linux-sg2042/include/acpi/platform/acenv.h

407 lines
11 KiB
C
Raw Normal View History

/******************************************************************************
*
* Name: acenv.h - Host and compiler configuration
*
*****************************************************************************/
/*
* Copyright (C) 2000 - 2016, Intel Corp.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*/
#ifndef __ACENV_H__
#define __ACENV_H__
/*
* Environment configuration. The purpose of this file is to interface ACPICA
* to the local environment. This includes compiler-specific, OS-specific,
* and machine-specific configuration.
*/
ACPICA: Cleanup indentation to reduce differences between Linux and ACPICA. This is a cosmetic patch only. Comparison of the resulting binary showed only line number differences. This patch does not affect the generation of the Linux binary. This patch decreases 210 lines of 20121018 divergence.diff. The ACPICA source codes uses a totally different indentation style from the Linux to be compatible with other users (operating systems or BIOS). Indentation differences are critical to the release automation. There are two causes related to the "indentation" that are affecting the release automation: 1. The ACPICA -> Linux release process is: ACPICA source -- acpisrc - hierarchy - indent -> linuxized ACPICA source -- diff -> linuxized ACPICA patch (x) -- human intervention -> linuxized ACPICA patch (o) Where 'x' means "cannot be directly applied to the Linux" 'o' means "can be directly applied to the Linux" Different "indent" version or "indent" options used in the "indent" step will lead to different divergences. The version of "indent" used for the current release process is: GNU indent 2.2.11 The options of "indent" used for the current release process is: -npro -kr -i8 -ts8 -sob -l80 -ss -ncs 2. Manual indentation prettifying work in the Linux side will also harm the automatically generated linuxized ACPICA patches, making them impossible to apply directly. This patch fixes source code differences caused by the two causes so that the "human intervention" can be reduced in the future. Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2012-12-19 13:37:15 +08:00
/* Types for ACPI_MUTEX_TYPE */
#define ACPI_BINARY_SEMAPHORE 0
#define ACPI_OSL_MUTEX 1
/* Types for DEBUGGER_THREADING */
#define DEBUGGER_SINGLE_THREADED 0
#define DEBUGGER_MULTI_THREADED 1
/******************************************************************************
*
* Configuration for ACPI tools and utilities
*
*****************************************************************************/
/* Common application configuration. All single threaded except for acpi_exec. */
#if (defined ACPI_ASL_COMPILER) || \
(defined ACPI_BIN_APP) || \
(defined ACPI_DUMP_APP) || \
(defined ACPI_HELP_APP) || \
(defined ACPI_NAMES_APP) || \
(defined ACPI_SRC_APP) || \
(defined ACPI_XTRACT_APP) || \
(defined ACPI_EXAMPLE_APP)
#define ACPI_APPLICATION
#define ACPI_SINGLE_THREADED
#endif
/* iASL configuration */
ACPICA: Cleanup indentation to reduce differences between Linux and ACPICA. This is a cosmetic patch only. Comparison of the resulting binary showed only line number differences. This patch does not affect the generation of the Linux binary. This patch decreases 210 lines of 20121018 divergence.diff. The ACPICA source codes uses a totally different indentation style from the Linux to be compatible with other users (operating systems or BIOS). Indentation differences are critical to the release automation. There are two causes related to the "indentation" that are affecting the release automation: 1. The ACPICA -> Linux release process is: ACPICA source -- acpisrc - hierarchy - indent -> linuxized ACPICA source -- diff -> linuxized ACPICA patch (x) -- human intervention -> linuxized ACPICA patch (o) Where 'x' means "cannot be directly applied to the Linux" 'o' means "can be directly applied to the Linux" Different "indent" version or "indent" options used in the "indent" step will lead to different divergences. The version of "indent" used for the current release process is: GNU indent 2.2.11 The options of "indent" used for the current release process is: -npro -kr -i8 -ts8 -sob -l80 -ss -ncs 2. Manual indentation prettifying work in the Linux side will also harm the automatically generated linuxized ACPICA patches, making them impossible to apply directly. This patch fixes source code differences caused by the two causes so that the "human intervention" can be reduced in the future. Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2012-12-19 13:37:15 +08:00
ACPI: ACPICA 20060421 Removed a device initialization optimization introduced in 20051216 where the _STA method was not run unless an _INI was also present for the same device. This optimization could cause problems because it could allow _INI methods to be run within a not-present device subtree (If a not-present device had no _INI, _STA would not be run, the not-present status would not be discovered, and the children of the device would be incorrectly traversed.) Implemented a new _STA optimization where namespace subtrees that do not contain _INI are identified and ignored during device initialization. Selectively running _STA can significantly improve boot time on large machines (with assistance from Len Brown.) Implemented support for the device initialization case where the returned _STA flags indicate a device not-present but functioning. In this case, _INI is not run, but the device children are examined for presence, as per the ACPI specification. Implemented an additional change to the IndexField support in order to conform to MS behavior. The value written to the Index Register is not simply a byte offset, it is a byte offset in units of the access width of the parent Index Field. (Fiodor Suietov) Defined and deployed a new OSL interface, acpi_os_validate_address(). This interface is called during the creation of all AML operation regions, and allows the host OS to exert control over what addresses it will allow the AML code to access. Operation Regions whose addresses are disallowed will cause a runtime exception when they are actually accessed (will not affect or abort table loading.) Defined and deployed a new OSL interface, acpi_os_validate_interface(). This interface allows the host OS to match the various "optional" interface/behavior strings for the _OSI predefined control method as appropriate (with assistance from Bjorn Helgaas.) Restructured and corrected various problems in the exception handling code paths within DsCallControlMethod and DsTerminateControlMethod in dsmethod (with assistance from Takayoshi Kochi.) Modified the Linux source converter to ignore quoted string literals while converting identifiers from mixed to lower case. This will correct problems with the disassembler and other areas where such strings must not be modified. The ACPI_FUNCTION_* macros no longer require quotes around the function name. This allows the Linux source converter to convert the names, now that the converter ignores quoted strings. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-04-22 05:15:00 +08:00
#ifdef ACPI_ASL_COMPILER
#define ACPI_DEBUG_OUTPUT
ACPI: ACPICA 20060421 Removed a device initialization optimization introduced in 20051216 where the _STA method was not run unless an _INI was also present for the same device. This optimization could cause problems because it could allow _INI methods to be run within a not-present device subtree (If a not-present device had no _INI, _STA would not be run, the not-present status would not be discovered, and the children of the device would be incorrectly traversed.) Implemented a new _STA optimization where namespace subtrees that do not contain _INI are identified and ignored during device initialization. Selectively running _STA can significantly improve boot time on large machines (with assistance from Len Brown.) Implemented support for the device initialization case where the returned _STA flags indicate a device not-present but functioning. In this case, _INI is not run, but the device children are examined for presence, as per the ACPI specification. Implemented an additional change to the IndexField support in order to conform to MS behavior. The value written to the Index Register is not simply a byte offset, it is a byte offset in units of the access width of the parent Index Field. (Fiodor Suietov) Defined and deployed a new OSL interface, acpi_os_validate_address(). This interface is called during the creation of all AML operation regions, and allows the host OS to exert control over what addresses it will allow the AML code to access. Operation Regions whose addresses are disallowed will cause a runtime exception when they are actually accessed (will not affect or abort table loading.) Defined and deployed a new OSL interface, acpi_os_validate_interface(). This interface allows the host OS to match the various "optional" interface/behavior strings for the _OSI predefined control method as appropriate (with assistance from Bjorn Helgaas.) Restructured and corrected various problems in the exception handling code paths within DsCallControlMethod and DsTerminateControlMethod in dsmethod (with assistance from Takayoshi Kochi.) Modified the Linux source converter to ignore quoted string literals while converting identifiers from mixed to lower case. This will correct problems with the disassembler and other areas where such strings must not be modified. The ACPI_FUNCTION_* macros no longer require quotes around the function name. This allows the Linux source converter to convert the names, now that the converter ignores quoted strings. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-04-22 05:15:00 +08:00
#define ACPI_CONSTANT_EVAL_ONLY
#define ACPI_LARGE_NAMESPACE_NODE
ACPI: ACPICA 20060331 Implemented header file support for the following additional ACPI tables: ASF!, BOOT, CPEP, DBGP, MCFG, SPCR, SPMI, TCPA, and WDRT. With this support, all current and known ACPI tables are now defined in the ACPICA headers and are available for use by device drivers and other software. Implemented support to allow tables that contain ACPI names with invalid characters to be loaded. Previously, this would cause the table load to fail, but since there are several known cases of such tables on existing machines, this change was made to enable ACPI support for them. Also, this matches the behavior of the Microsoft ACPI implementation. https://bugzilla.novell.com/show_bug.cgi?id=147621 Fixed a couple regressions introduced during the memory optimization in the 20060317 release. The namespace node definition required additional reorganization and an internal datatype that had been changed to 8-bit was restored to 32-bit. (Valery Podrezov) Fixed a problem where a null pointer passed to acpi_ut_delete_generic_state() could be passed through to acpi_os_release_object which is unexpected. Such null pointers are now trapped and ignored, matching the behavior of the previous implementation before the deployment of acpi_os_release_object(). (Valery Podrezov, Fiodor Suietov) Fixed a memory mapping leak during the deletion of a SystemMemory operation region where a cached memory mapping was not deleted. This became a noticeable problem for operation regions that are defined within frequently used control methods. (Dana Meyers) Reorganized the ACPI table header files into two main files: one for the ACPI tables consumed by the ACPICA core, and another for the miscellaneous ACPI tables that are consumed by the drivers and other software. The various FADT definitions were merged into one common section and three different tables (ACPI 1.0, 1.0+, and 2.0) Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-03-31 13:00:00 +08:00
#define ACPI_DATA_TABLE_DISASSEMBLY
ACPICA: Utilities: split IO address types from data type models. ACPICA commit aacf863cfffd46338e268b7415f7435cae93b451 It is reported that on a physically 64-bit addressed machine, 32-bit kernel can trigger crashes in accessing the memory regions that are beyond the 32-bit boundary. The region field's start address should still be 32-bit compliant, but after a calculation (adding some offsets), it may exceed the 32-bit boundary. This case is rare and buggy, but there are real BIOSes leaked with such issues (see References below). This patch fixes this gap by always defining IO addresses as 64-bit, and allows OSPMs to optimize it for a real 32-bit machine to reduce the size of the internal objects. Internal acpi_physical_address usages in the structures that can be fixed by this change include: 1. struct acpi_object_region: acpi_physical_address address; 2. struct acpi_address_range: acpi_physical_address start_address; acpi_physical_address end_address; 3. struct acpi_mem_space_context; acpi_physical_address address; 4. struct acpi_table_desc acpi_physical_address address; See known issues 1 for other usages. Note that acpi_io_address which is used for ACPI_PROCESSOR may also suffer from same problem, so this patch changes it accordingly. For iasl, it will enforce acpi_physical_address as 32-bit to generate 32-bit OSPM compatible tables on 32-bit platforms, we need to define ACPI_32BIT_PHYSICAL_ADDRESS for it in acenv.h. Known issues: 1. Cleanup of mapped virtual address In struct acpi_mem_space_context, acpi_physical_address is used as a virtual address: acpi_physical_address mapped_physical_address; It is better to introduce acpi_virtual_address or use acpi_size instead. This patch doesn't make such a change. Because this should be done along with a change to acpi_os_map_memory()/acpi_os_unmap_memory(). There should be no functional problem to leave this unchanged except that only this structure is enlarged unexpectedly. Link: https://github.com/acpica/acpica/commit/aacf863c Reference: https://bugzilla.kernel.org/show_bug.cgi?id=87971 Reference: https://bugzilla.kernel.org/show_bug.cgi?id=79501 Reported-and-tested-by: Paul Menzel <paulepanter@users.sourceforge.net> Reported-and-tested-by: Sial Nije <sialnije@gmail.com> Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Bob Moore <robert.moore@intel.com> Cc: All applicable <stable@vger.kernel.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-04-13 11:48:58 +08:00
#define ACPI_32BIT_PHYSICAL_ADDRESS
#define ACPI_DISASSEMBLER 1
#endif
/* acpi_exec configuration. Multithreaded with full AML debugger */
ACPICA: Cleanup indentation to reduce differences between Linux and ACPICA. This is a cosmetic patch only. Comparison of the resulting binary showed only line number differences. This patch does not affect the generation of the Linux binary. This patch decreases 210 lines of 20121018 divergence.diff. The ACPICA source codes uses a totally different indentation style from the Linux to be compatible with other users (operating systems or BIOS). Indentation differences are critical to the release automation. There are two causes related to the "indentation" that are affecting the release automation: 1. The ACPICA -> Linux release process is: ACPICA source -- acpisrc - hierarchy - indent -> linuxized ACPICA source -- diff -> linuxized ACPICA patch (x) -- human intervention -> linuxized ACPICA patch (o) Where 'x' means "cannot be directly applied to the Linux" 'o' means "can be directly applied to the Linux" Different "indent" version or "indent" options used in the "indent" step will lead to different divergences. The version of "indent" used for the current release process is: GNU indent 2.2.11 The options of "indent" used for the current release process is: -npro -kr -i8 -ts8 -sob -l80 -ss -ncs 2. Manual indentation prettifying work in the Linux side will also harm the automatically generated linuxized ACPICA patches, making them impossible to apply directly. This patch fixes source code differences caused by the two causes so that the "human intervention" can be reduced in the future. Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2012-12-19 13:37:15 +08:00
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com> ACPICA 20050617: Moved the object cache operations into the OS interface layer (OSL) to allow the host OS to handle these operations if desired (for example, the Linux OSL will invoke the slab allocator). This support is optional; the compile time define ACPI_USE_LOCAL_CACHE may be used to utilize the original cache code in the ACPI CA core. The new OSL interfaces are shown below. See utalloc.c for an example implementation, and acpiosxf.h for the exact interface definitions. Thanks to Alexey Starikovskiy. acpi_os_create_cache acpi_os_delete_cache acpi_os_purge_cache acpi_os_acquire_object acpi_os_release_object Modified the interfaces to acpi_os_acquire_lock and acpi_os_release_lock to return and restore a flags parameter. This fits better with many OS lock models. Note: the current execution state (interrupt handler or not) is no longer passed to these interfaces. If necessary, the OSL must determine this state by itself, a simple and fast operation. Thanks to Alexey Starikovskiy. Fixed a problem in the ACPI table handling where a valid XSDT was assumed present if the revision of the RSDP was 2 or greater. According to the ACPI specification, the XSDT is optional in all cases, and the table manager therefore now checks for both an RSDP >=2 and a valid XSDT pointer. Otherwise, the RSDT pointer is used. Some ACPI 2.0 compliant BIOSs contain only the RSDT. Fixed an interpreter problem with the Mid() operator in the case of an input string where the resulting output string is of zero length. It now correctly returns a valid, null terminated string object instead of a string object with a null pointer. Fixed a problem with the control method argument handling to allow a store to an Arg object that already contains an object of type Device. The Device object is now correctly overwritten. Previously, an error was returned. ACPICA 20050624: Modified the new OSL cache interfaces to use ACPI_CACHE_T as the type for the host-defined cache object. This allows the OSL implementation to define and type this object in any manner desired, simplifying the OSL implementation. For example, ACPI_CACHE_T is defined as kmem_cache_t for Linux, and should be defined in the OS-specific header file for other operating systems as required. Changed the interface to AcpiOsAcquireObject to directly return the requested object as the function return (instead of ACPI_STATUS.) This change was made for performance reasons, since this is the purpose of the interface in the first place. acpi_os_acquire_object is now similar to the acpi_os_allocate interface. Thanks to Alexey Starikovskiy. Modified the initialization sequence in acpi_initialize_subsystem to call the OSL interface acpi_osl_initialize first, before any local initialization. This change was required because the global initialization now calls OSL interfaces. Restructured the code base to split some files because of size and/or because the code logically belonged in a separate file. New files are listed below. utilities/utcache.c /* Local cache interfaces */ utilities/utmutex.c /* Local mutex support */ utilities/utstate.c /* State object support */ parser/psloop.c /* Main AML parse loop */ Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 12:00:00 +08:00
#ifdef ACPI_EXEC_APP
#define ACPI_APPLICATION
#define ACPI_FULL_DEBUG
#define ACPI_MUTEX_DEBUG
#define ACPI_DBG_TRACK_ALLOCATIONS
#endif
/* acpi_help configuration. Error messages disabled. */
#ifdef ACPI_HELP_APP
#define ACPI_NO_ERROR_MESSAGES
#endif
/* acpi_names configuration. Debug output enabled. */
#ifdef ACPI_NAMES_APP
#define ACPI_DEBUG_OUTPUT
#endif
/* acpi_exec/acpi_names/Example configuration. Native RSDP used. */
#if (defined ACPI_EXEC_APP) || \
(defined ACPI_EXAMPLE_APP) || \
(defined ACPI_NAMES_APP)
#define ACPI_USE_NATIVE_RSDP_POINTER
#endif
/* acpi_dump configuration. Native mapping used if provided by the host */
#ifdef ACPI_DUMP_APP
#define ACPI_USE_NATIVE_MEMORY_MAPPING
#define USE_NATIVE_ALLOCATE_ZEROED
#endif
/* acpi_names/Example configuration. Hardware disabled */
#if (defined ACPI_EXAMPLE_APP) || \
(defined ACPI_NAMES_APP)
#define ACPI_REDUCED_HARDWARE 1
#endif
/* Linkable ACPICA library. Two versions, one with full debug. */
#ifdef ACPI_LIBRARY
#define ACPI_USE_LOCAL_CACHE
#define ACPI_DEBUGGER 1
#define ACPI_DISASSEMBLER 1
#ifdef _DEBUG
#define ACPI_DEBUG_OUTPUT
#endif
#endif
/* Common for all ACPICA applications */
ACPICA: Cleanup indentation to reduce differences between Linux and ACPICA. This is a cosmetic patch only. Comparison of the resulting binary showed only line number differences. This patch does not affect the generation of the Linux binary. This patch decreases 210 lines of 20121018 divergence.diff. The ACPICA source codes uses a totally different indentation style from the Linux to be compatible with other users (operating systems or BIOS). Indentation differences are critical to the release automation. There are two causes related to the "indentation" that are affecting the release automation: 1. The ACPICA -> Linux release process is: ACPICA source -- acpisrc - hierarchy - indent -> linuxized ACPICA source -- diff -> linuxized ACPICA patch (x) -- human intervention -> linuxized ACPICA patch (o) Where 'x' means "cannot be directly applied to the Linux" 'o' means "can be directly applied to the Linux" Different "indent" version or "indent" options used in the "indent" step will lead to different divergences. The version of "indent" used for the current release process is: GNU indent 2.2.11 The options of "indent" used for the current release process is: -npro -kr -i8 -ts8 -sob -l80 -ss -ncs 2. Manual indentation prettifying work in the Linux side will also harm the automatically generated linuxized ACPICA patches, making them impossible to apply directly. This patch fixes source code differences caused by the two causes so that the "human intervention" can be reduced in the future. Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2012-12-19 13:37:15 +08:00
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com> ACPICA 20050617: Moved the object cache operations into the OS interface layer (OSL) to allow the host OS to handle these operations if desired (for example, the Linux OSL will invoke the slab allocator). This support is optional; the compile time define ACPI_USE_LOCAL_CACHE may be used to utilize the original cache code in the ACPI CA core. The new OSL interfaces are shown below. See utalloc.c for an example implementation, and acpiosxf.h for the exact interface definitions. Thanks to Alexey Starikovskiy. acpi_os_create_cache acpi_os_delete_cache acpi_os_purge_cache acpi_os_acquire_object acpi_os_release_object Modified the interfaces to acpi_os_acquire_lock and acpi_os_release_lock to return and restore a flags parameter. This fits better with many OS lock models. Note: the current execution state (interrupt handler or not) is no longer passed to these interfaces. If necessary, the OSL must determine this state by itself, a simple and fast operation. Thanks to Alexey Starikovskiy. Fixed a problem in the ACPI table handling where a valid XSDT was assumed present if the revision of the RSDP was 2 or greater. According to the ACPI specification, the XSDT is optional in all cases, and the table manager therefore now checks for both an RSDP >=2 and a valid XSDT pointer. Otherwise, the RSDT pointer is used. Some ACPI 2.0 compliant BIOSs contain only the RSDT. Fixed an interpreter problem with the Mid() operator in the case of an input string where the resulting output string is of zero length. It now correctly returns a valid, null terminated string object instead of a string object with a null pointer. Fixed a problem with the control method argument handling to allow a store to an Arg object that already contains an object of type Device. The Device object is now correctly overwritten. Previously, an error was returned. ACPICA 20050624: Modified the new OSL cache interfaces to use ACPI_CACHE_T as the type for the host-defined cache object. This allows the OSL implementation to define and type this object in any manner desired, simplifying the OSL implementation. For example, ACPI_CACHE_T is defined as kmem_cache_t for Linux, and should be defined in the OS-specific header file for other operating systems as required. Changed the interface to AcpiOsAcquireObject to directly return the requested object as the function return (instead of ACPI_STATUS.) This change was made for performance reasons, since this is the purpose of the interface in the first place. acpi_os_acquire_object is now similar to the acpi_os_allocate interface. Thanks to Alexey Starikovskiy. Modified the initialization sequence in acpi_initialize_subsystem to call the OSL interface acpi_osl_initialize first, before any local initialization. This change was required because the global initialization now calls OSL interfaces. Restructured the code base to split some files because of size and/or because the code logically belonged in a separate file. New files are listed below. utilities/utcache.c /* Local cache interfaces */ utilities/utmutex.c /* Local mutex support */ utilities/utstate.c /* State object support */ parser/psloop.c /* Main AML parse loop */ Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 12:00:00 +08:00
#ifdef ACPI_APPLICATION
#define ACPI_USE_SYSTEM_CLIBRARY
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com> ACPICA 20050617: Moved the object cache operations into the OS interface layer (OSL) to allow the host OS to handle these operations if desired (for example, the Linux OSL will invoke the slab allocator). This support is optional; the compile time define ACPI_USE_LOCAL_CACHE may be used to utilize the original cache code in the ACPI CA core. The new OSL interfaces are shown below. See utalloc.c for an example implementation, and acpiosxf.h for the exact interface definitions. Thanks to Alexey Starikovskiy. acpi_os_create_cache acpi_os_delete_cache acpi_os_purge_cache acpi_os_acquire_object acpi_os_release_object Modified the interfaces to acpi_os_acquire_lock and acpi_os_release_lock to return and restore a flags parameter. This fits better with many OS lock models. Note: the current execution state (interrupt handler or not) is no longer passed to these interfaces. If necessary, the OSL must determine this state by itself, a simple and fast operation. Thanks to Alexey Starikovskiy. Fixed a problem in the ACPI table handling where a valid XSDT was assumed present if the revision of the RSDP was 2 or greater. According to the ACPI specification, the XSDT is optional in all cases, and the table manager therefore now checks for both an RSDP >=2 and a valid XSDT pointer. Otherwise, the RSDT pointer is used. Some ACPI 2.0 compliant BIOSs contain only the RSDT. Fixed an interpreter problem with the Mid() operator in the case of an input string where the resulting output string is of zero length. It now correctly returns a valid, null terminated string object instead of a string object with a null pointer. Fixed a problem with the control method argument handling to allow a store to an Arg object that already contains an object of type Device. The Device object is now correctly overwritten. Previously, an error was returned. ACPICA 20050624: Modified the new OSL cache interfaces to use ACPI_CACHE_T as the type for the host-defined cache object. This allows the OSL implementation to define and type this object in any manner desired, simplifying the OSL implementation. For example, ACPI_CACHE_T is defined as kmem_cache_t for Linux, and should be defined in the OS-specific header file for other operating systems as required. Changed the interface to AcpiOsAcquireObject to directly return the requested object as the function return (instead of ACPI_STATUS.) This change was made for performance reasons, since this is the purpose of the interface in the first place. acpi_os_acquire_object is now similar to the acpi_os_allocate interface. Thanks to Alexey Starikovskiy. Modified the initialization sequence in acpi_initialize_subsystem to call the OSL interface acpi_osl_initialize first, before any local initialization. This change was required because the global initialization now calls OSL interfaces. Restructured the code base to split some files because of size and/or because the code logically belonged in a separate file. New files are listed below. utilities/utcache.c /* Local cache interfaces */ utilities/utmutex.c /* Local mutex support */ utilities/utstate.c /* State object support */ parser/psloop.c /* Main AML parse loop */ Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 12:00:00 +08:00
#define ACPI_USE_LOCAL_CACHE
#endif
/* Common debug/disassembler support */
ACPICA: Cleanup indentation to reduce differences between Linux and ACPICA. This is a cosmetic patch only. Comparison of the resulting binary showed only line number differences. This patch does not affect the generation of the Linux binary. This patch decreases 210 lines of 20121018 divergence.diff. The ACPICA source codes uses a totally different indentation style from the Linux to be compatible with other users (operating systems or BIOS). Indentation differences are critical to the release automation. There are two causes related to the "indentation" that are affecting the release automation: 1. The ACPICA -> Linux release process is: ACPICA source -- acpisrc - hierarchy - indent -> linuxized ACPICA source -- diff -> linuxized ACPICA patch (x) -- human intervention -> linuxized ACPICA patch (o) Where 'x' means "cannot be directly applied to the Linux" 'o' means "can be directly applied to the Linux" Different "indent" version or "indent" options used in the "indent" step will lead to different divergences. The version of "indent" used for the current release process is: GNU indent 2.2.11 The options of "indent" used for the current release process is: -npro -kr -i8 -ts8 -sob -l80 -ss -ncs 2. Manual indentation prettifying work in the Linux side will also harm the automatically generated linuxized ACPICA patches, making them impossible to apply directly. This patch fixes source code differences caused by the two causes so that the "human intervention" can be reduced in the future. Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2012-12-19 13:37:15 +08:00
ACPI: ACPICA 20060421 Removed a device initialization optimization introduced in 20051216 where the _STA method was not run unless an _INI was also present for the same device. This optimization could cause problems because it could allow _INI methods to be run within a not-present device subtree (If a not-present device had no _INI, _STA would not be run, the not-present status would not be discovered, and the children of the device would be incorrectly traversed.) Implemented a new _STA optimization where namespace subtrees that do not contain _INI are identified and ignored during device initialization. Selectively running _STA can significantly improve boot time on large machines (with assistance from Len Brown.) Implemented support for the device initialization case where the returned _STA flags indicate a device not-present but functioning. In this case, _INI is not run, but the device children are examined for presence, as per the ACPI specification. Implemented an additional change to the IndexField support in order to conform to MS behavior. The value written to the Index Register is not simply a byte offset, it is a byte offset in units of the access width of the parent Index Field. (Fiodor Suietov) Defined and deployed a new OSL interface, acpi_os_validate_address(). This interface is called during the creation of all AML operation regions, and allows the host OS to exert control over what addresses it will allow the AML code to access. Operation Regions whose addresses are disallowed will cause a runtime exception when they are actually accessed (will not affect or abort table loading.) Defined and deployed a new OSL interface, acpi_os_validate_interface(). This interface allows the host OS to match the various "optional" interface/behavior strings for the _OSI predefined control method as appropriate (with assistance from Bjorn Helgaas.) Restructured and corrected various problems in the exception handling code paths within DsCallControlMethod and DsTerminateControlMethod in dsmethod (with assistance from Takayoshi Kochi.) Modified the Linux source converter to ignore quoted string literals while converting identifiers from mixed to lower case. This will correct problems with the disassembler and other areas where such strings must not be modified. The ACPI_FUNCTION_* macros no longer require quotes around the function name. This allows the Linux source converter to convert the names, now that the converter ignores quoted strings. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-04-22 05:15:00 +08:00
#ifdef ACPI_FULL_DEBUG
#define ACPI_DEBUG_OUTPUT
#define ACPI_DEBUGGER 1
#define ACPI_DISASSEMBLER 1
ACPI: ACPICA 20060421 Removed a device initialization optimization introduced in 20051216 where the _STA method was not run unless an _INI was also present for the same device. This optimization could cause problems because it could allow _INI methods to be run within a not-present device subtree (If a not-present device had no _INI, _STA would not be run, the not-present status would not be discovered, and the children of the device would be incorrectly traversed.) Implemented a new _STA optimization where namespace subtrees that do not contain _INI are identified and ignored during device initialization. Selectively running _STA can significantly improve boot time on large machines (with assistance from Len Brown.) Implemented support for the device initialization case where the returned _STA flags indicate a device not-present but functioning. In this case, _INI is not run, but the device children are examined for presence, as per the ACPI specification. Implemented an additional change to the IndexField support in order to conform to MS behavior. The value written to the Index Register is not simply a byte offset, it is a byte offset in units of the access width of the parent Index Field. (Fiodor Suietov) Defined and deployed a new OSL interface, acpi_os_validate_address(). This interface is called during the creation of all AML operation regions, and allows the host OS to exert control over what addresses it will allow the AML code to access. Operation Regions whose addresses are disallowed will cause a runtime exception when they are actually accessed (will not affect or abort table loading.) Defined and deployed a new OSL interface, acpi_os_validate_interface(). This interface allows the host OS to match the various "optional" interface/behavior strings for the _OSI predefined control method as appropriate (with assistance from Bjorn Helgaas.) Restructured and corrected various problems in the exception handling code paths within DsCallControlMethod and DsTerminateControlMethod in dsmethod (with assistance from Takayoshi Kochi.) Modified the Linux source converter to ignore quoted string literals while converting identifiers from mixed to lower case. This will correct problems with the disassembler and other areas where such strings must not be modified. The ACPI_FUNCTION_* macros no longer require quotes around the function name. This allows the Linux source converter to convert the names, now that the converter ignores quoted strings. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-04-22 05:15:00 +08:00
#endif
/*! [Begin] no source code translation */
/******************************************************************************
*
* Host configuration files. The compiler configuration files are included
* by the host files.
*
*****************************************************************************/
ACPICA: Cleanup indentation to reduce differences between Linux and ACPICA. This is a cosmetic patch only. Comparison of the resulting binary showed only line number differences. This patch does not affect the generation of the Linux binary. This patch decreases 210 lines of 20121018 divergence.diff. The ACPICA source codes uses a totally different indentation style from the Linux to be compatible with other users (operating systems or BIOS). Indentation differences are critical to the release automation. There are two causes related to the "indentation" that are affecting the release automation: 1. The ACPICA -> Linux release process is: ACPICA source -- acpisrc - hierarchy - indent -> linuxized ACPICA source -- diff -> linuxized ACPICA patch (x) -- human intervention -> linuxized ACPICA patch (o) Where 'x' means "cannot be directly applied to the Linux" 'o' means "can be directly applied to the Linux" Different "indent" version or "indent" options used in the "indent" step will lead to different divergences. The version of "indent" used for the current release process is: GNU indent 2.2.11 The options of "indent" used for the current release process is: -npro -kr -i8 -ts8 -sob -l80 -ss -ncs 2. Manual indentation prettifying work in the Linux side will also harm the automatically generated linuxized ACPICA patches, making them impossible to apply directly. This patch fixes source code differences caused by the two causes so that the "human intervention" can be reduced in the future. Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2012-12-19 13:37:15 +08:00
#if defined(_LINUX) || defined(__linux__)
#include <acpi/platform/aclinux.h>
#elif defined(_APPLE) || defined(__APPLE__)
#include "acmacosx.h"
#elif defined(__DragonFly__)
#include "acdragonfly.h"
ACPI: ACPICA 20060331 Implemented header file support for the following additional ACPI tables: ASF!, BOOT, CPEP, DBGP, MCFG, SPCR, SPMI, TCPA, and WDRT. With this support, all current and known ACPI tables are now defined in the ACPICA headers and are available for use by device drivers and other software. Implemented support to allow tables that contain ACPI names with invalid characters to be loaded. Previously, this would cause the table load to fail, but since there are several known cases of such tables on existing machines, this change was made to enable ACPI support for them. Also, this matches the behavior of the Microsoft ACPI implementation. https://bugzilla.novell.com/show_bug.cgi?id=147621 Fixed a couple regressions introduced during the memory optimization in the 20060317 release. The namespace node definition required additional reorganization and an internal datatype that had been changed to 8-bit was restored to 32-bit. (Valery Podrezov) Fixed a problem where a null pointer passed to acpi_ut_delete_generic_state() could be passed through to acpi_os_release_object which is unexpected. Such null pointers are now trapped and ignored, matching the behavior of the previous implementation before the deployment of acpi_os_release_object(). (Valery Podrezov, Fiodor Suietov) Fixed a memory mapping leak during the deletion of a SystemMemory operation region where a cached memory mapping was not deleted. This became a noticeable problem for operation regions that are defined within frequently used control methods. (Dana Meyers) Reorganized the ACPI table header files into two main files: one for the ACPI tables consumed by the ACPICA core, and another for the miscellaneous ACPI tables that are consumed by the drivers and other software. The various FADT definitions were merged into one common section and three different tables (ACPI 1.0, 1.0+, and 2.0) Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-03-31 13:00:00 +08:00
#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
#include "acfreebsd.h"
#elif defined(__NetBSD__)
#include "acnetbsd.h"
#elif defined(__sun)
#include "acsolaris.h"
#elif defined(MODESTO)
#include "acmodesto.h"
#elif defined(NETWARE)
#include "acnetware.h"
#elif defined(_CYGWIN)
#include "accygwin.h"
[ACPI] ACPICA 20060127 Implemented support in the Resource Manager to allow unresolved namestring references within resource package objects for the _PRT method. This support is in addition to the previously implemented unresolved reference support within the AML parser. If the interpreter slack mode is enabled (true on Linux unless acpi=strict), these unresolved references will be passed through to the caller as a NULL package entry. http://bugzilla.kernel.org/show_bug.cgi?id=5741 Implemented and deployed new macros and functions for error and warning messages across the subsystem. These macros are simpler and generate less code than their predecessors. The new macros ACPI_ERROR, ACPI_EXCEPTION, ACPI_WARNING, and ACPI_INFO replace the ACPI_REPORT_* macros. Implemented the acpi_cpu_flags type to simplify host OS integration of the Acquire/Release Lock OSL interfaces. Suggested by Steven Rostedt and Andrew Morton. Fixed a problem where Alias ASL operators are sometimes not correctly resolved. causing AE_AML_INTERNAL http://bugzilla.kernel.org/show_bug.cgi?id=5189 http://bugzilla.kernel.org/show_bug.cgi?id=5674 Fixed several problems with the implementation of the ConcatenateResTemplate ASL operator. As per the ACPI specification, zero length buffers are now treated as a single EndTag. One-length buffers always cause a fatal exception. Non-zero length buffers that do not end with a full 2-byte EndTag cause a fatal exception. Fixed a possible structure overwrite in the AcpiGetObjectInfo external interface. (With assistance from Thomas Renninger) Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-01-28 05:43:00 +08:00
#elif defined(WIN32)
#include "acwin.h"
#elif defined(WIN64)
#include "acwin64.h"
#elif defined(_WRS_LIB_BUILD)
#include "acvxworks.h"
#elif defined(__OS2__)
#include "acos2.h"
#elif defined(_AED_EFI)
#include "acefi.h"
#elif defined(_GNU_EFI)
#include "acefi.h"
#elif defined(__HAIKU__)
#include "achaiku.h"
#elif defined(__QNX__)
#include "acqnx.h"
#else
/* Unknown environment */
#error Unknown target environment
#endif
/*! [End] no source code translation !*/
/******************************************************************************
*
* Setup defaults for the required symbols that were not defined in one of
* the host/compiler files above.
*
*****************************************************************************/
/* 64-bit data types */
#ifndef COMPILER_DEPENDENT_INT64
#define COMPILER_DEPENDENT_INT64 long long
#endif
#ifndef COMPILER_DEPENDENT_UINT64
#define COMPILER_DEPENDENT_UINT64 unsigned long long
#endif
/* Type of mutex supported by host. Default is binary semaphores. */
#ifndef ACPI_MUTEX_TYPE
#define ACPI_MUTEX_TYPE ACPI_BINARY_SEMAPHORE
#endif
/* Global Lock acquire/release */
#ifndef ACPI_ACQUIRE_GLOBAL_LOCK
#define ACPI_ACQUIRE_GLOBAL_LOCK(Glptr, acquired) acquired = 1
#endif
#ifndef ACPI_RELEASE_GLOBAL_LOCK
#define ACPI_RELEASE_GLOBAL_LOCK(Glptr, pending) pending = 0
#endif
/* Flush CPU cache - used when going to sleep. Wbinvd or similar. */
#ifndef ACPI_FLUSH_CPU_CACHE
#define ACPI_FLUSH_CPU_CACHE()
#endif
/* "inline" keywords - configurable since inline is not standardized */
#ifndef ACPI_INLINE
#define ACPI_INLINE
#endif
/*
* Configurable calling conventions:
*
* ACPI_SYSTEM_XFACE - Interfaces to host OS (handlers, threads)
* ACPI_EXTERNAL_XFACE - External ACPI interfaces
* ACPI_INTERNAL_XFACE - Internal ACPI interfaces
* ACPI_INTERNAL_VAR_XFACE - Internal variable-parameter list interfaces
*/
#ifndef ACPI_SYSTEM_XFACE
#define ACPI_SYSTEM_XFACE
#endif
#ifndef ACPI_EXTERNAL_XFACE
#define ACPI_EXTERNAL_XFACE
#endif
#ifndef ACPI_INTERNAL_XFACE
#define ACPI_INTERNAL_XFACE
#endif
#ifndef ACPI_INTERNAL_VAR_XFACE
#define ACPI_INTERNAL_VAR_XFACE
#endif
/*
* Debugger threading model
* Use single threaded if the entire subsystem is contained in an application
* Use multiple threaded when the subsystem is running in the kernel.
*
* By default the model is single threaded if ACPI_APPLICATION is set,
* multi-threaded if ACPI_APPLICATION is not set.
*/
#ifndef DEBUGGER_THREADING
#if !defined (ACPI_APPLICATION) || defined (ACPI_EXEC_APP)
#define DEBUGGER_THREADING DEBUGGER_MULTI_THREADED
#else
#define DEBUGGER_THREADING DEBUGGER_SINGLE_THREADED
#endif
#endif /* !DEBUGGER_THREADING */
ACPICA 20050408 from Bob Moore Fixed three cases in the interpreter where an "index" argument to an ASL function was still (internally) 32 bits instead of the required 64 bits. This was the Index argument to the Index, Mid, and Match operators. The "strupr" function is now permanently local (acpi_ut_strupr), since this is not a POSIX-defined function and not present in most kernel-level C libraries. References to the C library strupr function have been removed from the headers. Completed the deployment of static functions/prototypes. All prototypes with the static attribute have been moved from the headers to the owning C file. ACPICA 20050329 from Bob Moore An error is now generated if an attempt is made to create a Buffer Field of length zero (A CreateField with a length operand of zero.) The interpreter now issues a warning whenever executable code at the module level is detected during ACPI table load. This will give some idea of the prevalence of this type of code. Implemented support for references to named objects (other than control methods) within package objects. Enhanced package object output for the debug object. Package objects are now completely dumped, showing all elements. Enhanced miscellaneous object output for the debug object. Any object can now be written to the debug object (for example, a device object can be written, and the type of the object will be displayed.) The "static" qualifier has been added to all local functions across the core subsystem. The number of "long" lines (> 80 chars) within the source has been significantly reduced, by about 1/3. Cleaned up all header files to ensure that all CA/iASL functions are prototyped (even static functions) and the formatting is consistent. Two new header files have been added, acopcode.h and acnames.h. Removed several obsolete functions that were no longer used. Signed-off-by: Len Brown <len.brown@intel.com>
2005-04-19 10:49:35 +08:00
/******************************************************************************
*
* C library configuration
*
*****************************************************************************/
/*
* ACPI_USE_SYSTEM_CLIBRARY - Define this if linking to an actual C library.
* Otherwise, local versions of string/memory functions will be used.
* ACPI_USE_STANDARD_HEADERS - Define this if linking to a C library and
* the standard header files may be used.
*
* The ACPICA subsystem only uses low level C library functions that do not
* call operating system services and may therefore be inlined in the code.
*
* It may be necessary to tailor these include files to the target
* generation environment.
*/
#ifdef ACPI_USE_SYSTEM_CLIBRARY
/* Use the standard C library headers. We want to keep these to a minimum. */
#ifdef ACPI_USE_STANDARD_HEADERS
ACPICA: Cleanup indentation to reduce differences between Linux and ACPICA. This is a cosmetic patch only. Comparison of the resulting binary showed only line number differences. This patch does not affect the generation of the Linux binary. This patch decreases 210 lines of 20121018 divergence.diff. The ACPICA source codes uses a totally different indentation style from the Linux to be compatible with other users (operating systems or BIOS). Indentation differences are critical to the release automation. There are two causes related to the "indentation" that are affecting the release automation: 1. The ACPICA -> Linux release process is: ACPICA source -- acpisrc - hierarchy - indent -> linuxized ACPICA source -- diff -> linuxized ACPICA patch (x) -- human intervention -> linuxized ACPICA patch (o) Where 'x' means "cannot be directly applied to the Linux" 'o' means "can be directly applied to the Linux" Different "indent" version or "indent" options used in the "indent" step will lead to different divergences. The version of "indent" used for the current release process is: GNU indent 2.2.11 The options of "indent" used for the current release process is: -npro -kr -i8 -ts8 -sob -l80 -ss -ncs 2. Manual indentation prettifying work in the Linux side will also harm the automatically generated linuxized ACPICA patches, making them impossible to apply directly. This patch fixes source code differences caused by the two causes so that the "human intervention" can be reduced in the future. Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2012-12-19 13:37:15 +08:00
/* Use the standard headers from the standard locations */
ACPICA: Cleanup indentation to reduce differences between Linux and ACPICA. This is a cosmetic patch only. Comparison of the resulting binary showed only line number differences. This patch does not affect the generation of the Linux binary. This patch decreases 210 lines of 20121018 divergence.diff. The ACPICA source codes uses a totally different indentation style from the Linux to be compatible with other users (operating systems or BIOS). Indentation differences are critical to the release automation. There are two causes related to the "indentation" that are affecting the release automation: 1. The ACPICA -> Linux release process is: ACPICA source -- acpisrc - hierarchy - indent -> linuxized ACPICA source -- diff -> linuxized ACPICA patch (x) -- human intervention -> linuxized ACPICA patch (o) Where 'x' means "cannot be directly applied to the Linux" 'o' means "can be directly applied to the Linux" Different "indent" version or "indent" options used in the "indent" step will lead to different divergences. The version of "indent" used for the current release process is: GNU indent 2.2.11 The options of "indent" used for the current release process is: -npro -kr -i8 -ts8 -sob -l80 -ss -ncs 2. Manual indentation prettifying work in the Linux side will also harm the automatically generated linuxized ACPICA patches, making them impossible to apply directly. This patch fixes source code differences caused by the two causes so that the "human intervention" can be reduced in the future. Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2012-12-19 13:37:15 +08:00
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#endif /* ACPI_USE_STANDARD_HEADERS */
/* We will be linking to the standard Clib functions */
ACPICA: Cleanup indentation to reduce differences between Linux and ACPICA. This is a cosmetic patch only. Comparison of the resulting binary showed only line number differences. This patch does not affect the generation of the Linux binary. This patch decreases 210 lines of 20121018 divergence.diff. The ACPICA source codes uses a totally different indentation style from the Linux to be compatible with other users (operating systems or BIOS). Indentation differences are critical to the release automation. There are two causes related to the "indentation" that are affecting the release automation: 1. The ACPICA -> Linux release process is: ACPICA source -- acpisrc - hierarchy - indent -> linuxized ACPICA source -- diff -> linuxized ACPICA patch (x) -- human intervention -> linuxized ACPICA patch (o) Where 'x' means "cannot be directly applied to the Linux" 'o' means "can be directly applied to the Linux" Different "indent" version or "indent" options used in the "indent" step will lead to different divergences. The version of "indent" used for the current release process is: GNU indent 2.2.11 The options of "indent" used for the current release process is: -npro -kr -i8 -ts8 -sob -l80 -ss -ncs 2. Manual indentation prettifying work in the Linux side will also harm the automatically generated linuxized ACPICA patches, making them impossible to apply directly. This patch fixes source code differences caused by the two causes so that the "human intervention" can be reduced in the future. Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2012-12-19 13:37:15 +08:00
ACPICA 20050408 from Bob Moore Fixed three cases in the interpreter where an "index" argument to an ASL function was still (internally) 32 bits instead of the required 64 bits. This was the Index argument to the Index, Mid, and Match operators. The "strupr" function is now permanently local (acpi_ut_strupr), since this is not a POSIX-defined function and not present in most kernel-level C libraries. References to the C library strupr function have been removed from the headers. Completed the deployment of static functions/prototypes. All prototypes with the static attribute have been moved from the headers to the owning C file. ACPICA 20050329 from Bob Moore An error is now generated if an attempt is made to create a Buffer Field of length zero (A CreateField with a length operand of zero.) The interpreter now issues a warning whenever executable code at the module level is detected during ACPI table load. This will give some idea of the prevalence of this type of code. Implemented support for references to named objects (other than control methods) within package objects. Enhanced package object output for the debug object. Package objects are now completely dumped, showing all elements. Enhanced miscellaneous object output for the debug object. Any object can now be written to the debug object (for example, a device object can be written, and the type of the object will be displayed.) The "static" qualifier has been added to all local functions across the core subsystem. The number of "long" lines (> 80 chars) within the source has been significantly reduced, by about 1/3. Cleaned up all header files to ensure that all CA/iASL functions are prototyped (even static functions) and the formatting is consistent. Two new header files have been added, acopcode.h and acnames.h. Removed several obsolete functions that were no longer used. Signed-off-by: Len Brown <len.brown@intel.com>
2005-04-19 10:49:35 +08:00
#else
/******************************************************************************
*
* Not using native C library, use local implementations
*
*****************************************************************************/
/*
* Use local definitions of C library macros and functions. These function
* implementations may not be as efficient as an inline or assembly code
* implementation provided by a native C library, but they are functionally
* equivalent.
*/
#ifndef va_arg
#ifndef _VALIST
#define _VALIST
typedef char *va_list;
#endif /* _VALIST */
/* Storage alignment properties */
ACPICA: Cleanup indentation to reduce differences between Linux and ACPICA. This is a cosmetic patch only. Comparison of the resulting binary showed only line number differences. This patch does not affect the generation of the Linux binary. This patch decreases 210 lines of 20121018 divergence.diff. The ACPICA source codes uses a totally different indentation style from the Linux to be compatible with other users (operating systems or BIOS). Indentation differences are critical to the release automation. There are two causes related to the "indentation" that are affecting the release automation: 1. The ACPICA -> Linux release process is: ACPICA source -- acpisrc - hierarchy - indent -> linuxized ACPICA source -- diff -> linuxized ACPICA patch (x) -- human intervention -> linuxized ACPICA patch (o) Where 'x' means "cannot be directly applied to the Linux" 'o' means "can be directly applied to the Linux" Different "indent" version or "indent" options used in the "indent" step will lead to different divergences. The version of "indent" used for the current release process is: GNU indent 2.2.11 The options of "indent" used for the current release process is: -npro -kr -i8 -ts8 -sob -l80 -ss -ncs 2. Manual indentation prettifying work in the Linux side will also harm the automatically generated linuxized ACPICA patches, making them impossible to apply directly. This patch fixes source code differences caused by the two causes so that the "human intervention" can be reduced in the future. Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2012-12-19 13:37:15 +08:00
#define _AUPBND (sizeof (acpi_native_int) - 1)
#define _ADNBND (sizeof (acpi_native_int) - 1)
/* Variable argument list macro definitions */
ACPICA: Cleanup indentation to reduce differences between Linux and ACPICA. This is a cosmetic patch only. Comparison of the resulting binary showed only line number differences. This patch does not affect the generation of the Linux binary. This patch decreases 210 lines of 20121018 divergence.diff. The ACPICA source codes uses a totally different indentation style from the Linux to be compatible with other users (operating systems or BIOS). Indentation differences are critical to the release automation. There are two causes related to the "indentation" that are affecting the release automation: 1. The ACPICA -> Linux release process is: ACPICA source -- acpisrc - hierarchy - indent -> linuxized ACPICA source -- diff -> linuxized ACPICA patch (x) -- human intervention -> linuxized ACPICA patch (o) Where 'x' means "cannot be directly applied to the Linux" 'o' means "can be directly applied to the Linux" Different "indent" version or "indent" options used in the "indent" step will lead to different divergences. The version of "indent" used for the current release process is: GNU indent 2.2.11 The options of "indent" used for the current release process is: -npro -kr -i8 -ts8 -sob -l80 -ss -ncs 2. Manual indentation prettifying work in the Linux side will also harm the automatically generated linuxized ACPICA patches, making them impossible to apply directly. This patch fixes source code differences caused by the two causes so that the "human intervention" can be reduced in the future. Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2012-12-19 13:37:15 +08:00
#define _bnd(X, bnd) (((sizeof (X)) + (bnd)) & (~(bnd)))
#define va_arg(ap, T) (*(T *)(((ap) += (_bnd (T, _AUPBND))) - (_bnd (T,_ADNBND))))
#define va_end(ap) (ap = (va_list) NULL)
#define va_start(ap, A) (void) ((ap) = (((char *) &(A)) + (_bnd (A,_AUPBND))))
#endif /* va_arg */
/* Use the local (ACPICA) definitions of the clib functions */
ACPICA: Cleanup indentation to reduce differences between Linux and ACPICA. This is a cosmetic patch only. Comparison of the resulting binary showed only line number differences. This patch does not affect the generation of the Linux binary. This patch decreases 210 lines of 20121018 divergence.diff. The ACPICA source codes uses a totally different indentation style from the Linux to be compatible with other users (operating systems or BIOS). Indentation differences are critical to the release automation. There are two causes related to the "indentation" that are affecting the release automation: 1. The ACPICA -> Linux release process is: ACPICA source -- acpisrc - hierarchy - indent -> linuxized ACPICA source -- diff -> linuxized ACPICA patch (x) -- human intervention -> linuxized ACPICA patch (o) Where 'x' means "cannot be directly applied to the Linux" 'o' means "can be directly applied to the Linux" Different "indent" version or "indent" options used in the "indent" step will lead to different divergences. The version of "indent" used for the current release process is: GNU indent 2.2.11 The options of "indent" used for the current release process is: -npro -kr -i8 -ts8 -sob -l80 -ss -ncs 2. Manual indentation prettifying work in the Linux side will also harm the automatically generated linuxized ACPICA patches, making them impossible to apply directly. This patch fixes source code differences caused by the two causes so that the "human intervention" can be reduced in the future. Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2012-12-19 13:37:15 +08:00
#endif /* ACPI_USE_SYSTEM_CLIBRARY */
#ifndef ACPI_FILE
#ifdef ACPI_APPLICATION
#include <stdio.h>
#define ACPI_FILE FILE *
#define ACPI_FILE_OUT stdout
#define ACPI_FILE_ERR stderr
#else
#define ACPI_FILE void *
#define ACPI_FILE_OUT NULL
#define ACPI_FILE_ERR NULL
#endif /* ACPI_APPLICATION */
#endif /* ACPI_FILE */
#endif /* __ACENV_H__ */