdrom(struct cdrom_device_info *cdi);
typedef struct {
int data;
int audio;
int cdi;
int xa;
long error;
} tracktype;
extern int cdrom_get_last_written(struct cdrom_device_info *cdi, long *last_written);
extern int cdrom_number_of_slots(struct cdrom_device_info *cdi);
extern int cdrom_mode_select(struct cdrom_device_info *cdi,
struct packet_command *cgc);
extern int cdrom_mode_sense(struct cdrom_device_info *cdi,
struct packet_command *cgc,
int page_code, int page_control);
extern void init_cdrom_command(struct packet_command *cgc,
void *buffer, int len, int type);
extern int cdrom_dummy_generic_packet(struct cdrom_device_info *cdi,
struct packet_command *cgc);
/* The SCSI spec says there could be 256 slots. */
#define CDROM_MAX_SLOTS 256
struct cdrom_mechstat_header {
#if defined(__BIG_ENDIAN_BITFIELD)
__u8 fault : 1;
__u8 changer_state : 2;
__u8 curslot : 5;
__u8 mech_state : 3;
__u8 door_open : 1;
__u8 reserved1 : 4;
#elif defined(__LITTLE_ENDIAN_BITFIELD)
__u8 curslot : 5;
__u8 changer_state : 2;
__u8 fault : 1;
__u8 reserved1 : 4;
__u8 door_open : 1;
__u8 mech_state : 3;
#endif
__u8 curlba[3];
__u8 nslots;
__u16 slot_tablelen;
};
struct cdrom_slot {
#if defined(__BIG_ENDIAN_BITFIELD)
__u8 disc_present : 1;
__u8 reserved1 : 6;
__u8 change : 1;
#elif defined(__LITTLE_ENDIAN_BITFIELD)
__u8 change : 1;
__u8 reserved1 : 6;
__u8 disc_present : 1;
#endif
__u8 reserved2[3];
};
struct cdrom_changer_info {
struct cdrom_mechstat_header hdr;
struct cdrom_slot slots[CDROM_MAX_SLOTS];
};
typedef enum {
mechtype_caddy = 0,
mechtype_tray = 1,
mechtype_popup = 2,
mechtype_individual_changer = 4,
mechtype_cartridge_changer = 5
} mechtype_t;
typedef struct {
#if defined(__BIG_ENDIAN_BITFIELD)
__u8 ps : 1;
__u8 reserved1 : 1;
__u8 page_code : 6;
__u8 page_length;
__u8 reserved2 : 1;
__u8 bufe : 1;
__u8 ls_v : 1;
__u8 test_write : 1;
__u8 write_type : 4;
__u8 multi_session : 2; /* or border, DVD */
__u8 fp : 1;
__u8 copy : 1;
__u8 track_mode : 4;
__u8 reserved3 : 4;
__u8 data_block_type : 4;
#elif defined(__LITTLE_ENDIAN_BITFIELD)
__u8 page_code : 6;
__u8 reserved1 : 1;
__u8 ps : 1;
__u8 page_length;
__u8 write_type : 4;
__u8 test_write : 1;
__u8 ls_v : 1;
__u8 bufe : 1;
__u8 reserved2 : 1;
__u8 track_mode : 4;
__u8 copy : 1;
__u8 fp : 1;
__u8 multi_session : 2; /* or border, DVD */
__u8 data_block_type : 4;
__u8 reserved3 : 4;
#endif
__u8 link_size;
__u8 reserved4;
#if defined(__BIG_ENDIAN_BITFIELD)
__u8 reserved5 : 2;
__u8 app_code : 6;
#elif defined(__LITTLE_ENDIAN_BITFIELD)
__u8 app_code : 6;
__u8 reserved5 : 2;
#endif
__u8 session_format;
__u8 reserved6;
__be32 packet_size;
__u16 audio_pause;
__u8 mcn[16];
__u8 isrc[16];
__u8 subhdr0;
__u8 subhdr1;
__u8 subhdr2;
__u8 subhdr3;
} __attribute__((packed)) write_param_page;
struct modesel_head
{
__u8 reserved1;
__u8 medium;
__u8 reserved2;
__u8 block_desc_length;
__u8 density;
__u8 number_of_blocks_hi;
__u8 number_of_blocks_med;
__u8 number_of_blocks_lo;
__u8 reserved3;
__u8 block_length_hi;
__u8 block_length_med;
__u8 block_length_lo;
};
typedef struct {
__u16 report_key_length;
__u8 reserved1;
__u8 reserved2;
#if defined(__BIG_ENDIAN_BITFIELD)
__u8 type_code : 2;
__u8 vra : 3;
__u8 ucca : 3;
#elif defined(__LITTLE_ENDIAN_BITFIELD)
__u8 ucca : 3;
__u8 vra : 3;
__u8 type_code : 2;
#endif
__u8 region_mask;
__u8 rpc_scheme;
__u8 reserved3;
} rpc_state_t;
struct event_header {
__be16 data_len;
#if defined(__BIG_ENDIAN_BITFIELD)
__u8 nea : 1;
__u8 reserved1 : 4;
__u8 notification_class : 3;
#elif defined(__LITTLE_ENDIAN_BITFIELD)
__u8 notification_class : 3;
__u8 reserved1 : 4;
__u8 nea : 1;
#endif
__u8 supp_event_class;
};
struct media_event_desc {
#if defined(__BIG_ENDIAN_BITFIELD)
__u8 reserved1 : 4;
__u8 media_event_code : 4;
__u8 reserved2 : 6;
__u8 media_present : 1;
__u8 door_open : 1;
#elif defined(__LITTLE_ENDIAN_BITFIELD)
__u8 media_event_code : 4;
__u8 reserved1 : 4;
__u8 door_open : 1;
__u8 media_present : 1;
__u8 reserved2 : 6;
#endif
__u8 start_slot;
__u8 end_slot;
};
extern int cdrom_get_media_event(struct cdrom_device_info *cdi, struct media_event_desc *med);
static inline void lba_to_msf(int lba, u8 *m, u8 *s, u8 *f)
{
lba += CD_MSF_OFFSET;
lba &= 0xffffff; /* negative lbas use only 24 bits */
*m = lba / (CD_SECS * CD_FRAMES);
lba %= (CD_SECS * CD_FRAMES);
*s = lba / CD_FRAMES;
*f = lba % CD_FRAMES;
}
static inline int msf_to_lba(u8 m, u8 s, u8 f)
{
return (((m * CD_SECS) + s) * CD_FRAMES + f) - CD_MSF_OFFSET;
}
#endif /* _LINUX_CDROM_H */