2005-04-17 06:20:36 +08:00
|
|
|
/*
|
|
|
|
* Macros for manipulating and testing page->flags
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef PAGE_FLAGS_H
|
|
|
|
#define PAGE_FLAGS_H
|
|
|
|
|
2006-06-23 17:03:06 +08:00
|
|
|
#include <linux/types.h>
|
2011-11-24 09:12:59 +08:00
|
|
|
#include <linux/bug.h>
|
2008-04-28 17:12:48 +08:00
|
|
|
#ifndef __GENERATING_BOUNDS_H
|
2007-05-07 05:49:40 +08:00
|
|
|
#include <linux/mm_types.h>
|
2009-04-20 03:57:19 +08:00
|
|
|
#include <generated/bounds.h>
|
2008-04-28 17:12:48 +08:00
|
|
|
#endif /* !__GENERATING_BOUNDS_H */
|
2006-06-23 17:03:06 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
/*
|
|
|
|
* Various page->flags bits:
|
|
|
|
*
|
|
|
|
* PG_reserved is set for special pages, which can never be swapped out. Some
|
|
|
|
* of them might not even exist (eg empty_bad_page)...
|
|
|
|
*
|
2006-09-26 14:31:35 +08:00
|
|
|
* The PG_private bitflag is set on pagecache pages if they contain filesystem
|
|
|
|
* specific data (which is normally at page->private). It can be used by
|
|
|
|
* private allocations for its own usage.
|
2005-04-17 06:20:36 +08:00
|
|
|
*
|
2006-09-26 14:31:35 +08:00
|
|
|
* During initiation of disk I/O, PG_locked is set. This bit is set before I/O
|
|
|
|
* and cleared when writeback _starts_ or when read _completes_. PG_writeback
|
|
|
|
* is set before writeback starts and cleared when it finishes.
|
|
|
|
*
|
|
|
|
* PG_locked also pins a page in pagecache, and blocks truncation of the file
|
|
|
|
* while it is held.
|
|
|
|
*
|
|
|
|
* page_waitqueue(page) is a wait queue of all tasks waiting for the page
|
|
|
|
* to become unlocked.
|
2005-04-17 06:20:36 +08:00
|
|
|
*
|
|
|
|
* PG_uptodate tells whether the page's contents is valid. When a read
|
|
|
|
* completes, the page becomes uptodate, unless a disk I/O error happened.
|
|
|
|
*
|
2006-09-26 14:31:35 +08:00
|
|
|
* PG_referenced, PG_reclaim are used for page reclaim for anonymous and
|
|
|
|
* file-backed pagecache (see mm/vmscan.c).
|
2005-04-17 06:20:36 +08:00
|
|
|
*
|
|
|
|
* PG_error is set to indicate that an I/O error occurred on this page.
|
|
|
|
*
|
|
|
|
* PG_arch_1 is an architecture specific page state bit. The generic code
|
|
|
|
* guarantees that this bit is cleared for a page when it first is entered into
|
|
|
|
* the page cache.
|
|
|
|
*
|
|
|
|
* PG_highmem pages are not permanently mapped into the kernel virtual address
|
|
|
|
* space, they need to be kmapped separately for doing IO on the pages. The
|
|
|
|
* struct page (these bits with information) are always mapped into kernel
|
|
|
|
* address space...
|
2006-09-26 14:31:35 +08:00
|
|
|
*
|
2009-09-16 17:50:03 +08:00
|
|
|
* PG_hwpoison indicates that a page got corrupted in hardware and contains
|
|
|
|
* data with incorrect ECC bits that triggered a machine check. Accessing is
|
|
|
|
* not safe since it may cause another machine check. Don't touch!
|
2005-04-17 06:20:36 +08:00
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Don't use the *_dontuse flags. Use the macros. Otherwise you'll break
|
2006-04-11 13:53:01 +08:00
|
|
|
* locked- and dirty-page accounting.
|
|
|
|
*
|
|
|
|
* The page flags field is split into two parts, the main flags area
|
|
|
|
* which extends from the low bits upwards, and the fields area which
|
|
|
|
* extends from the high bits downwards.
|
|
|
|
*
|
|
|
|
* | FIELD | ... | FLAGS |
|
2008-04-28 17:12:48 +08:00
|
|
|
* N-1 ^ 0
|
|
|
|
* (NR_PAGEFLAGS)
|
2006-04-11 13:53:01 +08:00
|
|
|
*
|
2008-04-28 17:12:48 +08:00
|
|
|
* The fields area is reserved for fields mapping zone, node (for NUMA) and
|
|
|
|
* SPARSEMEM section (for variants of SPARSEMEM that require section ids like
|
|
|
|
* SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
|
2005-04-17 06:20:36 +08:00
|
|
|
*/
|
2008-04-28 17:12:47 +08:00
|
|
|
enum pageflags {
|
|
|
|
PG_locked, /* Page is locked. Don't touch. */
|
|
|
|
PG_error,
|
|
|
|
PG_referenced,
|
|
|
|
PG_uptodate,
|
|
|
|
PG_dirty,
|
|
|
|
PG_lru,
|
|
|
|
PG_active,
|
|
|
|
PG_slab,
|
|
|
|
PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/
|
|
|
|
PG_arch_1,
|
|
|
|
PG_reserved,
|
|
|
|
PG_private, /* If pagecache, has fs-private data */
|
2009-04-03 23:42:36 +08:00
|
|
|
PG_private_2, /* If pagecache, has fs aux data */
|
2008-04-28 17:12:47 +08:00
|
|
|
PG_writeback, /* Page is under writeback */
|
2008-04-28 17:12:55 +08:00
|
|
|
#ifdef CONFIG_PAGEFLAGS_EXTENDED
|
|
|
|
PG_head, /* A head page */
|
|
|
|
PG_tail, /* A tail page */
|
|
|
|
#else
|
2008-04-28 17:12:47 +08:00
|
|
|
PG_compound, /* A compound page */
|
2008-04-28 17:12:55 +08:00
|
|
|
#endif
|
2008-04-28 17:12:47 +08:00
|
|
|
PG_swapcache, /* Swap page: swp_entry_t in private */
|
|
|
|
PG_mappedtodisk, /* Has blocks allocated on-disk */
|
|
|
|
PG_reclaim, /* To be reclaimed asap */
|
2008-10-19 11:26:30 +08:00
|
|
|
PG_swapbacked, /* Page is backed by RAM/swap */
|
Unevictable LRU Infrastructure
When the system contains lots of mlocked or otherwise unevictable pages,
the pageout code (kswapd) can spend lots of time scanning over these
pages. Worse still, the presence of lots of unevictable pages can confuse
kswapd into thinking that more aggressive pageout modes are required,
resulting in all kinds of bad behaviour.
Infrastructure to manage pages excluded from reclaim--i.e., hidden from
vmscan. Based on a patch by Larry Woodman of Red Hat. Reworked to
maintain "unevictable" pages on a separate per-zone LRU list, to "hide"
them from vmscan.
Kosaki Motohiro added the support for the memory controller unevictable
lru list.
Pages on the unevictable list have both PG_unevictable and PG_lru set.
Thus, PG_unevictable is analogous to and mutually exclusive with
PG_active--it specifies which LRU list the page is on.
The unevictable infrastructure is enabled by a new mm Kconfig option
[CONFIG_]UNEVICTABLE_LRU.
A new function 'page_evictable(page, vma)' in vmscan.c tests whether or
not a page may be evictable. Subsequent patches will add the various
!evictable tests. We'll want to keep these tests light-weight for use in
shrink_active_list() and, possibly, the fault path.
To avoid races between tasks putting pages [back] onto an LRU list and
tasks that might be moving the page from non-evictable to evictable state,
the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()'
-- tests the "evictability" of a page after placing it on the LRU, before
dropping the reference. If the page has become unevictable,
putback_lru_page() will redo the 'putback', thus moving the page to the
unevictable list. This way, we avoid "stranding" evictable pages on the
unevictable list.
[akpm@linux-foundation.org: fix fallout from out-of-order merge]
[riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build]
[nishimura@mxp.nes.nec.co.jp: remove redundant mapping check]
[kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework]
[kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c]
[kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure]
[kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch]
[kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:39 +08:00
|
|
|
PG_unevictable, /* Page is "unevictable" */
|
2009-12-15 09:58:59 +08:00
|
|
|
#ifdef CONFIG_MMU
|
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:44 +08:00
|
|
|
PG_mlocked, /* Page is vma mlocked */
|
Unevictable LRU Infrastructure
When the system contains lots of mlocked or otherwise unevictable pages,
the pageout code (kswapd) can spend lots of time scanning over these
pages. Worse still, the presence of lots of unevictable pages can confuse
kswapd into thinking that more aggressive pageout modes are required,
resulting in all kinds of bad behaviour.
Infrastructure to manage pages excluded from reclaim--i.e., hidden from
vmscan. Based on a patch by Larry Woodman of Red Hat. Reworked to
maintain "unevictable" pages on a separate per-zone LRU list, to "hide"
them from vmscan.
Kosaki Motohiro added the support for the memory controller unevictable
lru list.
Pages on the unevictable list have both PG_unevictable and PG_lru set.
Thus, PG_unevictable is analogous to and mutually exclusive with
PG_active--it specifies which LRU list the page is on.
The unevictable infrastructure is enabled by a new mm Kconfig option
[CONFIG_]UNEVICTABLE_LRU.
A new function 'page_evictable(page, vma)' in vmscan.c tests whether or
not a page may be evictable. Subsequent patches will add the various
!evictable tests. We'll want to keep these tests light-weight for use in
shrink_active_list() and, possibly, the fault path.
To avoid races between tasks putting pages [back] onto an LRU list and
tasks that might be moving the page from non-evictable to evictable state,
the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()'
-- tests the "evictability" of a page after placing it on the LRU, before
dropping the reference. If the page has become unevictable,
putback_lru_page() will redo the 'putback', thus moving the page to the
unevictable list. This way, we avoid "stranding" evictable pages on the
unevictable list.
[akpm@linux-foundation.org: fix fallout from out-of-order merge]
[riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build]
[nishimura@mxp.nes.nec.co.jp: remove redundant mapping check]
[kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework]
[kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c]
[kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure]
[kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch]
[kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:39 +08:00
|
|
|
#endif
|
2009-07-11 00:57:37 +08:00
|
|
|
#ifdef CONFIG_ARCH_USES_PG_UNCACHED
|
2008-04-28 17:12:52 +08:00
|
|
|
PG_uncached, /* Page has been mapped as uncached */
|
2009-09-16 17:50:03 +08:00
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_MEMORY_FAILURE
|
|
|
|
PG_hwpoison, /* hardware poisoned page. Don't touch */
|
2011-01-14 07:46:32 +08:00
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
|
|
PG_compound_lock,
|
2006-06-23 17:03:06 +08:00
|
|
|
#endif
|
2008-07-24 12:27:16 +08:00
|
|
|
__NR_PAGEFLAGS,
|
|
|
|
|
|
|
|
/* Filesystems */
|
|
|
|
PG_checked = PG_owner_priv_1,
|
|
|
|
|
2009-04-03 23:42:36 +08:00
|
|
|
/* Two page bits are conscripted by FS-Cache to maintain local caching
|
|
|
|
* state. These bits are set on pages belonging to the netfs's inodes
|
|
|
|
* when those inodes are being locally cached.
|
|
|
|
*/
|
|
|
|
PG_fscache = PG_private_2, /* page backed by cache */
|
|
|
|
|
2008-07-24 12:27:16 +08:00
|
|
|
/* XEN */
|
|
|
|
PG_pinned = PG_owner_priv_1,
|
|
|
|
PG_savepinned = PG_dirty,
|
2008-07-24 12:27:18 +08:00
|
|
|
|
2008-07-24 12:27:19 +08:00
|
|
|
/* SLOB */
|
|
|
|
PG_slob_free = PG_private,
|
2008-04-28 17:12:47 +08:00
|
|
|
};
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2008-04-28 17:12:48 +08:00
|
|
|
#ifndef __GENERATING_BOUNDS_H
|
|
|
|
|
2008-04-28 17:12:49 +08:00
|
|
|
/*
|
|
|
|
* Macros to create function definitions for page flags
|
|
|
|
*/
|
|
|
|
#define TESTPAGEFLAG(uname, lname) \
|
2011-07-26 08:11:52 +08:00
|
|
|
static inline int Page##uname(const struct page *page) \
|
2008-04-28 17:12:49 +08:00
|
|
|
{ return test_bit(PG_##lname, &page->flags); }
|
|
|
|
|
|
|
|
#define SETPAGEFLAG(uname, lname) \
|
|
|
|
static inline void SetPage##uname(struct page *page) \
|
|
|
|
{ set_bit(PG_##lname, &page->flags); }
|
|
|
|
|
|
|
|
#define CLEARPAGEFLAG(uname, lname) \
|
|
|
|
static inline void ClearPage##uname(struct page *page) \
|
|
|
|
{ clear_bit(PG_##lname, &page->flags); }
|
|
|
|
|
|
|
|
#define __SETPAGEFLAG(uname, lname) \
|
|
|
|
static inline void __SetPage##uname(struct page *page) \
|
|
|
|
{ __set_bit(PG_##lname, &page->flags); }
|
|
|
|
|
|
|
|
#define __CLEARPAGEFLAG(uname, lname) \
|
|
|
|
static inline void __ClearPage##uname(struct page *page) \
|
|
|
|
{ __clear_bit(PG_##lname, &page->flags); }
|
|
|
|
|
|
|
|
#define TESTSETFLAG(uname, lname) \
|
|
|
|
static inline int TestSetPage##uname(struct page *page) \
|
|
|
|
{ return test_and_set_bit(PG_##lname, &page->flags); }
|
|
|
|
|
|
|
|
#define TESTCLEARFLAG(uname, lname) \
|
|
|
|
static inline int TestClearPage##uname(struct page *page) \
|
|
|
|
{ return test_and_clear_bit(PG_##lname, &page->flags); }
|
|
|
|
|
2009-09-22 08:01:48 +08:00
|
|
|
#define __TESTCLEARFLAG(uname, lname) \
|
|
|
|
static inline int __TestClearPage##uname(struct page *page) \
|
|
|
|
{ return __test_and_clear_bit(PG_##lname, &page->flags); }
|
2008-04-28 17:12:49 +08:00
|
|
|
|
|
|
|
#define PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname) \
|
|
|
|
SETPAGEFLAG(uname, lname) CLEARPAGEFLAG(uname, lname)
|
|
|
|
|
|
|
|
#define __PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname) \
|
|
|
|
__SETPAGEFLAG(uname, lname) __CLEARPAGEFLAG(uname, lname)
|
|
|
|
|
2008-04-28 17:12:53 +08:00
|
|
|
#define PAGEFLAG_FALSE(uname) \
|
2011-07-26 08:11:52 +08:00
|
|
|
static inline int Page##uname(const struct page *page) \
|
2008-04-28 17:12:53 +08:00
|
|
|
{ return 0; }
|
|
|
|
|
2008-04-28 17:12:49 +08:00
|
|
|
#define TESTSCFLAG(uname, lname) \
|
|
|
|
TESTSETFLAG(uname, lname) TESTCLEARFLAG(uname, lname)
|
|
|
|
|
2008-10-19 11:26:37 +08:00
|
|
|
#define SETPAGEFLAG_NOOP(uname) \
|
|
|
|
static inline void SetPage##uname(struct page *page) { }
|
|
|
|
|
|
|
|
#define CLEARPAGEFLAG_NOOP(uname) \
|
|
|
|
static inline void ClearPage##uname(struct page *page) { }
|
|
|
|
|
|
|
|
#define __CLEARPAGEFLAG_NOOP(uname) \
|
|
|
|
static inline void __ClearPage##uname(struct page *page) { }
|
|
|
|
|
|
|
|
#define TESTCLEARFLAG_FALSE(uname) \
|
|
|
|
static inline int TestClearPage##uname(struct page *page) { return 0; }
|
|
|
|
|
2009-09-22 08:01:48 +08:00
|
|
|
#define __TESTCLEARFLAG_FALSE(uname) \
|
|
|
|
static inline int __TestClearPage##uname(struct page *page) { return 0; }
|
|
|
|
|
2008-04-28 17:12:50 +08:00
|
|
|
struct page; /* forward declaration */
|
|
|
|
|
2011-03-23 07:32:49 +08:00
|
|
|
TESTPAGEFLAG(Locked, locked)
|
2011-01-14 07:46:06 +08:00
|
|
|
PAGEFLAG(Error, error) TESTCLEARFLAG(Error, error)
|
2008-04-28 17:12:50 +08:00
|
|
|
PAGEFLAG(Referenced, referenced) TESTCLEARFLAG(Referenced, referenced)
|
|
|
|
PAGEFLAG(Dirty, dirty) TESTSCFLAG(Dirty, dirty) __CLEARPAGEFLAG(Dirty, dirty)
|
|
|
|
PAGEFLAG(LRU, lru) __CLEARPAGEFLAG(LRU, lru)
|
|
|
|
PAGEFLAG(Active, active) __CLEARPAGEFLAG(Active, active)
|
Unevictable LRU Infrastructure
When the system contains lots of mlocked or otherwise unevictable pages,
the pageout code (kswapd) can spend lots of time scanning over these
pages. Worse still, the presence of lots of unevictable pages can confuse
kswapd into thinking that more aggressive pageout modes are required,
resulting in all kinds of bad behaviour.
Infrastructure to manage pages excluded from reclaim--i.e., hidden from
vmscan. Based on a patch by Larry Woodman of Red Hat. Reworked to
maintain "unevictable" pages on a separate per-zone LRU list, to "hide"
them from vmscan.
Kosaki Motohiro added the support for the memory controller unevictable
lru list.
Pages on the unevictable list have both PG_unevictable and PG_lru set.
Thus, PG_unevictable is analogous to and mutually exclusive with
PG_active--it specifies which LRU list the page is on.
The unevictable infrastructure is enabled by a new mm Kconfig option
[CONFIG_]UNEVICTABLE_LRU.
A new function 'page_evictable(page, vma)' in vmscan.c tests whether or
not a page may be evictable. Subsequent patches will add the various
!evictable tests. We'll want to keep these tests light-weight for use in
shrink_active_list() and, possibly, the fault path.
To avoid races between tasks putting pages [back] onto an LRU list and
tasks that might be moving the page from non-evictable to evictable state,
the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()'
-- tests the "evictability" of a page after placing it on the LRU, before
dropping the reference. If the page has become unevictable,
putback_lru_page() will redo the 'putback', thus moving the page to the
unevictable list. This way, we avoid "stranding" evictable pages on the
unevictable list.
[akpm@linux-foundation.org: fix fallout from out-of-order merge]
[riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build]
[nishimura@mxp.nes.nec.co.jp: remove redundant mapping check]
[kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework]
[kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c]
[kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure]
[kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch]
[kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:39 +08:00
|
|
|
TESTCLEARFLAG(Active, active)
|
2008-04-28 17:12:50 +08:00
|
|
|
__PAGEFLAG(Slab, slab)
|
2008-07-24 12:27:16 +08:00
|
|
|
PAGEFLAG(Checked, checked) /* Used by some filesystems */
|
|
|
|
PAGEFLAG(Pinned, pinned) TESTSCFLAG(Pinned, pinned) /* Xen */
|
|
|
|
PAGEFLAG(SavePinned, savepinned); /* Xen */
|
2008-04-28 17:12:50 +08:00
|
|
|
PAGEFLAG(Reserved, reserved) __CLEARPAGEFLAG(Reserved, reserved)
|
2008-10-19 11:26:30 +08:00
|
|
|
PAGEFLAG(SwapBacked, swapbacked) __CLEARPAGEFLAG(SwapBacked, swapbacked)
|
2008-04-28 17:12:50 +08:00
|
|
|
|
2008-07-24 12:27:19 +08:00
|
|
|
__PAGEFLAG(SlobFree, slob_free)
|
|
|
|
|
2009-04-03 23:42:36 +08:00
|
|
|
/*
|
|
|
|
* Private page markings that may be used by the filesystem that owns the page
|
|
|
|
* for its own purposes.
|
|
|
|
* - PG_private and PG_private_2 cause releasepage() and co to be invoked
|
|
|
|
*/
|
|
|
|
PAGEFLAG(Private, private) __SETPAGEFLAG(Private, private)
|
|
|
|
__CLEARPAGEFLAG(Private, private)
|
|
|
|
PAGEFLAG(Private2, private_2) TESTSCFLAG(Private2, private_2)
|
|
|
|
PAGEFLAG(OwnerPriv1, owner_priv_1) TESTCLEARFLAG(OwnerPriv1, owner_priv_1)
|
|
|
|
|
2008-04-28 17:12:50 +08:00
|
|
|
/*
|
|
|
|
* Only test-and-set exist for PG_writeback. The unconditional operators are
|
|
|
|
* risky: they bypass page accounting.
|
|
|
|
*/
|
|
|
|
TESTPAGEFLAG(Writeback, writeback) TESTSCFLAG(Writeback, writeback)
|
|
|
|
PAGEFLAG(MappedToDisk, mappedtodisk)
|
|
|
|
|
|
|
|
/* PG_readahead is only used for file reads; PG_reclaim is only for writes */
|
|
|
|
PAGEFLAG(Reclaim, reclaim) TESTCLEARFLAG(Reclaim, reclaim)
|
2008-04-28 17:12:52 +08:00
|
|
|
PAGEFLAG(Readahead, reclaim) /* Reminder to do async read-ahead */
|
2008-04-28 17:12:50 +08:00
|
|
|
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
2005-04-17 06:20:36 +08:00
|
|
|
/*
|
2008-04-28 17:12:50 +08:00
|
|
|
* Must use a macro here due to header dependency issues. page_zone() is not
|
|
|
|
* available at this point.
|
2005-04-17 06:20:36 +08:00
|
|
|
*/
|
2008-04-28 17:12:52 +08:00
|
|
|
#define PageHighMem(__p) is_highmem(page_zone(__p))
|
2008-04-28 17:12:50 +08:00
|
|
|
#else
|
2008-04-28 17:12:53 +08:00
|
|
|
PAGEFLAG_FALSE(HighMem)
|
2008-04-28 17:12:50 +08:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef CONFIG_SWAP
|
|
|
|
PAGEFLAG(SwapCache, swapcache)
|
|
|
|
#else
|
2008-04-28 17:12:53 +08:00
|
|
|
PAGEFLAG_FALSE(SwapCache)
|
2009-01-07 06:39:24 +08:00
|
|
|
SETPAGEFLAG_NOOP(SwapCache) CLEARPAGEFLAG_NOOP(SwapCache)
|
2008-04-28 17:12:50 +08:00
|
|
|
#endif
|
|
|
|
|
Unevictable LRU Infrastructure
When the system contains lots of mlocked or otherwise unevictable pages,
the pageout code (kswapd) can spend lots of time scanning over these
pages. Worse still, the presence of lots of unevictable pages can confuse
kswapd into thinking that more aggressive pageout modes are required,
resulting in all kinds of bad behaviour.
Infrastructure to manage pages excluded from reclaim--i.e., hidden from
vmscan. Based on a patch by Larry Woodman of Red Hat. Reworked to
maintain "unevictable" pages on a separate per-zone LRU list, to "hide"
them from vmscan.
Kosaki Motohiro added the support for the memory controller unevictable
lru list.
Pages on the unevictable list have both PG_unevictable and PG_lru set.
Thus, PG_unevictable is analogous to and mutually exclusive with
PG_active--it specifies which LRU list the page is on.
The unevictable infrastructure is enabled by a new mm Kconfig option
[CONFIG_]UNEVICTABLE_LRU.
A new function 'page_evictable(page, vma)' in vmscan.c tests whether or
not a page may be evictable. Subsequent patches will add the various
!evictable tests. We'll want to keep these tests light-weight for use in
shrink_active_list() and, possibly, the fault path.
To avoid races between tasks putting pages [back] onto an LRU list and
tasks that might be moving the page from non-evictable to evictable state,
the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()'
-- tests the "evictability" of a page after placing it on the LRU, before
dropping the reference. If the page has become unevictable,
putback_lru_page() will redo the 'putback', thus moving the page to the
unevictable list. This way, we avoid "stranding" evictable pages on the
unevictable list.
[akpm@linux-foundation.org: fix fallout from out-of-order merge]
[riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build]
[nishimura@mxp.nes.nec.co.jp: remove redundant mapping check]
[kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework]
[kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c]
[kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure]
[kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch]
[kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:39 +08:00
|
|
|
PAGEFLAG(Unevictable, unevictable) __CLEARPAGEFLAG(Unevictable, unevictable)
|
|
|
|
TESTCLEARFLAG(Unevictable, unevictable)
|
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:44 +08:00
|
|
|
|
2009-12-15 09:58:59 +08:00
|
|
|
#ifdef CONFIG_MMU
|
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:44 +08:00
|
|
|
PAGEFLAG(Mlocked, mlocked) __CLEARPAGEFLAG(Mlocked, mlocked)
|
2009-09-22 08:01:48 +08:00
|
|
|
TESTSCFLAG(Mlocked, mlocked) __TESTCLEARFLAG(Mlocked, mlocked)
|
Unevictable LRU Infrastructure
When the system contains lots of mlocked or otherwise unevictable pages,
the pageout code (kswapd) can spend lots of time scanning over these
pages. Worse still, the presence of lots of unevictable pages can confuse
kswapd into thinking that more aggressive pageout modes are required,
resulting in all kinds of bad behaviour.
Infrastructure to manage pages excluded from reclaim--i.e., hidden from
vmscan. Based on a patch by Larry Woodman of Red Hat. Reworked to
maintain "unevictable" pages on a separate per-zone LRU list, to "hide"
them from vmscan.
Kosaki Motohiro added the support for the memory controller unevictable
lru list.
Pages on the unevictable list have both PG_unevictable and PG_lru set.
Thus, PG_unevictable is analogous to and mutually exclusive with
PG_active--it specifies which LRU list the page is on.
The unevictable infrastructure is enabled by a new mm Kconfig option
[CONFIG_]UNEVICTABLE_LRU.
A new function 'page_evictable(page, vma)' in vmscan.c tests whether or
not a page may be evictable. Subsequent patches will add the various
!evictable tests. We'll want to keep these tests light-weight for use in
shrink_active_list() and, possibly, the fault path.
To avoid races between tasks putting pages [back] onto an LRU list and
tasks that might be moving the page from non-evictable to evictable state,
the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()'
-- tests the "evictability" of a page after placing it on the LRU, before
dropping the reference. If the page has become unevictable,
putback_lru_page() will redo the 'putback', thus moving the page to the
unevictable list. This way, we avoid "stranding" evictable pages on the
unevictable list.
[akpm@linux-foundation.org: fix fallout from out-of-order merge]
[riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build]
[nishimura@mxp.nes.nec.co.jp: remove redundant mapping check]
[kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework]
[kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c]
[kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure]
[kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch]
[kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:39 +08:00
|
|
|
#else
|
2009-09-22 08:01:48 +08:00
|
|
|
PAGEFLAG_FALSE(Mlocked) SETPAGEFLAG_NOOP(Mlocked)
|
|
|
|
TESTCLEARFLAG_FALSE(Mlocked) __TESTCLEARFLAG_FALSE(Mlocked)
|
Unevictable LRU Infrastructure
When the system contains lots of mlocked or otherwise unevictable pages,
the pageout code (kswapd) can spend lots of time scanning over these
pages. Worse still, the presence of lots of unevictable pages can confuse
kswapd into thinking that more aggressive pageout modes are required,
resulting in all kinds of bad behaviour.
Infrastructure to manage pages excluded from reclaim--i.e., hidden from
vmscan. Based on a patch by Larry Woodman of Red Hat. Reworked to
maintain "unevictable" pages on a separate per-zone LRU list, to "hide"
them from vmscan.
Kosaki Motohiro added the support for the memory controller unevictable
lru list.
Pages on the unevictable list have both PG_unevictable and PG_lru set.
Thus, PG_unevictable is analogous to and mutually exclusive with
PG_active--it specifies which LRU list the page is on.
The unevictable infrastructure is enabled by a new mm Kconfig option
[CONFIG_]UNEVICTABLE_LRU.
A new function 'page_evictable(page, vma)' in vmscan.c tests whether or
not a page may be evictable. Subsequent patches will add the various
!evictable tests. We'll want to keep these tests light-weight for use in
shrink_active_list() and, possibly, the fault path.
To avoid races between tasks putting pages [back] onto an LRU list and
tasks that might be moving the page from non-evictable to evictable state,
the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()'
-- tests the "evictability" of a page after placing it on the LRU, before
dropping the reference. If the page has become unevictable,
putback_lru_page() will redo the 'putback', thus moving the page to the
unevictable list. This way, we avoid "stranding" evictable pages on the
unevictable list.
[akpm@linux-foundation.org: fix fallout from out-of-order merge]
[riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build]
[nishimura@mxp.nes.nec.co.jp: remove redundant mapping check]
[kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework]
[kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c]
[kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure]
[kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch]
[kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:39 +08:00
|
|
|
#endif
|
|
|
|
|
2009-07-11 00:57:37 +08:00
|
|
|
#ifdef CONFIG_ARCH_USES_PG_UNCACHED
|
2008-04-28 17:12:50 +08:00
|
|
|
PAGEFLAG(Uncached, uncached)
|
2008-04-28 17:12:52 +08:00
|
|
|
#else
|
2008-04-28 17:12:53 +08:00
|
|
|
PAGEFLAG_FALSE(Uncached)
|
2008-04-28 17:12:50 +08:00
|
|
|
#endif
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2009-09-16 17:50:03 +08:00
|
|
|
#ifdef CONFIG_MEMORY_FAILURE
|
|
|
|
PAGEFLAG(HWPoison, hwpoison)
|
2009-12-16 19:19:58 +08:00
|
|
|
TESTSCFLAG(HWPoison, hwpoison)
|
2009-09-16 17:50:03 +08:00
|
|
|
#define __PG_HWPOISON (1UL << PG_hwpoison)
|
|
|
|
#else
|
|
|
|
PAGEFLAG_FALSE(HWPoison)
|
|
|
|
#define __PG_HWPOISON 0
|
|
|
|
#endif
|
|
|
|
|
2009-12-16 19:19:59 +08:00
|
|
|
u64 stable_page_flags(struct page *page);
|
|
|
|
|
mm: fix PageUptodate data race
After running SetPageUptodate, preceeding stores to the page contents to
actually bring it uptodate may not be ordered with the store to set the
page uptodate.
Therefore, another CPU which checks PageUptodate is true, then reads the
page contents can get stale data.
Fix this by having an smp_wmb before SetPageUptodate, and smp_rmb after
PageUptodate.
Many places that test PageUptodate, do so with the page locked, and this
would be enough to ensure memory ordering in those places if
SetPageUptodate were only called while the page is locked. Unfortunately
that is not always the case for some filesystems, but it could be an idea
for the future.
Also bring the handling of anonymous page uptodateness in line with that of
file backed page management, by marking anon pages as uptodate when they
_are_ uptodate, rather than when our implementation requires that they be
marked as such. Doing allows us to get rid of the smp_wmb's in the page
copying functions, which were especially added for anonymous pages for an
analogous memory ordering problem. Both file and anonymous pages are
handled with the same barriers.
FAQ:
Q. Why not do this in flush_dcache_page?
A. Firstly, flush_dcache_page handles only one side (the smb side) of the
ordering protocol; we'd still need smp_rmb somewhere. Secondly, hiding away
memory barriers in a completely unrelated function is nasty; at least in the
PageUptodate macros, they are located together with (half) the operations
involved in the ordering. Thirdly, the smp_wmb is only required when first
bringing the page uptodate, wheras flush_dcache_page should be called each time
it is written to through the kernel mapping. It is logically the wrong place to
put it.
Q. Why does this increase my text size / reduce my performance / etc.
A. Because it is adding the necessary instructions to eliminate the data-race.
Q. Can it be improved?
A. Yes, eg. if you were to create a rule that all SetPageUptodate operations
run under the page lock, we could avoid the smp_rmb places where PageUptodate
is queried under the page lock. Requires audit of all filesystems and at least
some would need reworking. That's great you're interested, I'm eagerly awaiting
your patches.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 14:29:34 +08:00
|
|
|
static inline int PageUptodate(struct page *page)
|
|
|
|
{
|
|
|
|
int ret = test_bit(PG_uptodate, &(page)->flags);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Must ensure that the data we read out of the page is loaded
|
|
|
|
* _after_ we've loaded page->flags to check for PageUptodate.
|
|
|
|
* We can skip the barrier if the page is not uptodate, because
|
|
|
|
* we wouldn't be reading anything from it.
|
|
|
|
*
|
|
|
|
* See SetPageUptodate() for the other side of the story.
|
|
|
|
*/
|
|
|
|
if (ret)
|
|
|
|
smp_rmb();
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void __SetPageUptodate(struct page *page)
|
|
|
|
{
|
|
|
|
smp_wmb();
|
|
|
|
__set_bit(PG_uptodate, &(page)->flags);
|
|
|
|
}
|
|
|
|
|
2006-09-29 16:58:41 +08:00
|
|
|
static inline void SetPageUptodate(struct page *page)
|
|
|
|
{
|
mm: fix PageUptodate data race
After running SetPageUptodate, preceeding stores to the page contents to
actually bring it uptodate may not be ordered with the store to set the
page uptodate.
Therefore, another CPU which checks PageUptodate is true, then reads the
page contents can get stale data.
Fix this by having an smp_wmb before SetPageUptodate, and smp_rmb after
PageUptodate.
Many places that test PageUptodate, do so with the page locked, and this
would be enough to ensure memory ordering in those places if
SetPageUptodate were only called while the page is locked. Unfortunately
that is not always the case for some filesystems, but it could be an idea
for the future.
Also bring the handling of anonymous page uptodateness in line with that of
file backed page management, by marking anon pages as uptodate when they
_are_ uptodate, rather than when our implementation requires that they be
marked as such. Doing allows us to get rid of the smp_wmb's in the page
copying functions, which were especially added for anonymous pages for an
analogous memory ordering problem. Both file and anonymous pages are
handled with the same barriers.
FAQ:
Q. Why not do this in flush_dcache_page?
A. Firstly, flush_dcache_page handles only one side (the smb side) of the
ordering protocol; we'd still need smp_rmb somewhere. Secondly, hiding away
memory barriers in a completely unrelated function is nasty; at least in the
PageUptodate macros, they are located together with (half) the operations
involved in the ordering. Thirdly, the smp_wmb is only required when first
bringing the page uptodate, wheras flush_dcache_page should be called each time
it is written to through the kernel mapping. It is logically the wrong place to
put it.
Q. Why does this increase my text size / reduce my performance / etc.
A. Because it is adding the necessary instructions to eliminate the data-race.
Q. Can it be improved?
A. Yes, eg. if you were to create a rule that all SetPageUptodate operations
run under the page lock, we could avoid the smp_rmb places where PageUptodate
is queried under the page lock. Requires audit of all filesystems and at least
some would need reworking. That's great you're interested, I'm eagerly awaiting
your patches.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 14:29:34 +08:00
|
|
|
#ifdef CONFIG_S390
|
2006-09-29 16:58:41 +08:00
|
|
|
if (!test_and_set_bit(PG_uptodate, &page->flags))
|
[S390] mm: fix storage key handling
page_get_storage_key() and page_set_storage_key() expect a page address
and not its page frame number. This got inconsistent with 2d42552d
"[S390] merge page_test_dirty and page_clear_dirty".
Result is that we read/write storage keys from random pages and do not
have a working dirty bit tracking at all.
E.g. SetPageUpdate() doesn't clear the dirty bit of requested pages, which
for example ext4 doesn't like very much and panics after a while.
Unable to handle kernel paging request at virtual user address (null)
Oops: 0004 [#1] PREEMPT SMP DEBUG_PAGEALLOC
Modules linked in:
CPU: 1 Not tainted 2.6.39-07551-g139f37f-dirty #152
Process flush-94:0 (pid: 1576, task: 000000003eb34538, ksp: 000000003c287b70)
Krnl PSW : 0704c00180000000 0000000000316b12 (jbd2_journal_file_inode+0x10e/0x138)
R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:0 PM:0 EA:3
Krnl GPRS: 0000000000000000 0000000000000000 0000000000000000 0700000000000000
0000000000316a62 000000003eb34cd0 0000000000000025 000000003c287b88
0000000000000001 000000003c287a70 000000003f1ec678 000000003f1ec000
0000000000000000 000000003e66ec00 0000000000316a62 000000003c287988
Krnl Code: 0000000000316b04: f0a0000407f4 srp 4(11,%r0),2036,0
0000000000316b0a: b9020022 ltgr %r2,%r2
0000000000316b0e: a7740015 brc 7,316b38
>0000000000316b12: e3d0c0000024 stg %r13,0(%r12)
0000000000316b18: 4120c010 la %r2,16(%r12)
0000000000316b1c: 4130d060 la %r3,96(%r13)
0000000000316b20: e340d0600004 lg %r4,96(%r13)
0000000000316b26: c0e50002b567 brasl %r14,36d5f4
Call Trace:
([<0000000000316a62>] jbd2_journal_file_inode+0x5e/0x138)
[<00000000002da13c>] mpage_da_map_and_submit+0x2e8/0x42c
[<00000000002daac2>] ext4_da_writepages+0x2da/0x504
[<00000000002597e8>] writeback_single_inode+0xf8/0x268
[<0000000000259f06>] writeback_sb_inodes+0xd2/0x18c
[<000000000025a700>] writeback_inodes_wb+0x80/0x168
[<000000000025aa92>] wb_writeback+0x2aa/0x324
[<000000000025abde>] wb_do_writeback+0xd2/0x274
[<000000000025ae3a>] bdi_writeback_thread+0xba/0x1c4
[<00000000001737be>] kthread+0xa6/0xb0
[<000000000056c1da>] kernel_thread_starter+0x6/0xc
[<000000000056c1d4>] kernel_thread_starter+0x0/0xc
INFO: lockdep is turned off.
Last Breaking-Event-Address:
[<0000000000316a8a>] jbd2_journal_file_inode+0x86/0x138
Reported-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2011-05-29 18:40:50 +08:00
|
|
|
page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY, 0);
|
2006-06-30 16:55:32 +08:00
|
|
|
#else
|
mm: fix PageUptodate data race
After running SetPageUptodate, preceeding stores to the page contents to
actually bring it uptodate may not be ordered with the store to set the
page uptodate.
Therefore, another CPU which checks PageUptodate is true, then reads the
page contents can get stale data.
Fix this by having an smp_wmb before SetPageUptodate, and smp_rmb after
PageUptodate.
Many places that test PageUptodate, do so with the page locked, and this
would be enough to ensure memory ordering in those places if
SetPageUptodate were only called while the page is locked. Unfortunately
that is not always the case for some filesystems, but it could be an idea
for the future.
Also bring the handling of anonymous page uptodateness in line with that of
file backed page management, by marking anon pages as uptodate when they
_are_ uptodate, rather than when our implementation requires that they be
marked as such. Doing allows us to get rid of the smp_wmb's in the page
copying functions, which were especially added for anonymous pages for an
analogous memory ordering problem. Both file and anonymous pages are
handled with the same barriers.
FAQ:
Q. Why not do this in flush_dcache_page?
A. Firstly, flush_dcache_page handles only one side (the smb side) of the
ordering protocol; we'd still need smp_rmb somewhere. Secondly, hiding away
memory barriers in a completely unrelated function is nasty; at least in the
PageUptodate macros, they are located together with (half) the operations
involved in the ordering. Thirdly, the smp_wmb is only required when first
bringing the page uptodate, wheras flush_dcache_page should be called each time
it is written to through the kernel mapping. It is logically the wrong place to
put it.
Q. Why does this increase my text size / reduce my performance / etc.
A. Because it is adding the necessary instructions to eliminate the data-race.
Q. Can it be improved?
A. Yes, eg. if you were to create a rule that all SetPageUptodate operations
run under the page lock, we could avoid the smp_rmb places where PageUptodate
is queried under the page lock. Requires audit of all filesystems and at least
some would need reworking. That's great you're interested, I'm eagerly awaiting
your patches.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 14:29:34 +08:00
|
|
|
/*
|
|
|
|
* Memory barrier must be issued before setting the PG_uptodate bit,
|
|
|
|
* so that all previous stores issued in order to bring the page
|
|
|
|
* uptodate are actually visible before PageUptodate becomes true.
|
|
|
|
*
|
|
|
|
* s390 doesn't need an explicit smp_wmb here because the test and
|
|
|
|
* set bit already provides full barriers.
|
|
|
|
*/
|
|
|
|
smp_wmb();
|
|
|
|
set_bit(PG_uptodate, &(page)->flags);
|
2005-04-17 06:20:36 +08:00
|
|
|
#endif
|
mm: fix PageUptodate data race
After running SetPageUptodate, preceeding stores to the page contents to
actually bring it uptodate may not be ordered with the store to set the
page uptodate.
Therefore, another CPU which checks PageUptodate is true, then reads the
page contents can get stale data.
Fix this by having an smp_wmb before SetPageUptodate, and smp_rmb after
PageUptodate.
Many places that test PageUptodate, do so with the page locked, and this
would be enough to ensure memory ordering in those places if
SetPageUptodate were only called while the page is locked. Unfortunately
that is not always the case for some filesystems, but it could be an idea
for the future.
Also bring the handling of anonymous page uptodateness in line with that of
file backed page management, by marking anon pages as uptodate when they
_are_ uptodate, rather than when our implementation requires that they be
marked as such. Doing allows us to get rid of the smp_wmb's in the page
copying functions, which were especially added for anonymous pages for an
analogous memory ordering problem. Both file and anonymous pages are
handled with the same barriers.
FAQ:
Q. Why not do this in flush_dcache_page?
A. Firstly, flush_dcache_page handles only one side (the smb side) of the
ordering protocol; we'd still need smp_rmb somewhere. Secondly, hiding away
memory barriers in a completely unrelated function is nasty; at least in the
PageUptodate macros, they are located together with (half) the operations
involved in the ordering. Thirdly, the smp_wmb is only required when first
bringing the page uptodate, wheras flush_dcache_page should be called each time
it is written to through the kernel mapping. It is logically the wrong place to
put it.
Q. Why does this increase my text size / reduce my performance / etc.
A. Because it is adding the necessary instructions to eliminate the data-race.
Q. Can it be improved?
A. Yes, eg. if you were to create a rule that all SetPageUptodate operations
run under the page lock, we could avoid the smp_rmb places where PageUptodate
is queried under the page lock. Requires audit of all filesystems and at least
some would need reworking. That's great you're interested, I'm eagerly awaiting
your patches.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 14:29:34 +08:00
|
|
|
}
|
|
|
|
|
2008-04-28 17:12:50 +08:00
|
|
|
CLEARPAGEFLAG(Uptodate, uptodate)
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2008-04-28 17:12:50 +08:00
|
|
|
extern void cancel_dirty_page(struct page *page, unsigned int account_size);
|
2007-07-19 16:47:55 +08:00
|
|
|
|
2008-04-28 17:12:50 +08:00
|
|
|
int test_clear_page_writeback(struct page *page);
|
|
|
|
int test_set_page_writeback(struct page *page);
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2008-04-28 17:12:50 +08:00
|
|
|
static inline void set_page_writeback(struct page *page)
|
|
|
|
{
|
|
|
|
test_set_page_writeback(page);
|
|
|
|
}
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2008-04-28 17:12:55 +08:00
|
|
|
#ifdef CONFIG_PAGEFLAGS_EXTENDED
|
|
|
|
/*
|
|
|
|
* System with lots of page flags available. This allows separate
|
|
|
|
* flags for PageHead() and PageTail() checks of compound pages so that bit
|
|
|
|
* tests can be used in performance sensitive paths. PageCompound is
|
|
|
|
* generally not used in hot code paths.
|
|
|
|
*/
|
2011-01-14 07:46:44 +08:00
|
|
|
__PAGEFLAG(Head, head) CLEARPAGEFLAG(Head, head)
|
2008-04-28 17:12:55 +08:00
|
|
|
__PAGEFLAG(Tail, tail)
|
|
|
|
|
|
|
|
static inline int PageCompound(struct page *page)
|
|
|
|
{
|
|
|
|
return page->flags & ((1L << PG_head) | (1L << PG_tail));
|
|
|
|
|
|
|
|
}
|
2011-01-14 07:46:44 +08:00
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
|
|
static inline void ClearPageCompound(struct page *page)
|
|
|
|
{
|
|
|
|
BUG_ON(!PageHead(page));
|
|
|
|
ClearPageHead(page);
|
|
|
|
}
|
|
|
|
#endif
|
2008-04-28 17:12:55 +08:00
|
|
|
#else
|
|
|
|
/*
|
|
|
|
* Reduce page flag use as much as possible by overlapping
|
|
|
|
* compound page flags with the flags used for page cache pages. Possible
|
|
|
|
* because PageCompound is always set for compound pages and not for
|
|
|
|
* pages on the LRU and/or pagecache.
|
|
|
|
*/
|
2008-04-28 17:12:50 +08:00
|
|
|
TESTPAGEFLAG(Compound, compound)
|
|
|
|
__PAGEFLAG(Head, compound)
|
2005-04-17 06:20:36 +08:00
|
|
|
|
2007-05-07 05:49:39 +08:00
|
|
|
/*
|
2007-05-07 05:49:40 +08:00
|
|
|
* PG_reclaim is used in combination with PG_compound to mark the
|
2008-04-28 17:12:50 +08:00
|
|
|
* head and tail of a compound page. This saves one page flag
|
|
|
|
* but makes it impossible to use compound pages for the page cache.
|
|
|
|
* The PG_reclaim bit would have to be used for reclaim or readahead
|
|
|
|
* if compound pages enter the page cache.
|
2007-05-07 05:49:40 +08:00
|
|
|
*
|
|
|
|
* PG_compound & PG_reclaim => Tail page
|
|
|
|
* PG_compound & ~PG_reclaim => Head page
|
2007-05-07 05:49:39 +08:00
|
|
|
*/
|
2007-05-07 05:49:40 +08:00
|
|
|
#define PG_head_tail_mask ((1L << PG_compound) | (1L << PG_reclaim))
|
|
|
|
|
2008-04-28 17:12:50 +08:00
|
|
|
static inline int PageTail(struct page *page)
|
|
|
|
{
|
|
|
|
return ((page->flags & PG_head_tail_mask) == PG_head_tail_mask);
|
|
|
|
}
|
2007-05-07 05:49:40 +08:00
|
|
|
|
|
|
|
static inline void __SetPageTail(struct page *page)
|
|
|
|
{
|
|
|
|
page->flags |= PG_head_tail_mask;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void __ClearPageTail(struct page *page)
|
|
|
|
{
|
|
|
|
page->flags &= ~PG_head_tail_mask;
|
|
|
|
}
|
|
|
|
|
2011-01-14 07:46:44 +08:00
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
|
|
static inline void ClearPageCompound(struct page *page)
|
|
|
|
{
|
|
|
|
BUG_ON((page->flags & PG_head_tail_mask) != (1 << PG_compound));
|
|
|
|
clear_bit(PG_compound, &page->flags);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2008-04-28 17:12:55 +08:00
|
|
|
#endif /* !PAGEFLAGS_EXTENDED */
|
2008-06-10 00:18:45 +08:00
|
|
|
|
2011-01-14 07:46:48 +08:00
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
thp: transparent hugepage core
Lately I've been working to make KVM use hugepages transparently without
the usual restrictions of hugetlbfs. Some of the restrictions I'd like to
see removed:
1) hugepages have to be swappable or the guest physical memory remains
locked in RAM and can't be paged out to swap
2) if a hugepage allocation fails, regular pages should be allocated
instead and mixed in the same vma without any failure and without
userland noticing
3) if some task quits and more hugepages become available in the
buddy, guest physical memory backed by regular pages should be
relocated on hugepages automatically in regions under
madvise(MADV_HUGEPAGE) (ideally event driven by waking up the
kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes
not null)
4) avoidance of reservation and maximization of use of hugepages whenever
possible. Reservation (needed to avoid runtime fatal faliures) may be ok for
1 machine with 1 database with 1 database cache with 1 database cache size
known at boot time. It's definitely not feasible with a virtualization
hypervisor usage like RHEV-H that runs an unknown number of virtual machines
with an unknown size of each virtual machine with an unknown amount of
pagecache that could be potentially useful in the host for guest not using
O_DIRECT (aka cache=off).
hugepages in the virtualization hypervisor (and also in the guest!) are
much more important than in a regular host not using virtualization,
becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24
to 19 in case only the hypervisor uses transparent hugepages, and they
decrease the tlb-miss cacheline accesses from 19 to 15 in case both the
linux hypervisor and the linux guest both uses this patch (though the
guest will limit the addition speedup to anonymous regions only for
now...). Even more important is that the tlb miss handler is much slower
on a NPT/EPT guest than for a regular shadow paging or no-virtualization
scenario. So maximizing the amount of virtual memory cached by the TLB
pays off significantly more with NPT/EPT than without (even if there would
be no significant speedup in the tlb-miss runtime).
The first (and more tedious) part of this work requires allowing the VM to
handle anonymous hugepages mixed with regular pages transparently on
regular anonymous vmas. This is what this patch tries to achieve in the
least intrusive possible way. We want hugepages and hugetlb to be used in
a way so that all applications can benefit without changes (as usual we
leverage the KVM virtualization design: by improving the Linux VM at
large, KVM gets the performance boost too).
The most important design choice is: always fallback to 4k allocation if
the hugepage allocation fails! This is the _very_ opposite of some large
pagecache patches that failed with -EIO back then if a 64k (or similar)
allocation failed...
Second important decision (to reduce the impact of the feature on the
existing pagetable handling code) is that at any time we can split an
hugepage into 512 regular pages and it has to be done with an operation
that can't fail. This way the reliability of the swapping isn't decreased
(no need to allocate memory when we are short on memory to swap) and it's
trivial to plug a split_huge_page* one-liner where needed without
polluting the VM. Over time we can teach mprotect, mremap and friends to
handle pmd_trans_huge natively without calling split_huge_page*. The fact
it can't fail isn't just for swap: if split_huge_page would return -ENOMEM
(instead of the current void) we'd need to rollback the mprotect from the
middle of it (ideally including undoing the split_vma) which would be a
big change and in the very wrong direction (it'd likely be simpler not to
call split_huge_page at all and to teach mprotect and friends to handle
hugepages instead of rolling them back from the middle). In short the
very value of split_huge_page is that it can't fail.
The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and
incremental and it'll just be an "harmless" addition later if this initial
part is agreed upon. It also should be noted that locking-wise replacing
regular pages with hugepages is going to be very easy if compared to what
I'm doing below in split_huge_page, as it will only happen when
page_count(page) matches page_mapcount(page) if we can take the PG_lock
and mmap_sem in write mode. collapse_huge_page will be a "best effort"
that (unlike split_huge_page) can fail at the minimal sign of trouble and
we can try again later. collapse_huge_page will be similar to how KSM
works and the madvise(MADV_HUGEPAGE) will work similar to
madvise(MADV_MERGEABLE).
The default I like is that transparent hugepages are used at page fault
time. This can be changed with
/sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set
to three values "always", "madvise", "never" which mean respectively that
hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions,
or never used. /sys/kernel/mm/transparent_hugepage/defrag instead
controls if the hugepage allocation should defrag memory aggressively
"always", only inside "madvise" regions, or "never".
The pmd_trans_splitting/pmd_trans_huge locking is very solid. The
put_page (from get_user_page users that can't use mmu notifier like
O_DIRECT) that runs against a __split_huge_page_refcount instead was a
pain to serialize in a way that would result always in a coherent page
count for both tail and head. I think my locking solution with a
compound_lock taken only after the page_first is valid and is still a
PageHead should be safe but it surely needs review from SMP race point of
view. In short there is no current existing way to serialize the O_DIRECT
final put_page against split_huge_page_refcount so I had to invent a new
one (O_DIRECT loses knowledge on the mapping status by the time gup_fast
returns so...). And I didn't want to impact all gup/gup_fast users for
now, maybe if we change the gup interface substantially we can avoid this
locking, I admit I didn't think too much about it because changing the gup
unpinning interface would be invasive.
If we ignored O_DIRECT we could stick to the existing compound refcounting
code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM
(and any other mmu notifier user) would call it without FOLL_GET (and if
FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the
current task mmu notifier list yet). But O_DIRECT is fundamental for
decent performance of virtualized I/O on fast storage so we can't avoid it
to solve the race of put_page against split_huge_page_refcount to achieve
a complete hugepage feature for KVM.
Swap and oom works fine (well just like with regular pages ;). MMU
notifier is handled transparently too, with the exception of the young bit
on the pmd, that didn't have a range check but I think KVM will be fine
because the whole point of hugepages is that EPT/NPT will also use a huge
pmd when they notice gup returns pages with PageCompound set, so they
won't care of a range and there's just the pmd young bit to check in that
case.
NOTE: in some cases if the L2 cache is small, this may slowdown and waste
memory during COWs because 4M of memory are accessed in a single fault
instead of 8k (the payoff is that after COW the program can run faster).
So we might want to switch the copy_huge_page (and clear_huge_page too) to
not temporal stores. I also extensively researched ways to avoid this
cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k
up to 1M (I can send those patches that fully implemented prefault) but I
concluded they're not worth it and they add an huge additional complexity
and they remove all tlb benefits until the full hugepage has been faulted
in, to save a little bit of memory and some cache during app startup, but
they still don't improve substantially the cache-trashing during startup
if the prefault happens in >4k chunks. One reason is that those 4k pte
entries copied are still mapped on a perfectly cache-colored hugepage, so
the trashing is the worst one can generate in those copies (cow of 4k page
copies aren't so well colored so they trashes less, but again this results
in software running faster after the page fault). Those prefault patches
allowed things like a pte where post-cow pages were local 4k regular anon
pages and the not-yet-cowed pte entries were pointing in the middle of
some hugepage mapped read-only. If it doesn't payoff substantially with
todays hardware it will payoff even less in the future with larger l2
caches, and the prefault logic would blot the VM a lot. If one is
emebdded transparent_hugepage can be disabled during boot with sysfs or
with the boot commandline parameter transparent_hugepage=0 (or
transparent_hugepage=2 to restrict hugepages inside madvise regions) that
will ensure not a single hugepage is allocated at boot time. It is simple
enough to just disable transparent hugepage globally and let transparent
hugepages be allocated selectively by applications in the MADV_HUGEPAGE
region (both at page fault time, and if enabled with the
collapse_huge_page too through the kernel daemon).
This patch supports only hugepages mapped in the pmd, archs that have
smaller hugepages will not fit in this patch alone. Also some archs like
power have certain tlb limits that prevents mixing different page size in
the same regions so they will not fit in this framework that requires
"graceful fallback" to basic PAGE_SIZE in case of physical memory
fragmentation. hugetlbfs remains a perfect fit for those because its
software limits happen to match the hardware limits. hugetlbfs also
remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped
to be found not fragmented after a certain system uptime and that would be
very expensive to defragment with relocation, so requiring reservation.
hugetlbfs is the "reservation way", the point of transparent hugepages is
not to have any reservation at all and maximizing the use of cache and
hugepages at all times automatically.
Some performance result:
vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep
ages3
memset page fault 1566023
memset tlb miss 453854
memset second tlb miss 453321
random access tlb miss 41635
random access second tlb miss 41658
vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3
memset page fault 1566471
memset tlb miss 453375
memset second tlb miss 453320
random access tlb miss 41636
random access second tlb miss 41637
vmx andrea # ./largepages3
memset page fault 1566642
memset tlb miss 453417
memset second tlb miss 453313
random access tlb miss 41630
random access second tlb miss 41647
vmx andrea # ./largepages3
memset page fault 1566872
memset tlb miss 453418
memset second tlb miss 453315
random access tlb miss 41618
random access second tlb miss 41659
vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage
vmx andrea # ./largepages3
memset page fault 2182476
memset tlb miss 460305
memset second tlb miss 460179
random access tlb miss 44483
random access second tlb miss 44186
vmx andrea # ./largepages3
memset page fault 2182791
memset tlb miss 460742
memset second tlb miss 459962
random access tlb miss 43981
random access second tlb miss 43988
============
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#define SIZE (3UL*1024*1024*1024)
int main()
{
char *p = malloc(SIZE), *p2;
struct timeval before, after;
gettimeofday(&before, NULL);
memset(p, 0, SIZE);
gettimeofday(&after, NULL);
printf("memset page fault %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
memset(p, 0, SIZE);
gettimeofday(&after, NULL);
printf("memset tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
memset(p, 0, SIZE);
gettimeofday(&after, NULL);
printf("memset second tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
for (p2 = p; p2 < p+SIZE; p2 += 4096)
*p2 = 0;
gettimeofday(&after, NULL);
printf("random access tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
for (p2 = p; p2 < p+SIZE; p2 += 4096)
*p2 = 0;
gettimeofday(&after, NULL);
printf("random access second tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
return 0;
}
============
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
|
|
|
/*
|
|
|
|
* PageHuge() only returns true for hugetlbfs pages, but not for
|
|
|
|
* normal or transparent huge pages.
|
|
|
|
*
|
|
|
|
* PageTransHuge() returns true for both transparent huge and
|
|
|
|
* hugetlbfs pages, but not normal pages. PageTransHuge() can only be
|
|
|
|
* called only in the core VM paths where hugetlbfs pages can't exist.
|
|
|
|
*/
|
|
|
|
static inline int PageTransHuge(struct page *page)
|
|
|
|
{
|
|
|
|
VM_BUG_ON(PageTail(page));
|
|
|
|
return PageHead(page);
|
|
|
|
}
|
|
|
|
|
2012-03-22 07:34:05 +08:00
|
|
|
/*
|
|
|
|
* PageTransCompound returns true for both transparent huge pages
|
|
|
|
* and hugetlbfs pages, so it should only be called when it's known
|
|
|
|
* that hugetlbfs pages aren't involved.
|
|
|
|
*/
|
2011-01-14 07:46:48 +08:00
|
|
|
static inline int PageTransCompound(struct page *page)
|
|
|
|
{
|
|
|
|
return PageCompound(page);
|
|
|
|
}
|
thp: transparent hugepage core
Lately I've been working to make KVM use hugepages transparently without
the usual restrictions of hugetlbfs. Some of the restrictions I'd like to
see removed:
1) hugepages have to be swappable or the guest physical memory remains
locked in RAM and can't be paged out to swap
2) if a hugepage allocation fails, regular pages should be allocated
instead and mixed in the same vma without any failure and without
userland noticing
3) if some task quits and more hugepages become available in the
buddy, guest physical memory backed by regular pages should be
relocated on hugepages automatically in regions under
madvise(MADV_HUGEPAGE) (ideally event driven by waking up the
kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes
not null)
4) avoidance of reservation and maximization of use of hugepages whenever
possible. Reservation (needed to avoid runtime fatal faliures) may be ok for
1 machine with 1 database with 1 database cache with 1 database cache size
known at boot time. It's definitely not feasible with a virtualization
hypervisor usage like RHEV-H that runs an unknown number of virtual machines
with an unknown size of each virtual machine with an unknown amount of
pagecache that could be potentially useful in the host for guest not using
O_DIRECT (aka cache=off).
hugepages in the virtualization hypervisor (and also in the guest!) are
much more important than in a regular host not using virtualization,
becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24
to 19 in case only the hypervisor uses transparent hugepages, and they
decrease the tlb-miss cacheline accesses from 19 to 15 in case both the
linux hypervisor and the linux guest both uses this patch (though the
guest will limit the addition speedup to anonymous regions only for
now...). Even more important is that the tlb miss handler is much slower
on a NPT/EPT guest than for a regular shadow paging or no-virtualization
scenario. So maximizing the amount of virtual memory cached by the TLB
pays off significantly more with NPT/EPT than without (even if there would
be no significant speedup in the tlb-miss runtime).
The first (and more tedious) part of this work requires allowing the VM to
handle anonymous hugepages mixed with regular pages transparently on
regular anonymous vmas. This is what this patch tries to achieve in the
least intrusive possible way. We want hugepages and hugetlb to be used in
a way so that all applications can benefit without changes (as usual we
leverage the KVM virtualization design: by improving the Linux VM at
large, KVM gets the performance boost too).
The most important design choice is: always fallback to 4k allocation if
the hugepage allocation fails! This is the _very_ opposite of some large
pagecache patches that failed with -EIO back then if a 64k (or similar)
allocation failed...
Second important decision (to reduce the impact of the feature on the
existing pagetable handling code) is that at any time we can split an
hugepage into 512 regular pages and it has to be done with an operation
that can't fail. This way the reliability of the swapping isn't decreased
(no need to allocate memory when we are short on memory to swap) and it's
trivial to plug a split_huge_page* one-liner where needed without
polluting the VM. Over time we can teach mprotect, mremap and friends to
handle pmd_trans_huge natively without calling split_huge_page*. The fact
it can't fail isn't just for swap: if split_huge_page would return -ENOMEM
(instead of the current void) we'd need to rollback the mprotect from the
middle of it (ideally including undoing the split_vma) which would be a
big change and in the very wrong direction (it'd likely be simpler not to
call split_huge_page at all and to teach mprotect and friends to handle
hugepages instead of rolling them back from the middle). In short the
very value of split_huge_page is that it can't fail.
The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and
incremental and it'll just be an "harmless" addition later if this initial
part is agreed upon. It also should be noted that locking-wise replacing
regular pages with hugepages is going to be very easy if compared to what
I'm doing below in split_huge_page, as it will only happen when
page_count(page) matches page_mapcount(page) if we can take the PG_lock
and mmap_sem in write mode. collapse_huge_page will be a "best effort"
that (unlike split_huge_page) can fail at the minimal sign of trouble and
we can try again later. collapse_huge_page will be similar to how KSM
works and the madvise(MADV_HUGEPAGE) will work similar to
madvise(MADV_MERGEABLE).
The default I like is that transparent hugepages are used at page fault
time. This can be changed with
/sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set
to three values "always", "madvise", "never" which mean respectively that
hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions,
or never used. /sys/kernel/mm/transparent_hugepage/defrag instead
controls if the hugepage allocation should defrag memory aggressively
"always", only inside "madvise" regions, or "never".
The pmd_trans_splitting/pmd_trans_huge locking is very solid. The
put_page (from get_user_page users that can't use mmu notifier like
O_DIRECT) that runs against a __split_huge_page_refcount instead was a
pain to serialize in a way that would result always in a coherent page
count for both tail and head. I think my locking solution with a
compound_lock taken only after the page_first is valid and is still a
PageHead should be safe but it surely needs review from SMP race point of
view. In short there is no current existing way to serialize the O_DIRECT
final put_page against split_huge_page_refcount so I had to invent a new
one (O_DIRECT loses knowledge on the mapping status by the time gup_fast
returns so...). And I didn't want to impact all gup/gup_fast users for
now, maybe if we change the gup interface substantially we can avoid this
locking, I admit I didn't think too much about it because changing the gup
unpinning interface would be invasive.
If we ignored O_DIRECT we could stick to the existing compound refcounting
code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM
(and any other mmu notifier user) would call it without FOLL_GET (and if
FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the
current task mmu notifier list yet). But O_DIRECT is fundamental for
decent performance of virtualized I/O on fast storage so we can't avoid it
to solve the race of put_page against split_huge_page_refcount to achieve
a complete hugepage feature for KVM.
Swap and oom works fine (well just like with regular pages ;). MMU
notifier is handled transparently too, with the exception of the young bit
on the pmd, that didn't have a range check but I think KVM will be fine
because the whole point of hugepages is that EPT/NPT will also use a huge
pmd when they notice gup returns pages with PageCompound set, so they
won't care of a range and there's just the pmd young bit to check in that
case.
NOTE: in some cases if the L2 cache is small, this may slowdown and waste
memory during COWs because 4M of memory are accessed in a single fault
instead of 8k (the payoff is that after COW the program can run faster).
So we might want to switch the copy_huge_page (and clear_huge_page too) to
not temporal stores. I also extensively researched ways to avoid this
cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k
up to 1M (I can send those patches that fully implemented prefault) but I
concluded they're not worth it and they add an huge additional complexity
and they remove all tlb benefits until the full hugepage has been faulted
in, to save a little bit of memory and some cache during app startup, but
they still don't improve substantially the cache-trashing during startup
if the prefault happens in >4k chunks. One reason is that those 4k pte
entries copied are still mapped on a perfectly cache-colored hugepage, so
the trashing is the worst one can generate in those copies (cow of 4k page
copies aren't so well colored so they trashes less, but again this results
in software running faster after the page fault). Those prefault patches
allowed things like a pte where post-cow pages were local 4k regular anon
pages and the not-yet-cowed pte entries were pointing in the middle of
some hugepage mapped read-only. If it doesn't payoff substantially with
todays hardware it will payoff even less in the future with larger l2
caches, and the prefault logic would blot the VM a lot. If one is
emebdded transparent_hugepage can be disabled during boot with sysfs or
with the boot commandline parameter transparent_hugepage=0 (or
transparent_hugepage=2 to restrict hugepages inside madvise regions) that
will ensure not a single hugepage is allocated at boot time. It is simple
enough to just disable transparent hugepage globally and let transparent
hugepages be allocated selectively by applications in the MADV_HUGEPAGE
region (both at page fault time, and if enabled with the
collapse_huge_page too through the kernel daemon).
This patch supports only hugepages mapped in the pmd, archs that have
smaller hugepages will not fit in this patch alone. Also some archs like
power have certain tlb limits that prevents mixing different page size in
the same regions so they will not fit in this framework that requires
"graceful fallback" to basic PAGE_SIZE in case of physical memory
fragmentation. hugetlbfs remains a perfect fit for those because its
software limits happen to match the hardware limits. hugetlbfs also
remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped
to be found not fragmented after a certain system uptime and that would be
very expensive to defragment with relocation, so requiring reservation.
hugetlbfs is the "reservation way", the point of transparent hugepages is
not to have any reservation at all and maximizing the use of cache and
hugepages at all times automatically.
Some performance result:
vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep
ages3
memset page fault 1566023
memset tlb miss 453854
memset second tlb miss 453321
random access tlb miss 41635
random access second tlb miss 41658
vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3
memset page fault 1566471
memset tlb miss 453375
memset second tlb miss 453320
random access tlb miss 41636
random access second tlb miss 41637
vmx andrea # ./largepages3
memset page fault 1566642
memset tlb miss 453417
memset second tlb miss 453313
random access tlb miss 41630
random access second tlb miss 41647
vmx andrea # ./largepages3
memset page fault 1566872
memset tlb miss 453418
memset second tlb miss 453315
random access tlb miss 41618
random access second tlb miss 41659
vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage
vmx andrea # ./largepages3
memset page fault 2182476
memset tlb miss 460305
memset second tlb miss 460179
random access tlb miss 44483
random access second tlb miss 44186
vmx andrea # ./largepages3
memset page fault 2182791
memset tlb miss 460742
memset second tlb miss 459962
random access tlb miss 43981
random access second tlb miss 43988
============
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#define SIZE (3UL*1024*1024*1024)
int main()
{
char *p = malloc(SIZE), *p2;
struct timeval before, after;
gettimeofday(&before, NULL);
memset(p, 0, SIZE);
gettimeofday(&after, NULL);
printf("memset page fault %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
memset(p, 0, SIZE);
gettimeofday(&after, NULL);
printf("memset tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
memset(p, 0, SIZE);
gettimeofday(&after, NULL);
printf("memset second tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
for (p2 = p; p2 < p+SIZE; p2 += 4096)
*p2 = 0;
gettimeofday(&after, NULL);
printf("random access tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
for (p2 = p; p2 < p+SIZE; p2 += 4096)
*p2 = 0;
gettimeofday(&after, NULL);
printf("random access second tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
return 0;
}
============
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
|
|
|
|
2012-03-22 07:34:05 +08:00
|
|
|
/*
|
|
|
|
* PageTransTail returns true for both transparent huge pages
|
|
|
|
* and hugetlbfs pages, so it should only be called when it's known
|
|
|
|
* that hugetlbfs pages aren't involved.
|
|
|
|
*/
|
|
|
|
static inline int PageTransTail(struct page *page)
|
|
|
|
{
|
|
|
|
return PageTail(page);
|
|
|
|
}
|
|
|
|
|
2011-01-14 07:46:48 +08:00
|
|
|
#else
|
thp: transparent hugepage core
Lately I've been working to make KVM use hugepages transparently without
the usual restrictions of hugetlbfs. Some of the restrictions I'd like to
see removed:
1) hugepages have to be swappable or the guest physical memory remains
locked in RAM and can't be paged out to swap
2) if a hugepage allocation fails, regular pages should be allocated
instead and mixed in the same vma without any failure and without
userland noticing
3) if some task quits and more hugepages become available in the
buddy, guest physical memory backed by regular pages should be
relocated on hugepages automatically in regions under
madvise(MADV_HUGEPAGE) (ideally event driven by waking up the
kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes
not null)
4) avoidance of reservation and maximization of use of hugepages whenever
possible. Reservation (needed to avoid runtime fatal faliures) may be ok for
1 machine with 1 database with 1 database cache with 1 database cache size
known at boot time. It's definitely not feasible with a virtualization
hypervisor usage like RHEV-H that runs an unknown number of virtual machines
with an unknown size of each virtual machine with an unknown amount of
pagecache that could be potentially useful in the host for guest not using
O_DIRECT (aka cache=off).
hugepages in the virtualization hypervisor (and also in the guest!) are
much more important than in a regular host not using virtualization,
becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24
to 19 in case only the hypervisor uses transparent hugepages, and they
decrease the tlb-miss cacheline accesses from 19 to 15 in case both the
linux hypervisor and the linux guest both uses this patch (though the
guest will limit the addition speedup to anonymous regions only for
now...). Even more important is that the tlb miss handler is much slower
on a NPT/EPT guest than for a regular shadow paging or no-virtualization
scenario. So maximizing the amount of virtual memory cached by the TLB
pays off significantly more with NPT/EPT than without (even if there would
be no significant speedup in the tlb-miss runtime).
The first (and more tedious) part of this work requires allowing the VM to
handle anonymous hugepages mixed with regular pages transparently on
regular anonymous vmas. This is what this patch tries to achieve in the
least intrusive possible way. We want hugepages and hugetlb to be used in
a way so that all applications can benefit without changes (as usual we
leverage the KVM virtualization design: by improving the Linux VM at
large, KVM gets the performance boost too).
The most important design choice is: always fallback to 4k allocation if
the hugepage allocation fails! This is the _very_ opposite of some large
pagecache patches that failed with -EIO back then if a 64k (or similar)
allocation failed...
Second important decision (to reduce the impact of the feature on the
existing pagetable handling code) is that at any time we can split an
hugepage into 512 regular pages and it has to be done with an operation
that can't fail. This way the reliability of the swapping isn't decreased
(no need to allocate memory when we are short on memory to swap) and it's
trivial to plug a split_huge_page* one-liner where needed without
polluting the VM. Over time we can teach mprotect, mremap and friends to
handle pmd_trans_huge natively without calling split_huge_page*. The fact
it can't fail isn't just for swap: if split_huge_page would return -ENOMEM
(instead of the current void) we'd need to rollback the mprotect from the
middle of it (ideally including undoing the split_vma) which would be a
big change and in the very wrong direction (it'd likely be simpler not to
call split_huge_page at all and to teach mprotect and friends to handle
hugepages instead of rolling them back from the middle). In short the
very value of split_huge_page is that it can't fail.
The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and
incremental and it'll just be an "harmless" addition later if this initial
part is agreed upon. It also should be noted that locking-wise replacing
regular pages with hugepages is going to be very easy if compared to what
I'm doing below in split_huge_page, as it will only happen when
page_count(page) matches page_mapcount(page) if we can take the PG_lock
and mmap_sem in write mode. collapse_huge_page will be a "best effort"
that (unlike split_huge_page) can fail at the minimal sign of trouble and
we can try again later. collapse_huge_page will be similar to how KSM
works and the madvise(MADV_HUGEPAGE) will work similar to
madvise(MADV_MERGEABLE).
The default I like is that transparent hugepages are used at page fault
time. This can be changed with
/sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set
to three values "always", "madvise", "never" which mean respectively that
hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions,
or never used. /sys/kernel/mm/transparent_hugepage/defrag instead
controls if the hugepage allocation should defrag memory aggressively
"always", only inside "madvise" regions, or "never".
The pmd_trans_splitting/pmd_trans_huge locking is very solid. The
put_page (from get_user_page users that can't use mmu notifier like
O_DIRECT) that runs against a __split_huge_page_refcount instead was a
pain to serialize in a way that would result always in a coherent page
count for both tail and head. I think my locking solution with a
compound_lock taken only after the page_first is valid and is still a
PageHead should be safe but it surely needs review from SMP race point of
view. In short there is no current existing way to serialize the O_DIRECT
final put_page against split_huge_page_refcount so I had to invent a new
one (O_DIRECT loses knowledge on the mapping status by the time gup_fast
returns so...). And I didn't want to impact all gup/gup_fast users for
now, maybe if we change the gup interface substantially we can avoid this
locking, I admit I didn't think too much about it because changing the gup
unpinning interface would be invasive.
If we ignored O_DIRECT we could stick to the existing compound refcounting
code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM
(and any other mmu notifier user) would call it without FOLL_GET (and if
FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the
current task mmu notifier list yet). But O_DIRECT is fundamental for
decent performance of virtualized I/O on fast storage so we can't avoid it
to solve the race of put_page against split_huge_page_refcount to achieve
a complete hugepage feature for KVM.
Swap and oom works fine (well just like with regular pages ;). MMU
notifier is handled transparently too, with the exception of the young bit
on the pmd, that didn't have a range check but I think KVM will be fine
because the whole point of hugepages is that EPT/NPT will also use a huge
pmd when they notice gup returns pages with PageCompound set, so they
won't care of a range and there's just the pmd young bit to check in that
case.
NOTE: in some cases if the L2 cache is small, this may slowdown and waste
memory during COWs because 4M of memory are accessed in a single fault
instead of 8k (the payoff is that after COW the program can run faster).
So we might want to switch the copy_huge_page (and clear_huge_page too) to
not temporal stores. I also extensively researched ways to avoid this
cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k
up to 1M (I can send those patches that fully implemented prefault) but I
concluded they're not worth it and they add an huge additional complexity
and they remove all tlb benefits until the full hugepage has been faulted
in, to save a little bit of memory and some cache during app startup, but
they still don't improve substantially the cache-trashing during startup
if the prefault happens in >4k chunks. One reason is that those 4k pte
entries copied are still mapped on a perfectly cache-colored hugepage, so
the trashing is the worst one can generate in those copies (cow of 4k page
copies aren't so well colored so they trashes less, but again this results
in software running faster after the page fault). Those prefault patches
allowed things like a pte where post-cow pages were local 4k regular anon
pages and the not-yet-cowed pte entries were pointing in the middle of
some hugepage mapped read-only. If it doesn't payoff substantially with
todays hardware it will payoff even less in the future with larger l2
caches, and the prefault logic would blot the VM a lot. If one is
emebdded transparent_hugepage can be disabled during boot with sysfs or
with the boot commandline parameter transparent_hugepage=0 (or
transparent_hugepage=2 to restrict hugepages inside madvise regions) that
will ensure not a single hugepage is allocated at boot time. It is simple
enough to just disable transparent hugepage globally and let transparent
hugepages be allocated selectively by applications in the MADV_HUGEPAGE
region (both at page fault time, and if enabled with the
collapse_huge_page too through the kernel daemon).
This patch supports only hugepages mapped in the pmd, archs that have
smaller hugepages will not fit in this patch alone. Also some archs like
power have certain tlb limits that prevents mixing different page size in
the same regions so they will not fit in this framework that requires
"graceful fallback" to basic PAGE_SIZE in case of physical memory
fragmentation. hugetlbfs remains a perfect fit for those because its
software limits happen to match the hardware limits. hugetlbfs also
remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped
to be found not fragmented after a certain system uptime and that would be
very expensive to defragment with relocation, so requiring reservation.
hugetlbfs is the "reservation way", the point of transparent hugepages is
not to have any reservation at all and maximizing the use of cache and
hugepages at all times automatically.
Some performance result:
vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep
ages3
memset page fault 1566023
memset tlb miss 453854
memset second tlb miss 453321
random access tlb miss 41635
random access second tlb miss 41658
vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3
memset page fault 1566471
memset tlb miss 453375
memset second tlb miss 453320
random access tlb miss 41636
random access second tlb miss 41637
vmx andrea # ./largepages3
memset page fault 1566642
memset tlb miss 453417
memset second tlb miss 453313
random access tlb miss 41630
random access second tlb miss 41647
vmx andrea # ./largepages3
memset page fault 1566872
memset tlb miss 453418
memset second tlb miss 453315
random access tlb miss 41618
random access second tlb miss 41659
vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage
vmx andrea # ./largepages3
memset page fault 2182476
memset tlb miss 460305
memset second tlb miss 460179
random access tlb miss 44483
random access second tlb miss 44186
vmx andrea # ./largepages3
memset page fault 2182791
memset tlb miss 460742
memset second tlb miss 459962
random access tlb miss 43981
random access second tlb miss 43988
============
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#define SIZE (3UL*1024*1024*1024)
int main()
{
char *p = malloc(SIZE), *p2;
struct timeval before, after;
gettimeofday(&before, NULL);
memset(p, 0, SIZE);
gettimeofday(&after, NULL);
printf("memset page fault %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
memset(p, 0, SIZE);
gettimeofday(&after, NULL);
printf("memset tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
memset(p, 0, SIZE);
gettimeofday(&after, NULL);
printf("memset second tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
for (p2 = p; p2 < p+SIZE; p2 += 4096)
*p2 = 0;
gettimeofday(&after, NULL);
printf("random access tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
for (p2 = p; p2 < p+SIZE; p2 += 4096)
*p2 = 0;
gettimeofday(&after, NULL);
printf("random access second tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
return 0;
}
============
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:46:52 +08:00
|
|
|
|
|
|
|
static inline int PageTransHuge(struct page *page)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2011-01-14 07:46:48 +08:00
|
|
|
static inline int PageTransCompound(struct page *page)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
2012-03-22 07:34:05 +08:00
|
|
|
|
|
|
|
static inline int PageTransTail(struct page *page)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
2011-01-14 07:46:48 +08:00
|
|
|
#endif
|
|
|
|
|
2009-12-15 09:58:59 +08:00
|
|
|
#ifdef CONFIG_MMU
|
2009-04-01 06:23:26 +08:00
|
|
|
#define __PG_MLOCKED (1 << PG_mlocked)
|
|
|
|
#else
|
mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:44 +08:00
|
|
|
#define __PG_MLOCKED 0
|
Unevictable LRU Infrastructure
When the system contains lots of mlocked or otherwise unevictable pages,
the pageout code (kswapd) can spend lots of time scanning over these
pages. Worse still, the presence of lots of unevictable pages can confuse
kswapd into thinking that more aggressive pageout modes are required,
resulting in all kinds of bad behaviour.
Infrastructure to manage pages excluded from reclaim--i.e., hidden from
vmscan. Based on a patch by Larry Woodman of Red Hat. Reworked to
maintain "unevictable" pages on a separate per-zone LRU list, to "hide"
them from vmscan.
Kosaki Motohiro added the support for the memory controller unevictable
lru list.
Pages on the unevictable list have both PG_unevictable and PG_lru set.
Thus, PG_unevictable is analogous to and mutually exclusive with
PG_active--it specifies which LRU list the page is on.
The unevictable infrastructure is enabled by a new mm Kconfig option
[CONFIG_]UNEVICTABLE_LRU.
A new function 'page_evictable(page, vma)' in vmscan.c tests whether or
not a page may be evictable. Subsequent patches will add the various
!evictable tests. We'll want to keep these tests light-weight for use in
shrink_active_list() and, possibly, the fault path.
To avoid races between tasks putting pages [back] onto an LRU list and
tasks that might be moving the page from non-evictable to evictable state,
the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()'
-- tests the "evictability" of a page after placing it on the LRU, before
dropping the reference. If the page has become unevictable,
putback_lru_page() will redo the 'putback', thus moving the page to the
unevictable list. This way, we avoid "stranding" evictable pages on the
unevictable list.
[akpm@linux-foundation.org: fix fallout from out-of-order merge]
[riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build]
[nishimura@mxp.nes.nec.co.jp: remove redundant mapping check]
[kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework]
[kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c]
[kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure]
[kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch]
[kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 11:26:39 +08:00
|
|
|
#endif
|
|
|
|
|
2011-01-14 07:46:32 +08:00
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
|
|
#define __PG_COMPOUND_LOCK (1 << PG_compound_lock)
|
|
|
|
#else
|
|
|
|
#define __PG_COMPOUND_LOCK 0
|
|
|
|
#endif
|
|
|
|
|
2008-06-10 00:18:45 +08:00
|
|
|
/*
|
|
|
|
* Flags checked when a page is freed. Pages being freed should not have
|
|
|
|
* these flags set. It they are, there is a problem.
|
|
|
|
*/
|
2009-01-07 06:40:05 +08:00
|
|
|
#define PAGE_FLAGS_CHECK_AT_FREE \
|
2009-04-03 23:42:36 +08:00
|
|
|
(1 << PG_lru | 1 << PG_locked | \
|
|
|
|
1 << PG_private | 1 << PG_private_2 | \
|
2011-01-14 07:47:00 +08:00
|
|
|
1 << PG_writeback | 1 << PG_reserved | \
|
2009-04-03 23:42:36 +08:00
|
|
|
1 << PG_slab | 1 << PG_swapcache | 1 << PG_active | \
|
2011-01-14 07:46:32 +08:00
|
|
|
1 << PG_unevictable | __PG_MLOCKED | __PG_HWPOISON | \
|
|
|
|
__PG_COMPOUND_LOCK)
|
2008-06-10 00:18:45 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Flags checked when a page is prepped for return by the page allocator.
|
2009-01-07 06:40:05 +08:00
|
|
|
* Pages being prepped should not have any flags set. It they are set,
|
|
|
|
* there has been a kernel bug or struct page corruption.
|
2008-06-10 00:18:45 +08:00
|
|
|
*/
|
2009-01-07 06:40:05 +08:00
|
|
|
#define PAGE_FLAGS_CHECK_AT_PREP ((1 << NR_PAGEFLAGS) - 1)
|
2008-06-10 00:18:45 +08:00
|
|
|
|
2009-09-22 08:02:59 +08:00
|
|
|
#define PAGE_FLAGS_PRIVATE \
|
|
|
|
(1 << PG_private | 1 << PG_private_2)
|
2009-04-03 23:42:36 +08:00
|
|
|
/**
|
|
|
|
* page_has_private - Determine if page has private stuff
|
|
|
|
* @page: The page to be checked
|
|
|
|
*
|
|
|
|
* Determine if a page has private stuff, indicating that release routines
|
|
|
|
* should be invoked upon it.
|
|
|
|
*/
|
2009-09-22 08:02:59 +08:00
|
|
|
static inline int page_has_private(struct page *page)
|
|
|
|
{
|
|
|
|
return !!(page->flags & PAGE_FLAGS_PRIVATE);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* !__GENERATING_BOUNDS_H */
|
2009-04-03 23:42:36 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
#endif /* PAGE_FLAGS_H */
|