mirror of https://github.com/openzfs/zfs.git
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
This commit is contained in:
parent
a724db0374
commit
b2255edcc0
|
@ -83,8 +83,17 @@ run_gen_bench_impl(const char *impl)
|
|||
/* create suitable raidz_map */
|
||||
ncols = rto_opts.rto_dcols + fn + 1;
|
||||
zio_bench.io_size = 1ULL << ds;
|
||||
|
||||
if (rto_opts.rto_expand) {
|
||||
rm_bench = vdev_raidz_map_alloc_expanded(
|
||||
zio_bench.io_abd,
|
||||
zio_bench.io_size, zio_bench.io_offset,
|
||||
rto_opts.rto_ashift, ncols+1, ncols,
|
||||
fn+1, rto_opts.rto_expand_offset);
|
||||
} else {
|
||||
rm_bench = vdev_raidz_map_alloc(&zio_bench,
|
||||
BENCH_ASHIFT, ncols, fn+1);
|
||||
}
|
||||
|
||||
/* estimate iteration count */
|
||||
iter_cnt = GEN_BENCH_MEMORY;
|
||||
|
@ -163,8 +172,16 @@ run_rec_bench_impl(const char *impl)
|
|||
(1ULL << BENCH_ASHIFT))
|
||||
continue;
|
||||
|
||||
if (rto_opts.rto_expand) {
|
||||
rm_bench = vdev_raidz_map_alloc_expanded(
|
||||
zio_bench.io_abd,
|
||||
zio_bench.io_size, zio_bench.io_offset,
|
||||
BENCH_ASHIFT, ncols+1, ncols,
|
||||
PARITY_PQR, rto_opts.rto_expand_offset);
|
||||
} else {
|
||||
rm_bench = vdev_raidz_map_alloc(&zio_bench,
|
||||
BENCH_ASHIFT, ncols, PARITY_PQR);
|
||||
}
|
||||
|
||||
/* estimate iteration count */
|
||||
iter_cnt = (REC_BENCH_MEMORY);
|
||||
|
|
|
@ -77,12 +77,16 @@ static void print_opts(raidz_test_opts_t *opts, boolean_t force)
|
|||
(void) fprintf(stdout, DBLSEP "Running with options:\n"
|
||||
" (-a) zio ashift : %zu\n"
|
||||
" (-o) zio offset : 1 << %zu\n"
|
||||
" (-e) expanded map : %s\n"
|
||||
" (-r) reflow offset : %llx\n"
|
||||
" (-d) number of raidz data columns : %zu\n"
|
||||
" (-s) size of DATA : 1 << %zu\n"
|
||||
" (-S) sweep parameters : %s \n"
|
||||
" (-v) verbose : %s \n\n",
|
||||
opts->rto_ashift, /* -a */
|
||||
ilog2(opts->rto_offset), /* -o */
|
||||
opts->rto_expand ? "yes" : "no", /* -e */
|
||||
(u_longlong_t)opts->rto_expand_offset, /* -r */
|
||||
opts->rto_dcols, /* -d */
|
||||
ilog2(opts->rto_dsize), /* -s */
|
||||
opts->rto_sweep ? "yes" : "no", /* -S */
|
||||
|
@ -104,6 +108,8 @@ static void usage(boolean_t requested)
|
|||
"\t[-S parameter sweep (default: %s)]\n"
|
||||
"\t[-t timeout for parameter sweep test]\n"
|
||||
"\t[-B benchmark all raidz implementations]\n"
|
||||
"\t[-e use expanded raidz map (default: %s)]\n"
|
||||
"\t[-r expanded raidz map reflow offset (default: %llx)]\n"
|
||||
"\t[-v increase verbosity (default: %zu)]\n"
|
||||
"\t[-h (print help)]\n"
|
||||
"\t[-T test the test, see if failure would be detected]\n"
|
||||
|
@ -114,6 +120,8 @@ static void usage(boolean_t requested)
|
|||
o->rto_dcols, /* -d */
|
||||
ilog2(o->rto_dsize), /* -s */
|
||||
rto_opts.rto_sweep ? "yes" : "no", /* -S */
|
||||
rto_opts.rto_expand ? "yes" : "no", /* -e */
|
||||
(u_longlong_t)o->rto_expand_offset, /* -r */
|
||||
o->rto_v); /* -d */
|
||||
|
||||
exit(requested ? 0 : 1);
|
||||
|
@ -128,7 +136,7 @@ static void process_options(int argc, char **argv)
|
|||
|
||||
bcopy(&rto_opts_defaults, o, sizeof (*o));
|
||||
|
||||
while ((opt = getopt(argc, argv, "TDBSvha:o:d:s:t:")) != -1) {
|
||||
while ((opt = getopt(argc, argv, "TDBSvha:er:o:d:s:t:")) != -1) {
|
||||
value = 0;
|
||||
|
||||
switch (opt) {
|
||||
|
@ -136,6 +144,12 @@ static void process_options(int argc, char **argv)
|
|||
value = strtoull(optarg, NULL, 0);
|
||||
o->rto_ashift = MIN(13, MAX(9, value));
|
||||
break;
|
||||
case 'e':
|
||||
o->rto_expand = 1;
|
||||
break;
|
||||
case 'r':
|
||||
o->rto_expand_offset = strtoull(optarg, NULL, 0);
|
||||
break;
|
||||
case 'o':
|
||||
value = strtoull(optarg, NULL, 0);
|
||||
o->rto_offset = ((1ULL << MIN(12, value)) >> 9) << 9;
|
||||
|
@ -179,45 +193,64 @@ static void process_options(int argc, char **argv)
|
|||
}
|
||||
}
|
||||
|
||||
#define DATA_COL(rm, i) ((rm)->rm_col[raidz_parity(rm) + (i)].rc_abd)
|
||||
#define DATA_COL_SIZE(rm, i) ((rm)->rm_col[raidz_parity(rm) + (i)].rc_size)
|
||||
#define DATA_COL(rr, i) ((rr)->rr_col[rr->rr_firstdatacol + (i)].rc_abd)
|
||||
#define DATA_COL_SIZE(rr, i) ((rr)->rr_col[rr->rr_firstdatacol + (i)].rc_size)
|
||||
|
||||
#define CODE_COL(rm, i) ((rm)->rm_col[(i)].rc_abd)
|
||||
#define CODE_COL_SIZE(rm, i) ((rm)->rm_col[(i)].rc_size)
|
||||
#define CODE_COL(rr, i) ((rr)->rr_col[(i)].rc_abd)
|
||||
#define CODE_COL_SIZE(rr, i) ((rr)->rr_col[(i)].rc_size)
|
||||
|
||||
static int
|
||||
cmp_code(raidz_test_opts_t *opts, const raidz_map_t *rm, const int parity)
|
||||
{
|
||||
int i, ret = 0;
|
||||
int r, i, ret = 0;
|
||||
|
||||
VERIFY(parity >= 1 && parity <= 3);
|
||||
|
||||
for (r = 0; r < rm->rm_nrows; r++) {
|
||||
raidz_row_t * const rr = rm->rm_row[r];
|
||||
raidz_row_t * const rrg = opts->rm_golden->rm_row[r];
|
||||
for (i = 0; i < parity; i++) {
|
||||
if (abd_cmp(CODE_COL(rm, i), CODE_COL(opts->rm_golden, i))
|
||||
!= 0) {
|
||||
if (CODE_COL_SIZE(rrg, i) == 0) {
|
||||
VERIFY0(CODE_COL_SIZE(rr, i));
|
||||
continue;
|
||||
}
|
||||
|
||||
if (abd_cmp(CODE_COL(rr, i),
|
||||
CODE_COL(rrg, i)) != 0) {
|
||||
ret++;
|
||||
LOG_OPT(D_DEBUG, opts,
|
||||
"\nParity block [%d] different!\n", i);
|
||||
}
|
||||
}
|
||||
}
|
||||
return (ret);
|
||||
}
|
||||
|
||||
static int
|
||||
cmp_data(raidz_test_opts_t *opts, raidz_map_t *rm)
|
||||
{
|
||||
int i, ret = 0;
|
||||
int dcols = opts->rm_golden->rm_cols - raidz_parity(opts->rm_golden);
|
||||
int r, i, dcols, ret = 0;
|
||||
|
||||
for (r = 0; r < rm->rm_nrows; r++) {
|
||||
raidz_row_t *rr = rm->rm_row[r];
|
||||
raidz_row_t *rrg = opts->rm_golden->rm_row[r];
|
||||
dcols = opts->rm_golden->rm_row[0]->rr_cols -
|
||||
raidz_parity(opts->rm_golden);
|
||||
for (i = 0; i < dcols; i++) {
|
||||
if (abd_cmp(DATA_COL(opts->rm_golden, i), DATA_COL(rm, i))
|
||||
!= 0) {
|
||||
if (DATA_COL_SIZE(rrg, i) == 0) {
|
||||
VERIFY0(DATA_COL_SIZE(rr, i));
|
||||
continue;
|
||||
}
|
||||
|
||||
if (abd_cmp(DATA_COL(rrg, i),
|
||||
DATA_COL(rr, i)) != 0) {
|
||||
ret++;
|
||||
|
||||
LOG_OPT(D_DEBUG, opts,
|
||||
"\nData block [%d] different!\n", i);
|
||||
}
|
||||
}
|
||||
}
|
||||
return (ret);
|
||||
}
|
||||
|
||||
|
@ -236,12 +269,13 @@ init_rand(void *data, size_t size, void *private)
|
|||
static void
|
||||
corrupt_colums(raidz_map_t *rm, const int *tgts, const int cnt)
|
||||
{
|
||||
int i;
|
||||
raidz_col_t *col;
|
||||
|
||||
for (i = 0; i < cnt; i++) {
|
||||
col = &rm->rm_col[tgts[i]];
|
||||
abd_iterate_func(col->rc_abd, 0, col->rc_size, init_rand, NULL);
|
||||
for (int r = 0; r < rm->rm_nrows; r++) {
|
||||
raidz_row_t *rr = rm->rm_row[r];
|
||||
for (int i = 0; i < cnt; i++) {
|
||||
raidz_col_t *col = &rr->rr_col[tgts[i]];
|
||||
abd_iterate_func(col->rc_abd, 0, col->rc_size,
|
||||
init_rand, NULL);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -288,10 +322,22 @@ init_raidz_golden_map(raidz_test_opts_t *opts, const int parity)
|
|||
|
||||
VERIFY0(vdev_raidz_impl_set("original"));
|
||||
|
||||
if (opts->rto_expand) {
|
||||
opts->rm_golden =
|
||||
vdev_raidz_map_alloc_expanded(opts->zio_golden->io_abd,
|
||||
opts->zio_golden->io_size, opts->zio_golden->io_offset,
|
||||
opts->rto_ashift, total_ncols+1, total_ncols,
|
||||
parity, opts->rto_expand_offset);
|
||||
rm_test = vdev_raidz_map_alloc_expanded(zio_test->io_abd,
|
||||
zio_test->io_size, zio_test->io_offset,
|
||||
opts->rto_ashift, total_ncols+1, total_ncols,
|
||||
parity, opts->rto_expand_offset);
|
||||
} else {
|
||||
opts->rm_golden = vdev_raidz_map_alloc(opts->zio_golden,
|
||||
opts->rto_ashift, total_ncols, parity);
|
||||
rm_test = vdev_raidz_map_alloc(zio_test,
|
||||
opts->rto_ashift, total_ncols, parity);
|
||||
}
|
||||
|
||||
VERIFY(opts->zio_golden);
|
||||
VERIFY(opts->rm_golden);
|
||||
|
@ -312,6 +358,188 @@ init_raidz_golden_map(raidz_test_opts_t *opts, const int parity)
|
|||
return (err);
|
||||
}
|
||||
|
||||
/*
|
||||
* If reflow is not in progress, reflow_offset should be UINT64_MAX.
|
||||
* For each row, if the row is entirely before reflow_offset, it will
|
||||
* come from the new location. Otherwise this row will come from the
|
||||
* old location. Therefore, rows that straddle the reflow_offset will
|
||||
* come from the old location.
|
||||
*
|
||||
* NOTE: Until raidz expansion is implemented this function is only
|
||||
* needed by raidz_test.c to the multi-row raid_map_t functionality.
|
||||
*/
|
||||
raidz_map_t *
|
||||
vdev_raidz_map_alloc_expanded(abd_t *abd, uint64_t size, uint64_t offset,
|
||||
uint64_t ashift, uint64_t physical_cols, uint64_t logical_cols,
|
||||
uint64_t nparity, uint64_t reflow_offset)
|
||||
{
|
||||
/* The zio's size in units of the vdev's minimum sector size. */
|
||||
uint64_t s = size >> ashift;
|
||||
uint64_t q, r, bc, devidx, asize = 0, tot;
|
||||
|
||||
/*
|
||||
* "Quotient": The number of data sectors for this stripe on all but
|
||||
* the "big column" child vdevs that also contain "remainder" data.
|
||||
* AKA "full rows"
|
||||
*/
|
||||
q = s / (logical_cols - nparity);
|
||||
|
||||
/*
|
||||
* "Remainder": The number of partial stripe data sectors in this I/O.
|
||||
* This will add a sector to some, but not all, child vdevs.
|
||||
*/
|
||||
r = s - q * (logical_cols - nparity);
|
||||
|
||||
/* The number of "big columns" - those which contain remainder data. */
|
||||
bc = (r == 0 ? 0 : r + nparity);
|
||||
|
||||
/*
|
||||
* The total number of data and parity sectors associated with
|
||||
* this I/O.
|
||||
*/
|
||||
tot = s + nparity * (q + (r == 0 ? 0 : 1));
|
||||
|
||||
/* How many rows contain data (not skip) */
|
||||
uint64_t rows = howmany(tot, logical_cols);
|
||||
int cols = MIN(tot, logical_cols);
|
||||
|
||||
raidz_map_t *rm = kmem_zalloc(offsetof(raidz_map_t, rm_row[rows]),
|
||||
KM_SLEEP);
|
||||
rm->rm_nrows = rows;
|
||||
|
||||
for (uint64_t row = 0; row < rows; row++) {
|
||||
raidz_row_t *rr = kmem_alloc(offsetof(raidz_row_t,
|
||||
rr_col[cols]), KM_SLEEP);
|
||||
rm->rm_row[row] = rr;
|
||||
|
||||
/* The starting RAIDZ (parent) vdev sector of the row. */
|
||||
uint64_t b = (offset >> ashift) + row * logical_cols;
|
||||
|
||||
/*
|
||||
* If we are in the middle of a reflow, and any part of this
|
||||
* row has not been copied, then use the old location of
|
||||
* this row.
|
||||
*/
|
||||
int row_phys_cols = physical_cols;
|
||||
if (b + (logical_cols - nparity) > reflow_offset >> ashift)
|
||||
row_phys_cols--;
|
||||
|
||||
/* starting child of this row */
|
||||
uint64_t child_id = b % row_phys_cols;
|
||||
/* The starting byte offset on each child vdev. */
|
||||
uint64_t child_offset = (b / row_phys_cols) << ashift;
|
||||
|
||||
/*
|
||||
* We set cols to the entire width of the block, even
|
||||
* if this row is shorter. This is needed because parity
|
||||
* generation (for Q and R) needs to know the entire width,
|
||||
* because it treats the short row as though it was
|
||||
* full-width (and the "phantom" sectors were zero-filled).
|
||||
*
|
||||
* Another approach to this would be to set cols shorter
|
||||
* (to just the number of columns that we might do i/o to)
|
||||
* and have another mechanism to tell the parity generation
|
||||
* about the "entire width". Reconstruction (at least
|
||||
* vdev_raidz_reconstruct_general()) would also need to
|
||||
* know about the "entire width".
|
||||
*/
|
||||
rr->rr_cols = cols;
|
||||
rr->rr_bigcols = bc;
|
||||
rr->rr_missingdata = 0;
|
||||
rr->rr_missingparity = 0;
|
||||
rr->rr_firstdatacol = nparity;
|
||||
rr->rr_abd_copy = NULL;
|
||||
rr->rr_abd_empty = NULL;
|
||||
rr->rr_nempty = 0;
|
||||
|
||||
for (int c = 0; c < rr->rr_cols; c++, child_id++) {
|
||||
if (child_id >= row_phys_cols) {
|
||||
child_id -= row_phys_cols;
|
||||
child_offset += 1ULL << ashift;
|
||||
}
|
||||
rr->rr_col[c].rc_devidx = child_id;
|
||||
rr->rr_col[c].rc_offset = child_offset;
|
||||
rr->rr_col[c].rc_gdata = NULL;
|
||||
rr->rr_col[c].rc_orig_data = NULL;
|
||||
rr->rr_col[c].rc_error = 0;
|
||||
rr->rr_col[c].rc_tried = 0;
|
||||
rr->rr_col[c].rc_skipped = 0;
|
||||
rr->rr_col[c].rc_need_orig_restore = B_FALSE;
|
||||
|
||||
uint64_t dc = c - rr->rr_firstdatacol;
|
||||
if (c < rr->rr_firstdatacol) {
|
||||
rr->rr_col[c].rc_size = 1ULL << ashift;
|
||||
rr->rr_col[c].rc_abd =
|
||||
abd_alloc_linear(rr->rr_col[c].rc_size,
|
||||
B_TRUE);
|
||||
} else if (row == rows - 1 && bc != 0 && c >= bc) {
|
||||
/*
|
||||
* Past the end, this for parity generation.
|
||||
*/
|
||||
rr->rr_col[c].rc_size = 0;
|
||||
rr->rr_col[c].rc_abd = NULL;
|
||||
} else {
|
||||
/*
|
||||
* "data column" (col excluding parity)
|
||||
* Add an ASCII art diagram here
|
||||
*/
|
||||
uint64_t off;
|
||||
|
||||
if (c < bc || r == 0) {
|
||||
off = dc * rows + row;
|
||||
} else {
|
||||
off = r * rows +
|
||||
(dc - r) * (rows - 1) + row;
|
||||
}
|
||||
rr->rr_col[c].rc_size = 1ULL << ashift;
|
||||
rr->rr_col[c].rc_abd =
|
||||
abd_get_offset(abd, off << ashift);
|
||||
}
|
||||
|
||||
asize += rr->rr_col[c].rc_size;
|
||||
}
|
||||
/*
|
||||
* If all data stored spans all columns, there's a danger that
|
||||
* parity will always be on the same device and, since parity
|
||||
* isn't read during normal operation, that that device's I/O
|
||||
* bandwidth won't be used effectively. We therefore switch
|
||||
* the parity every 1MB.
|
||||
*
|
||||
* ...at least that was, ostensibly, the theory. As a practical
|
||||
* matter unless we juggle the parity between all devices
|
||||
* evenly, we won't see any benefit. Further, occasional writes
|
||||
* that aren't a multiple of the LCM of the number of children
|
||||
* and the minimum stripe width are sufficient to avoid pessimal
|
||||
* behavior. Unfortunately, this decision created an implicit
|
||||
* on-disk format requirement that we need to support for all
|
||||
* eternity, but only for single-parity RAID-Z.
|
||||
*
|
||||
* If we intend to skip a sector in the zeroth column for
|
||||
* padding we must make sure to note this swap. We will never
|
||||
* intend to skip the first column since at least one data and
|
||||
* one parity column must appear in each row.
|
||||
*/
|
||||
if (rr->rr_firstdatacol == 1 && rr->rr_cols > 1 &&
|
||||
(offset & (1ULL << 20))) {
|
||||
ASSERT(rr->rr_cols >= 2);
|
||||
ASSERT(rr->rr_col[0].rc_size == rr->rr_col[1].rc_size);
|
||||
devidx = rr->rr_col[0].rc_devidx;
|
||||
uint64_t o = rr->rr_col[0].rc_offset;
|
||||
rr->rr_col[0].rc_devidx = rr->rr_col[1].rc_devidx;
|
||||
rr->rr_col[0].rc_offset = rr->rr_col[1].rc_offset;
|
||||
rr->rr_col[1].rc_devidx = devidx;
|
||||
rr->rr_col[1].rc_offset = o;
|
||||
}
|
||||
|
||||
}
|
||||
ASSERT3U(asize, ==, tot << ashift);
|
||||
|
||||
/* init RAIDZ parity ops */
|
||||
rm->rm_ops = vdev_raidz_math_get_ops();
|
||||
|
||||
return (rm);
|
||||
}
|
||||
|
||||
static raidz_map_t *
|
||||
init_raidz_map(raidz_test_opts_t *opts, zio_t **zio, const int parity)
|
||||
{
|
||||
|
@ -330,8 +558,15 @@ init_raidz_map(raidz_test_opts_t *opts, zio_t **zio, const int parity)
|
|||
(*zio)->io_abd = raidz_alloc(alloc_dsize);
|
||||
init_zio_abd(*zio);
|
||||
|
||||
if (opts->rto_expand) {
|
||||
rm = vdev_raidz_map_alloc_expanded((*zio)->io_abd,
|
||||
(*zio)->io_size, (*zio)->io_offset,
|
||||
opts->rto_ashift, total_ncols+1, total_ncols,
|
||||
parity, opts->rto_expand_offset);
|
||||
} else {
|
||||
rm = vdev_raidz_map_alloc(*zio, opts->rto_ashift,
|
||||
total_ncols, parity);
|
||||
}
|
||||
VERIFY(rm);
|
||||
|
||||
/* Make sure code columns are destroyed */
|
||||
|
@ -420,7 +655,7 @@ run_rec_check_impl(raidz_test_opts_t *opts, raidz_map_t *rm, const int fn)
|
|||
if (fn < RAIDZ_REC_PQ) {
|
||||
/* can reconstruct 1 failed data disk */
|
||||
for (x0 = 0; x0 < opts->rto_dcols; x0++) {
|
||||
if (x0 >= rm->rm_cols - raidz_parity(rm))
|
||||
if (x0 >= rm->rm_row[0]->rr_cols - raidz_parity(rm))
|
||||
continue;
|
||||
|
||||
/* Check if should stop */
|
||||
|
@ -445,10 +680,11 @@ run_rec_check_impl(raidz_test_opts_t *opts, raidz_map_t *rm, const int fn)
|
|||
} else if (fn < RAIDZ_REC_PQR) {
|
||||
/* can reconstruct 2 failed data disk */
|
||||
for (x0 = 0; x0 < opts->rto_dcols; x0++) {
|
||||
if (x0 >= rm->rm_cols - raidz_parity(rm))
|
||||
if (x0 >= rm->rm_row[0]->rr_cols - raidz_parity(rm))
|
||||
continue;
|
||||
for (x1 = x0 + 1; x1 < opts->rto_dcols; x1++) {
|
||||
if (x1 >= rm->rm_cols - raidz_parity(rm))
|
||||
if (x1 >= rm->rm_row[0]->rr_cols -
|
||||
raidz_parity(rm))
|
||||
continue;
|
||||
|
||||
/* Check if should stop */
|
||||
|
@ -475,14 +711,15 @@ run_rec_check_impl(raidz_test_opts_t *opts, raidz_map_t *rm, const int fn)
|
|||
} else {
|
||||
/* can reconstruct 3 failed data disk */
|
||||
for (x0 = 0; x0 < opts->rto_dcols; x0++) {
|
||||
if (x0 >= rm->rm_cols - raidz_parity(rm))
|
||||
if (x0 >= rm->rm_row[0]->rr_cols - raidz_parity(rm))
|
||||
continue;
|
||||
for (x1 = x0 + 1; x1 < opts->rto_dcols; x1++) {
|
||||
if (x1 >= rm->rm_cols - raidz_parity(rm))
|
||||
if (x1 >= rm->rm_row[0]->rr_cols -
|
||||
raidz_parity(rm))
|
||||
continue;
|
||||
for (x2 = x1 + 1; x2 < opts->rto_dcols; x2++) {
|
||||
if (x2 >=
|
||||
rm->rm_cols - raidz_parity(rm))
|
||||
if (x2 >= rm->rm_row[0]->rr_cols -
|
||||
raidz_parity(rm))
|
||||
continue;
|
||||
|
||||
/* Check if should stop */
|
||||
|
@ -700,6 +937,8 @@ run_sweep(void)
|
|||
opts->rto_dcols = dcols_v[d];
|
||||
opts->rto_offset = (1 << ashift_v[a]) * rand();
|
||||
opts->rto_dsize = size_v[s];
|
||||
opts->rto_expand = rto_opts.rto_expand;
|
||||
opts->rto_expand_offset = rto_opts.rto_expand_offset;
|
||||
opts->rto_v = 0; /* be quiet */
|
||||
|
||||
VERIFY3P(thread_create(NULL, 0, sweep_thread, (void *) opts,
|
||||
|
@ -732,6 +971,7 @@ exit:
|
|||
return (sweep_state == SWEEP_ERROR ? SWEEP_ERROR : 0);
|
||||
}
|
||||
|
||||
|
||||
int
|
||||
main(int argc, char **argv)
|
||||
{
|
||||
|
|
|
@ -44,13 +44,15 @@ static const char *raidz_impl_names[] = {
|
|||
|
||||
typedef struct raidz_test_opts {
|
||||
size_t rto_ashift;
|
||||
size_t rto_offset;
|
||||
uint64_t rto_offset;
|
||||
size_t rto_dcols;
|
||||
size_t rto_dsize;
|
||||
size_t rto_v;
|
||||
size_t rto_sweep;
|
||||
size_t rto_sweep_timeout;
|
||||
size_t rto_benchmark;
|
||||
size_t rto_expand;
|
||||
uint64_t rto_expand_offset;
|
||||
size_t rto_sanity;
|
||||
size_t rto_gdb;
|
||||
|
||||
|
@ -69,6 +71,8 @@ static const raidz_test_opts_t rto_opts_defaults = {
|
|||
.rto_v = 0,
|
||||
.rto_sweep = 0,
|
||||
.rto_benchmark = 0,
|
||||
.rto_expand = 0,
|
||||
.rto_expand_offset = -1ULL,
|
||||
.rto_sanity = 0,
|
||||
.rto_gdb = 0,
|
||||
.rto_should_stop = B_FALSE
|
||||
|
@ -113,4 +117,7 @@ void init_zio_abd(zio_t *zio);
|
|||
|
||||
void run_raidz_benchmark(void);
|
||||
|
||||
struct raidz_map *vdev_raidz_map_alloc_expanded(abd_t *, uint64_t, uint64_t,
|
||||
uint64_t, uint64_t, uint64_t, uint64_t, uint64_t);
|
||||
|
||||
#endif /* RAIDZ_TEST_H */
|
||||
|
|
|
@ -1642,7 +1642,11 @@ dump_metaslab(metaslab_t *msp)
|
|||
SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift);
|
||||
}
|
||||
|
||||
ASSERT(msp->ms_size == (1ULL << vd->vdev_ms_shift));
|
||||
if (vd->vdev_ops == &vdev_draid_ops)
|
||||
ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift);
|
||||
else
|
||||
ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift);
|
||||
|
||||
dump_spacemap(spa->spa_meta_objset, msp->ms_sm);
|
||||
|
||||
if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
|
||||
|
@ -5203,8 +5207,6 @@ zdb_blkptr_done(zio_t *zio)
|
|||
zdb_cb_t *zcb = zio->io_private;
|
||||
zbookmark_phys_t *zb = &zio->io_bookmark;
|
||||
|
||||
abd_free(zio->io_abd);
|
||||
|
||||
mutex_enter(&spa->spa_scrub_lock);
|
||||
spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
|
||||
cv_broadcast(&spa->spa_scrub_io_cv);
|
||||
|
@ -5231,6 +5233,8 @@ zdb_blkptr_done(zio_t *zio)
|
|||
blkbuf);
|
||||
}
|
||||
mutex_exit(&spa->spa_scrub_lock);
|
||||
|
||||
abd_free(zio->io_abd);
|
||||
}
|
||||
|
||||
static int
|
||||
|
|
|
@ -435,7 +435,15 @@ zfs_process_add(zpool_handle_t *zhp, nvlist_t *vdev, boolean_t labeled)
|
|||
return;
|
||||
}
|
||||
|
||||
ret = zpool_vdev_attach(zhp, fullpath, path, nvroot, B_TRUE, B_FALSE);
|
||||
/*
|
||||
* Prefer sequential resilvering when supported (mirrors and dRAID),
|
||||
* otherwise fallback to a traditional healing resilver.
|
||||
*/
|
||||
ret = zpool_vdev_attach(zhp, fullpath, path, nvroot, B_TRUE, B_TRUE);
|
||||
if (ret != 0) {
|
||||
ret = zpool_vdev_attach(zhp, fullpath, path, nvroot,
|
||||
B_TRUE, B_FALSE);
|
||||
}
|
||||
|
||||
zed_log_msg(LOG_INFO, " zpool_vdev_replace: %s with %s (%s)",
|
||||
fullpath, path, (ret == 0) ? "no errors" :
|
||||
|
|
|
@ -219,12 +219,18 @@ replace_with_spare(fmd_hdl_t *hdl, zpool_handle_t *zhp, nvlist_t *vdev)
|
|||
* replace it.
|
||||
*/
|
||||
for (s = 0; s < nspares; s++) {
|
||||
char *spare_name;
|
||||
boolean_t rebuild = B_FALSE;
|
||||
char *spare_name, *type;
|
||||
|
||||
if (nvlist_lookup_string(spares[s], ZPOOL_CONFIG_PATH,
|
||||
&spare_name) != 0)
|
||||
continue;
|
||||
|
||||
/* prefer sequential resilvering for distributed spares */
|
||||
if ((nvlist_lookup_string(spares[s], ZPOOL_CONFIG_TYPE,
|
||||
&type) == 0) && strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0)
|
||||
rebuild = B_TRUE;
|
||||
|
||||
/* if set, add the "ashift" pool property to the spare nvlist */
|
||||
if (source != ZPROP_SRC_DEFAULT)
|
||||
(void) nvlist_add_uint64(spares[s],
|
||||
|
@ -237,7 +243,7 @@ replace_with_spare(fmd_hdl_t *hdl, zpool_handle_t *zhp, nvlist_t *vdev)
|
|||
dev_name, basename(spare_name));
|
||||
|
||||
if (zpool_vdev_attach(zhp, dev_name, spare_name,
|
||||
replacement, B_TRUE, B_FALSE) == 0) {
|
||||
replacement, B_TRUE, rebuild) == 0) {
|
||||
free(dev_name);
|
||||
nvlist_free(replacement);
|
||||
return (B_TRUE);
|
||||
|
@ -499,6 +505,7 @@ zfs_retire_recv(fmd_hdl_t *hdl, fmd_event_t *ep, nvlist_t *nvl,
|
|||
* Attempt to substitute a hot spare.
|
||||
*/
|
||||
(void) replace_with_spare(hdl, zhp, vdev);
|
||||
|
||||
zpool_close(zhp);
|
||||
}
|
||||
|
||||
|
|
|
@ -892,6 +892,107 @@ usage:
|
|||
return (-1);
|
||||
}
|
||||
|
||||
/*
|
||||
* Return a default volblocksize for the pool which always uses more than
|
||||
* half of the data sectors. This primarily applies to dRAID which always
|
||||
* writes full stripe widths.
|
||||
*/
|
||||
static uint64_t
|
||||
default_volblocksize(zpool_handle_t *zhp, nvlist_t *props)
|
||||
{
|
||||
uint64_t volblocksize, asize = SPA_MINBLOCKSIZE;
|
||||
nvlist_t *tree, **vdevs;
|
||||
uint_t nvdevs;
|
||||
|
||||
nvlist_t *config = zpool_get_config(zhp, NULL);
|
||||
|
||||
if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &tree) != 0 ||
|
||||
nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN,
|
||||
&vdevs, &nvdevs) != 0) {
|
||||
return (ZVOL_DEFAULT_BLOCKSIZE);
|
||||
}
|
||||
|
||||
for (int i = 0; i < nvdevs; i++) {
|
||||
nvlist_t *nv = vdevs[i];
|
||||
uint64_t ashift, ndata, nparity;
|
||||
|
||||
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &ashift) != 0)
|
||||
continue;
|
||||
|
||||
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA,
|
||||
&ndata) == 0) {
|
||||
/* dRAID minimum allocation width */
|
||||
asize = MAX(asize, ndata * (1ULL << ashift));
|
||||
} else if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
|
||||
&nparity) == 0) {
|
||||
/* raidz minimum allocation width */
|
||||
if (nparity == 1)
|
||||
asize = MAX(asize, 2 * (1ULL << ashift));
|
||||
else
|
||||
asize = MAX(asize, 4 * (1ULL << ashift));
|
||||
} else {
|
||||
/* mirror or (non-redundant) leaf vdev */
|
||||
asize = MAX(asize, 1ULL << ashift);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Calculate the target volblocksize such that more than half
|
||||
* of the asize is used. The following table is for 4k sectors.
|
||||
*
|
||||
* n asize blksz used | n asize blksz used
|
||||
* -------------------------+---------------------------------
|
||||
* 1 4,096 8,192 100% | 9 36,864 32,768 88%
|
||||
* 2 8,192 8,192 100% | 10 40,960 32,768 80%
|
||||
* 3 12,288 8,192 66% | 11 45,056 32,768 72%
|
||||
* 4 16,384 16,384 100% | 12 49,152 32,768 66%
|
||||
* 5 20,480 16,384 80% | 13 53,248 32,768 61%
|
||||
* 6 24,576 16,384 66% | 14 57,344 32,768 57%
|
||||
* 7 28,672 16,384 57% | 15 61,440 32,768 53%
|
||||
* 8 32,768 32,768 100% | 16 65,536 65,636 100%
|
||||
*
|
||||
* This is primarily a concern for dRAID which always allocates
|
||||
* a full stripe width. For dRAID the default stripe width is
|
||||
* n=8 in which case the volblocksize is set to 32k. Ignoring
|
||||
* compression there are no unused sectors. This same reasoning
|
||||
* applies to raidz[2,3] so target 4 sectors to minimize waste.
|
||||
*/
|
||||
uint64_t tgt_volblocksize = ZVOL_DEFAULT_BLOCKSIZE;
|
||||
while (tgt_volblocksize * 2 <= asize)
|
||||
tgt_volblocksize *= 2;
|
||||
|
||||
const char *prop = zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE);
|
||||
if (nvlist_lookup_uint64(props, prop, &volblocksize) == 0) {
|
||||
|
||||
/* Issue a warning when a non-optimal size is requested. */
|
||||
if (volblocksize < ZVOL_DEFAULT_BLOCKSIZE) {
|
||||
(void) fprintf(stderr, gettext("Warning: "
|
||||
"volblocksize (%llu) is less than the default "
|
||||
"minimum block size (%llu).\nTo reduce wasted "
|
||||
"space a volblocksize of %llu is recommended.\n"),
|
||||
(u_longlong_t)volblocksize,
|
||||
(u_longlong_t)ZVOL_DEFAULT_BLOCKSIZE,
|
||||
(u_longlong_t)tgt_volblocksize);
|
||||
} else if (volblocksize < tgt_volblocksize) {
|
||||
(void) fprintf(stderr, gettext("Warning: "
|
||||
"volblocksize (%llu) is much less than the "
|
||||
"minimum allocation\nunit (%llu), which wastes "
|
||||
"at least %llu%% of space. To reduce wasted "
|
||||
"space,\nuse a larger volblocksize (%llu is "
|
||||
"recommended), fewer dRAID data disks\n"
|
||||
"per group, or smaller sector size (ashift).\n"),
|
||||
(u_longlong_t)volblocksize, (u_longlong_t)asize,
|
||||
(u_longlong_t)((100 * (asize - volblocksize)) /
|
||||
asize), (u_longlong_t)tgt_volblocksize);
|
||||
}
|
||||
} else {
|
||||
volblocksize = tgt_volblocksize;
|
||||
fnvlist_add_uint64(props, prop, volblocksize);
|
||||
}
|
||||
|
||||
return (volblocksize);
|
||||
}
|
||||
|
||||
/*
|
||||
* zfs create [-Pnpv] [-o prop=value] ... fs
|
||||
* zfs create [-Pnpsv] [-b blocksize] [-o prop=value] ... -V vol size
|
||||
|
@ -932,6 +1033,7 @@ zfs_do_create(int argc, char **argv)
|
|||
int ret = 1;
|
||||
nvlist_t *props;
|
||||
uint64_t intval;
|
||||
char *strval;
|
||||
|
||||
if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0)
|
||||
nomem();
|
||||
|
@ -1018,7 +1120,7 @@ zfs_do_create(int argc, char **argv)
|
|||
goto badusage;
|
||||
}
|
||||
|
||||
if (dryrun || (type == ZFS_TYPE_VOLUME && !noreserve)) {
|
||||
if (dryrun || type == ZFS_TYPE_VOLUME) {
|
||||
char msg[ZFS_MAX_DATASET_NAME_LEN * 2];
|
||||
char *p;
|
||||
|
||||
|
@ -1040,18 +1142,24 @@ zfs_do_create(int argc, char **argv)
|
|||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* if volsize is not a multiple of volblocksize, round it up to the
|
||||
* nearest multiple of the volblocksize
|
||||
*/
|
||||
if (type == ZFS_TYPE_VOLUME) {
|
||||
uint64_t volblocksize;
|
||||
const char *prop = zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE);
|
||||
uint64_t volblocksize = default_volblocksize(zpool_handle,
|
||||
real_props);
|
||||
|
||||
if (nvlist_lookup_uint64(props,
|
||||
zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE),
|
||||
&volblocksize) != 0)
|
||||
volblocksize = ZVOL_DEFAULT_BLOCKSIZE;
|
||||
if (volblocksize != ZVOL_DEFAULT_BLOCKSIZE &&
|
||||
nvlist_lookup_string(props, prop, &strval) != 0) {
|
||||
if (asprintf(&strval, "%llu",
|
||||
(u_longlong_t)volblocksize) == -1)
|
||||
nomem();
|
||||
nvlist_add_string(props, prop, strval);
|
||||
free(strval);
|
||||
}
|
||||
|
||||
/*
|
||||
* If volsize is not a multiple of volblocksize, round it
|
||||
* up to the nearest multiple of the volblocksize.
|
||||
*/
|
||||
if (volsize % volblocksize) {
|
||||
volsize = P2ROUNDUP_TYPED(volsize, volblocksize,
|
||||
uint64_t);
|
||||
|
@ -1064,11 +1172,9 @@ zfs_do_create(int argc, char **argv)
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
if (type == ZFS_TYPE_VOLUME && !noreserve) {
|
||||
uint64_t spa_version;
|
||||
zfs_prop_t resv_prop;
|
||||
char *strval;
|
||||
|
||||
spa_version = zpool_get_prop_int(zpool_handle,
|
||||
ZPOOL_PROP_VERSION, NULL);
|
||||
|
|
|
@ -2294,7 +2294,7 @@ print_status_config(zpool_handle_t *zhp, status_cbdata_t *cb, const char *name,
|
|||
}
|
||||
}
|
||||
|
||||
/* Display vdev initialization and trim status for leaves */
|
||||
/* Display vdev initialization and trim status for leaves. */
|
||||
if (children == 0) {
|
||||
print_status_initialize(vs, cb->cb_print_vdev_init);
|
||||
print_status_trim(vs, cb->cb_print_vdev_trim);
|
||||
|
@ -9849,7 +9849,8 @@ vdev_any_spare_replacing(nvlist_t *nv)
|
|||
(void) nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &vdev_type);
|
||||
|
||||
if (strcmp(vdev_type, VDEV_TYPE_REPLACING) == 0 ||
|
||||
strcmp(vdev_type, VDEV_TYPE_SPARE) == 0) {
|
||||
strcmp(vdev_type, VDEV_TYPE_SPARE) == 0 ||
|
||||
strcmp(vdev_type, VDEV_TYPE_DRAID_SPARE) == 0) {
|
||||
return (B_TRUE);
|
||||
}
|
||||
|
||||
|
|
|
@ -86,9 +86,6 @@
|
|||
boolean_t error_seen;
|
||||
boolean_t is_force;
|
||||
|
||||
|
||||
|
||||
|
||||
/*PRINTFLIKE1*/
|
||||
void
|
||||
vdev_error(const char *fmt, ...)
|
||||
|
@ -222,6 +219,9 @@ is_spare(nvlist_t *config, const char *path)
|
|||
uint_t i, nspares;
|
||||
boolean_t inuse;
|
||||
|
||||
if (zpool_is_draid_spare(path))
|
||||
return (B_TRUE);
|
||||
|
||||
if ((fd = open(path, O_RDONLY|O_DIRECT)) < 0)
|
||||
return (B_FALSE);
|
||||
|
||||
|
@ -267,9 +267,10 @@ is_spare(nvlist_t *config, const char *path)
|
|||
* /dev/xxx Complete disk path
|
||||
* /xxx Full path to file
|
||||
* xxx Shorthand for <zfs_vdev_paths>/xxx
|
||||
* draid* Virtual dRAID spare
|
||||
*/
|
||||
static nvlist_t *
|
||||
make_leaf_vdev(nvlist_t *props, const char *arg, uint64_t is_log)
|
||||
make_leaf_vdev(nvlist_t *props, const char *arg, boolean_t is_primary)
|
||||
{
|
||||
char path[MAXPATHLEN];
|
||||
struct stat64 statbuf;
|
||||
|
@ -309,6 +310,17 @@ make_leaf_vdev(nvlist_t *props, const char *arg, uint64_t is_log)
|
|||
|
||||
/* After whole disk check restore original passed path */
|
||||
strlcpy(path, arg, sizeof (path));
|
||||
} else if (zpool_is_draid_spare(arg)) {
|
||||
if (!is_primary) {
|
||||
(void) fprintf(stderr,
|
||||
gettext("cannot open '%s': dRAID spares can only "
|
||||
"be used to replace primary vdevs\n"), arg);
|
||||
return (NULL);
|
||||
}
|
||||
|
||||
wholedisk = B_TRUE;
|
||||
strlcpy(path, arg, sizeof (path));
|
||||
type = VDEV_TYPE_DRAID_SPARE;
|
||||
} else {
|
||||
err = is_shorthand_path(arg, path, sizeof (path),
|
||||
&statbuf, &wholedisk);
|
||||
|
@ -337,6 +349,7 @@ make_leaf_vdev(nvlist_t *props, const char *arg, uint64_t is_log)
|
|||
}
|
||||
}
|
||||
|
||||
if (type == NULL) {
|
||||
/*
|
||||
* Determine whether this is a device or a file.
|
||||
*/
|
||||
|
@ -345,10 +358,11 @@ make_leaf_vdev(nvlist_t *props, const char *arg, uint64_t is_log)
|
|||
} else if (S_ISREG(statbuf.st_mode)) {
|
||||
type = VDEV_TYPE_FILE;
|
||||
} else {
|
||||
(void) fprintf(stderr, gettext("cannot use '%s': must be a "
|
||||
"block device or regular file\n"), path);
|
||||
fprintf(stderr, gettext("cannot use '%s': must "
|
||||
"be a block device or regular file\n"), path);
|
||||
return (NULL);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Finally, we have the complete device or file, and we know that it is
|
||||
|
@ -358,10 +372,7 @@ make_leaf_vdev(nvlist_t *props, const char *arg, uint64_t is_log)
|
|||
verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
|
||||
verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
|
||||
verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
|
||||
verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0);
|
||||
if (is_log)
|
||||
verify(nvlist_add_string(vdev, ZPOOL_CONFIG_ALLOCATION_BIAS,
|
||||
VDEV_ALLOC_BIAS_LOG) == 0);
|
||||
|
||||
if (strcmp(type, VDEV_TYPE_DISK) == 0)
|
||||
verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
|
||||
(uint64_t)wholedisk) == 0);
|
||||
|
@ -432,11 +443,16 @@ typedef struct replication_level {
|
|||
|
||||
#define ZPOOL_FUZZ (16 * 1024 * 1024)
|
||||
|
||||
/*
|
||||
* N.B. For the purposes of comparing replication levels dRAID can be
|
||||
* considered functionally equivilant to raidz.
|
||||
*/
|
||||
static boolean_t
|
||||
is_raidz_mirror(replication_level_t *a, replication_level_t *b,
|
||||
replication_level_t **raidz, replication_level_t **mirror)
|
||||
{
|
||||
if (strcmp(a->zprl_type, "raidz") == 0 &&
|
||||
if ((strcmp(a->zprl_type, "raidz") == 0 ||
|
||||
strcmp(a->zprl_type, "draid") == 0) &&
|
||||
strcmp(b->zprl_type, "mirror") == 0) {
|
||||
*raidz = a;
|
||||
*mirror = b;
|
||||
|
@ -445,6 +461,22 @@ is_raidz_mirror(replication_level_t *a, replication_level_t *b,
|
|||
return (B_FALSE);
|
||||
}
|
||||
|
||||
/*
|
||||
* Comparison for determining if dRAID and raidz where passed in either order.
|
||||
*/
|
||||
static boolean_t
|
||||
is_raidz_draid(replication_level_t *a, replication_level_t *b)
|
||||
{
|
||||
if ((strcmp(a->zprl_type, "raidz") == 0 ||
|
||||
strcmp(a->zprl_type, "draid") == 0) &&
|
||||
(strcmp(b->zprl_type, "raidz") == 0 ||
|
||||
strcmp(b->zprl_type, "draid") == 0)) {
|
||||
return (B_TRUE);
|
||||
}
|
||||
|
||||
return (B_FALSE);
|
||||
}
|
||||
|
||||
/*
|
||||
* Given a list of toplevel vdevs, return the current replication level. If
|
||||
* the config is inconsistent, then NULL is returned. If 'fatal' is set, then
|
||||
|
@ -511,7 +543,8 @@ get_replication(nvlist_t *nvroot, boolean_t fatal)
|
|||
rep.zprl_type = type;
|
||||
rep.zprl_children = 0;
|
||||
|
||||
if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
|
||||
if (strcmp(type, VDEV_TYPE_RAIDZ) == 0 ||
|
||||
strcmp(type, VDEV_TYPE_DRAID) == 0) {
|
||||
verify(nvlist_lookup_uint64(nv,
|
||||
ZPOOL_CONFIG_NPARITY,
|
||||
&rep.zprl_parity) == 0);
|
||||
|
@ -677,6 +710,29 @@ get_replication(nvlist_t *nvroot, boolean_t fatal)
|
|||
else
|
||||
return (NULL);
|
||||
}
|
||||
} else if (is_raidz_draid(&lastrep, &rep)) {
|
||||
/*
|
||||
* Accepted raidz and draid when they can
|
||||
* handle the same number of disk failures.
|
||||
*/
|
||||
if (lastrep.zprl_parity != rep.zprl_parity) {
|
||||
if (ret != NULL)
|
||||
free(ret);
|
||||
ret = NULL;
|
||||
if (fatal)
|
||||
vdev_error(gettext(
|
||||
"mismatched replication "
|
||||
"level: %s and %s vdevs "
|
||||
"with different "
|
||||
"redundancy, %llu vs. "
|
||||
"%llu are present\n"),
|
||||
lastrep.zprl_type,
|
||||
rep.zprl_type,
|
||||
lastrep.zprl_parity,
|
||||
rep.zprl_parity);
|
||||
else
|
||||
return (NULL);
|
||||
}
|
||||
} else if (strcmp(lastrep.zprl_type, rep.zprl_type) !=
|
||||
0) {
|
||||
if (ret != NULL)
|
||||
|
@ -1103,31 +1159,87 @@ is_device_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force,
|
|||
return (anyinuse);
|
||||
}
|
||||
|
||||
/*
|
||||
* Returns the parity level extracted from a raidz or draid type.
|
||||
* If the parity cannot be determined zero is returned.
|
||||
*/
|
||||
static int
|
||||
get_parity(const char *type)
|
||||
{
|
||||
long parity = 0;
|
||||
const char *p;
|
||||
|
||||
if (strncmp(type, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0) {
|
||||
p = type + strlen(VDEV_TYPE_RAIDZ);
|
||||
|
||||
if (*p == '\0') {
|
||||
/* when unspecified default to single parity */
|
||||
return (1);
|
||||
} else if (*p == '0') {
|
||||
/* no zero prefixes allowed */
|
||||
return (0);
|
||||
} else {
|
||||
/* 0-3, no suffixes allowed */
|
||||
char *end;
|
||||
errno = 0;
|
||||
parity = strtol(p, &end, 10);
|
||||
if (errno != 0 || *end != '\0' ||
|
||||
parity < 1 || parity > VDEV_RAIDZ_MAXPARITY) {
|
||||
return (0);
|
||||
}
|
||||
}
|
||||
} else if (strncmp(type, VDEV_TYPE_DRAID,
|
||||
strlen(VDEV_TYPE_DRAID)) == 0) {
|
||||
p = type + strlen(VDEV_TYPE_DRAID);
|
||||
|
||||
if (*p == '\0' || *p == ':') {
|
||||
/* when unspecified default to single parity */
|
||||
return (1);
|
||||
} else if (*p == '0') {
|
||||
/* no zero prefixes allowed */
|
||||
return (0);
|
||||
} else {
|
||||
/* 0-3, allowed suffixes: '\0' or ':' */
|
||||
char *end;
|
||||
errno = 0;
|
||||
parity = strtol(p, &end, 10);
|
||||
if (errno != 0 ||
|
||||
parity < 1 || parity > VDEV_DRAID_MAXPARITY ||
|
||||
(*end != '\0' && *end != ':')) {
|
||||
return (0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return ((int)parity);
|
||||
}
|
||||
|
||||
/*
|
||||
* Assign the minimum and maximum number of devices allowed for
|
||||
* the specified type. On error NULL is returned, otherwise the
|
||||
* type prefix is returned (raidz, mirror, etc).
|
||||
*/
|
||||
static const char *
|
||||
is_grouping(const char *type, int *mindev, int *maxdev)
|
||||
{
|
||||
if (strncmp(type, "raidz", 5) == 0) {
|
||||
const char *p = type + 5;
|
||||
char *end;
|
||||
long nparity;
|
||||
int nparity;
|
||||
|
||||
if (*p == '\0') {
|
||||
nparity = 1;
|
||||
} else if (*p == '0') {
|
||||
return (NULL); /* no zero prefixes allowed */
|
||||
} else {
|
||||
errno = 0;
|
||||
nparity = strtol(p, &end, 10);
|
||||
if (errno != 0 || nparity < 1 || nparity >= 255 ||
|
||||
*end != '\0')
|
||||
if (strncmp(type, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0 ||
|
||||
strncmp(type, VDEV_TYPE_DRAID, strlen(VDEV_TYPE_DRAID)) == 0) {
|
||||
nparity = get_parity(type);
|
||||
if (nparity == 0)
|
||||
return (NULL);
|
||||
}
|
||||
|
||||
if (mindev != NULL)
|
||||
*mindev = nparity + 1;
|
||||
if (maxdev != NULL)
|
||||
*maxdev = 255;
|
||||
|
||||
if (strncmp(type, VDEV_TYPE_RAIDZ,
|
||||
strlen(VDEV_TYPE_RAIDZ)) == 0) {
|
||||
return (VDEV_TYPE_RAIDZ);
|
||||
} else {
|
||||
return (VDEV_TYPE_DRAID);
|
||||
}
|
||||
}
|
||||
|
||||
if (maxdev != NULL)
|
||||
|
@ -1167,6 +1279,163 @@ is_grouping(const char *type, int *mindev, int *maxdev)
|
|||
return (NULL);
|
||||
}
|
||||
|
||||
/*
|
||||
* Extract the configuration parameters encoded in the dRAID type and
|
||||
* use them to generate a dRAID configuration. The expected format is:
|
||||
*
|
||||
* draid[<parity>][:<data><d|D>][:<children><c|C>][:<spares><s|S>]
|
||||
*
|
||||
* The intent is to be able to generate a good configuration when no
|
||||
* additional information is provided. The only mandatory component
|
||||
* of the 'type' is the 'draid' prefix. If a value is not provided
|
||||
* then reasonable defaults are used. The optional components may
|
||||
* appear in any order but the d/s/c suffix is required.
|
||||
*
|
||||
* Valid inputs:
|
||||
* - data: number of data devices per group (1-255)
|
||||
* - parity: number of parity blocks per group (1-3)
|
||||
* - spares: number of distributed spare (0-100)
|
||||
* - children: total number of devices (1-255)
|
||||
*
|
||||
* Examples:
|
||||
* - zpool create tank draid <devices...>
|
||||
* - zpool create tank draid2:8d:51c:2s <devices...>
|
||||
*/
|
||||
static int
|
||||
draid_config_by_type(nvlist_t *nv, const char *type, uint64_t children)
|
||||
{
|
||||
uint64_t nparity = 1;
|
||||
uint64_t nspares = 0;
|
||||
uint64_t ndata = UINT64_MAX;
|
||||
uint64_t ngroups = 1;
|
||||
long value;
|
||||
|
||||
if (strncmp(type, VDEV_TYPE_DRAID, strlen(VDEV_TYPE_DRAID)) != 0)
|
||||
return (EINVAL);
|
||||
|
||||
nparity = (uint64_t)get_parity(type);
|
||||
if (nparity == 0)
|
||||
return (EINVAL);
|
||||
|
||||
char *p = (char *)type;
|
||||
while ((p = strchr(p, ':')) != NULL) {
|
||||
char *end;
|
||||
|
||||
p = p + 1;
|
||||
errno = 0;
|
||||
|
||||
if (!isdigit(p[0])) {
|
||||
(void) fprintf(stderr, gettext("invalid dRAID "
|
||||
"syntax; expected [:<number><c|d|s>] not '%s'\n"),
|
||||
type);
|
||||
return (EINVAL);
|
||||
}
|
||||
|
||||
/* Expected non-zero value with c/d/s suffix */
|
||||
value = strtol(p, &end, 10);
|
||||
char suffix = tolower(*end);
|
||||
if (errno != 0 ||
|
||||
(suffix != 'c' && suffix != 'd' && suffix != 's')) {
|
||||
(void) fprintf(stderr, gettext("invalid dRAID "
|
||||
"syntax; expected [:<number><c|d|s>] not '%s'\n"),
|
||||
type);
|
||||
return (EINVAL);
|
||||
}
|
||||
|
||||
if (suffix == 'c') {
|
||||
if ((uint64_t)value != children) {
|
||||
fprintf(stderr,
|
||||
gettext("invalid number of dRAID children; "
|
||||
"%llu required but %llu provided\n"),
|
||||
(u_longlong_t)value,
|
||||
(u_longlong_t)children);
|
||||
return (EINVAL);
|
||||
}
|
||||
} else if (suffix == 'd') {
|
||||
ndata = (uint64_t)value;
|
||||
} else if (suffix == 's') {
|
||||
nspares = (uint64_t)value;
|
||||
} else {
|
||||
verify(0); /* Unreachable */
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* When a specific number of data disks is not provided limit a
|
||||
* redundancy group to 8 data disks. This value was selected to
|
||||
* provide a reasonable tradeoff between capacity and performance.
|
||||
*/
|
||||
if (ndata == UINT64_MAX) {
|
||||
if (children > nspares + nparity) {
|
||||
ndata = MIN(children - nspares - nparity, 8);
|
||||
} else {
|
||||
fprintf(stderr, gettext("request number of "
|
||||
"distributed spares %llu and parity level %llu\n"
|
||||
"leaves no disks available for data\n"),
|
||||
(u_longlong_t)nspares, (u_longlong_t)nparity);
|
||||
return (EINVAL);
|
||||
}
|
||||
}
|
||||
|
||||
/* Verify the maximum allowed group size is never exceeded. */
|
||||
if (ndata == 0 || (ndata + nparity > children - nspares)) {
|
||||
fprintf(stderr, gettext("requested number of dRAID data "
|
||||
"disks per group %llu is too high,\nat most %llu disks "
|
||||
"are available for data\n"), (u_longlong_t)ndata,
|
||||
(u_longlong_t)(children - nspares - nparity));
|
||||
return (EINVAL);
|
||||
}
|
||||
|
||||
if (nparity == 0 || nparity > VDEV_DRAID_MAXPARITY) {
|
||||
fprintf(stderr,
|
||||
gettext("invalid dRAID parity level %llu; must be "
|
||||
"between 1 and %d\n"), (u_longlong_t)nparity,
|
||||
VDEV_DRAID_MAXPARITY);
|
||||
return (EINVAL);
|
||||
}
|
||||
|
||||
/*
|
||||
* Verify the requested number of spares can be satisfied.
|
||||
* An arbitrary limit of 100 distributed spares is applied.
|
||||
*/
|
||||
if (nspares > 100 || nspares > (children - (ndata + nparity))) {
|
||||
fprintf(stderr,
|
||||
gettext("invalid number of dRAID spares %llu; additional "
|
||||
"disks would be required\n"), (u_longlong_t)nspares);
|
||||
return (EINVAL);
|
||||
}
|
||||
|
||||
/* Verify the requested number children is sufficient. */
|
||||
if (children < (ndata + nparity + nspares)) {
|
||||
fprintf(stderr, gettext("%llu disks were provided, but at "
|
||||
"least %llu disks are required for this config\n"),
|
||||
(u_longlong_t)children,
|
||||
(u_longlong_t)(ndata + nparity + nspares));
|
||||
}
|
||||
|
||||
if (children > VDEV_DRAID_MAX_CHILDREN) {
|
||||
fprintf(stderr, gettext("%llu disks were provided, but "
|
||||
"dRAID only supports up to %u disks"),
|
||||
(u_longlong_t)children, VDEV_DRAID_MAX_CHILDREN);
|
||||
}
|
||||
|
||||
/*
|
||||
* Calculate the minimum number of groups required to fill a slice.
|
||||
* This is the LCM of the stripe width (ndata + nparity) and the
|
||||
* number of data drives (children - nspares).
|
||||
*/
|
||||
while (ngroups * (ndata + nparity) % (children - nspares) != 0)
|
||||
ngroups++;
|
||||
|
||||
/* Store the basic dRAID configuration. */
|
||||
fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, nparity);
|
||||
fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, ndata);
|
||||
fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
|
||||
fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
|
||||
|
||||
return (0);
|
||||
}
|
||||
|
||||
/*
|
||||
* Construct a syntactically valid vdev specification,
|
||||
* and ensure that all devices and files exist and can be opened.
|
||||
|
@ -1178,8 +1447,8 @@ construct_spec(nvlist_t *props, int argc, char **argv)
|
|||
{
|
||||
nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
|
||||
int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache;
|
||||
const char *type;
|
||||
uint64_t is_log, is_special, is_dedup;
|
||||
const char *type, *fulltype;
|
||||
boolean_t is_log, is_special, is_dedup, is_spare;
|
||||
boolean_t seen_logs;
|
||||
|
||||
top = NULL;
|
||||
|
@ -1189,18 +1458,20 @@ construct_spec(nvlist_t *props, int argc, char **argv)
|
|||
nspares = 0;
|
||||
nlogs = 0;
|
||||
nl2cache = 0;
|
||||
is_log = is_special = is_dedup = B_FALSE;
|
||||
is_log = is_special = is_dedup = is_spare = B_FALSE;
|
||||
seen_logs = B_FALSE;
|
||||
nvroot = NULL;
|
||||
|
||||
while (argc > 0) {
|
||||
fulltype = argv[0];
|
||||
nv = NULL;
|
||||
|
||||
/*
|
||||
* If it's a mirror or raidz, the subsequent arguments are
|
||||
* its leaves -- until we encounter the next mirror or raidz.
|
||||
* If it's a mirror, raidz, or draid the subsequent arguments
|
||||
* are its leaves -- until we encounter the next mirror,
|
||||
* raidz or draid.
|
||||
*/
|
||||
if ((type = is_grouping(argv[0], &mindev, &maxdev)) != NULL) {
|
||||
if ((type = is_grouping(fulltype, &mindev, &maxdev)) != NULL) {
|
||||
nvlist_t **child = NULL;
|
||||
int c, children = 0;
|
||||
|
||||
|
@ -1212,6 +1483,7 @@ construct_spec(nvlist_t *props, int argc, char **argv)
|
|||
"specified only once\n"));
|
||||
goto spec_out;
|
||||
}
|
||||
is_spare = B_TRUE;
|
||||
is_log = is_special = is_dedup = B_FALSE;
|
||||
}
|
||||
|
||||
|
@ -1225,8 +1497,7 @@ construct_spec(nvlist_t *props, int argc, char **argv)
|
|||
}
|
||||
seen_logs = B_TRUE;
|
||||
is_log = B_TRUE;
|
||||
is_special = B_FALSE;
|
||||
is_dedup = B_FALSE;
|
||||
is_special = is_dedup = is_spare = B_FALSE;
|
||||
argc--;
|
||||
argv++;
|
||||
/*
|
||||
|
@ -1238,8 +1509,7 @@ construct_spec(nvlist_t *props, int argc, char **argv)
|
|||
|
||||
if (strcmp(type, VDEV_ALLOC_BIAS_SPECIAL) == 0) {
|
||||
is_special = B_TRUE;
|
||||
is_log = B_FALSE;
|
||||
is_dedup = B_FALSE;
|
||||
is_log = is_dedup = is_spare = B_FALSE;
|
||||
argc--;
|
||||
argv++;
|
||||
continue;
|
||||
|
@ -1247,8 +1517,7 @@ construct_spec(nvlist_t *props, int argc, char **argv)
|
|||
|
||||
if (strcmp(type, VDEV_ALLOC_BIAS_DEDUP) == 0) {
|
||||
is_dedup = B_TRUE;
|
||||
is_log = B_FALSE;
|
||||
is_special = B_FALSE;
|
||||
is_log = is_special = is_spare = B_FALSE;
|
||||
argc--;
|
||||
argv++;
|
||||
continue;
|
||||
|
@ -1262,7 +1531,8 @@ construct_spec(nvlist_t *props, int argc, char **argv)
|
|||
"specified only once\n"));
|
||||
goto spec_out;
|
||||
}
|
||||
is_log = is_special = is_dedup = B_FALSE;
|
||||
is_log = is_special = B_FALSE;
|
||||
is_dedup = is_spare = B_FALSE;
|
||||
}
|
||||
|
||||
if (is_log || is_special || is_dedup) {
|
||||
|
@ -1280,13 +1550,15 @@ construct_spec(nvlist_t *props, int argc, char **argv)
|
|||
for (c = 1; c < argc; c++) {
|
||||
if (is_grouping(argv[c], NULL, NULL) != NULL)
|
||||
break;
|
||||
|
||||
children++;
|
||||
child = realloc(child,
|
||||
children * sizeof (nvlist_t *));
|
||||
if (child == NULL)
|
||||
zpool_no_memory();
|
||||
if ((nv = make_leaf_vdev(props, argv[c],
|
||||
B_FALSE)) == NULL) {
|
||||
!(is_log || is_special || is_dedup ||
|
||||
is_spare))) == NULL) {
|
||||
for (c = 0; c < children - 1; c++)
|
||||
nvlist_free(child[c]);
|
||||
free(child);
|
||||
|
@ -1335,10 +1607,11 @@ construct_spec(nvlist_t *props, int argc, char **argv)
|
|||
type) == 0);
|
||||
verify(nvlist_add_uint64(nv,
|
||||
ZPOOL_CONFIG_IS_LOG, is_log) == 0);
|
||||
if (is_log)
|
||||
if (is_log) {
|
||||
verify(nvlist_add_string(nv,
|
||||
ZPOOL_CONFIG_ALLOCATION_BIAS,
|
||||
VDEV_ALLOC_BIAS_LOG) == 0);
|
||||
}
|
||||
if (is_special) {
|
||||
verify(nvlist_add_string(nv,
|
||||
ZPOOL_CONFIG_ALLOCATION_BIAS,
|
||||
|
@ -1354,6 +1627,15 @@ construct_spec(nvlist_t *props, int argc, char **argv)
|
|||
ZPOOL_CONFIG_NPARITY,
|
||||
mindev - 1) == 0);
|
||||
}
|
||||
if (strcmp(type, VDEV_TYPE_DRAID) == 0) {
|
||||
if (draid_config_by_type(nv,
|
||||
fulltype, children) != 0) {
|
||||
for (c = 0; c < children; c++)
|
||||
nvlist_free(child[c]);
|
||||
free(child);
|
||||
goto spec_out;
|
||||
}
|
||||
}
|
||||
verify(nvlist_add_nvlist_array(nv,
|
||||
ZPOOL_CONFIG_CHILDREN, child,
|
||||
children) == 0);
|
||||
|
@ -1367,12 +1649,19 @@ construct_spec(nvlist_t *props, int argc, char **argv)
|
|||
* We have a device. Pass off to make_leaf_vdev() to
|
||||
* construct the appropriate nvlist describing the vdev.
|
||||
*/
|
||||
if ((nv = make_leaf_vdev(props, argv[0],
|
||||
is_log)) == NULL)
|
||||
if ((nv = make_leaf_vdev(props, argv[0], !(is_log ||
|
||||
is_special || is_dedup || is_spare))) == NULL)
|
||||
goto spec_out;
|
||||
|
||||
if (is_log)
|
||||
verify(nvlist_add_uint64(nv,
|
||||
ZPOOL_CONFIG_IS_LOG, is_log) == 0);
|
||||
if (is_log) {
|
||||
verify(nvlist_add_string(nv,
|
||||
ZPOOL_CONFIG_ALLOCATION_BIAS,
|
||||
VDEV_ALLOC_BIAS_LOG) == 0);
|
||||
nlogs++;
|
||||
}
|
||||
|
||||
if (is_special) {
|
||||
verify(nvlist_add_string(nv,
|
||||
ZPOOL_CONFIG_ALLOCATION_BIAS,
|
||||
|
|
|
@ -104,6 +104,7 @@
|
|||
#include <sys/zio.h>
|
||||
#include <sys/zil.h>
|
||||
#include <sys/zil_impl.h>
|
||||
#include <sys/vdev_draid.h>
|
||||
#include <sys/vdev_impl.h>
|
||||
#include <sys/vdev_file.h>
|
||||
#include <sys/vdev_initialize.h>
|
||||
|
@ -167,8 +168,11 @@ typedef struct ztest_shared_opts {
|
|||
size_t zo_vdev_size;
|
||||
int zo_ashift;
|
||||
int zo_mirrors;
|
||||
int zo_raidz;
|
||||
int zo_raidz_parity;
|
||||
int zo_raid_children;
|
||||
int zo_raid_parity;
|
||||
char zo_raid_type[8];
|
||||
int zo_draid_data;
|
||||
int zo_draid_spares;
|
||||
int zo_datasets;
|
||||
int zo_threads;
|
||||
uint64_t zo_passtime;
|
||||
|
@ -191,9 +195,12 @@ static const ztest_shared_opts_t ztest_opts_defaults = {
|
|||
.zo_vdevs = 5,
|
||||
.zo_ashift = SPA_MINBLOCKSHIFT,
|
||||
.zo_mirrors = 2,
|
||||
.zo_raidz = 4,
|
||||
.zo_raidz_parity = 1,
|
||||
.zo_raid_children = 4,
|
||||
.zo_raid_parity = 1,
|
||||
.zo_raid_type = VDEV_TYPE_RAIDZ,
|
||||
.zo_vdev_size = SPA_MINDEVSIZE * 4, /* 256m default size */
|
||||
.zo_draid_data = 4, /* data drives */
|
||||
.zo_draid_spares = 1, /* distributed spares */
|
||||
.zo_datasets = 7,
|
||||
.zo_threads = 23,
|
||||
.zo_passtime = 60, /* 60 seconds */
|
||||
|
@ -232,7 +239,7 @@ static ztest_shared_ds_t *ztest_shared_ds;
|
|||
|
||||
#define BT_MAGIC 0x123456789abcdefULL
|
||||
#define MAXFAULTS(zs) \
|
||||
(MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
|
||||
(MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
|
||||
|
||||
enum ztest_io_type {
|
||||
ZTEST_IO_WRITE_TAG,
|
||||
|
@ -689,8 +696,11 @@ usage(boolean_t requested)
|
|||
"\t[-s size_of_each_vdev (default: %s)]\n"
|
||||
"\t[-a alignment_shift (default: %d)] use 0 for random\n"
|
||||
"\t[-m mirror_copies (default: %d)]\n"
|
||||
"\t[-r raidz_disks (default: %d)]\n"
|
||||
"\t[-R raidz_parity (default: %d)]\n"
|
||||
"\t[-r raidz_disks / draid_disks (default: %d)]\n"
|
||||
"\t[-R raid_parity (default: %d)]\n"
|
||||
"\t[-K raid_kind (default: random)] raidz|draid|random\n"
|
||||
"\t[-D draid_data (default: %d)] in config\n"
|
||||
"\t[-S draid_spares (default: %d)]\n"
|
||||
"\t[-d datasets (default: %d)]\n"
|
||||
"\t[-t threads (default: %d)]\n"
|
||||
"\t[-g gang_block_threshold (default: %s)]\n"
|
||||
|
@ -716,8 +726,10 @@ usage(boolean_t requested)
|
|||
nice_vdev_size, /* -s */
|
||||
zo->zo_ashift, /* -a */
|
||||
zo->zo_mirrors, /* -m */
|
||||
zo->zo_raidz, /* -r */
|
||||
zo->zo_raidz_parity, /* -R */
|
||||
zo->zo_raid_children, /* -r */
|
||||
zo->zo_raid_parity, /* -R */
|
||||
zo->zo_draid_data, /* -D */
|
||||
zo->zo_draid_spares, /* -S */
|
||||
zo->zo_datasets, /* -d */
|
||||
zo->zo_threads, /* -t */
|
||||
nice_force_ganging, /* -g */
|
||||
|
@ -731,6 +743,21 @@ usage(boolean_t requested)
|
|||
exit(requested ? 0 : 1);
|
||||
}
|
||||
|
||||
static uint64_t
|
||||
ztest_random(uint64_t range)
|
||||
{
|
||||
uint64_t r;
|
||||
|
||||
ASSERT3S(ztest_fd_rand, >=, 0);
|
||||
|
||||
if (range == 0)
|
||||
return (0);
|
||||
|
||||
if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
|
||||
fatal(1, "short read from /dev/urandom");
|
||||
|
||||
return (r % range);
|
||||
}
|
||||
|
||||
static void
|
||||
ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo)
|
||||
|
@ -780,11 +807,12 @@ process_options(int argc, char **argv)
|
|||
int opt;
|
||||
uint64_t value;
|
||||
char altdir[MAXNAMELEN] = { 0 };
|
||||
char raid_kind[8] = { "random" };
|
||||
|
||||
bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
|
||||
|
||||
while ((opt = getopt(argc, argv,
|
||||
"v:s:a:m:r:R:d:t:g:i:k:p:f:MVET:P:hF:B:C:o:G")) != EOF) {
|
||||
"v:s:a:m:r:R:K:D:S:d:t:g:i:k:p:f:MVET:P:hF:B:C:o:G")) != EOF) {
|
||||
value = 0;
|
||||
switch (opt) {
|
||||
case 'v':
|
||||
|
@ -793,6 +821,8 @@ process_options(int argc, char **argv)
|
|||
case 'm':
|
||||
case 'r':
|
||||
case 'R':
|
||||
case 'D':
|
||||
case 'S':
|
||||
case 'd':
|
||||
case 't':
|
||||
case 'g':
|
||||
|
@ -817,10 +847,19 @@ process_options(int argc, char **argv)
|
|||
zo->zo_mirrors = value;
|
||||
break;
|
||||
case 'r':
|
||||
zo->zo_raidz = MAX(1, value);
|
||||
zo->zo_raid_children = MAX(1, value);
|
||||
break;
|
||||
case 'R':
|
||||
zo->zo_raidz_parity = MIN(MAX(value, 1), 3);
|
||||
zo->zo_raid_parity = MIN(MAX(value, 1), 3);
|
||||
break;
|
||||
case 'K':
|
||||
(void) strlcpy(raid_kind, optarg, sizeof (raid_kind));
|
||||
break;
|
||||
case 'D':
|
||||
zo->zo_draid_data = MAX(1, value);
|
||||
break;
|
||||
case 'S':
|
||||
zo->zo_draid_spares = MAX(1, value);
|
||||
break;
|
||||
case 'd':
|
||||
zo->zo_datasets = MAX(1, value);
|
||||
|
@ -895,7 +934,54 @@ process_options(int argc, char **argv)
|
|||
}
|
||||
}
|
||||
|
||||
zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1);
|
||||
/* When raid choice is 'random' add a draid pool 50% of the time */
|
||||
if (strcmp(raid_kind, "random") == 0) {
|
||||
(void) strlcpy(raid_kind, (ztest_random(2) == 0) ?
|
||||
"draid" : "raidz", sizeof (raid_kind));
|
||||
|
||||
if (ztest_opts.zo_verbose >= 3)
|
||||
(void) printf("choosing RAID type '%s'\n", raid_kind);
|
||||
}
|
||||
|
||||
if (strcmp(raid_kind, "draid") == 0) {
|
||||
uint64_t min_devsize;
|
||||
|
||||
/* With fewer disk use 256M, otherwise 128M is OK */
|
||||
min_devsize = (ztest_opts.zo_raid_children < 16) ?
|
||||
(256ULL << 20) : (128ULL << 20);
|
||||
|
||||
/* No top-level mirrors with dRAID for now */
|
||||
zo->zo_mirrors = 0;
|
||||
|
||||
/* Use more appropriate defaults for dRAID */
|
||||
if (zo->zo_vdevs == ztest_opts_defaults.zo_vdevs)
|
||||
zo->zo_vdevs = 1;
|
||||
if (zo->zo_raid_children ==
|
||||
ztest_opts_defaults.zo_raid_children)
|
||||
zo->zo_raid_children = 16;
|
||||
if (zo->zo_ashift < 12)
|
||||
zo->zo_ashift = 12;
|
||||
if (zo->zo_vdev_size < min_devsize)
|
||||
zo->zo_vdev_size = min_devsize;
|
||||
|
||||
if (zo->zo_draid_data + zo->zo_raid_parity >
|
||||
zo->zo_raid_children - zo->zo_draid_spares) {
|
||||
(void) fprintf(stderr, "error: too few draid "
|
||||
"children (%d) for stripe width (%d)\n",
|
||||
zo->zo_raid_children,
|
||||
zo->zo_draid_data + zo->zo_raid_parity);
|
||||
usage(B_FALSE);
|
||||
}
|
||||
|
||||
(void) strlcpy(zo->zo_raid_type, VDEV_TYPE_DRAID,
|
||||
sizeof (zo->zo_raid_type));
|
||||
|
||||
} else /* using raidz */ {
|
||||
ASSERT0(strcmp(raid_kind, "raidz"));
|
||||
|
||||
zo->zo_raid_parity = MIN(zo->zo_raid_parity,
|
||||
zo->zo_raid_children - 1);
|
||||
}
|
||||
|
||||
zo->zo_vdevtime =
|
||||
(zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
|
||||
|
@ -966,22 +1052,6 @@ ztest_kill(ztest_shared_t *zs)
|
|||
(void) kill(getpid(), SIGKILL);
|
||||
}
|
||||
|
||||
static uint64_t
|
||||
ztest_random(uint64_t range)
|
||||
{
|
||||
uint64_t r;
|
||||
|
||||
ASSERT3S(ztest_fd_rand, >=, 0);
|
||||
|
||||
if (range == 0)
|
||||
return (0);
|
||||
|
||||
if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
|
||||
fatal(1, "short read from /dev/urandom");
|
||||
|
||||
return (r % range);
|
||||
}
|
||||
|
||||
/* ARGSUSED */
|
||||
static void
|
||||
ztest_record_enospc(const char *s)
|
||||
|
@ -997,12 +1067,27 @@ ztest_get_ashift(void)
|
|||
return (ztest_opts.zo_ashift);
|
||||
}
|
||||
|
||||
static boolean_t
|
||||
ztest_is_draid_spare(const char *name)
|
||||
{
|
||||
uint64_t spare_id = 0, parity = 0, vdev_id = 0;
|
||||
|
||||
if (sscanf(name, VDEV_TYPE_DRAID "%llu-%llu-%llu",
|
||||
(u_longlong_t *)&parity, (u_longlong_t *)&vdev_id,
|
||||
(u_longlong_t *)&spare_id) == 3) {
|
||||
return (B_TRUE);
|
||||
}
|
||||
|
||||
return (B_FALSE);
|
||||
}
|
||||
|
||||
static nvlist_t *
|
||||
make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
|
||||
{
|
||||
char *pathbuf;
|
||||
uint64_t vdev;
|
||||
nvlist_t *file;
|
||||
boolean_t draid_spare = B_FALSE;
|
||||
|
||||
pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
|
||||
|
||||
|
@ -1024,9 +1109,11 @@ make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
|
|||
ztest_dev_template, ztest_opts.zo_dir,
|
||||
pool == NULL ? ztest_opts.zo_pool : pool, vdev);
|
||||
}
|
||||
} else {
|
||||
draid_spare = ztest_is_draid_spare(path);
|
||||
}
|
||||
|
||||
if (size != 0) {
|
||||
if (size != 0 && !draid_spare) {
|
||||
int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
|
||||
if (fd == -1)
|
||||
fatal(1, "can't open %s", path);
|
||||
|
@ -1035,20 +1122,21 @@ make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
|
|||
(void) close(fd);
|
||||
}
|
||||
|
||||
VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
|
||||
VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
|
||||
VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
|
||||
VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
|
||||
VERIFY0(nvlist_alloc(&file, NV_UNIQUE_NAME, 0));
|
||||
VERIFY0(nvlist_add_string(file, ZPOOL_CONFIG_TYPE,
|
||||
draid_spare ? VDEV_TYPE_DRAID_SPARE : VDEV_TYPE_FILE));
|
||||
VERIFY0(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path));
|
||||
VERIFY0(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift));
|
||||
umem_free(pathbuf, MAXPATHLEN);
|
||||
|
||||
return (file);
|
||||
}
|
||||
|
||||
static nvlist_t *
|
||||
make_vdev_raidz(char *path, char *aux, char *pool, size_t size,
|
||||
make_vdev_raid(char *path, char *aux, char *pool, size_t size,
|
||||
uint64_t ashift, int r)
|
||||
{
|
||||
nvlist_t *raidz, **child;
|
||||
nvlist_t *raid, **child;
|
||||
int c;
|
||||
|
||||
if (r < 2)
|
||||
|
@ -1058,20 +1146,41 @@ make_vdev_raidz(char *path, char *aux, char *pool, size_t size,
|
|||
for (c = 0; c < r; c++)
|
||||
child[c] = make_vdev_file(path, aux, pool, size, ashift);
|
||||
|
||||
VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
|
||||
VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
|
||||
VDEV_TYPE_RAIDZ) == 0);
|
||||
VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
|
||||
ztest_opts.zo_raidz_parity) == 0);
|
||||
VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
|
||||
child, r) == 0);
|
||||
VERIFY0(nvlist_alloc(&raid, NV_UNIQUE_NAME, 0));
|
||||
VERIFY0(nvlist_add_string(raid, ZPOOL_CONFIG_TYPE,
|
||||
ztest_opts.zo_raid_type));
|
||||
VERIFY0(nvlist_add_uint64(raid, ZPOOL_CONFIG_NPARITY,
|
||||
ztest_opts.zo_raid_parity));
|
||||
VERIFY0(nvlist_add_nvlist_array(raid, ZPOOL_CONFIG_CHILDREN,
|
||||
child, r));
|
||||
|
||||
if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) {
|
||||
uint64_t ndata = ztest_opts.zo_draid_data;
|
||||
uint64_t nparity = ztest_opts.zo_raid_parity;
|
||||
uint64_t nspares = ztest_opts.zo_draid_spares;
|
||||
uint64_t children = ztest_opts.zo_raid_children;
|
||||
uint64_t ngroups = 1;
|
||||
|
||||
/*
|
||||
* Calculate the minimum number of groups required to fill a
|
||||
* slice. This is the LCM of the stripe width (data + parity)
|
||||
* and the number of data drives (children - spares).
|
||||
*/
|
||||
while (ngroups * (ndata + nparity) % (children - nspares) != 0)
|
||||
ngroups++;
|
||||
|
||||
/* Store the basic dRAID configuration. */
|
||||
fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NDATA, ndata);
|
||||
fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
|
||||
fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
|
||||
}
|
||||
|
||||
for (c = 0; c < r; c++)
|
||||
nvlist_free(child[c]);
|
||||
|
||||
umem_free(child, r * sizeof (nvlist_t *));
|
||||
|
||||
return (raidz);
|
||||
return (raid);
|
||||
}
|
||||
|
||||
static nvlist_t *
|
||||
|
@ -1082,12 +1191,12 @@ make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
|
|||
int c;
|
||||
|
||||
if (m < 1)
|
||||
return (make_vdev_raidz(path, aux, pool, size, ashift, r));
|
||||
return (make_vdev_raid(path, aux, pool, size, ashift, r));
|
||||
|
||||
child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
|
||||
|
||||
for (c = 0; c < m; c++)
|
||||
child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r);
|
||||
child[c] = make_vdev_raid(path, aux, pool, size, ashift, r);
|
||||
|
||||
VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
|
||||
VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
|
||||
|
@ -2809,6 +2918,10 @@ ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
|
|||
if (ztest_opts.zo_mmp_test)
|
||||
return;
|
||||
|
||||
/* dRAID added after feature flags, skip upgrade test. */
|
||||
if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0)
|
||||
return;
|
||||
|
||||
mutex_enter(&ztest_vdev_lock);
|
||||
name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
|
||||
|
||||
|
@ -2818,13 +2931,13 @@ ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
|
|||
(void) spa_destroy(name);
|
||||
|
||||
nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
|
||||
NULL, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1);
|
||||
NULL, ztest_opts.zo_raid_children, ztest_opts.zo_mirrors, 1);
|
||||
|
||||
/*
|
||||
* If we're configuring a RAIDZ device then make sure that the
|
||||
* initial version is capable of supporting that feature.
|
||||
*/
|
||||
switch (ztest_opts.zo_raidz_parity) {
|
||||
switch (ztest_opts.zo_raid_parity) {
|
||||
case 0:
|
||||
case 1:
|
||||
initial_version = SPA_VERSION_INITIAL;
|
||||
|
@ -2970,7 +3083,8 @@ ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
|
|||
return;
|
||||
|
||||
mutex_enter(&ztest_vdev_lock);
|
||||
leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
|
||||
leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) *
|
||||
ztest_opts.zo_raid_children;
|
||||
|
||||
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
|
||||
|
||||
|
@ -3024,7 +3138,8 @@ ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
|
|||
*/
|
||||
nvroot = make_vdev_root(NULL, NULL, NULL,
|
||||
ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ?
|
||||
"log" : NULL, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
|
||||
"log" : NULL, ztest_opts.zo_raid_children, zs->zs_mirrors,
|
||||
1);
|
||||
|
||||
error = spa_vdev_add(spa, nvroot);
|
||||
nvlist_free(nvroot);
|
||||
|
@ -3078,14 +3193,15 @@ ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id)
|
|||
return;
|
||||
}
|
||||
|
||||
leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
|
||||
leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) *
|
||||
ztest_opts.zo_raid_children;
|
||||
|
||||
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
|
||||
ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
|
||||
spa_config_exit(spa, SCL_VDEV, FTAG);
|
||||
|
||||
nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
|
||||
class, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
|
||||
class, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
|
||||
|
||||
error = spa_vdev_add(spa, nvroot);
|
||||
nvlist_free(nvroot);
|
||||
|
@ -3134,7 +3250,7 @@ ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
|
|||
char *aux;
|
||||
char *path;
|
||||
uint64_t guid = 0;
|
||||
int error;
|
||||
int error, ignore_err = 0;
|
||||
|
||||
if (ztest_opts.zo_mmp_test)
|
||||
return;
|
||||
|
@ -3157,7 +3273,13 @@ ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
|
|||
/*
|
||||
* Pick a random device to remove.
|
||||
*/
|
||||
guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
|
||||
vdev_t *svd = sav->sav_vdevs[ztest_random(sav->sav_count)];
|
||||
|
||||
/* dRAID spares cannot be removed; try anyways to see ENOTSUP */
|
||||
if (strstr(svd->vdev_path, VDEV_TYPE_DRAID) != NULL)
|
||||
ignore_err = ENOTSUP;
|
||||
|
||||
guid = svd->vdev_guid;
|
||||
} else {
|
||||
/*
|
||||
* Find an unused device we can add.
|
||||
|
@ -3214,7 +3336,9 @@ ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
|
|||
case ZFS_ERR_DISCARDING_CHECKPOINT:
|
||||
break;
|
||||
default:
|
||||
fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
|
||||
if (error != ignore_err)
|
||||
fatal(0, "spa_vdev_remove(%llu) = %d", guid,
|
||||
error);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -3243,7 +3367,7 @@ ztest_split_pool(ztest_ds_t *zd, uint64_t id)
|
|||
mutex_enter(&ztest_vdev_lock);
|
||||
|
||||
/* ensure we have a usable config; mirrors of raidz aren't supported */
|
||||
if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) {
|
||||
if (zs->zs_mirrors < 3 || ztest_opts.zo_raid_children > 1) {
|
||||
mutex_exit(&ztest_vdev_lock);
|
||||
return;
|
||||
}
|
||||
|
@ -3343,6 +3467,7 @@ ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
|
|||
int replacing;
|
||||
int oldvd_has_siblings = B_FALSE;
|
||||
int newvd_is_spare = B_FALSE;
|
||||
int newvd_is_dspare = B_FALSE;
|
||||
int oldvd_is_log;
|
||||
int error, expected_error;
|
||||
|
||||
|
@ -3353,7 +3478,7 @@ ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
|
|||
newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
|
||||
|
||||
mutex_enter(&ztest_vdev_lock);
|
||||
leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
|
||||
leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children;
|
||||
|
||||
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
||||
|
||||
|
@ -3393,14 +3518,17 @@ ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
|
|||
if (zs->zs_mirrors >= 1) {
|
||||
ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
|
||||
ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
|
||||
oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz];
|
||||
oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raid_children];
|
||||
}
|
||||
|
||||
/* pick a child out of the raidz group */
|
||||
if (ztest_opts.zo_raidz > 1) {
|
||||
if (ztest_opts.zo_raid_children > 1) {
|
||||
if (strcmp(oldvd->vdev_ops->vdev_op_type, "raidz") == 0)
|
||||
ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
|
||||
ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz);
|
||||
oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz];
|
||||
else
|
||||
ASSERT(oldvd->vdev_ops == &vdev_draid_ops);
|
||||
ASSERT(oldvd->vdev_children == ztest_opts.zo_raid_children);
|
||||
oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raid_children];
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -3447,6 +3575,10 @@ ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
|
|||
if (sav->sav_count != 0 && ztest_random(3) == 0) {
|
||||
newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
|
||||
newvd_is_spare = B_TRUE;
|
||||
|
||||
if (newvd->vdev_ops == &vdev_draid_spare_ops)
|
||||
newvd_is_dspare = B_TRUE;
|
||||
|
||||
(void) strcpy(newpath, newvd->vdev_path);
|
||||
} else {
|
||||
(void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
|
||||
|
@ -3480,6 +3612,9 @@ ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
|
|||
* If newvd is already part of the pool, it should fail with EBUSY.
|
||||
*
|
||||
* If newvd is too small, it should fail with EOVERFLOW.
|
||||
*
|
||||
* If newvd is a distributed spare and it's being attached to a
|
||||
* dRAID which is not its parent it should fail with EINVAL.
|
||||
*/
|
||||
if (pvd->vdev_ops != &vdev_mirror_ops &&
|
||||
pvd->vdev_ops != &vdev_root_ops && (!replacing ||
|
||||
|
@ -3492,10 +3627,12 @@ ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
|
|||
expected_error = replacing ? 0 : EBUSY;
|
||||
else if (vdev_lookup_by_path(rvd, newpath) != NULL)
|
||||
expected_error = EBUSY;
|
||||
else if (newsize < oldsize)
|
||||
else if (!newvd_is_dspare && newsize < oldsize)
|
||||
expected_error = EOVERFLOW;
|
||||
else if (ashift > oldvd->vdev_top->vdev_ashift)
|
||||
expected_error = EDOM;
|
||||
else if (newvd_is_dspare && pvd != vdev_draid_spare_get_parent(newvd))
|
||||
expected_error = ENOTSUP;
|
||||
else
|
||||
expected_error = 0;
|
||||
|
||||
|
@ -4880,13 +5017,13 @@ ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
|
|||
void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
|
||||
void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
|
||||
|
||||
VERIFY(0 == dmu_read(os, packobj, packoff,
|
||||
VERIFY0(dmu_read(os, packobj, packoff,
|
||||
packsize, packcheck, DMU_READ_PREFETCH));
|
||||
VERIFY(0 == dmu_read(os, bigobj, bigoff,
|
||||
VERIFY0(dmu_read(os, bigobj, bigoff,
|
||||
bigsize, bigcheck, DMU_READ_PREFETCH));
|
||||
|
||||
ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
|
||||
ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
|
||||
ASSERT0(bcmp(packbuf, packcheck, packsize));
|
||||
ASSERT0(bcmp(bigbuf, bigcheck, bigsize));
|
||||
|
||||
umem_free(packcheck, packsize);
|
||||
umem_free(bigcheck, bigsize);
|
||||
|
@ -5761,7 +5898,7 @@ ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
|
|||
}
|
||||
|
||||
maxfaults = MAXFAULTS(zs);
|
||||
leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
|
||||
leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children;
|
||||
mirror_save = zs->zs_mirrors;
|
||||
mutex_exit(&ztest_vdev_lock);
|
||||
|
||||
|
@ -6011,7 +6148,7 @@ out:
|
|||
/*
|
||||
* By design ztest will never inject uncorrectable damage in to the pool.
|
||||
* Issue a scrub, wait for it to complete, and verify there is never any
|
||||
* any persistent damage.
|
||||
* persistent damage.
|
||||
*
|
||||
* Only after a full scrub has been completed is it safe to start injecting
|
||||
* data corruption. See the comment in zfs_fault_inject().
|
||||
|
@ -7347,7 +7484,7 @@ ztest_init(ztest_shared_t *zs)
|
|||
zs->zs_splits = 0;
|
||||
zs->zs_mirrors = ztest_opts.zo_mirrors;
|
||||
nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
|
||||
NULL, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
|
||||
NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
|
||||
props = make_random_props();
|
||||
|
||||
/*
|
||||
|
@ -7683,10 +7820,12 @@ main(int argc, char **argv)
|
|||
|
||||
if (ztest_opts.zo_verbose >= 1) {
|
||||
(void) printf("%llu vdevs, %d datasets, %d threads,"
|
||||
" %llu seconds...\n",
|
||||
"%d %s disks, %llu seconds...\n\n",
|
||||
(u_longlong_t)ztest_opts.zo_vdevs,
|
||||
ztest_opts.zo_datasets,
|
||||
ztest_opts.zo_threads,
|
||||
ztest_opts.zo_raid_children,
|
||||
ztest_opts.zo_raid_type,
|
||||
(u_longlong_t)ztest_opts.zo_time);
|
||||
}
|
||||
|
||||
|
|
|
@ -209,6 +209,7 @@ AC_CONFIG_FILES([
|
|||
tests/zfs-tests/cmd/btree_test/Makefile
|
||||
tests/zfs-tests/cmd/chg_usr_exec/Makefile
|
||||
tests/zfs-tests/cmd/devname2devid/Makefile
|
||||
tests/zfs-tests/cmd/draid/Makefile
|
||||
tests/zfs-tests/cmd/dir_rd_update/Makefile
|
||||
tests/zfs-tests/cmd/file_check/Makefile
|
||||
tests/zfs-tests/cmd/file_trunc/Makefile
|
||||
|
|
|
@ -455,6 +455,7 @@ extern void zpool_explain_recover(libzfs_handle_t *, const char *, int,
|
|||
nvlist_t *);
|
||||
extern int zpool_checkpoint(zpool_handle_t *);
|
||||
extern int zpool_discard_checkpoint(zpool_handle_t *);
|
||||
extern boolean_t zpool_is_draid_spare(const char *);
|
||||
|
||||
/*
|
||||
* Basic handle manipulations. These functions do not create or destroy the
|
||||
|
|
|
@ -82,6 +82,7 @@ COMMON_H = \
|
|||
vdev_disk.h \
|
||||
vdev_file.h \
|
||||
vdev.h \
|
||||
vdev_draid.h \
|
||||
vdev_impl.h \
|
||||
vdev_indirect_births.h \
|
||||
vdev_indirect_mapping.h \
|
||||
|
|
|
@ -163,6 +163,7 @@ typedef struct dsl_scan_io_queue dsl_scan_io_queue_t;
|
|||
void scan_init(void);
|
||||
void scan_fini(void);
|
||||
int dsl_scan_init(struct dsl_pool *dp, uint64_t txg);
|
||||
void dsl_scan_setup_sync(void *, dmu_tx_t *);
|
||||
void dsl_scan_fini(struct dsl_pool *dp);
|
||||
void dsl_scan_sync(struct dsl_pool *, dmu_tx_t *);
|
||||
int dsl_scan_cancel(struct dsl_pool *);
|
||||
|
|
|
@ -617,6 +617,7 @@ typedef struct zpool_load_policy {
|
|||
#define ZPOOL_CONFIG_PREV_INDIRECT_VDEV "com.delphix:prev_indirect_vdev"
|
||||
#define ZPOOL_CONFIG_PATH "path"
|
||||
#define ZPOOL_CONFIG_DEVID "devid"
|
||||
#define ZPOOL_CONFIG_SPARE_ID "spareid"
|
||||
#define ZPOOL_CONFIG_METASLAB_ARRAY "metaslab_array"
|
||||
#define ZPOOL_CONFIG_METASLAB_SHIFT "metaslab_shift"
|
||||
#define ZPOOL_CONFIG_ASHIFT "ashift"
|
||||
|
@ -757,10 +758,17 @@ typedef struct zpool_load_policy {
|
|||
#define ZPOOL_CONFIG_LOAD_DATA_ERRORS "verify_data_errors"
|
||||
#define ZPOOL_CONFIG_REWIND_TIME "seconds_of_rewind"
|
||||
|
||||
/* dRAID configuration */
|
||||
#define ZPOOL_CONFIG_DRAID_NDATA "draid_ndata"
|
||||
#define ZPOOL_CONFIG_DRAID_NSPARES "draid_nspares"
|
||||
#define ZPOOL_CONFIG_DRAID_NGROUPS "draid_ngroups"
|
||||
|
||||
#define VDEV_TYPE_ROOT "root"
|
||||
#define VDEV_TYPE_MIRROR "mirror"
|
||||
#define VDEV_TYPE_REPLACING "replacing"
|
||||
#define VDEV_TYPE_RAIDZ "raidz"
|
||||
#define VDEV_TYPE_DRAID "draid"
|
||||
#define VDEV_TYPE_DRAID_SPARE "dspare"
|
||||
#define VDEV_TYPE_DISK "disk"
|
||||
#define VDEV_TYPE_FILE "file"
|
||||
#define VDEV_TYPE_MISSING "missing"
|
||||
|
@ -770,6 +778,12 @@ typedef struct zpool_load_policy {
|
|||
#define VDEV_TYPE_L2CACHE "l2cache"
|
||||
#define VDEV_TYPE_INDIRECT "indirect"
|
||||
|
||||
#define VDEV_RAIDZ_MAXPARITY 3
|
||||
|
||||
#define VDEV_DRAID_MAXPARITY 3
|
||||
#define VDEV_DRAID_MIN_CHILDREN 2
|
||||
#define VDEV_DRAID_MAX_CHILDREN UINT8_MAX
|
||||
|
||||
/* VDEV_TOP_ZAP_* are used in top-level vdev ZAP objects. */
|
||||
#define VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM \
|
||||
"com.delphix:indirect_obsolete_sm"
|
||||
|
|
|
@ -240,8 +240,9 @@ struct spa {
|
|||
kcondvar_t spa_evicting_os_cv; /* Objset Eviction Completion */
|
||||
txg_list_t spa_vdev_txg_list; /* per-txg dirty vdev list */
|
||||
vdev_t *spa_root_vdev; /* top-level vdev container */
|
||||
int spa_min_ashift; /* of vdevs in normal class */
|
||||
int spa_max_ashift; /* of vdevs in normal class */
|
||||
uint64_t spa_min_ashift; /* of vdevs in normal class */
|
||||
uint64_t spa_max_ashift; /* of vdevs in normal class */
|
||||
uint64_t spa_min_alloc; /* of vdevs in normal class */
|
||||
uint64_t spa_config_guid; /* config pool guid */
|
||||
uint64_t spa_load_guid; /* spa_load initialized guid */
|
||||
uint64_t spa_last_synced_guid; /* last synced guid */
|
||||
|
|
|
@ -41,6 +41,7 @@ extern "C" {
|
|||
#define TXG_MASK (TXG_SIZE - 1) /* mask for size */
|
||||
#define TXG_INITIAL TXG_SIZE /* initial txg */
|
||||
#define TXG_IDX (txg & TXG_MASK)
|
||||
#define TXG_UNKNOWN 0
|
||||
|
||||
/* Number of txgs worth of frees we defer adding to in-core spacemaps */
|
||||
#define TXG_DEFER_SIZE 2
|
||||
|
|
|
@ -49,10 +49,13 @@ typedef enum vdev_dtl_type {
|
|||
|
||||
extern int zfs_nocacheflush;
|
||||
|
||||
typedef boolean_t vdev_open_children_func_t(vdev_t *vd);
|
||||
|
||||
extern void vdev_dbgmsg(vdev_t *vd, const char *fmt, ...);
|
||||
extern void vdev_dbgmsg_print_tree(vdev_t *, int);
|
||||
extern int vdev_open(vdev_t *);
|
||||
extern void vdev_open_children(vdev_t *);
|
||||
extern void vdev_open_children_subset(vdev_t *, vdev_open_children_func_t *);
|
||||
extern int vdev_validate(vdev_t *);
|
||||
extern int vdev_copy_path_strict(vdev_t *, vdev_t *);
|
||||
extern void vdev_copy_path_relaxed(vdev_t *, vdev_t *);
|
||||
|
@ -71,7 +74,10 @@ extern void vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t d,
|
|||
extern boolean_t vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t d,
|
||||
uint64_t txg, uint64_t size);
|
||||
extern boolean_t vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t d);
|
||||
extern boolean_t vdev_dtl_need_resilver(vdev_t *vd, uint64_t off, size_t size);
|
||||
extern boolean_t vdev_default_need_resilver(vdev_t *vd, const dva_t *dva,
|
||||
size_t psize, uint64_t phys_birth);
|
||||
extern boolean_t vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva,
|
||||
size_t psize, uint64_t phys_birth);
|
||||
extern void vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
|
||||
boolean_t scrub_done, boolean_t rebuild_done);
|
||||
extern boolean_t vdev_dtl_required(vdev_t *vd);
|
||||
|
@ -97,8 +103,14 @@ extern void vdev_metaslab_set_size(vdev_t *);
|
|||
extern void vdev_expand(vdev_t *vd, uint64_t txg);
|
||||
extern void vdev_split(vdev_t *vd);
|
||||
extern void vdev_deadman(vdev_t *vd, char *tag);
|
||||
|
||||
typedef void vdev_xlate_func_t(void *arg, range_seg64_t *physical_rs);
|
||||
|
||||
extern boolean_t vdev_xlate_is_empty(range_seg64_t *rs);
|
||||
extern void vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
|
||||
range_seg64_t *physical_rs);
|
||||
range_seg64_t *physical_rs, range_seg64_t *remain_rs);
|
||||
extern void vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs,
|
||||
vdev_xlate_func_t *func, void *arg);
|
||||
|
||||
extern void vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx);
|
||||
extern void vdev_get_stats(vdev_t *vd, vdev_stat_t *vs);
|
||||
|
|
|
@ -0,0 +1,110 @@
|
|||
/*
|
||||
* CDDL HEADER START
|
||||
*
|
||||
* The contents of this file are subject to the terms of the
|
||||
* Common Development and Distribution License (the "License").
|
||||
* You may not use this file except in compliance with the License.
|
||||
*
|
||||
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
||||
* or http://www.opensolaris.org/os/licensing.
|
||||
* See the License for the specific language governing permissions
|
||||
* and limitations under the License.
|
||||
*
|
||||
* When distributing Covered Code, include this CDDL HEADER in each
|
||||
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
||||
* If applicable, add the following below this CDDL HEADER, with the
|
||||
* fields enclosed by brackets "[]" replaced with your own identifying
|
||||
* information: Portions Copyright [yyyy] [name of copyright owner]
|
||||
*
|
||||
* CDDL HEADER END
|
||||
*/
|
||||
/*
|
||||
* Copyright (c) 2016, Intel Corporation.
|
||||
* Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
|
||||
*/
|
||||
|
||||
#ifndef _SYS_VDEV_DRAID_H
|
||||
#define _SYS_VDEV_DRAID_H
|
||||
|
||||
#include <sys/types.h>
|
||||
#include <sys/abd.h>
|
||||
#include <sys/nvpair.h>
|
||||
#include <sys/zio.h>
|
||||
#include <sys/vdev_impl.h>
|
||||
#include <sys/vdev_raidz_impl.h>
|
||||
#include <sys/vdev.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Constants required to generate and use dRAID permutations.
|
||||
*/
|
||||
#define VDEV_DRAID_SEED 0xd7a1d5eed
|
||||
#define VDEV_DRAID_MAX_MAPS 254
|
||||
#define VDEV_DRAID_ROWSHIFT SPA_MAXBLOCKSHIFT
|
||||
#define VDEV_DRAID_ROWHEIGHT (1ULL << VDEV_DRAID_ROWSHIFT)
|
||||
#define VDEV_DRAID_REFLOW_RESERVE (2 * VDEV_DRAID_ROWHEIGHT)
|
||||
|
||||
/*
|
||||
* dRAID permutation map.
|
||||
*/
|
||||
typedef struct draid_map {
|
||||
uint64_t dm_children; /* # of permuation columns */
|
||||
uint64_t dm_nperms; /* # of permutation rows */
|
||||
uint64_t dm_seed; /* dRAID map seed */
|
||||
uint64_t dm_checksum; /* Checksum of generated map */
|
||||
uint8_t *dm_perms; /* base permutation array */
|
||||
} draid_map_t;
|
||||
|
||||
/*
|
||||
* dRAID configuration.
|
||||
*/
|
||||
typedef struct vdev_draid_config {
|
||||
/*
|
||||
* Values read from the dRAID nvlist configuration.
|
||||
*/
|
||||
uint64_t vdc_ndata; /* # of data devices in group */
|
||||
uint64_t vdc_nparity; /* # of parity devices in group */
|
||||
uint64_t vdc_nspares; /* # of distributed spares */
|
||||
uint64_t vdc_children; /* # of children */
|
||||
uint64_t vdc_ngroups; /* # groups per slice */
|
||||
|
||||
/*
|
||||
* Immutable derived constants.
|
||||
*/
|
||||
uint8_t *vdc_perms; /* permutation array */
|
||||
uint64_t vdc_nperms; /* # of permutations */
|
||||
uint64_t vdc_groupwidth; /* = data + parity */
|
||||
uint64_t vdc_ndisks; /* = children - spares */
|
||||
uint64_t vdc_groupsz; /* = groupwidth * DRAID_ROWSIZE */
|
||||
uint64_t vdc_devslicesz; /* = (groupsz * groups) / ndisks */
|
||||
} vdev_draid_config_t;
|
||||
|
||||
/*
|
||||
* Functions for handling dRAID permutation maps.
|
||||
*/
|
||||
extern uint64_t vdev_draid_rand(uint64_t *);
|
||||
extern int vdev_draid_lookup_map(uint64_t, const draid_map_t **);
|
||||
extern int vdev_draid_generate_perms(const draid_map_t *, uint8_t **);
|
||||
|
||||
/*
|
||||
* General dRAID support functions.
|
||||
*/
|
||||
extern boolean_t vdev_draid_readable(vdev_t *, uint64_t);
|
||||
extern boolean_t vdev_draid_missing(vdev_t *, uint64_t, uint64_t, uint64_t);
|
||||
extern uint64_t vdev_draid_asize_to_psize(vdev_t *, uint64_t);
|
||||
extern void vdev_draid_map_alloc_empty(zio_t *, struct raidz_row *);
|
||||
extern nvlist_t *vdev_draid_read_config_spare(vdev_t *);
|
||||
|
||||
/* Functions for dRAID distributed spares. */
|
||||
extern vdev_t *vdev_draid_spare_get_child(vdev_t *, uint64_t);
|
||||
extern vdev_t *vdev_draid_spare_get_parent(vdev_t *);
|
||||
extern int vdev_draid_spare_create(nvlist_t *, vdev_t *, uint64_t *, uint64_t);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* _SYS_VDEV_DRAID_H */
|
|
@ -68,14 +68,19 @@ extern uint32_t zfs_vdev_async_write_max_active;
|
|||
/*
|
||||
* Virtual device operations
|
||||
*/
|
||||
typedef int vdev_init_func_t(spa_t *spa, nvlist_t *nv, void **tsd);
|
||||
typedef void vdev_fini_func_t(vdev_t *vd);
|
||||
typedef int vdev_open_func_t(vdev_t *vd, uint64_t *size, uint64_t *max_size,
|
||||
uint64_t *ashift, uint64_t *pshift);
|
||||
typedef void vdev_close_func_t(vdev_t *vd);
|
||||
typedef uint64_t vdev_asize_func_t(vdev_t *vd, uint64_t psize);
|
||||
typedef uint64_t vdev_min_asize_func_t(vdev_t *vd);
|
||||
typedef uint64_t vdev_min_alloc_func_t(vdev_t *vd);
|
||||
typedef void vdev_io_start_func_t(zio_t *zio);
|
||||
typedef void vdev_io_done_func_t(zio_t *zio);
|
||||
typedef void vdev_state_change_func_t(vdev_t *vd, int, int);
|
||||
typedef boolean_t vdev_need_resilver_func_t(vdev_t *vd, uint64_t, size_t);
|
||||
typedef boolean_t vdev_need_resilver_func_t(vdev_t *vd, const dva_t *dva,
|
||||
size_t psize, uint64_t phys_birth);
|
||||
typedef void vdev_hold_func_t(vdev_t *vd);
|
||||
typedef void vdev_rele_func_t(vdev_t *vd);
|
||||
|
||||
|
@ -87,13 +92,24 @@ typedef void vdev_remap_func_t(vdev_t *vd, uint64_t offset, uint64_t size,
|
|||
* Given a target vdev, translates the logical range "in" to the physical
|
||||
* range "res"
|
||||
*/
|
||||
typedef void vdev_xlation_func_t(vdev_t *cvd, const range_seg64_t *in,
|
||||
range_seg64_t *res);
|
||||
typedef void vdev_xlation_func_t(vdev_t *cvd, const range_seg64_t *logical,
|
||||
range_seg64_t *physical, range_seg64_t *remain);
|
||||
typedef uint64_t vdev_rebuild_asize_func_t(vdev_t *vd, uint64_t start,
|
||||
uint64_t size, uint64_t max_segment);
|
||||
typedef void vdev_metaslab_init_func_t(vdev_t *vd, uint64_t *startp,
|
||||
uint64_t *sizep);
|
||||
typedef void vdev_config_generate_func_t(vdev_t *vd, nvlist_t *nv);
|
||||
typedef uint64_t vdev_nparity_func_t(vdev_t *vd);
|
||||
typedef uint64_t vdev_ndisks_func_t(vdev_t *vd);
|
||||
|
||||
typedef const struct vdev_ops {
|
||||
vdev_init_func_t *vdev_op_init;
|
||||
vdev_fini_func_t *vdev_op_fini;
|
||||
vdev_open_func_t *vdev_op_open;
|
||||
vdev_close_func_t *vdev_op_close;
|
||||
vdev_asize_func_t *vdev_op_asize;
|
||||
vdev_min_asize_func_t *vdev_op_min_asize;
|
||||
vdev_min_alloc_func_t *vdev_op_min_alloc;
|
||||
vdev_io_start_func_t *vdev_op_io_start;
|
||||
vdev_io_done_func_t *vdev_op_io_done;
|
||||
vdev_state_change_func_t *vdev_op_state_change;
|
||||
|
@ -101,11 +117,12 @@ typedef const struct vdev_ops {
|
|||
vdev_hold_func_t *vdev_op_hold;
|
||||
vdev_rele_func_t *vdev_op_rele;
|
||||
vdev_remap_func_t *vdev_op_remap;
|
||||
/*
|
||||
* For translating ranges from non-leaf vdevs (e.g. raidz) to leaves.
|
||||
* Used when initializing vdevs. Isn't used by leaf ops.
|
||||
*/
|
||||
vdev_xlation_func_t *vdev_op_xlate;
|
||||
vdev_rebuild_asize_func_t *vdev_op_rebuild_asize;
|
||||
vdev_metaslab_init_func_t *vdev_op_metaslab_init;
|
||||
vdev_config_generate_func_t *vdev_op_config_generate;
|
||||
vdev_nparity_func_t *vdev_op_nparity;
|
||||
vdev_ndisks_func_t *vdev_op_ndisks;
|
||||
char vdev_op_type[16];
|
||||
boolean_t vdev_op_leaf;
|
||||
} vdev_ops_t;
|
||||
|
@ -325,16 +342,13 @@ struct vdev {
|
|||
kthread_t *vdev_rebuild_thread;
|
||||
vdev_rebuild_t vdev_rebuild_config;
|
||||
|
||||
/* For limiting outstanding I/Os (initialize, TRIM, rebuild) */
|
||||
/* For limiting outstanding I/Os (initialize, TRIM) */
|
||||
kmutex_t vdev_initialize_io_lock;
|
||||
kcondvar_t vdev_initialize_io_cv;
|
||||
uint64_t vdev_initialize_inflight;
|
||||
kmutex_t vdev_trim_io_lock;
|
||||
kcondvar_t vdev_trim_io_cv;
|
||||
uint64_t vdev_trim_inflight[3];
|
||||
kmutex_t vdev_rebuild_io_lock;
|
||||
kcondvar_t vdev_rebuild_io_cv;
|
||||
uint64_t vdev_rebuild_inflight;
|
||||
|
||||
/*
|
||||
* Values stored in the config for an indirect or removing vdev.
|
||||
|
@ -392,7 +406,6 @@ struct vdev {
|
|||
uint64_t vdev_removed; /* persistent removed state */
|
||||
uint64_t vdev_resilver_txg; /* persistent resilvering state */
|
||||
uint64_t vdev_rebuild_txg; /* persistent rebuilding state */
|
||||
uint64_t vdev_nparity; /* number of parity devices for raidz */
|
||||
char *vdev_path; /* vdev path (if any) */
|
||||
char *vdev_devid; /* vdev devid (if any) */
|
||||
char *vdev_physpath; /* vdev device path (if any) */
|
||||
|
@ -445,8 +458,6 @@ struct vdev {
|
|||
zfs_ratelimit_t vdev_checksum_rl;
|
||||
};
|
||||
|
||||
#define VDEV_RAIDZ_MAXPARITY 3
|
||||
|
||||
#define VDEV_PAD_SIZE (8 << 10)
|
||||
/* 2 padding areas (vl_pad1 and vl_be) to skip */
|
||||
#define VDEV_SKIP_SIZE VDEV_PAD_SIZE * 2
|
||||
|
@ -532,6 +543,9 @@ typedef struct vdev_label {
|
|||
#define VDEV_LABEL_END_SIZE (2 * sizeof (vdev_label_t))
|
||||
#define VDEV_LABELS 4
|
||||
#define VDEV_BEST_LABEL VDEV_LABELS
|
||||
#define VDEV_OFFSET_IS_LABEL(vd, off) \
|
||||
(((off) < VDEV_LABEL_START_SIZE) || \
|
||||
((off) >= ((vd)->vdev_psize - VDEV_LABEL_END_SIZE)))
|
||||
|
||||
#define VDEV_ALLOC_LOAD 0
|
||||
#define VDEV_ALLOC_ADD 1
|
||||
|
@ -577,6 +591,8 @@ extern vdev_ops_t vdev_root_ops;
|
|||
extern vdev_ops_t vdev_mirror_ops;
|
||||
extern vdev_ops_t vdev_replacing_ops;
|
||||
extern vdev_ops_t vdev_raidz_ops;
|
||||
extern vdev_ops_t vdev_draid_ops;
|
||||
extern vdev_ops_t vdev_draid_spare_ops;
|
||||
extern vdev_ops_t vdev_disk_ops;
|
||||
extern vdev_ops_t vdev_file_ops;
|
||||
extern vdev_ops_t vdev_missing_ops;
|
||||
|
@ -587,11 +603,15 @@ extern vdev_ops_t vdev_indirect_ops;
|
|||
/*
|
||||
* Common size functions
|
||||
*/
|
||||
extern void vdev_default_xlate(vdev_t *vd, const range_seg64_t *in,
|
||||
range_seg64_t *out);
|
||||
extern void vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
|
||||
range_seg64_t *physical_rs, range_seg64_t *remain_rs);
|
||||
extern uint64_t vdev_default_asize(vdev_t *vd, uint64_t psize);
|
||||
extern uint64_t vdev_default_min_asize(vdev_t *vd);
|
||||
extern uint64_t vdev_get_min_asize(vdev_t *vd);
|
||||
extern void vdev_set_min_asize(vdev_t *vd);
|
||||
extern uint64_t vdev_get_min_alloc(vdev_t *vd);
|
||||
extern uint64_t vdev_get_nparity(vdev_t *vd);
|
||||
extern uint64_t vdev_get_ndisks(vdev_t *vd);
|
||||
|
||||
/*
|
||||
* Global variables
|
||||
|
|
|
@ -32,6 +32,7 @@ extern "C" {
|
|||
#endif
|
||||
|
||||
struct zio;
|
||||
struct raidz_row;
|
||||
struct raidz_map;
|
||||
#if !defined(_KERNEL)
|
||||
struct kernel_param {};
|
||||
|
@ -43,8 +44,11 @@ struct kernel_param {};
|
|||
struct raidz_map *vdev_raidz_map_alloc(struct zio *, uint64_t, uint64_t,
|
||||
uint64_t);
|
||||
void vdev_raidz_map_free(struct raidz_map *);
|
||||
void vdev_raidz_generate_parity_row(struct raidz_map *, struct raidz_row *);
|
||||
void vdev_raidz_generate_parity(struct raidz_map *);
|
||||
int vdev_raidz_reconstruct(struct raidz_map *, const int *, int);
|
||||
void vdev_raidz_reconstruct(struct raidz_map *, const int *, int);
|
||||
void vdev_raidz_child_done(zio_t *);
|
||||
void vdev_raidz_io_done(zio_t *);
|
||||
|
||||
/*
|
||||
* vdev_raidz_math interface
|
||||
|
@ -52,11 +56,16 @@ int vdev_raidz_reconstruct(struct raidz_map *, const int *, int);
|
|||
void vdev_raidz_math_init(void);
|
||||
void vdev_raidz_math_fini(void);
|
||||
const struct raidz_impl_ops *vdev_raidz_math_get_ops(void);
|
||||
int vdev_raidz_math_generate(struct raidz_map *);
|
||||
int vdev_raidz_math_reconstruct(struct raidz_map *, const int *, const int *,
|
||||
const int);
|
||||
int vdev_raidz_math_generate(struct raidz_map *, struct raidz_row *);
|
||||
int vdev_raidz_math_reconstruct(struct raidz_map *, struct raidz_row *,
|
||||
const int *, const int *, const int);
|
||||
int vdev_raidz_impl_set(const char *);
|
||||
|
||||
typedef struct vdev_raidz {
|
||||
int vd_logical_width;
|
||||
int vd_nparity;
|
||||
} vdev_raidz_t;
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -29,6 +29,7 @@
|
|||
#include <sys/debug.h>
|
||||
#include <sys/kstat.h>
|
||||
#include <sys/abd.h>
|
||||
#include <sys/vdev_impl.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
|
@ -106,30 +107,45 @@ typedef struct raidz_col {
|
|||
uint64_t rc_offset; /* device offset */
|
||||
uint64_t rc_size; /* I/O size */
|
||||
abd_t *rc_abd; /* I/O data */
|
||||
void *rc_gdata; /* used to store the "good" version */
|
||||
void *rc_orig_data; /* pre-reconstruction */
|
||||
abd_t *rc_gdata; /* used to store the "good" version */
|
||||
int rc_error; /* I/O error for this device */
|
||||
uint8_t rc_tried; /* Did we attempt this I/O column? */
|
||||
uint8_t rc_skipped; /* Did we skip this I/O column? */
|
||||
uint8_t rc_need_orig_restore; /* need to restore from orig_data? */
|
||||
uint8_t rc_repair; /* Write good data to this column */
|
||||
} raidz_col_t;
|
||||
|
||||
typedef struct raidz_row {
|
||||
uint64_t rr_cols; /* Regular column count */
|
||||
uint64_t rr_scols; /* Count including skipped columns */
|
||||
uint64_t rr_bigcols; /* Remainder data column count */
|
||||
uint64_t rr_missingdata; /* Count of missing data devices */
|
||||
uint64_t rr_missingparity; /* Count of missing parity devices */
|
||||
uint64_t rr_firstdatacol; /* First data column/parity count */
|
||||
abd_t *rr_abd_copy; /* rm_asize-buffer of copied data */
|
||||
abd_t *rr_abd_empty; /* dRAID empty sector buffer */
|
||||
int rr_nempty; /* empty sectors included in parity */
|
||||
int rr_code; /* reconstruction code (unused) */
|
||||
#ifdef ZFS_DEBUG
|
||||
uint64_t rr_offset; /* Logical offset for *_io_verify() */
|
||||
uint64_t rr_size; /* Physical size for *_io_verify() */
|
||||
#endif
|
||||
raidz_col_t rr_col[0]; /* Flexible array of I/O columns */
|
||||
} raidz_row_t;
|
||||
|
||||
typedef struct raidz_map {
|
||||
uint64_t rm_cols; /* Regular column count */
|
||||
uint64_t rm_scols; /* Count including skipped columns */
|
||||
uint64_t rm_bigcols; /* Number of oversized columns */
|
||||
uint64_t rm_asize; /* Actual total I/O size */
|
||||
uint64_t rm_missingdata; /* Count of missing data devices */
|
||||
uint64_t rm_missingparity; /* Count of missing parity devices */
|
||||
uint64_t rm_firstdatacol; /* First data column/parity count */
|
||||
uint64_t rm_nskip; /* Skipped sectors for padding */
|
||||
uint64_t rm_skipstart; /* Column index of padding start */
|
||||
abd_t *rm_abd_copy; /* rm_asize-buffer of copied data */
|
||||
uintptr_t rm_reports; /* # of referencing checksum reports */
|
||||
uint8_t rm_freed; /* map no longer has referencing ZIO */
|
||||
uint8_t rm_ecksuminjected; /* checksum error was injected */
|
||||
boolean_t rm_freed; /* map no longer has referencing ZIO */
|
||||
boolean_t rm_ecksuminjected; /* checksum error was injected */
|
||||
int rm_nrows; /* Regular row count */
|
||||
int rm_nskip; /* RAIDZ sectors skipped for padding */
|
||||
int rm_skipstart; /* Column index of padding start */
|
||||
const raidz_impl_ops_t *rm_ops; /* RAIDZ math operations */
|
||||
raidz_col_t rm_col[1]; /* Flexible array of I/O columns */
|
||||
raidz_row_t *rm_row[0]; /* flexible array of rows */
|
||||
} raidz_map_t;
|
||||
|
||||
|
||||
#define RAIDZ_ORIGINAL_IMPL (INT_MAX)
|
||||
|
||||
extern const raidz_impl_ops_t vdev_raidz_scalar_impl;
|
||||
|
@ -163,14 +179,15 @@ extern const raidz_impl_ops_t vdev_raidz_powerpc_altivec_impl;
|
|||
*
|
||||
* raidz_parity Returns parity of the RAIDZ block
|
||||
* raidz_ncols Returns number of columns the block spans
|
||||
* Note, all rows have the same number of columns.
|
||||
* raidz_nbigcols Returns number of big columns
|
||||
* raidz_col_p Returns pointer to a column
|
||||
* raidz_col_size Returns size of a column
|
||||
* raidz_big_size Returns size of big columns
|
||||
* raidz_short_size Returns size of short columns
|
||||
*/
|
||||
#define raidz_parity(rm) ((rm)->rm_firstdatacol)
|
||||
#define raidz_ncols(rm) ((rm)->rm_cols)
|
||||
#define raidz_parity(rm) ((rm)->rm_row[0]->rr_firstdatacol)
|
||||
#define raidz_ncols(rm) ((rm)->rm_row[0]->rr_cols)
|
||||
#define raidz_nbigcols(rm) ((rm)->rm_bigcols)
|
||||
#define raidz_col_p(rm, c) ((rm)->rm_col + (c))
|
||||
#define raidz_col_size(rm, c) ((rm)->rm_col[c].rc_size)
|
||||
|
@ -185,10 +202,10 @@ extern const raidz_impl_ops_t vdev_raidz_powerpc_altivec_impl;
|
|||
*/
|
||||
#define _RAIDZ_GEN_WRAP(code, impl) \
|
||||
static void \
|
||||
impl ## _gen_ ## code(void *rmp) \
|
||||
impl ## _gen_ ## code(void *rrp) \
|
||||
{ \
|
||||
raidz_map_t *rm = (raidz_map_t *)rmp; \
|
||||
raidz_generate_## code ## _impl(rm); \
|
||||
raidz_row_t *rr = (raidz_row_t *)rrp; \
|
||||
raidz_generate_## code ## _impl(rr); \
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -199,10 +216,10 @@ impl ## _gen_ ## code(void *rmp) \
|
|||
*/
|
||||
#define _RAIDZ_REC_WRAP(code, impl) \
|
||||
static int \
|
||||
impl ## _rec_ ## code(void *rmp, const int *tgtidx) \
|
||||
impl ## _rec_ ## code(void *rrp, const int *tgtidx) \
|
||||
{ \
|
||||
raidz_map_t *rm = (raidz_map_t *)rmp; \
|
||||
return (raidz_reconstruct_## code ## _impl(rm, tgtidx)); \
|
||||
raidz_row_t *rr = (raidz_row_t *)rrp; \
|
||||
return (raidz_reconstruct_## code ## _impl(rr, tgtidx)); \
|
||||
}
|
||||
|
||||
/*
|
||||
|
|
|
@ -66,10 +66,14 @@ typedef struct vdev_rebuild {
|
|||
vdev_t *vr_top_vdev; /* top-level vdev to rebuild */
|
||||
metaslab_t *vr_scan_msp; /* scanning disabled metaslab */
|
||||
range_tree_t *vr_scan_tree; /* scan ranges (in metaslab) */
|
||||
kmutex_t vr_io_lock; /* inflight IO lock */
|
||||
kcondvar_t vr_io_cv; /* inflight IO cv */
|
||||
|
||||
/* In-core state and progress */
|
||||
uint64_t vr_scan_offset[TXG_SIZE];
|
||||
uint64_t vr_prev_scan_time_ms; /* any previous scan time */
|
||||
uint64_t vr_bytes_inflight_max; /* maximum bytes inflight */
|
||||
uint64_t vr_bytes_inflight; /* current bytes inflight */
|
||||
|
||||
/* Per-rebuild pass statistics for calculating bandwidth */
|
||||
uint64_t vr_pass_start_time;
|
||||
|
|
|
@ -372,6 +372,7 @@ struct zio_cksum_report {
|
|||
nvlist_t *zcr_detector;
|
||||
void *zcr_cbdata;
|
||||
size_t zcr_cbinfo; /* passed to zcr_free() */
|
||||
uint64_t zcr_sector;
|
||||
uint64_t zcr_align;
|
||||
uint64_t zcr_length;
|
||||
zio_cksum_finish_f *zcr_finish;
|
||||
|
|
|
@ -76,6 +76,7 @@ typedef enum spa_feature {
|
|||
SPA_FEATURE_LIVELIST,
|
||||
SPA_FEATURE_DEVICE_REBUILD,
|
||||
SPA_FEATURE_ZSTD_COMPRESS,
|
||||
SPA_FEATURE_DRAID,
|
||||
SPA_FEATURES
|
||||
} spa_feature_t;
|
||||
|
||||
|
|
|
@ -5336,6 +5336,16 @@ zfs_get_holds(zfs_handle_t *zhp, nvlist_t **nvl)
|
|||
* 160k. Again, 128k is from SPA_OLD_MAXBLOCKSIZE and 160k is as calculated in
|
||||
* the 128k block example above.
|
||||
*
|
||||
* The situtation is slightly different for dRAID since the minimum allocation
|
||||
* size is the full group width. The same 8K block above would be written as
|
||||
* follows in a dRAID group:
|
||||
*
|
||||
* +-------+-------+-------+-------+-------+
|
||||
* | disk1 | disk2 | disk3 | disk4 | disk5 |
|
||||
* +-------+-------+-------+-------+-------+
|
||||
* | P0 | D0 | D1 | S0 | S1 |
|
||||
* +-------+-------+-------+-------+-------+
|
||||
*
|
||||
* Compression may lead to a variety of block sizes being written for the same
|
||||
* volume or file. There is no clear way to reserve just the amount of space
|
||||
* that will be required, so the worst case (no compression) is assumed.
|
||||
|
@ -5365,6 +5375,23 @@ vdev_raidz_asize(uint64_t ndisks, uint64_t nparity, uint64_t ashift,
|
|||
return (asize);
|
||||
}
|
||||
|
||||
/*
|
||||
* Derived from function of same name in module/zfs/vdev_draid.c. Returns the
|
||||
* amount of space (in bytes) that will be allocated for the specified block
|
||||
* size.
|
||||
*/
|
||||
static uint64_t
|
||||
vdev_draid_asize(uint64_t ndisks, uint64_t nparity, uint64_t ashift,
|
||||
uint64_t blksize)
|
||||
{
|
||||
ASSERT3U(ndisks, >, nparity);
|
||||
uint64_t ndata = ndisks - nparity;
|
||||
uint64_t rows = ((blksize - 1) / (ndata << ashift)) + 1;
|
||||
uint64_t asize = (rows * ndisks) << ashift;
|
||||
|
||||
return (asize);
|
||||
}
|
||||
|
||||
/*
|
||||
* Determine how much space will be allocated if it lands on the most space-
|
||||
* inefficient top-level vdev. Returns the size in bytes required to store one
|
||||
|
@ -5374,7 +5401,7 @@ static uint64_t
|
|||
volsize_from_vdevs(zpool_handle_t *zhp, uint64_t nblocks, uint64_t blksize)
|
||||
{
|
||||
nvlist_t *config, *tree, **vdevs;
|
||||
uint_t nvdevs, v;
|
||||
uint_t nvdevs;
|
||||
uint64_t ret = 0;
|
||||
|
||||
config = zpool_get_config(zhp, NULL);
|
||||
|
@ -5384,33 +5411,61 @@ volsize_from_vdevs(zpool_handle_t *zhp, uint64_t nblocks, uint64_t blksize)
|
|||
return (nblocks * blksize);
|
||||
}
|
||||
|
||||
for (v = 0; v < nvdevs; v++) {
|
||||
for (int v = 0; v < nvdevs; v++) {
|
||||
char *type;
|
||||
uint64_t nparity, ashift, asize, tsize;
|
||||
nvlist_t **disks;
|
||||
uint_t ndisks;
|
||||
uint64_t volsize;
|
||||
|
||||
if (nvlist_lookup_string(vdevs[v], ZPOOL_CONFIG_TYPE,
|
||||
&type) != 0 || strcmp(type, VDEV_TYPE_RAIDZ) != 0 ||
|
||||
nvlist_lookup_uint64(vdevs[v], ZPOOL_CONFIG_NPARITY,
|
||||
&nparity) != 0 ||
|
||||
nvlist_lookup_uint64(vdevs[v], ZPOOL_CONFIG_ASHIFT,
|
||||
&ashift) != 0 ||
|
||||
nvlist_lookup_nvlist_array(vdevs[v], ZPOOL_CONFIG_CHILDREN,
|
||||
&disks, &ndisks) != 0) {
|
||||
&type) != 0)
|
||||
continue;
|
||||
|
||||
if (strcmp(type, VDEV_TYPE_RAIDZ) != 0 &&
|
||||
strcmp(type, VDEV_TYPE_DRAID) != 0)
|
||||
continue;
|
||||
|
||||
if (nvlist_lookup_uint64(vdevs[v],
|
||||
ZPOOL_CONFIG_NPARITY, &nparity) != 0)
|
||||
continue;
|
||||
|
||||
if (nvlist_lookup_uint64(vdevs[v],
|
||||
ZPOOL_CONFIG_ASHIFT, &ashift) != 0)
|
||||
continue;
|
||||
|
||||
if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
|
||||
nvlist_t **disks;
|
||||
uint_t ndisks;
|
||||
|
||||
if (nvlist_lookup_nvlist_array(vdevs[v],
|
||||
ZPOOL_CONFIG_CHILDREN, &disks, &ndisks) != 0)
|
||||
continue;
|
||||
}
|
||||
|
||||
/* allocation size for the "typical" 128k block */
|
||||
tsize = vdev_raidz_asize(ndisks, nparity, ashift,
|
||||
SPA_OLD_MAXBLOCKSIZE);
|
||||
|
||||
/* allocation size for the blksize block */
|
||||
asize = vdev_raidz_asize(ndisks, nparity, ashift, blksize);
|
||||
asize = vdev_raidz_asize(ndisks, nparity, ashift,
|
||||
blksize);
|
||||
} else {
|
||||
uint64_t ndata;
|
||||
|
||||
if (nvlist_lookup_uint64(vdevs[v],
|
||||
ZPOOL_CONFIG_DRAID_NDATA, &ndata) != 0)
|
||||
continue;
|
||||
|
||||
/* allocation size for the "typical" 128k block */
|
||||
tsize = vdev_draid_asize(ndata + nparity, nparity,
|
||||
ashift, SPA_OLD_MAXBLOCKSIZE);
|
||||
|
||||
/* allocation size for the blksize block */
|
||||
asize = vdev_draid_asize(ndata + nparity, nparity,
|
||||
ashift, blksize);
|
||||
}
|
||||
|
||||
/*
|
||||
* Scale this size down as a ratio of 128k / tsize. See theory
|
||||
* statement above.
|
||||
* Scale this size down as a ratio of 128k / tsize.
|
||||
* See theory statement above.
|
||||
*/
|
||||
volsize = nblocks * asize * SPA_OLD_MAXBLOCKSIZE / tsize;
|
||||
if (volsize > ret) {
|
||||
|
|
|
@ -112,7 +112,6 @@ refresh_config_libzfs(void *handle, nvlist_t *tryconfig)
|
|||
return (refresh_config((libzfs_handle_t *)handle, tryconfig));
|
||||
}
|
||||
|
||||
|
||||
static int
|
||||
pool_active_libzfs(void *handle, const char *name, uint64_t guid,
|
||||
boolean_t *isactive)
|
||||
|
|
|
@ -42,10 +42,10 @@
|
|||
#include <sys/efi_partition.h>
|
||||
#include <sys/systeminfo.h>
|
||||
#include <sys/zfs_ioctl.h>
|
||||
#include <sys/zfs_sysfs.h>
|
||||
#include <sys/vdev_disk.h>
|
||||
#include <dlfcn.h>
|
||||
#include <libzutil.h>
|
||||
|
||||
#include "zfs_namecheck.h"
|
||||
#include "zfs_prop.h"
|
||||
#include "libzfs_impl.h"
|
||||
|
@ -481,7 +481,8 @@ zpool_valid_proplist(libzfs_handle_t *hdl, const char *poolname,
|
|||
if (err != 0) {
|
||||
ASSERT3U(err, ==, ENOENT);
|
||||
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
||||
"invalid feature '%s'"), fname);
|
||||
"feature '%s' unsupported by kernel"),
|
||||
fname);
|
||||
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
|
||||
goto error;
|
||||
}
|
||||
|
@ -960,6 +961,7 @@ zpool_name_valid(libzfs_handle_t *hdl, boolean_t isopen, const char *pool)
|
|||
if (ret == 0 && !isopen &&
|
||||
(strncmp(pool, "mirror", 6) == 0 ||
|
||||
strncmp(pool, "raidz", 5) == 0 ||
|
||||
strncmp(pool, "draid", 5) == 0 ||
|
||||
strncmp(pool, "spare", 5) == 0 ||
|
||||
strcmp(pool, "log") == 0)) {
|
||||
if (hdl != NULL)
|
||||
|
@ -1186,6 +1188,37 @@ zpool_has_special_vdev(nvlist_t *nvroot)
|
|||
return (B_FALSE);
|
||||
}
|
||||
|
||||
/*
|
||||
* Output a dRAID top-level vdev name in to the provided buffer.
|
||||
*/
|
||||
static char *
|
||||
zpool_draid_name(char *name, int len, uint64_t data, uint64_t parity,
|
||||
uint64_t spares, uint64_t children)
|
||||
{
|
||||
snprintf(name, len, "%s%llu:%llud:%lluc:%llus",
|
||||
VDEV_TYPE_DRAID, (u_longlong_t)parity, (u_longlong_t)data,
|
||||
(u_longlong_t)children, (u_longlong_t)spares);
|
||||
|
||||
return (name);
|
||||
}
|
||||
|
||||
/*
|
||||
* Return B_TRUE if the provided name is a dRAID spare name.
|
||||
*/
|
||||
boolean_t
|
||||
zpool_is_draid_spare(const char *name)
|
||||
{
|
||||
uint64_t spare_id, parity, vdev_id;
|
||||
|
||||
if (sscanf(name, VDEV_TYPE_DRAID "%llu-%llu-%llu",
|
||||
(u_longlong_t *)&parity, (u_longlong_t *)&vdev_id,
|
||||
(u_longlong_t *)&spare_id) == 3) {
|
||||
return (B_TRUE);
|
||||
}
|
||||
|
||||
return (B_FALSE);
|
||||
}
|
||||
|
||||
/*
|
||||
* Create the named pool, using the provided vdev list. It is assumed
|
||||
* that the consumer has already validated the contents of the nvlist, so we
|
||||
|
@ -2668,6 +2701,11 @@ zpool_vdev_is_interior(const char *name)
|
|||
VDEV_TYPE_REPLACING, strlen(VDEV_TYPE_REPLACING)) == 0 ||
|
||||
strncmp(name, VDEV_TYPE_MIRROR, strlen(VDEV_TYPE_MIRROR)) == 0)
|
||||
return (B_TRUE);
|
||||
|
||||
if (strncmp(name, VDEV_TYPE_DRAID, strlen(VDEV_TYPE_DRAID)) == 0 &&
|
||||
!zpool_is_draid_spare(name))
|
||||
return (B_TRUE);
|
||||
|
||||
return (B_FALSE);
|
||||
}
|
||||
|
||||
|
@ -3101,7 +3139,8 @@ is_replacing_spare(nvlist_t *search, nvlist_t *tgt, int which)
|
|||
verify(nvlist_lookup_string(search, ZPOOL_CONFIG_TYPE,
|
||||
&type) == 0);
|
||||
|
||||
if (strcmp(type, VDEV_TYPE_SPARE) == 0 &&
|
||||
if ((strcmp(type, VDEV_TYPE_SPARE) == 0 ||
|
||||
strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0) &&
|
||||
children == 2 && child[which] == tgt)
|
||||
return (B_TRUE);
|
||||
|
||||
|
@ -3216,8 +3255,12 @@ zpool_vdev_attach(zpool_handle_t *zhp, const char *old_disk,
|
|||
"cannot replace a log with a spare"));
|
||||
} else if (rebuild) {
|
||||
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
||||
"only mirror vdevs support sequential "
|
||||
"reconstruction"));
|
||||
"only mirror and dRAID vdevs support "
|
||||
"sequential reconstruction"));
|
||||
} else if (zpool_is_draid_spare(new_disk)) {
|
||||
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
||||
"dRAID spares can only replace child "
|
||||
"devices in their parent's dRAID vdev"));
|
||||
} else if (version >= SPA_VERSION_MULTI_REPLACE) {
|
||||
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
||||
"already in replacing/spare config; wait "
|
||||
|
@ -3618,6 +3661,12 @@ zpool_vdev_remove(zpool_handle_t *zhp, const char *path)
|
|||
(void) snprintf(msg, sizeof (msg),
|
||||
dgettext(TEXT_DOMAIN, "cannot remove %s"), path);
|
||||
|
||||
if (zpool_is_draid_spare(path)) {
|
||||
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
|
||||
"dRAID spares cannot be removed"));
|
||||
return (zfs_error(hdl, EZFS_NODEVICE, msg));
|
||||
}
|
||||
|
||||
(void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name));
|
||||
if ((tgt = zpool_find_vdev(zhp, path, &avail_spare, &l2cache,
|
||||
&islog)) == NULL)
|
||||
|
@ -3955,9 +4004,10 @@ zpool_vdev_name(libzfs_handle_t *hdl, zpool_handle_t *zhp, nvlist_t *nv,
|
|||
}
|
||||
|
||||
/*
|
||||
* Remove the partition from the path it this is a whole disk.
|
||||
* Remove the partition from the path if this is a whole disk.
|
||||
*/
|
||||
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, &value)
|
||||
if (strcmp(type, VDEV_TYPE_DRAID_SPARE) != 0 &&
|
||||
nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, &value)
|
||||
== 0 && value && !(name_flags & VDEV_NAME_PATH)) {
|
||||
return (zfs_strip_partition(path));
|
||||
}
|
||||
|
@ -3975,6 +4025,27 @@ zpool_vdev_name(libzfs_handle_t *hdl, zpool_handle_t *zhp, nvlist_t *nv,
|
|||
path = buf;
|
||||
}
|
||||
|
||||
/*
|
||||
* If it's a dRAID device, we add parity, groups, and spares.
|
||||
*/
|
||||
if (strcmp(path, VDEV_TYPE_DRAID) == 0) {
|
||||
uint64_t ndata, nparity, nspares;
|
||||
nvlist_t **child;
|
||||
uint_t children;
|
||||
|
||||
verify(nvlist_lookup_nvlist_array(nv,
|
||||
ZPOOL_CONFIG_CHILDREN, &child, &children) == 0);
|
||||
verify(nvlist_lookup_uint64(nv,
|
||||
ZPOOL_CONFIG_NPARITY, &nparity) == 0);
|
||||
verify(nvlist_lookup_uint64(nv,
|
||||
ZPOOL_CONFIG_DRAID_NDATA, &ndata) == 0);
|
||||
verify(nvlist_lookup_uint64(nv,
|
||||
ZPOOL_CONFIG_DRAID_NSPARES, &nspares) == 0);
|
||||
|
||||
path = zpool_draid_name(buf, sizeof (buf), ndata,
|
||||
nparity, nspares, children);
|
||||
}
|
||||
|
||||
/*
|
||||
* We identify each top-level vdev by using a <type-id>
|
||||
* naming convention.
|
||||
|
|
|
@ -124,6 +124,8 @@ KERNEL_C = \
|
|||
unique.c \
|
||||
vdev.c \
|
||||
vdev_cache.c \
|
||||
vdev_draid.c \
|
||||
vdev_draid_rand.c \
|
||||
vdev_file.c \
|
||||
vdev_indirect_births.c \
|
||||
vdev_indirect.c \
|
||||
|
@ -216,7 +218,7 @@ libzpool_la_LIBADD = \
|
|||
$(abs_top_builddir)/lib/libnvpair/libnvpair.la \
|
||||
$(abs_top_builddir)/lib/libzstd/libzstd.la
|
||||
|
||||
libzpool_la_LIBADD += $(LIBCLOCK_GETTIME) $(ZLIB_LIBS) -ldl
|
||||
libzpool_la_LIBADD += $(LIBCLOCK_GETTIME) $(ZLIB_LIBS) -ldl -lm
|
||||
|
||||
libzpool_la_LDFLAGS = -pthread
|
||||
|
||||
|
|
|
@ -61,6 +61,11 @@ during testing.
|
|||
.IP
|
||||
Size of data for raidz block. Size is 1 << (zio_size_shift).
|
||||
.HP
|
||||
.BI "\-r" " reflow_offset" " (default: uint max)"
|
||||
.IP
|
||||
Set raidz expansion offset. The expanded raidz map allocation function will
|
||||
produce different map configurations depending on this value.
|
||||
.HP
|
||||
.BI "\-S(weep)"
|
||||
.IP
|
||||
Sweep parameter space while verifying the raidz implementations. This option
|
||||
|
@ -77,6 +82,10 @@ This options starts the benchmark mode. All implementations are benchmarked
|
|||
using increasing per disk data size. Results are given as throughput per disk,
|
||||
measured in MiB/s.
|
||||
.HP
|
||||
.BI "\-e(xpansion)"
|
||||
.IP
|
||||
Use expanded raidz map allocation function.
|
||||
.HP
|
||||
.BI "\-v(erbose)"
|
||||
.IP
|
||||
Increase verbosity.
|
||||
|
|
|
@ -23,6 +23,7 @@
|
|||
.\" Copyright (c) 2009 Oracle and/or its affiliates. All rights reserved.
|
||||
.\" Copyright (c) 2009 Michael Gebetsroither <michael.geb@gmx.at>. All rights
|
||||
.\" reserved.
|
||||
.\" Copyright (c) 2017, Intel Corporation.
|
||||
.\"
|
||||
.TH ZTEST 1 "Aug 24, 2020" OpenZFS
|
||||
|
||||
|
@ -82,13 +83,29 @@ Used alignment in test.
|
|||
.IP
|
||||
Number of mirror copies.
|
||||
.HP
|
||||
.BI "\-r" " raidz_disks" " (default: 4)"
|
||||
.BI "\-r" " raidz_disks / draid_disks" " (default: 4 / 16)"
|
||||
.IP
|
||||
Number of raidz disks.
|
||||
.HP
|
||||
.BI "\-R" " raidz_parity" " (default: 1)"
|
||||
.BI "\-R" " raid_parity" " (default: 1)"
|
||||
.IP
|
||||
Raidz parity.
|
||||
Raid parity (raidz & draid).
|
||||
.HP
|
||||
.BI "\-K" " raid_kind" " (default: 'random') raidz|draid|random"
|
||||
.IP
|
||||
The kind of RAID config to use. With 'random' the kind alternates between raidz and draid.
|
||||
.HP
|
||||
.BI "\-D" " draid_data" " (default: 4)"
|
||||
.IP
|
||||
Number of data disks in a dRAID redundancy group.
|
||||
.HP
|
||||
.BI "\-S" " draid_spares" " (default: 1)"
|
||||
.IP
|
||||
Number of dRAID distributed spare disks.
|
||||
.HP
|
||||
.BI "\-C" " vdev_class_state" " (default: random)"
|
||||
.IP
|
||||
The vdev allocation class state: special=on|off|random.
|
||||
.HP
|
||||
.BI "\-d" " datasets" " (default: 7)"
|
||||
.IP
|
||||
|
|
|
@ -2902,6 +2902,31 @@ top-level vdev.
|
|||
Default value: \fB1,048,576\fR.
|
||||
.RE
|
||||
|
||||
.sp
|
||||
.ne 2
|
||||
.na
|
||||
\fBzfs_rebuild_scrub_enabled\fR (int)
|
||||
.ad
|
||||
.RS 12n
|
||||
Automatically start a pool scrub when the last active sequential resilver
|
||||
completes in order to verify the checksums of all blocks which have been
|
||||
resilvered. This option is enabled by default and is strongly recommended.
|
||||
.sp
|
||||
Default value: \fB1\fR.
|
||||
.RE
|
||||
|
||||
.sp
|
||||
.ne 2
|
||||
.na
|
||||
\fBzfs_rebuild_vdev_limit\fR (ulong)
|
||||
.ad
|
||||
.RS 12n
|
||||
Maximum amount of i/o that can be concurrently issued for a sequential
|
||||
resilver per leaf device, given in bytes.
|
||||
.sp
|
||||
Default value: \fB33,554,432\fR.
|
||||
.RE
|
||||
|
||||
.sp
|
||||
.ne 2
|
||||
.na
|
||||
|
|
|
@ -306,6 +306,30 @@ This feature becomes \fBactive\fR when the \fBzpool remove\fR subcommand is used
|
|||
on a top-level vdev, and will never return to being \fBenabled\fR.
|
||||
.RE
|
||||
|
||||
.sp
|
||||
.ne 2
|
||||
.na
|
||||
\fBdraid\fR
|
||||
.ad
|
||||
.RS 4n
|
||||
.TS
|
||||
l l .
|
||||
GUID org.openzfs:draid
|
||||
READ\-ONLY COMPATIBLE no
|
||||
DEPENDENCIES none
|
||||
.TE
|
||||
|
||||
This feature enables use of the \fBdraid\fR vdev type. dRAID is a variant
|
||||
of raidz which provides integrated distributed hot spares that allow faster
|
||||
resilvering while retaining the benefits of raidz. Data, parity, and spare
|
||||
space are organized in redundancy groups and distributed evenly over all of
|
||||
the devices.
|
||||
|
||||
This feature becomes \fBactive\fR when creating a pool which uses the
|
||||
\fBdraid\fR vdev type, or when adding a new \fBdraid\fR vdev to an
|
||||
existing pool.
|
||||
.RE
|
||||
|
||||
.sp
|
||||
.ne 2
|
||||
.na
|
||||
|
|
|
@ -73,12 +73,14 @@ and period
|
|||
The pool names
|
||||
.Sy mirror ,
|
||||
.Sy raidz ,
|
||||
.Sy draid ,
|
||||
.Sy spare
|
||||
and
|
||||
.Sy log
|
||||
are reserved, as are names beginning with
|
||||
.Sy mirror ,
|
||||
.Sy raidz ,
|
||||
.Sy draid ,
|
||||
.Sy spare ,
|
||||
and the pattern
|
||||
.Sy c[0-9] .
|
||||
|
|
|
@ -52,7 +52,7 @@ Begins a scrub or resumes a paused scrub.
|
|||
The scrub examines all data in the specified pools to verify that it checksums
|
||||
correctly.
|
||||
For replicated
|
||||
.Pq mirror or raidz
|
||||
.Pq mirror, raidz, or draid
|
||||
devices, ZFS automatically repairs any damage discovered during the scrub.
|
||||
The
|
||||
.Nm zpool Cm status
|
||||
|
|
|
@ -64,7 +64,7 @@ A file must be specified by a full path.
|
|||
A mirror of two or more devices.
|
||||
Data is replicated in an identical fashion across all components of a mirror.
|
||||
A mirror with N disks of size X can hold X bytes and can withstand (N-1) devices
|
||||
failing before data integrity is compromised.
|
||||
failing without losing data.
|
||||
.It Sy raidz , raidz1 , raidz2 , raidz3
|
||||
A variation on RAID-5 that allows for better distribution of parity and
|
||||
eliminates the RAID-5
|
||||
|
@ -88,11 +88,75 @@ vdev type is an alias for
|
|||
.Sy raidz1 .
|
||||
.Pp
|
||||
A raidz group with N disks of size X with P parity disks can hold approximately
|
||||
(N-P)*X bytes and can withstand P device(s) failing before data integrity is
|
||||
compromised.
|
||||
(N-P)*X bytes and can withstand P device(s) failing without losing data.
|
||||
The minimum number of devices in a raidz group is one more than the number of
|
||||
parity disks.
|
||||
The recommended number is between 3 and 9 to help increase performance.
|
||||
.It Sy draid , draid1 , draid2 , draid3
|
||||
A variant of raidz that provides integrated distributed hot spares which
|
||||
allows for faster resilvering while retaining the benefits of raidz.
|
||||
A dRAID vdev is constructed from multiple internal raidz groups, each with D
|
||||
data devices and P parity devices.
|
||||
These groups are distributed over all of the children in order to fully
|
||||
utilize the available disk performance.
|
||||
.Pp
|
||||
Unlike raidz, dRAID uses a fixed stripe width (padding as necessary with
|
||||
zeros) to allow fully sequential resilvering.
|
||||
This fixed stripe width significantly effects both usable capacity and IOPS.
|
||||
For example, with the default D=8 and 4k disk sectors the minimum allocation
|
||||
size is 32k.
|
||||
If using compression, this relatively large allocation size can reduce the
|
||||
effective compression ratio.
|
||||
When using ZFS volumes and dRAID the default volblocksize property is increased
|
||||
to account for the allocation size.
|
||||
If a dRAID pool will hold a significant amount of small blocks, it is
|
||||
recommended to also add a mirrored
|
||||
.Sy special
|
||||
vdev to store those blocks.
|
||||
.Pp
|
||||
In regards to IO/s, performance is similar to raidz since for any read all D
|
||||
data disks must be accessed.
|
||||
Delivered random IOPS can be reasonably approximated as
|
||||
floor((N-S)/(D+P))*<single-drive-IOPS>.
|
||||
.Pp
|
||||
Like raidz a dRAID can have single-, double-, or triple-parity. The
|
||||
.Sy draid1 ,
|
||||
.Sy draid2 ,
|
||||
and
|
||||
.Sy draid3
|
||||
types can be used to specify the parity level.
|
||||
The
|
||||
.Sy draid
|
||||
vdev type is an alias for
|
||||
.Sy draid1 .
|
||||
.Pp
|
||||
A dRAID with N disks of size X, D data disks per redundancy group, P parity
|
||||
level, and S distributed hot spares can hold approximately (N-S)*(D/(D+P))*X
|
||||
bytes and can withstand P device(s) failing without losing data.
|
||||
.It Sy draid[<parity>][:<data>d][:<children>c][:<spares>s]
|
||||
A non-default dRAID configuration can be specified by appending one or more
|
||||
of the following optional arguments to the
|
||||
.Sy draid
|
||||
keyword.
|
||||
.Pp
|
||||
.Em parity
|
||||
- The parity level (1-3).
|
||||
.Pp
|
||||
.Em data
|
||||
- The number of data devices per redundancy group.
|
||||
In general a smaller value of D will increase IOPS, improve the compression ratio, and speed up resilvering at the expense of total usable capacity.
|
||||
Defaults to 8, unless N-P-S is less than 8.
|
||||
.Pp
|
||||
.Em children
|
||||
- The expected number of children.
|
||||
Useful as a cross-check when listing a large number of devices.
|
||||
An error is returned when the provided number of children differs.
|
||||
.Pp
|
||||
.Em spares
|
||||
- The number of distributed hot spares.
|
||||
Defaults to zero.
|
||||
.Pp
|
||||
.Pp
|
||||
.It Sy spare
|
||||
A pseudo-vdev which keeps track of available hot spares for a pool.
|
||||
For more information, see the
|
||||
|
@ -273,6 +337,14 @@ If the original faulted device is detached, then the hot spare assumes its
|
|||
place in the configuration, and is removed from the spare list of all active
|
||||
pools.
|
||||
.Pp
|
||||
The
|
||||
.Sy draid
|
||||
vdev type provides distributed hot spares.
|
||||
These hot spares are named after the dRAID vdev they're a part of (
|
||||
.Qq draid1-2-3 specifies spare 3 of vdev 2, which is a single parity dRAID
|
||||
) and may only be used by that dRAID vdev.
|
||||
Otherwise, they behave the same as normal hot spares.
|
||||
.Pp
|
||||
Spares cannot replace log devices.
|
||||
.Ss Intent Log
|
||||
The ZFS Intent Log (ZIL) satisfies POSIX requirements for synchronous
|
||||
|
|
|
@ -243,6 +243,8 @@ SRCS+= abd.c \
|
|||
unique.c \
|
||||
vdev.c \
|
||||
vdev_cache.c \
|
||||
vdev_draid.c \
|
||||
vdev_draid_rand.c \
|
||||
vdev_indirect.c \
|
||||
vdev_indirect_births.c \
|
||||
vdev_indirect_mapping.c \
|
||||
|
@ -341,6 +343,7 @@ CFLAGS.lz4.c= -Wno-cast-qual
|
|||
CFLAGS.spa.c= -Wno-cast-qual
|
||||
CFLAGS.spa_misc.c= -Wno-cast-qual
|
||||
CFLAGS.sysctl_os.c= -include ../zfs_config.h
|
||||
CFLAGS.vdev_draid.c= -Wno-cast-qual
|
||||
CFLAGS.vdev_raidz.c= -Wno-cast-qual
|
||||
CFLAGS.vdev_raidz_math.c= -Wno-cast-qual
|
||||
CFLAGS.vdev_raidz_math_scalar.c= -Wno-cast-qual
|
||||
|
|
|
@ -292,19 +292,28 @@ vdev_file_io_done(zio_t *zio)
|
|||
}
|
||||
|
||||
vdev_ops_t vdev_file_ops = {
|
||||
vdev_file_open,
|
||||
vdev_file_close,
|
||||
vdev_default_asize,
|
||||
vdev_file_io_start,
|
||||
vdev_file_io_done,
|
||||
NULL,
|
||||
NULL,
|
||||
vdev_file_hold,
|
||||
vdev_file_rele,
|
||||
NULL,
|
||||
vdev_default_xlate,
|
||||
VDEV_TYPE_FILE, /* name of this vdev type */
|
||||
B_TRUE /* leaf vdev */
|
||||
.vdev_op_init = NULL,
|
||||
.vdev_op_fini = NULL,
|
||||
.vdev_op_open = vdev_file_open,
|
||||
.vdev_op_close = vdev_file_close,
|
||||
.vdev_op_asize = vdev_default_asize,
|
||||
.vdev_op_min_asize = vdev_default_min_asize,
|
||||
.vdev_op_min_alloc = NULL,
|
||||
.vdev_op_io_start = vdev_file_io_start,
|
||||
.vdev_op_io_done = vdev_file_io_done,
|
||||
.vdev_op_state_change = NULL,
|
||||
.vdev_op_need_resilver = NULL,
|
||||
.vdev_op_hold = vdev_file_hold,
|
||||
.vdev_op_rele = vdev_file_rele,
|
||||
.vdev_op_remap = NULL,
|
||||
.vdev_op_xlate = vdev_default_xlate,
|
||||
.vdev_op_rebuild_asize = NULL,
|
||||
.vdev_op_metaslab_init = NULL,
|
||||
.vdev_op_config_generate = NULL,
|
||||
.vdev_op_nparity = NULL,
|
||||
.vdev_op_ndisks = NULL,
|
||||
.vdev_op_type = VDEV_TYPE_FILE, /* name of this vdev type */
|
||||
.vdev_op_leaf = B_TRUE /* leaf vdev */
|
||||
};
|
||||
|
||||
/*
|
||||
|
@ -313,19 +322,28 @@ vdev_ops_t vdev_file_ops = {
|
|||
#ifndef _KERNEL
|
||||
|
||||
vdev_ops_t vdev_disk_ops = {
|
||||
vdev_file_open,
|
||||
vdev_file_close,
|
||||
vdev_default_asize,
|
||||
vdev_file_io_start,
|
||||
vdev_file_io_done,
|
||||
NULL,
|
||||
NULL,
|
||||
vdev_file_hold,
|
||||
vdev_file_rele,
|
||||
NULL,
|
||||
vdev_default_xlate,
|
||||
VDEV_TYPE_DISK, /* name of this vdev type */
|
||||
B_TRUE /* leaf vdev */
|
||||
.vdev_op_init = NULL,
|
||||
.vdev_op_fini = NULL,
|
||||
.vdev_op_open = vdev_file_open,
|
||||
.vdev_op_close = vdev_file_close,
|
||||
.vdev_op_asize = vdev_default_asize,
|
||||
.vdev_op_min_asize = vdev_default_min_asize,
|
||||
.vdev_op_min_alloc = NULL,
|
||||
.vdev_op_io_start = vdev_file_io_start,
|
||||
.vdev_op_io_done = vdev_file_io_done,
|
||||
.vdev_op_state_change = NULL,
|
||||
.vdev_op_need_resilver = NULL,
|
||||
.vdev_op_hold = vdev_file_hold,
|
||||
.vdev_op_rele = vdev_file_rele,
|
||||
.vdev_op_remap = NULL,
|
||||
.vdev_op_xlate = vdev_default_xlate,
|
||||
.vdev_op_rebuild_asize = NULL,
|
||||
.vdev_op_metaslab_init = NULL,
|
||||
.vdev_op_config_generate = NULL,
|
||||
.vdev_op_nparity = NULL,
|
||||
.vdev_op_ndisks = NULL,
|
||||
.vdev_op_type = VDEV_TYPE_DISK, /* name of this vdev type */
|
||||
.vdev_op_leaf = B_TRUE /* leaf vdev */
|
||||
};
|
||||
|
||||
#endif
|
||||
|
|
|
@ -1189,17 +1189,26 @@ vdev_geom_rele(vdev_t *vd)
|
|||
}
|
||||
|
||||
vdev_ops_t vdev_disk_ops = {
|
||||
vdev_geom_open,
|
||||
vdev_geom_close,
|
||||
vdev_default_asize,
|
||||
vdev_geom_io_start,
|
||||
vdev_geom_io_done,
|
||||
NULL,
|
||||
NULL,
|
||||
vdev_geom_hold,
|
||||
vdev_geom_rele,
|
||||
NULL,
|
||||
vdev_default_xlate,
|
||||
VDEV_TYPE_DISK, /* name of this vdev type */
|
||||
B_TRUE /* leaf vdev */
|
||||
.vdev_op_init = NULL,
|
||||
.vdev_op_fini = NULL,
|
||||
.vdev_op_open = vdev_geom_open,
|
||||
.vdev_op_close = vdev_geom_close,
|
||||
.vdev_op_asize = vdev_default_asize,
|
||||
.vdev_op_min_asize = vdev_default_min_asize,
|
||||
.vdev_op_min_alloc = NULL,
|
||||
.vdev_op_io_start = vdev_geom_io_start,
|
||||
.vdev_op_io_done = vdev_geom_io_done,
|
||||
.vdev_op_state_change = NULL,
|
||||
.vdev_op_need_resilver = NULL,
|
||||
.vdev_op_hold = vdev_geom_hold,
|
||||
.vdev_op_rele = vdev_geom_rele,
|
||||
.vdev_op_remap = NULL,
|
||||
.vdev_op_xlate = vdev_default_xlate,
|
||||
.vdev_op_rebuild_asize = NULL,
|
||||
.vdev_op_metaslab_init = NULL,
|
||||
.vdev_op_config_generate = NULL,
|
||||
.vdev_op_nparity = NULL,
|
||||
.vdev_op_ndisks = NULL,
|
||||
.vdev_op_type = VDEV_TYPE_DISK, /* name of this vdev type */
|
||||
.vdev_op_leaf = B_TRUE /* leaf vdev */
|
||||
};
|
||||
|
|
|
@ -826,9 +826,13 @@ vdev_disk_rele(vdev_t *vd)
|
|||
}
|
||||
|
||||
vdev_ops_t vdev_disk_ops = {
|
||||
.vdev_op_init = NULL,
|
||||
.vdev_op_fini = NULL,
|
||||
.vdev_op_open = vdev_disk_open,
|
||||
.vdev_op_close = vdev_disk_close,
|
||||
.vdev_op_asize = vdev_default_asize,
|
||||
.vdev_op_min_asize = vdev_default_min_asize,
|
||||
.vdev_op_min_alloc = NULL,
|
||||
.vdev_op_io_start = vdev_disk_io_start,
|
||||
.vdev_op_io_done = vdev_disk_io_done,
|
||||
.vdev_op_state_change = NULL,
|
||||
|
@ -837,6 +841,11 @@ vdev_ops_t vdev_disk_ops = {
|
|||
.vdev_op_rele = vdev_disk_rele,
|
||||
.vdev_op_remap = NULL,
|
||||
.vdev_op_xlate = vdev_default_xlate,
|
||||
.vdev_op_rebuild_asize = NULL,
|
||||
.vdev_op_metaslab_init = NULL,
|
||||
.vdev_op_config_generate = NULL,
|
||||
.vdev_op_nparity = NULL,
|
||||
.vdev_op_ndisks = NULL,
|
||||
.vdev_op_type = VDEV_TYPE_DISK, /* name of this vdev type */
|
||||
.vdev_op_leaf = B_TRUE /* leaf vdev */
|
||||
};
|
||||
|
|
|
@ -305,9 +305,13 @@ vdev_file_io_done(zio_t *zio)
|
|||
}
|
||||
|
||||
vdev_ops_t vdev_file_ops = {
|
||||
.vdev_op_init = NULL,
|
||||
.vdev_op_fini = NULL,
|
||||
.vdev_op_open = vdev_file_open,
|
||||
.vdev_op_close = vdev_file_close,
|
||||
.vdev_op_asize = vdev_default_asize,
|
||||
.vdev_op_min_asize = vdev_default_min_asize,
|
||||
.vdev_op_min_alloc = NULL,
|
||||
.vdev_op_io_start = vdev_file_io_start,
|
||||
.vdev_op_io_done = vdev_file_io_done,
|
||||
.vdev_op_state_change = NULL,
|
||||
|
@ -316,6 +320,11 @@ vdev_ops_t vdev_file_ops = {
|
|||
.vdev_op_rele = vdev_file_rele,
|
||||
.vdev_op_remap = NULL,
|
||||
.vdev_op_xlate = vdev_default_xlate,
|
||||
.vdev_op_rebuild_asize = NULL,
|
||||
.vdev_op_metaslab_init = NULL,
|
||||
.vdev_op_config_generate = NULL,
|
||||
.vdev_op_nparity = NULL,
|
||||
.vdev_op_ndisks = NULL,
|
||||
.vdev_op_type = VDEV_TYPE_FILE, /* name of this vdev type */
|
||||
.vdev_op_leaf = B_TRUE /* leaf vdev */
|
||||
};
|
||||
|
@ -341,9 +350,13 @@ vdev_file_fini(void)
|
|||
#ifndef _KERNEL
|
||||
|
||||
vdev_ops_t vdev_disk_ops = {
|
||||
.vdev_op_init = NULL,
|
||||
.vdev_op_fini = NULL,
|
||||
.vdev_op_open = vdev_file_open,
|
||||
.vdev_op_close = vdev_file_close,
|
||||
.vdev_op_asize = vdev_default_asize,
|
||||
.vdev_op_min_asize = vdev_default_min_asize,
|
||||
.vdev_op_min_alloc = NULL,
|
||||
.vdev_op_io_start = vdev_file_io_start,
|
||||
.vdev_op_io_done = vdev_file_io_done,
|
||||
.vdev_op_state_change = NULL,
|
||||
|
@ -352,6 +365,11 @@ vdev_ops_t vdev_disk_ops = {
|
|||
.vdev_op_rele = vdev_file_rele,
|
||||
.vdev_op_remap = NULL,
|
||||
.vdev_op_xlate = vdev_default_xlate,
|
||||
.vdev_op_rebuild_asize = NULL,
|
||||
.vdev_op_metaslab_init = NULL,
|
||||
.vdev_op_config_generate = NULL,
|
||||
.vdev_op_nparity = NULL,
|
||||
.vdev_op_ndisks = NULL,
|
||||
.vdev_op_type = VDEV_TYPE_DISK, /* name of this vdev type */
|
||||
.vdev_op_leaf = B_TRUE /* leaf vdev */
|
||||
};
|
||||
|
|
|
@ -576,7 +576,7 @@ zpool_feature_init(void)
|
|||
|
||||
zfeature_register(SPA_FEATURE_DEVICE_REBUILD,
|
||||
"org.openzfs:device_rebuild", "device_rebuild",
|
||||
"Support for sequential device rebuilds",
|
||||
"Support for sequential mirror/dRAID device rebuilds",
|
||||
ZFEATURE_FLAG_READONLY_COMPAT, ZFEATURE_TYPE_BOOLEAN, NULL);
|
||||
|
||||
{
|
||||
|
@ -589,6 +589,10 @@ zpool_feature_init(void)
|
|||
"zstd compression algorithm support.",
|
||||
ZFEATURE_FLAG_PER_DATASET, ZFEATURE_TYPE_BOOLEAN, zstd_deps);
|
||||
}
|
||||
|
||||
zfeature_register(SPA_FEATURE_DRAID,
|
||||
"org.openzfs:draid", "draid", "Support for distributed parity RAID",
|
||||
ZFEATURE_FLAG_MOS, ZFEATURE_TYPE_BOOLEAN, NULL);
|
||||
}
|
||||
|
||||
#if defined(_KERNEL)
|
||||
|
|
|
@ -442,7 +442,9 @@ pool_namecheck(const char *pool, namecheck_err_t *why, char *what)
|
|||
return (-1);
|
||||
}
|
||||
|
||||
if (strcmp(pool, "mirror") == 0 || strcmp(pool, "raidz") == 0) {
|
||||
if (strcmp(pool, "mirror") == 0 ||
|
||||
strcmp(pool, "raidz") == 0 ||
|
||||
strcmp(pool, "draid") == 0) {
|
||||
if (why)
|
||||
*why = NAME_ERR_RESERVED;
|
||||
return (-1);
|
||||
|
|
|
@ -84,6 +84,8 @@ $(MODULE)-objs += uberblock.o
|
|||
$(MODULE)-objs += unique.o
|
||||
$(MODULE)-objs += vdev.o
|
||||
$(MODULE)-objs += vdev_cache.o
|
||||
$(MODULE)-objs += vdev_draid.o
|
||||
$(MODULE)-objs += vdev_draid_rand.o
|
||||
$(MODULE)-objs += vdev_indirect.o
|
||||
$(MODULE)-objs += vdev_indirect_births.o
|
||||
$(MODULE)-objs += vdev_indirect_mapping.o
|
||||
|
|
|
@ -781,16 +781,17 @@ int
|
|||
abd_iterate_func(abd_t *abd, size_t off, size_t size,
|
||||
abd_iter_func_t *func, void *private)
|
||||
{
|
||||
int ret = 0;
|
||||
struct abd_iter aiter;
|
||||
boolean_t abd_multi;
|
||||
abd_t *c_abd;
|
||||
int ret = 0;
|
||||
|
||||
if (size == 0)
|
||||
return (0);
|
||||
|
||||
abd_verify(abd);
|
||||
ASSERT3U(off + size, <=, abd->abd_size);
|
||||
|
||||
abd_multi = abd_is_gang(abd);
|
||||
c_abd = abd_init_abd_iter(abd, &aiter, off);
|
||||
boolean_t abd_multi = abd_is_gang(abd);
|
||||
abd_t *c_abd = abd_init_abd_iter(abd, &aiter, off);
|
||||
|
||||
while (size > 0) {
|
||||
/* If we are at the end of the gang ABD we are done */
|
||||
|
@ -920,6 +921,9 @@ abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff,
|
|||
boolean_t dabd_is_gang_abd, sabd_is_gang_abd;
|
||||
abd_t *c_dabd, *c_sabd;
|
||||
|
||||
if (size == 0)
|
||||
return (0);
|
||||
|
||||
abd_verify(dabd);
|
||||
abd_verify(sabd);
|
||||
|
||||
|
|
|
@ -713,7 +713,7 @@ dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
|
|||
return (0);
|
||||
}
|
||||
|
||||
static void
|
||||
void
|
||||
dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
|
||||
{
|
||||
dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
|
||||
|
@ -3327,20 +3327,13 @@ dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
|
|||
return (B_TRUE);
|
||||
}
|
||||
|
||||
/*
|
||||
* Check if the txg falls within the range which must be
|
||||
* resilvered. DVAs outside this range can always be skipped.
|
||||
*/
|
||||
if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
|
||||
return (B_FALSE);
|
||||
|
||||
/*
|
||||
* Check if the top-level vdev must resilver this offset.
|
||||
* When the offset does not intersect with a dirty leaf DTL
|
||||
* then it may be possible to skip the resilver IO. The psize
|
||||
* is provided instead of asize to simplify the check for RAIDZ.
|
||||
*/
|
||||
if (!vdev_dtl_need_resilver(vd, DVA_GET_OFFSET(dva), psize))
|
||||
if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth))
|
||||
return (B_FALSE);
|
||||
|
||||
/*
|
||||
|
|
|
@ -32,6 +32,7 @@
|
|||
#include <sys/space_map.h>
|
||||
#include <sys/metaslab_impl.h>
|
||||
#include <sys/vdev_impl.h>
|
||||
#include <sys/vdev_draid.h>
|
||||
#include <sys/zio.h>
|
||||
#include <sys/spa_impl.h>
|
||||
#include <sys/zfeature.h>
|
||||
|
@ -1563,6 +1564,7 @@ metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start,
|
|||
|
||||
#if defined(WITH_DF_BLOCK_ALLOCATOR) || \
|
||||
defined(WITH_CF_BLOCK_ALLOCATOR)
|
||||
|
||||
/*
|
||||
* This is a helper function that can be used by the allocator to find a
|
||||
* suitable block to allocate. This will search the specified B-tree looking
|
||||
|
@ -1654,6 +1656,7 @@ metaslab_df_alloc(metaslab_t *msp, uint64_t size)
|
|||
range_seg_t *rs;
|
||||
if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0)
|
||||
metaslab_size_tree_full_load(msp->ms_allocatable);
|
||||
|
||||
if (metaslab_df_use_largest_segment) {
|
||||
/* use largest free segment */
|
||||
rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL);
|
||||
|
@ -2616,6 +2619,10 @@ metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
|
|||
ms->ms_allocator = -1;
|
||||
ms->ms_new = B_TRUE;
|
||||
|
||||
vdev_ops_t *ops = vd->vdev_ops;
|
||||
if (ops->vdev_op_metaslab_init != NULL)
|
||||
ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size);
|
||||
|
||||
/*
|
||||
* We only open space map objects that already exist. All others
|
||||
* will be opened when we finally allocate an object for it.
|
||||
|
@ -5813,7 +5820,6 @@ metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
|
|||
metaslab_group_alloc_increment(spa,
|
||||
DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
|
||||
}
|
||||
|
||||
}
|
||||
ASSERT(error == 0);
|
||||
ASSERT(BP_GET_NDVAS(bp) == ndvas);
|
||||
|
|
|
@ -307,8 +307,17 @@ mmp_next_leaf(spa_t *spa)
|
|||
if (leaf == NULL)
|
||||
leaf = list_head(&spa->spa_leaf_list);
|
||||
|
||||
if (!vdev_writeable(leaf)) {
|
||||
/*
|
||||
* We skip unwritable, offline, detached, and dRAID spare
|
||||
* devices as they are either not legal targets or the write
|
||||
* may fail or not be seen by other hosts. Skipped dRAID
|
||||
* spares can never be written so the fail mask is not set.
|
||||
*/
|
||||
if (!vdev_writeable(leaf) || leaf->vdev_offline ||
|
||||
leaf->vdev_detached) {
|
||||
fail_mask |= MMP_FAIL_NOT_WRITABLE;
|
||||
} else if (leaf->vdev_ops == &vdev_draid_spare_ops) {
|
||||
continue;
|
||||
} else if (leaf->vdev_mmp_pending != 0) {
|
||||
fail_mask |= MMP_FAIL_WRITE_PENDING;
|
||||
} else {
|
||||
|
|
124
module/zfs/spa.c
124
module/zfs/spa.c
|
@ -60,6 +60,7 @@
|
|||
#include <sys/vdev_rebuild.h>
|
||||
#include <sys/vdev_trim.h>
|
||||
#include <sys/vdev_disk.h>
|
||||
#include <sys/vdev_draid.h>
|
||||
#include <sys/metaslab.h>
|
||||
#include <sys/metaslab_impl.h>
|
||||
#include <sys/mmp.h>
|
||||
|
@ -3681,7 +3682,14 @@ spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
|
|||
/*
|
||||
* Build a new vdev tree from the trusted config
|
||||
*/
|
||||
VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
|
||||
error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
|
||||
if (error != 0) {
|
||||
nvlist_free(mos_config);
|
||||
spa_config_exit(spa, SCL_ALL, FTAG);
|
||||
spa_load_failed(spa, "spa_config_parse failed [error=%d]",
|
||||
error);
|
||||
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
|
||||
}
|
||||
|
||||
/*
|
||||
* Vdev paths in the MOS may be obsolete. If the untrusted config was
|
||||
|
@ -5631,7 +5639,7 @@ spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
|
|||
uint64_t txg = TXG_INITIAL;
|
||||
nvlist_t **spares, **l2cache;
|
||||
uint_t nspares, nl2cache;
|
||||
uint64_t version, obj;
|
||||
uint64_t version, obj, ndraid = 0;
|
||||
boolean_t has_features;
|
||||
boolean_t has_encryption;
|
||||
boolean_t has_allocclass;
|
||||
|
@ -5753,8 +5761,8 @@ spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
|
|||
|
||||
if (error == 0 &&
|
||||
(error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
|
||||
(error = spa_validate_aux(spa, nvroot, txg,
|
||||
VDEV_ALLOC_ADD)) == 0) {
|
||||
(error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
|
||||
(error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
|
||||
/*
|
||||
* instantiate the metaslab groups (this will dirty the vdevs)
|
||||
* we can no longer error exit past this point
|
||||
|
@ -5895,6 +5903,9 @@ spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
|
|||
spa_sync_props(props, tx);
|
||||
}
|
||||
|
||||
for (int i = 0; i < ndraid; i++)
|
||||
spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
|
||||
|
||||
dmu_tx_commit(tx);
|
||||
|
||||
spa->spa_sync_on = B_TRUE;
|
||||
|
@ -6403,13 +6414,26 @@ spa_reset(const char *pool)
|
|||
* ==========================================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* This is called as a synctask to increment the draid feature flag
|
||||
*/
|
||||
static void
|
||||
spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
|
||||
{
|
||||
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
|
||||
int draid = (int)(uintptr_t)arg;
|
||||
|
||||
for (int c = 0; c < draid; c++)
|
||||
spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
|
||||
}
|
||||
|
||||
/*
|
||||
* Add a device to a storage pool.
|
||||
*/
|
||||
int
|
||||
spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
|
||||
{
|
||||
uint64_t txg;
|
||||
uint64_t txg, ndraid = 0;
|
||||
int error;
|
||||
vdev_t *rvd = spa->spa_root_vdev;
|
||||
vdev_t *vd, *tvd;
|
||||
|
@ -6438,8 +6462,23 @@ spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
|
|||
return (spa_vdev_exit(spa, vd, txg, EINVAL));
|
||||
|
||||
if (vd->vdev_children != 0 &&
|
||||
(error = vdev_create(vd, txg, B_FALSE)) != 0)
|
||||
(error = vdev_create(vd, txg, B_FALSE)) != 0) {
|
||||
return (spa_vdev_exit(spa, vd, txg, error));
|
||||
}
|
||||
|
||||
/*
|
||||
* The virtual dRAID spares must be added after vdev tree is created
|
||||
* and the vdev guids are generated. The guid of their assoicated
|
||||
* dRAID is stored in the config and used when opening the spare.
|
||||
*/
|
||||
if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
|
||||
rvd->vdev_children)) == 0) {
|
||||
if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
|
||||
ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
|
||||
nspares = 0;
|
||||
} else {
|
||||
return (spa_vdev_exit(spa, vd, txg, error));
|
||||
}
|
||||
|
||||
/*
|
||||
* We must validate the spares and l2cache devices after checking the
|
||||
|
@ -6452,7 +6491,7 @@ spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
|
|||
* If we are in the middle of a device removal, we can only add
|
||||
* devices which match the existing devices in the pool.
|
||||
* If we are in the middle of a removal, or have some indirect
|
||||
* vdevs, we can not add raidz toplevels.
|
||||
* vdevs, we can not add raidz or dRAID top levels.
|
||||
*/
|
||||
if (spa->spa_vdev_removal != NULL ||
|
||||
spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
|
||||
|
@ -6462,10 +6501,10 @@ spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
|
|||
tvd->vdev_ashift != spa->spa_max_ashift) {
|
||||
return (spa_vdev_exit(spa, vd, txg, EINVAL));
|
||||
}
|
||||
/* Fail if top level vdev is raidz */
|
||||
if (tvd->vdev_ops == &vdev_raidz_ops) {
|
||||
/* Fail if top level vdev is raidz or a dRAID */
|
||||
if (vdev_get_nparity(tvd) != 0)
|
||||
return (spa_vdev_exit(spa, vd, txg, EINVAL));
|
||||
}
|
||||
|
||||
/*
|
||||
* Need the top level mirror to be
|
||||
* a mirror of leaf vdevs only
|
||||
|
@ -6505,6 +6544,19 @@ spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
|
|||
spa->spa_l2cache.sav_sync = B_TRUE;
|
||||
}
|
||||
|
||||
/*
|
||||
* We can't increment a feature while holding spa_vdev so we
|
||||
* have to do it in a synctask.
|
||||
*/
|
||||
if (ndraid != 0) {
|
||||
dmu_tx_t *tx;
|
||||
|
||||
tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
|
||||
dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
|
||||
(void *)(uintptr_t)ndraid, tx);
|
||||
dmu_tx_commit(tx);
|
||||
}
|
||||
|
||||
/*
|
||||
* We have to be careful when adding new vdevs to an existing pool.
|
||||
* If other threads start allocating from these vdevs before we
|
||||
|
@ -6615,14 +6667,27 @@ spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
|
|||
if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
|
||||
return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
|
||||
|
||||
/*
|
||||
* A dRAID spare can only replace a child of its parent dRAID vdev.
|
||||
*/
|
||||
if (newvd->vdev_ops == &vdev_draid_spare_ops &&
|
||||
oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
|
||||
return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
|
||||
}
|
||||
|
||||
if (rebuild) {
|
||||
/*
|
||||
* For rebuilds, the parent vdev must support reconstruction
|
||||
* For rebuilds, the top vdev must support reconstruction
|
||||
* using only space maps. This means the only allowable
|
||||
* parents are the root vdev or a mirror vdev.
|
||||
* vdevs types are the root vdev, a mirror, or dRAID.
|
||||
*/
|
||||
if (pvd->vdev_ops != &vdev_mirror_ops &&
|
||||
pvd->vdev_ops != &vdev_root_ops) {
|
||||
tvd = pvd;
|
||||
if (pvd->vdev_top != NULL)
|
||||
tvd = pvd->vdev_top;
|
||||
|
||||
if (tvd->vdev_ops != &vdev_mirror_ops &&
|
||||
tvd->vdev_ops != &vdev_root_ops &&
|
||||
tvd->vdev_ops != &vdev_draid_ops) {
|
||||
return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
|
||||
}
|
||||
}
|
||||
|
@ -6915,14 +6980,20 @@ spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
|
|||
}
|
||||
|
||||
/*
|
||||
* If we are detaching the original disk from a spare, then it implies
|
||||
* that the spare should become a real disk, and be removed from the
|
||||
* active spare list for the pool.
|
||||
* If we are detaching the original disk from a normal spare, then it
|
||||
* implies that the spare should become a real disk, and be removed
|
||||
* from the active spare list for the pool. dRAID spares on the
|
||||
* other hand are coupled to the pool and thus should never be removed
|
||||
* from the spares list.
|
||||
*/
|
||||
if (pvd->vdev_ops == &vdev_spare_ops &&
|
||||
vd->vdev_id == 0 &&
|
||||
pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
|
||||
if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
|
||||
vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
|
||||
|
||||
if (last_cvd->vdev_isspare &&
|
||||
last_cvd->vdev_ops != &vdev_draid_spare_ops) {
|
||||
unspare = B_TRUE;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Erase the disk labels so the disk can be used for other things.
|
||||
|
@ -8013,18 +8084,9 @@ spa_async_thread(void *arg)
|
|||
/*
|
||||
* If any devices are done replacing, detach them.
|
||||
*/
|
||||
if (tasks & SPA_ASYNC_RESILVER_DONE)
|
||||
if (tasks & SPA_ASYNC_RESILVER_DONE ||
|
||||
tasks & SPA_ASYNC_REBUILD_DONE) {
|
||||
spa_vdev_resilver_done(spa);
|
||||
|
||||
/*
|
||||
* If any devices are done replacing, detach them. Then if no
|
||||
* top-level vdevs are rebuilding attempt to kick off a scrub.
|
||||
*/
|
||||
if (tasks & SPA_ASYNC_REBUILD_DONE) {
|
||||
spa_vdev_resilver_done(spa);
|
||||
|
||||
if (!vdev_rebuild_active(spa->spa_root_vdev))
|
||||
(void) dsl_scan(spa->spa_dsl_pool, POOL_SCAN_SCRUB);
|
||||
}
|
||||
|
||||
/*
|
||||
|
|
|
@ -741,6 +741,7 @@ spa_add(const char *name, nvlist_t *config, const char *altroot)
|
|||
|
||||
spa->spa_min_ashift = INT_MAX;
|
||||
spa->spa_max_ashift = 0;
|
||||
spa->spa_min_alloc = INT_MAX;
|
||||
|
||||
/* Reset cached value */
|
||||
spa->spa_dedup_dspace = ~0ULL;
|
||||
|
|
|
@ -40,6 +40,7 @@
|
|||
#include <sys/dsl_dir.h>
|
||||
#include <sys/vdev_impl.h>
|
||||
#include <sys/vdev_rebuild.h>
|
||||
#include <sys/vdev_draid.h>
|
||||
#include <sys/uberblock_impl.h>
|
||||
#include <sys/metaslab.h>
|
||||
#include <sys/metaslab_impl.h>
|
||||
|
@ -51,6 +52,7 @@
|
|||
#include <sys/arc.h>
|
||||
#include <sys/zil.h>
|
||||
#include <sys/dsl_scan.h>
|
||||
#include <sys/vdev_raidz.h>
|
||||
#include <sys/abd.h>
|
||||
#include <sys/vdev_initialize.h>
|
||||
#include <sys/vdev_trim.h>
|
||||
|
@ -193,6 +195,8 @@ vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
|
|||
static vdev_ops_t *vdev_ops_table[] = {
|
||||
&vdev_root_ops,
|
||||
&vdev_raidz_ops,
|
||||
&vdev_draid_ops,
|
||||
&vdev_draid_spare_ops,
|
||||
&vdev_mirror_ops,
|
||||
&vdev_replacing_ops,
|
||||
&vdev_spare_ops,
|
||||
|
@ -221,10 +225,11 @@ vdev_getops(const char *type)
|
|||
|
||||
/* ARGSUSED */
|
||||
void
|
||||
vdev_default_xlate(vdev_t *vd, const range_seg64_t *in, range_seg64_t *res)
|
||||
vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
|
||||
range_seg64_t *physical_rs, range_seg64_t *remain_rs)
|
||||
{
|
||||
res->rs_start = in->rs_start;
|
||||
res->rs_end = in->rs_end;
|
||||
physical_rs->rs_start = logical_rs->rs_start;
|
||||
physical_rs->rs_end = logical_rs->rs_end;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -264,6 +269,12 @@ vdev_default_asize(vdev_t *vd, uint64_t psize)
|
|||
return (asize);
|
||||
}
|
||||
|
||||
uint64_t
|
||||
vdev_default_min_asize(vdev_t *vd)
|
||||
{
|
||||
return (vd->vdev_min_asize);
|
||||
}
|
||||
|
||||
/*
|
||||
* Get the minimum allocatable size. We define the allocatable size as
|
||||
* the vdev's asize rounded to the nearest metaslab. This allows us to
|
||||
|
@ -289,15 +300,7 @@ vdev_get_min_asize(vdev_t *vd)
|
|||
if (vd == vd->vdev_top)
|
||||
return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
|
||||
|
||||
/*
|
||||
* The allocatable space for a raidz vdev is N * sizeof(smallest child),
|
||||
* so each child must provide at least 1/Nth of its asize.
|
||||
*/
|
||||
if (pvd->vdev_ops == &vdev_raidz_ops)
|
||||
return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
|
||||
pvd->vdev_children);
|
||||
|
||||
return (pvd->vdev_min_asize);
|
||||
return (pvd->vdev_ops->vdev_op_min_asize(pvd));
|
||||
}
|
||||
|
||||
void
|
||||
|
@ -309,6 +312,48 @@ vdev_set_min_asize(vdev_t *vd)
|
|||
vdev_set_min_asize(vd->vdev_child[c]);
|
||||
}
|
||||
|
||||
/*
|
||||
* Get the minimal allocation size for the top-level vdev.
|
||||
*/
|
||||
uint64_t
|
||||
vdev_get_min_alloc(vdev_t *vd)
|
||||
{
|
||||
uint64_t min_alloc = 1ULL << vd->vdev_ashift;
|
||||
|
||||
if (vd->vdev_ops->vdev_op_min_alloc != NULL)
|
||||
min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
|
||||
|
||||
return (min_alloc);
|
||||
}
|
||||
|
||||
/*
|
||||
* Get the parity level for a top-level vdev.
|
||||
*/
|
||||
uint64_t
|
||||
vdev_get_nparity(vdev_t *vd)
|
||||
{
|
||||
uint64_t nparity = 0;
|
||||
|
||||
if (vd->vdev_ops->vdev_op_nparity != NULL)
|
||||
nparity = vd->vdev_ops->vdev_op_nparity(vd);
|
||||
|
||||
return (nparity);
|
||||
}
|
||||
|
||||
/*
|
||||
* Get the number of data disks for a top-level vdev.
|
||||
*/
|
||||
uint64_t
|
||||
vdev_get_ndisks(vdev_t *vd)
|
||||
{
|
||||
uint64_t ndisks = 1;
|
||||
|
||||
if (vd->vdev_ops->vdev_op_ndisks != NULL)
|
||||
ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
|
||||
|
||||
return (ndisks);
|
||||
}
|
||||
|
||||
vdev_t *
|
||||
vdev_lookup_top(spa_t *spa, uint64_t vdev)
|
||||
{
|
||||
|
@ -551,6 +596,7 @@ vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
|
|||
list_link_init(&vd->vdev_initialize_node);
|
||||
list_link_init(&vd->vdev_leaf_node);
|
||||
list_link_init(&vd->vdev_trim_node);
|
||||
|
||||
mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
|
||||
mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
|
||||
mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
|
||||
|
@ -569,9 +615,7 @@ vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
|
|||
cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
|
||||
|
||||
mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
|
||||
mutex_init(&vd->vdev_rebuild_io_lock, NULL, MUTEX_DEFAULT, NULL);
|
||||
cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
|
||||
cv_init(&vd->vdev_rebuild_io_cv, NULL, CV_DEFAULT, NULL);
|
||||
|
||||
for (int t = 0; t < DTL_TYPES; t++) {
|
||||
vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
|
||||
|
@ -600,7 +644,7 @@ vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
|
|||
{
|
||||
vdev_ops_t *ops;
|
||||
char *type;
|
||||
uint64_t guid = 0, islog, nparity;
|
||||
uint64_t guid = 0, islog;
|
||||
vdev_t *vd;
|
||||
vdev_indirect_config_t *vic;
|
||||
char *tmp = NULL;
|
||||
|
@ -657,48 +701,13 @@ vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
|
|||
if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
|
||||
return (SET_ERROR(ENOTSUP));
|
||||
|
||||
/*
|
||||
* Set the nparity property for RAID-Z vdevs.
|
||||
*/
|
||||
nparity = -1ULL;
|
||||
if (ops == &vdev_raidz_ops) {
|
||||
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
|
||||
&nparity) == 0) {
|
||||
if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
|
||||
return (SET_ERROR(EINVAL));
|
||||
/*
|
||||
* Previous versions could only support 1 or 2 parity
|
||||
* device.
|
||||
*/
|
||||
if (nparity > 1 &&
|
||||
spa_version(spa) < SPA_VERSION_RAIDZ2)
|
||||
return (SET_ERROR(ENOTSUP));
|
||||
if (nparity > 2 &&
|
||||
spa_version(spa) < SPA_VERSION_RAIDZ3)
|
||||
return (SET_ERROR(ENOTSUP));
|
||||
} else {
|
||||
/*
|
||||
* We require the parity to be specified for SPAs that
|
||||
* support multiple parity levels.
|
||||
*/
|
||||
if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
|
||||
return (SET_ERROR(EINVAL));
|
||||
/*
|
||||
* Otherwise, we default to 1 parity device for RAID-Z.
|
||||
*/
|
||||
nparity = 1;
|
||||
}
|
||||
} else {
|
||||
nparity = 0;
|
||||
}
|
||||
ASSERT(nparity != -1ULL);
|
||||
|
||||
/*
|
||||
* If creating a top-level vdev, check for allocation classes input
|
||||
*/
|
||||
if (top_level && alloctype == VDEV_ALLOC_ADD) {
|
||||
char *bias;
|
||||
|
||||
/*
|
||||
* If creating a top-level vdev, check for allocation
|
||||
* classes input.
|
||||
*/
|
||||
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
|
||||
&bias) == 0) {
|
||||
alloc_bias = vdev_derive_alloc_bias(bias);
|
||||
|
@ -710,13 +719,32 @@ vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
|
|||
return (SET_ERROR(ENOTSUP));
|
||||
}
|
||||
}
|
||||
|
||||
/* spa_vdev_add() expects feature to be enabled */
|
||||
if (ops == &vdev_draid_ops &&
|
||||
spa->spa_load_state != SPA_LOAD_CREATE &&
|
||||
!spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
|
||||
return (SET_ERROR(ENOTSUP));
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Initialize the vdev specific data. This is done before calling
|
||||
* vdev_alloc_common() since it may fail and this simplifies the
|
||||
* error reporting and cleanup code paths.
|
||||
*/
|
||||
void *tsd = NULL;
|
||||
if (ops->vdev_op_init != NULL) {
|
||||
rc = ops->vdev_op_init(spa, nv, &tsd);
|
||||
if (rc != 0) {
|
||||
return (rc);
|
||||
}
|
||||
}
|
||||
|
||||
vd = vdev_alloc_common(spa, id, guid, ops);
|
||||
vic = &vd->vdev_indirect_config;
|
||||
|
||||
vd->vdev_tsd = tsd;
|
||||
vd->vdev_islog = islog;
|
||||
vd->vdev_nparity = nparity;
|
||||
|
||||
if (top_level && alloc_bias != VDEV_BIAS_NONE)
|
||||
vd->vdev_alloc_bias = alloc_bias;
|
||||
|
||||
|
@ -756,6 +784,8 @@ vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
|
|||
&vd->vdev_wholedisk) != 0)
|
||||
vd->vdev_wholedisk = -1ULL;
|
||||
|
||||
vic = &vd->vdev_indirect_config;
|
||||
|
||||
ASSERT0(vic->vic_mapping_object);
|
||||
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
|
||||
&vic->vic_mapping_object);
|
||||
|
@ -937,6 +967,9 @@ vdev_free(vdev_t *vd)
|
|||
ASSERT(vd->vdev_child == NULL);
|
||||
ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
|
||||
|
||||
if (vd->vdev_ops->vdev_op_fini != NULL)
|
||||
vd->vdev_ops->vdev_op_fini(vd);
|
||||
|
||||
/*
|
||||
* Discard allocation state.
|
||||
*/
|
||||
|
@ -1028,9 +1061,7 @@ vdev_free(vdev_t *vd)
|
|||
cv_destroy(&vd->vdev_trim_io_cv);
|
||||
|
||||
mutex_destroy(&vd->vdev_rebuild_lock);
|
||||
mutex_destroy(&vd->vdev_rebuild_io_lock);
|
||||
cv_destroy(&vd->vdev_rebuild_cv);
|
||||
cv_destroy(&vd->vdev_rebuild_io_cv);
|
||||
|
||||
zfs_ratelimit_fini(&vd->vdev_delay_rl);
|
||||
zfs_ratelimit_fini(&vd->vdev_checksum_rl);
|
||||
|
@ -1161,7 +1192,8 @@ vdev_top_update(vdev_t *tvd, vdev_t *vd)
|
|||
}
|
||||
|
||||
/*
|
||||
* Add a mirror/replacing vdev above an existing vdev.
|
||||
* Add a mirror/replacing vdev above an existing vdev. There is no need to
|
||||
* call .vdev_op_init() since mirror/replacing vdevs do not have private state.
|
||||
*/
|
||||
vdev_t *
|
||||
vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
|
||||
|
@ -1296,6 +1328,10 @@ vdev_metaslab_group_create(vdev_t *vd)
|
|||
spa->spa_max_ashift = vd->vdev_ashift;
|
||||
if (vd->vdev_ashift < spa->spa_min_ashift)
|
||||
spa->spa_min_ashift = vd->vdev_ashift;
|
||||
|
||||
uint64_t min_alloc = vdev_get_min_alloc(vd);
|
||||
if (min_alloc < spa->spa_min_alloc)
|
||||
spa->spa_min_alloc = min_alloc;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1622,39 +1658,67 @@ vdev_uses_zvols(vdev_t *vd)
|
|||
return (B_FALSE);
|
||||
}
|
||||
|
||||
/*
|
||||
* Returns B_TRUE if the passed child should be opened.
|
||||
*/
|
||||
static boolean_t
|
||||
vdev_default_open_children_func(vdev_t *vd)
|
||||
{
|
||||
return (B_TRUE);
|
||||
}
|
||||
|
||||
/*
|
||||
* Open the requested child vdevs. If any of the leaf vdevs are using
|
||||
* a ZFS volume then do the opens in a single thread. This avoids a
|
||||
* deadlock when the current thread is holding the spa_namespace_lock.
|
||||
*/
|
||||
static void
|
||||
vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
|
||||
{
|
||||
int children = vd->vdev_children;
|
||||
|
||||
taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
|
||||
children, children, TASKQ_PREPOPULATE);
|
||||
vd->vdev_nonrot = B_TRUE;
|
||||
|
||||
for (int c = 0; c < children; c++) {
|
||||
vdev_t *cvd = vd->vdev_child[c];
|
||||
|
||||
if (open_func(cvd) == B_FALSE)
|
||||
continue;
|
||||
|
||||
if (tq == NULL || vdev_uses_zvols(vd)) {
|
||||
cvd->vdev_open_error = vdev_open(cvd);
|
||||
} else {
|
||||
VERIFY(taskq_dispatch(tq, vdev_open_child,
|
||||
cvd, TQ_SLEEP) != TASKQID_INVALID);
|
||||
}
|
||||
|
||||
vd->vdev_nonrot &= cvd->vdev_nonrot;
|
||||
}
|
||||
|
||||
if (tq != NULL) {
|
||||
taskq_wait(tq);
|
||||
taskq_destroy(tq);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Open all child vdevs.
|
||||
*/
|
||||
void
|
||||
vdev_open_children(vdev_t *vd)
|
||||
{
|
||||
taskq_t *tq;
|
||||
int children = vd->vdev_children;
|
||||
vdev_open_children_impl(vd, vdev_default_open_children_func);
|
||||
}
|
||||
|
||||
/*
|
||||
* in order to handle pools on top of zvols, do the opens
|
||||
* in a single thread so that the same thread holds the
|
||||
* spa_namespace_lock
|
||||
/*
|
||||
* Conditionally open a subset of child vdevs.
|
||||
*/
|
||||
if (vdev_uses_zvols(vd)) {
|
||||
retry_sync:
|
||||
for (int c = 0; c < children; c++)
|
||||
vd->vdev_child[c]->vdev_open_error =
|
||||
vdev_open(vd->vdev_child[c]);
|
||||
} else {
|
||||
tq = taskq_create("vdev_open", children, minclsyspri,
|
||||
children, children, TASKQ_PREPOPULATE);
|
||||
if (tq == NULL)
|
||||
goto retry_sync;
|
||||
|
||||
for (int c = 0; c < children; c++)
|
||||
VERIFY(taskq_dispatch(tq, vdev_open_child,
|
||||
vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
|
||||
|
||||
taskq_destroy(tq);
|
||||
}
|
||||
|
||||
vd->vdev_nonrot = B_TRUE;
|
||||
|
||||
for (int c = 0; c < children; c++)
|
||||
vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
|
||||
void
|
||||
vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
|
||||
{
|
||||
vdev_open_children_impl(vd, open_func);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -1952,6 +2016,16 @@ vdev_open(vdev_t *vd)
|
|||
return (error);
|
||||
}
|
||||
|
||||
/*
|
||||
* Track the the minimum allocation size.
|
||||
*/
|
||||
if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
|
||||
vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
|
||||
uint64_t min_alloc = vdev_get_min_alloc(vd);
|
||||
if (min_alloc < spa->spa_min_alloc)
|
||||
spa->spa_min_alloc = min_alloc;
|
||||
}
|
||||
|
||||
/*
|
||||
* If this is a leaf vdev, assess whether a resilver is needed.
|
||||
* But don't do this if we are doing a reopen for a scrub, since
|
||||
|
@ -2278,7 +2352,9 @@ vdev_close(vdev_t *vd)
|
|||
vdev_t *pvd = vd->vdev_parent;
|
||||
spa_t *spa __maybe_unused = vd->vdev_spa;
|
||||
|
||||
ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
|
||||
ASSERT(vd != NULL);
|
||||
ASSERT(vd->vdev_open_thread == curthread ||
|
||||
spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
|
||||
|
||||
/*
|
||||
* If our parent is reopening, then we are as well, unless we are
|
||||
|
@ -2606,10 +2682,26 @@ vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
|
|||
}
|
||||
|
||||
/*
|
||||
* Returns B_TRUE if vdev determines offset needs to be resilvered.
|
||||
* Check if the txg falls within the range which must be
|
||||
* resilvered. DVAs outside this range can always be skipped.
|
||||
*/
|
||||
boolean_t
|
||||
vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
|
||||
vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
|
||||
uint64_t phys_birth)
|
||||
{
|
||||
/* Set by sequential resilver. */
|
||||
if (phys_birth == TXG_UNKNOWN)
|
||||
return (B_TRUE);
|
||||
|
||||
return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
|
||||
}
|
||||
|
||||
/*
|
||||
* Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
|
||||
*/
|
||||
boolean_t
|
||||
vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
|
||||
uint64_t phys_birth)
|
||||
{
|
||||
ASSERT(vd != vd->vdev_spa->spa_root_vdev);
|
||||
|
||||
|
@ -2617,7 +2709,8 @@ vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
|
|||
vd->vdev_ops->vdev_op_leaf)
|
||||
return (B_TRUE);
|
||||
|
||||
return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize));
|
||||
return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
|
||||
phys_birth));
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -2862,8 +2955,8 @@ vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
|
|||
continue; /* leaf vdevs only */
|
||||
if (t == DTL_PARTIAL)
|
||||
minref = 1; /* i.e. non-zero */
|
||||
else if (vd->vdev_nparity != 0)
|
||||
minref = vd->vdev_nparity + 1; /* RAID-Z */
|
||||
else if (vdev_get_nparity(vd) != 0)
|
||||
minref = vdev_get_nparity(vd) + 1; /* RAID-Z, dRAID */
|
||||
else
|
||||
minref = vd->vdev_children; /* any kind of mirror */
|
||||
space_reftree_create(&reftree);
|
||||
|
@ -3727,6 +3820,9 @@ top:
|
|||
if (!vd->vdev_ops->vdev_op_leaf)
|
||||
return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
|
||||
|
||||
if (vd->vdev_ops == &vdev_draid_spare_ops)
|
||||
return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
|
||||
|
||||
tvd = vd->vdev_top;
|
||||
mg = tvd->vdev_mg;
|
||||
generation = spa->spa_config_generation + 1;
|
||||
|
@ -3971,6 +4067,13 @@ vdev_accessible(vdev_t *vd, zio_t *zio)
|
|||
static void
|
||||
vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
|
||||
{
|
||||
/*
|
||||
* Exclude the dRAID spare when aggregating to avoid double counting
|
||||
* the ops and bytes. These IOs are counted by the physical leaves.
|
||||
*/
|
||||
if (cvd->vdev_ops == &vdev_draid_spare_ops)
|
||||
return;
|
||||
|
||||
for (int t = 0; t < VS_ZIO_TYPES; t++) {
|
||||
vs->vs_ops[t] += cvs->vs_ops[t];
|
||||
vs->vs_bytes[t] += cvs->vs_bytes[t];
|
||||
|
@ -4063,7 +4166,6 @@ vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
|
|||
vdev_get_child_stat(cvd, vs, cvs);
|
||||
if (vsx)
|
||||
vdev_get_child_stat_ex(cvd, vsx, cvsx);
|
||||
|
||||
}
|
||||
} else {
|
||||
/*
|
||||
|
@ -4248,7 +4350,9 @@ vdev_stat_update(zio_t *zio, uint64_t psize)
|
|||
|
||||
/*
|
||||
* Repair is the result of a rebuild issued by the
|
||||
* rebuild thread (vdev_rebuild_thread).
|
||||
* rebuild thread (vdev_rebuild_thread). To avoid
|
||||
* double counting repaired bytes the virtual dRAID
|
||||
* spare vdev is excluded from the processed bytes.
|
||||
*/
|
||||
if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
|
||||
vdev_t *tvd = vd->vdev_top;
|
||||
|
@ -4256,8 +4360,10 @@ vdev_stat_update(zio_t *zio, uint64_t psize)
|
|||
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
|
||||
uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
|
||||
|
||||
if (vd->vdev_ops->vdev_op_leaf)
|
||||
if (vd->vdev_ops->vdev_op_leaf &&
|
||||
vd->vdev_ops != &vdev_draid_spare_ops) {
|
||||
atomic_add_64(rebuilt, psize);
|
||||
}
|
||||
vs->vs_rebuild_processed += psize;
|
||||
}
|
||||
|
||||
|
@ -4981,31 +5087,42 @@ vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
|
|||
vdev_resilver_needed(vd, NULL, NULL));
|
||||
}
|
||||
|
||||
boolean_t
|
||||
vdev_xlate_is_empty(range_seg64_t *rs)
|
||||
{
|
||||
return (rs->rs_start == rs->rs_end);
|
||||
}
|
||||
|
||||
/*
|
||||
* Translate a logical range to the physical range for the specified vdev_t.
|
||||
* This function is initially called with a leaf vdev and will walk each
|
||||
* parent vdev until it reaches a top-level vdev. Once the top-level is
|
||||
* reached the physical range is initialized and the recursive function
|
||||
* begins to unwind. As it unwinds it calls the parent's vdev specific
|
||||
* translation function to do the real conversion.
|
||||
* Translate a logical range to the first contiguous physical range for the
|
||||
* specified vdev_t. This function is initially called with a leaf vdev and
|
||||
* will walk each parent vdev until it reaches a top-level vdev. Once the
|
||||
* top-level is reached the physical range is initialized and the recursive
|
||||
* function begins to unwind. As it unwinds it calls the parent's vdev
|
||||
* specific translation function to do the real conversion.
|
||||
*/
|
||||
void
|
||||
vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
|
||||
range_seg64_t *physical_rs)
|
||||
range_seg64_t *physical_rs, range_seg64_t *remain_rs)
|
||||
{
|
||||
/*
|
||||
* Walk up the vdev tree
|
||||
*/
|
||||
if (vd != vd->vdev_top) {
|
||||
vdev_xlate(vd->vdev_parent, logical_rs, physical_rs);
|
||||
vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
|
||||
remain_rs);
|
||||
} else {
|
||||
/*
|
||||
* We've reached the top-level vdev, initialize the
|
||||
* physical range to the logical range and start to
|
||||
* unwind.
|
||||
* We've reached the top-level vdev, initialize the physical
|
||||
* range to the logical range and set an empty remaining
|
||||
* range then start to unwind.
|
||||
*/
|
||||
physical_rs->rs_start = logical_rs->rs_start;
|
||||
physical_rs->rs_end = logical_rs->rs_end;
|
||||
|
||||
remain_rs->rs_start = logical_rs->rs_start;
|
||||
remain_rs->rs_end = logical_rs->rs_start;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -5015,16 +5132,40 @@ vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
|
|||
|
||||
/*
|
||||
* As this recursive function unwinds, translate the logical
|
||||
* range into its physical components by calling the
|
||||
* vdev specific translate function.
|
||||
* range into its physical and any remaining components by calling
|
||||
* the vdev specific translate function.
|
||||
*/
|
||||
range_seg64_t intermediate = { 0 };
|
||||
pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate);
|
||||
pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
|
||||
|
||||
physical_rs->rs_start = intermediate.rs_start;
|
||||
physical_rs->rs_end = intermediate.rs_end;
|
||||
}
|
||||
|
||||
void
|
||||
vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs,
|
||||
vdev_xlate_func_t *func, void *arg)
|
||||
{
|
||||
range_seg64_t iter_rs = *logical_rs;
|
||||
range_seg64_t physical_rs;
|
||||
range_seg64_t remain_rs;
|
||||
|
||||
while (!vdev_xlate_is_empty(&iter_rs)) {
|
||||
|
||||
vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
|
||||
|
||||
/*
|
||||
* With raidz and dRAID, it's possible that the logical range
|
||||
* does not live on this leaf vdev. Only when there is a non-
|
||||
* zero physical size call the provided function.
|
||||
*/
|
||||
if (!vdev_xlate_is_empty(&physical_rs))
|
||||
func(arg, &physical_rs);
|
||||
|
||||
iter_rs = remain_rs;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Look at the vdev tree and determine whether any devices are currently being
|
||||
* replaced.
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,40 @@
|
|||
/*
|
||||
* Xorshift Pseudo Random Number Generator based on work by David Blackman
|
||||
* and Sebastiano Vigna (vigna@acm.org).
|
||||
*
|
||||
* "Further scramblings of Marsaglia's xorshift generators"
|
||||
* http://vigna.di.unimi.it/ftp/papers/xorshiftplus.pdf
|
||||
* http://prng.di.unimi.it/xoroshiro128plusplus.c
|
||||
*
|
||||
* To the extent possible under law, the author has dedicated all copyright
|
||||
* and related and neighboring rights to this software to the public domain
|
||||
* worldwide. This software is distributed without any warranty.
|
||||
*
|
||||
* See <http://creativecommons.org/publicdomain/zero/1.0/>.
|
||||
*
|
||||
* This is xoroshiro128++ 1.0, one of our all-purpose, rock-solid,
|
||||
* small-state generators. It is extremely (sub-ns) fast and it passes all
|
||||
* tests we are aware of, but its state space is large enough only for
|
||||
* mild parallelism.
|
||||
*/
|
||||
|
||||
#include <sys/vdev_draid.h>
|
||||
|
||||
static inline uint64_t rotl(const uint64_t x, int k)
|
||||
{
|
||||
return (x << k) | (x >> (64 - k));
|
||||
}
|
||||
|
||||
uint64_t
|
||||
vdev_draid_rand(uint64_t *s)
|
||||
{
|
||||
const uint64_t s0 = s[0];
|
||||
uint64_t s1 = s[1];
|
||||
const uint64_t result = rotl(s0 + s1, 17) + s0;
|
||||
|
||||
s1 ^= s0;
|
||||
s[0] = rotl(s0, 49) ^ s1 ^ (s1 << 21); // a, b
|
||||
s[1] = rotl(s1, 28); // c
|
||||
|
||||
return (result);
|
||||
}
|
|
@ -1844,9 +1844,13 @@ vdev_indirect_io_done(zio_t *zio)
|
|||
}
|
||||
|
||||
vdev_ops_t vdev_indirect_ops = {
|
||||
.vdev_op_init = NULL,
|
||||
.vdev_op_fini = NULL,
|
||||
.vdev_op_open = vdev_indirect_open,
|
||||
.vdev_op_close = vdev_indirect_close,
|
||||
.vdev_op_asize = vdev_default_asize,
|
||||
.vdev_op_min_asize = vdev_default_min_asize,
|
||||
.vdev_op_min_alloc = NULL,
|
||||
.vdev_op_io_start = vdev_indirect_io_start,
|
||||
.vdev_op_io_done = vdev_indirect_io_done,
|
||||
.vdev_op_state_change = NULL,
|
||||
|
@ -1855,6 +1859,11 @@ vdev_ops_t vdev_indirect_ops = {
|
|||
.vdev_op_rele = NULL,
|
||||
.vdev_op_remap = vdev_indirect_remap,
|
||||
.vdev_op_xlate = NULL,
|
||||
.vdev_op_rebuild_asize = NULL,
|
||||
.vdev_op_metaslab_init = NULL,
|
||||
.vdev_op_config_generate = NULL,
|
||||
.vdev_op_nparity = NULL,
|
||||
.vdev_op_ndisks = NULL,
|
||||
.vdev_op_type = VDEV_TYPE_INDIRECT, /* name of this vdev type */
|
||||
.vdev_op_leaf = B_FALSE /* leaf vdev */
|
||||
};
|
||||
|
|
|
@ -121,6 +121,8 @@ vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
|
|||
if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) {
|
||||
vd->vdev_initialize_action_time = gethrestime_sec();
|
||||
}
|
||||
|
||||
vdev_initializing_state_t old_state = vd->vdev_initialize_state;
|
||||
vd->vdev_initialize_state = new_state;
|
||||
|
||||
dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
|
||||
|
@ -138,6 +140,8 @@ vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
|
|||
"vdev=%s suspended", vd->vdev_path);
|
||||
break;
|
||||
case VDEV_INITIALIZE_CANCELED:
|
||||
if (old_state == VDEV_INITIALIZE_ACTIVE ||
|
||||
old_state == VDEV_INITIALIZE_SUSPENDED)
|
||||
spa_history_log_internal(spa, "initialize", tx,
|
||||
"vdev=%s canceled", vd->vdev_path);
|
||||
break;
|
||||
|
@ -317,6 +321,32 @@ vdev_initialize_ranges(vdev_t *vd, abd_t *data)
|
|||
return (0);
|
||||
}
|
||||
|
||||
static void
|
||||
vdev_initialize_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs)
|
||||
{
|
||||
uint64_t *last_rs_end = (uint64_t *)arg;
|
||||
|
||||
if (physical_rs->rs_end > *last_rs_end)
|
||||
*last_rs_end = physical_rs->rs_end;
|
||||
}
|
||||
|
||||
static void
|
||||
vdev_initialize_xlate_progress(void *arg, range_seg64_t *physical_rs)
|
||||
{
|
||||
vdev_t *vd = (vdev_t *)arg;
|
||||
|
||||
uint64_t size = physical_rs->rs_end - physical_rs->rs_start;
|
||||
vd->vdev_initialize_bytes_est += size;
|
||||
|
||||
if (vd->vdev_initialize_last_offset > physical_rs->rs_end) {
|
||||
vd->vdev_initialize_bytes_done += size;
|
||||
} else if (vd->vdev_initialize_last_offset > physical_rs->rs_start &&
|
||||
vd->vdev_initialize_last_offset < physical_rs->rs_end) {
|
||||
vd->vdev_initialize_bytes_done +=
|
||||
vd->vdev_initialize_last_offset - physical_rs->rs_start;
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
vdev_initialize_calculate_progress(vdev_t *vd)
|
||||
{
|
||||
|
@ -331,28 +361,35 @@ vdev_initialize_calculate_progress(vdev_t *vd)
|
|||
metaslab_t *msp = vd->vdev_top->vdev_ms[i];
|
||||
mutex_enter(&msp->ms_lock);
|
||||
|
||||
uint64_t ms_free = msp->ms_size -
|
||||
metaslab_allocated_space(msp);
|
||||
|
||||
if (vd->vdev_top->vdev_ops == &vdev_raidz_ops)
|
||||
ms_free /= vd->vdev_top->vdev_children;
|
||||
uint64_t ms_free = (msp->ms_size -
|
||||
metaslab_allocated_space(msp)) /
|
||||
vdev_get_ndisks(vd->vdev_top);
|
||||
|
||||
/*
|
||||
* Convert the metaslab range to a physical range
|
||||
* on our vdev. We use this to determine if we are
|
||||
* in the middle of this metaslab range.
|
||||
*/
|
||||
range_seg64_t logical_rs, physical_rs;
|
||||
range_seg64_t logical_rs, physical_rs, remain_rs;
|
||||
logical_rs.rs_start = msp->ms_start;
|
||||
logical_rs.rs_end = msp->ms_start + msp->ms_size;
|
||||
vdev_xlate(vd, &logical_rs, &physical_rs);
|
||||
|
||||
/* Metaslab space after this offset has not been initialized */
|
||||
vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs);
|
||||
if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) {
|
||||
vd->vdev_initialize_bytes_est += ms_free;
|
||||
mutex_exit(&msp->ms_lock);
|
||||
continue;
|
||||
} else if (vd->vdev_initialize_last_offset >
|
||||
physical_rs.rs_end) {
|
||||
}
|
||||
|
||||
/* Metaslab space before this offset has been initialized */
|
||||
uint64_t last_rs_end = physical_rs.rs_end;
|
||||
if (!vdev_xlate_is_empty(&remain_rs)) {
|
||||
vdev_xlate_walk(vd, &remain_rs,
|
||||
vdev_initialize_xlate_last_rs_end, &last_rs_end);
|
||||
}
|
||||
|
||||
if (vd->vdev_initialize_last_offset > last_rs_end) {
|
||||
vd->vdev_initialize_bytes_done += ms_free;
|
||||
vd->vdev_initialize_bytes_est += ms_free;
|
||||
mutex_exit(&msp->ms_lock);
|
||||
|
@ -374,22 +411,9 @@ vdev_initialize_calculate_progress(vdev_t *vd)
|
|||
&where)) {
|
||||
logical_rs.rs_start = rs_get_start(rs, rt);
|
||||
logical_rs.rs_end = rs_get_end(rs, rt);
|
||||
vdev_xlate(vd, &logical_rs, &physical_rs);
|
||||
|
||||
uint64_t size = physical_rs.rs_end -
|
||||
physical_rs.rs_start;
|
||||
vd->vdev_initialize_bytes_est += size;
|
||||
if (vd->vdev_initialize_last_offset >
|
||||
physical_rs.rs_end) {
|
||||
vd->vdev_initialize_bytes_done += size;
|
||||
} else if (vd->vdev_initialize_last_offset >
|
||||
physical_rs.rs_start &&
|
||||
vd->vdev_initialize_last_offset <
|
||||
physical_rs.rs_end) {
|
||||
vd->vdev_initialize_bytes_done +=
|
||||
vd->vdev_initialize_last_offset -
|
||||
physical_rs.rs_start;
|
||||
}
|
||||
vdev_xlate_walk(vd, &logical_rs,
|
||||
vdev_initialize_xlate_progress, vd);
|
||||
}
|
||||
mutex_exit(&msp->ms_lock);
|
||||
}
|
||||
|
@ -419,6 +443,34 @@ vdev_initialize_load(vdev_t *vd)
|
|||
return (err);
|
||||
}
|
||||
|
||||
static void
|
||||
vdev_initialize_xlate_range_add(void *arg, range_seg64_t *physical_rs)
|
||||
{
|
||||
vdev_t *vd = arg;
|
||||
|
||||
/* Only add segments that we have not visited yet */
|
||||
if (physical_rs->rs_end <= vd->vdev_initialize_last_offset)
|
||||
return;
|
||||
|
||||
/* Pick up where we left off mid-range. */
|
||||
if (vd->vdev_initialize_last_offset > physical_rs->rs_start) {
|
||||
zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
|
||||
"(%llu, %llu)", vd->vdev_path,
|
||||
(u_longlong_t)physical_rs->rs_start,
|
||||
(u_longlong_t)physical_rs->rs_end,
|
||||
(u_longlong_t)vd->vdev_initialize_last_offset,
|
||||
(u_longlong_t)physical_rs->rs_end);
|
||||
ASSERT3U(physical_rs->rs_end, >,
|
||||
vd->vdev_initialize_last_offset);
|
||||
physical_rs->rs_start = vd->vdev_initialize_last_offset;
|
||||
}
|
||||
|
||||
ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start);
|
||||
|
||||
range_tree_add(vd->vdev_initialize_tree, physical_rs->rs_start,
|
||||
physical_rs->rs_end - physical_rs->rs_start);
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert the logical range into a physical range and add it to our
|
||||
* avl tree.
|
||||
|
@ -427,47 +479,12 @@ static void
|
|||
vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
|
||||
{
|
||||
vdev_t *vd = arg;
|
||||
range_seg64_t logical_rs, physical_rs;
|
||||
range_seg64_t logical_rs;
|
||||
logical_rs.rs_start = start;
|
||||
logical_rs.rs_end = start + size;
|
||||
|
||||
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
||||
vdev_xlate(vd, &logical_rs, &physical_rs);
|
||||
|
||||
IMPLY(vd->vdev_top == vd,
|
||||
logical_rs.rs_start == physical_rs.rs_start);
|
||||
IMPLY(vd->vdev_top == vd,
|
||||
logical_rs.rs_end == physical_rs.rs_end);
|
||||
|
||||
/* Only add segments that we have not visited yet */
|
||||
if (physical_rs.rs_end <= vd->vdev_initialize_last_offset)
|
||||
return;
|
||||
|
||||
/* Pick up where we left off mid-range. */
|
||||
if (vd->vdev_initialize_last_offset > physical_rs.rs_start) {
|
||||
zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
|
||||
"(%llu, %llu)", vd->vdev_path,
|
||||
(u_longlong_t)physical_rs.rs_start,
|
||||
(u_longlong_t)physical_rs.rs_end,
|
||||
(u_longlong_t)vd->vdev_initialize_last_offset,
|
||||
(u_longlong_t)physical_rs.rs_end);
|
||||
ASSERT3U(physical_rs.rs_end, >,
|
||||
vd->vdev_initialize_last_offset);
|
||||
physical_rs.rs_start = vd->vdev_initialize_last_offset;
|
||||
}
|
||||
ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
|
||||
|
||||
/*
|
||||
* With raidz, it's possible that the logical range does not live on
|
||||
* this leaf vdev. We only add the physical range to this vdev's if it
|
||||
* has a length greater than 0.
|
||||
*/
|
||||
if (physical_rs.rs_end > physical_rs.rs_start) {
|
||||
range_tree_add(vd->vdev_initialize_tree, physical_rs.rs_start,
|
||||
physical_rs.rs_end - physical_rs.rs_start);
|
||||
} else {
|
||||
ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
|
||||
}
|
||||
vdev_xlate_walk(vd, &logical_rs, vdev_initialize_xlate_range_add, arg);
|
||||
}
|
||||
|
||||
static void
|
||||
|
|
|
@ -142,6 +142,7 @@
|
|||
#include <sys/zap.h>
|
||||
#include <sys/vdev.h>
|
||||
#include <sys/vdev_impl.h>
|
||||
#include <sys/vdev_draid.h>
|
||||
#include <sys/uberblock_impl.h>
|
||||
#include <sys/metaslab.h>
|
||||
#include <sys/metaslab_impl.h>
|
||||
|
@ -453,31 +454,13 @@ vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
|
|||
if (vd->vdev_fru != NULL)
|
||||
fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
|
||||
|
||||
if (vd->vdev_nparity != 0) {
|
||||
ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
|
||||
VDEV_TYPE_RAIDZ) == 0);
|
||||
if (vd->vdev_ops->vdev_op_config_generate != NULL)
|
||||
vd->vdev_ops->vdev_op_config_generate(vd, nv);
|
||||
|
||||
/*
|
||||
* Make sure someone hasn't managed to sneak a fancy new vdev
|
||||
* into a crufty old storage pool.
|
||||
*/
|
||||
ASSERT(vd->vdev_nparity == 1 ||
|
||||
(vd->vdev_nparity <= 2 &&
|
||||
spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
|
||||
(vd->vdev_nparity <= 3 &&
|
||||
spa_version(spa) >= SPA_VERSION_RAIDZ3));
|
||||
|
||||
/*
|
||||
* Note that we'll add the nparity tag even on storage pools
|
||||
* that only support a single parity device -- older software
|
||||
* will just ignore it.
|
||||
*/
|
||||
fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
|
||||
}
|
||||
|
||||
if (vd->vdev_wholedisk != -1ULL)
|
||||
if (vd->vdev_wholedisk != -1ULL) {
|
||||
fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
|
||||
vd->vdev_wholedisk);
|
||||
}
|
||||
|
||||
if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
|
||||
fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
|
||||
|
@ -785,6 +768,14 @@ vdev_label_read_config(vdev_t *vd, uint64_t txg)
|
|||
if (!vdev_readable(vd))
|
||||
return (NULL);
|
||||
|
||||
/*
|
||||
* The label for a dRAID distributed spare is not stored on disk.
|
||||
* Instead it is generated when needed which allows us to bypass
|
||||
* the pipeline when reading the config from the label.
|
||||
*/
|
||||
if (vd->vdev_ops == &vdev_draid_spare_ops)
|
||||
return (vdev_draid_read_config_spare(vd));
|
||||
|
||||
vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
|
||||
vp = abd_to_buf(vp_abd);
|
||||
|
||||
|
@ -1497,7 +1488,8 @@ vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
|
|||
for (int c = 0; c < vd->vdev_children; c++)
|
||||
vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
|
||||
|
||||
if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
|
||||
if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd) &&
|
||||
vd->vdev_ops != &vdev_draid_spare_ops) {
|
||||
for (int l = 0; l < VDEV_LABELS; l++) {
|
||||
for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
|
||||
vdev_label_read(zio, vd, l,
|
||||
|
@ -1586,6 +1578,13 @@ vdev_copy_uberblocks(vdev_t *vd)
|
|||
SCL_STATE);
|
||||
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
||||
|
||||
/*
|
||||
* No uberblocks are stored on distributed spares, they may be
|
||||
* safely skipped when expanding a leaf vdev.
|
||||
*/
|
||||
if (vd->vdev_ops == &vdev_draid_spare_ops)
|
||||
return;
|
||||
|
||||
spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER);
|
||||
|
||||
ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
|
||||
|
@ -1647,6 +1646,15 @@ vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes,
|
|||
if (!vdev_writeable(vd))
|
||||
return;
|
||||
|
||||
/*
|
||||
* There's no need to write uberblocks to a distributed spare, they
|
||||
* are already stored on all the leaves of the parent dRAID. For
|
||||
* this same reason vdev_uberblock_load_impl() skips distributed
|
||||
* spares when reading uberblocks.
|
||||
*/
|
||||
if (vd->vdev_ops == &vdev_draid_spare_ops)
|
||||
return;
|
||||
|
||||
/* If the vdev was expanded, need to copy uberblock rings. */
|
||||
if (vd->vdev_state == VDEV_STATE_HEALTHY &&
|
||||
vd->vdev_copy_uberblocks == B_TRUE) {
|
||||
|
@ -1763,6 +1771,14 @@ vdev_label_sync(zio_t *zio, uint64_t *good_writes,
|
|||
if (!vdev_writeable(vd))
|
||||
return;
|
||||
|
||||
/*
|
||||
* The top-level config never needs to be written to a distributed
|
||||
* spare. When read vdev_dspare_label_read_config() will generate
|
||||
* the config for the vdev_label_read_config().
|
||||
*/
|
||||
if (vd->vdev_ops == &vdev_draid_spare_ops)
|
||||
return;
|
||||
|
||||
/*
|
||||
* Generate a label describing the top-level config to which we belong.
|
||||
*/
|
||||
|
|
|
@ -33,6 +33,7 @@
|
|||
#include <sys/dsl_pool.h>
|
||||
#include <sys/dsl_scan.h>
|
||||
#include <sys/vdev_impl.h>
|
||||
#include <sys/vdev_draid.h>
|
||||
#include <sys/zio.h>
|
||||
#include <sys/abd.h>
|
||||
#include <sys/fs/zfs.h>
|
||||
|
@ -99,7 +100,6 @@ vdev_mirror_stat_fini(void)
|
|||
/*
|
||||
* Virtual device vector for mirroring.
|
||||
*/
|
||||
|
||||
typedef struct mirror_child {
|
||||
vdev_t *mc_vd;
|
||||
uint64_t mc_offset;
|
||||
|
@ -108,6 +108,7 @@ typedef struct mirror_child {
|
|||
uint8_t mc_tried;
|
||||
uint8_t mc_skipped;
|
||||
uint8_t mc_speculative;
|
||||
uint8_t mc_rebuilding;
|
||||
} mirror_child_t;
|
||||
|
||||
typedef struct mirror_map {
|
||||
|
@ -115,6 +116,7 @@ typedef struct mirror_map {
|
|||
int mm_preferred_cnt;
|
||||
int mm_children;
|
||||
boolean_t mm_resilvering;
|
||||
boolean_t mm_rebuilding;
|
||||
boolean_t mm_root;
|
||||
mirror_child_t mm_child[];
|
||||
} mirror_map_t;
|
||||
|
@ -239,6 +241,21 @@ vdev_mirror_load(mirror_map_t *mm, vdev_t *vd, uint64_t zio_offset)
|
|||
return (load + zfs_vdev_mirror_rotating_seek_inc);
|
||||
}
|
||||
|
||||
static boolean_t
|
||||
vdev_mirror_rebuilding(vdev_t *vd)
|
||||
{
|
||||
if (vd->vdev_ops->vdev_op_leaf && vd->vdev_rebuild_txg)
|
||||
return (B_TRUE);
|
||||
|
||||
for (int i = 0; i < vd->vdev_children; i++) {
|
||||
if (vdev_mirror_rebuilding(vd->vdev_child[i])) {
|
||||
return (B_TRUE);
|
||||
}
|
||||
}
|
||||
|
||||
return (B_FALSE);
|
||||
}
|
||||
|
||||
/*
|
||||
* Avoid inlining the function to keep vdev_mirror_io_start(), which
|
||||
* is this functions only caller, as small as possible on the stack.
|
||||
|
@ -356,6 +373,9 @@ vdev_mirror_map_init(zio_t *zio)
|
|||
mc = &mm->mm_child[c];
|
||||
mc->mc_vd = vd->vdev_child[c];
|
||||
mc->mc_offset = zio->io_offset;
|
||||
|
||||
if (vdev_mirror_rebuilding(mc->mc_vd))
|
||||
mm->mm_rebuilding = mc->mc_rebuilding = B_TRUE;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -493,12 +513,37 @@ vdev_mirror_preferred_child_randomize(zio_t *zio)
|
|||
return (mm->mm_preferred[p]);
|
||||
}
|
||||
|
||||
static boolean_t
|
||||
vdev_mirror_child_readable(mirror_child_t *mc)
|
||||
{
|
||||
vdev_t *vd = mc->mc_vd;
|
||||
|
||||
if (vd->vdev_top != NULL && vd->vdev_top->vdev_ops == &vdev_draid_ops)
|
||||
return (vdev_draid_readable(vd, mc->mc_offset));
|
||||
else
|
||||
return (vdev_readable(vd));
|
||||
}
|
||||
|
||||
static boolean_t
|
||||
vdev_mirror_child_missing(mirror_child_t *mc, uint64_t txg, uint64_t size)
|
||||
{
|
||||
vdev_t *vd = mc->mc_vd;
|
||||
|
||||
if (vd->vdev_top != NULL && vd->vdev_top->vdev_ops == &vdev_draid_ops)
|
||||
return (vdev_draid_missing(vd, mc->mc_offset, txg, size));
|
||||
else
|
||||
return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
|
||||
}
|
||||
|
||||
/*
|
||||
* Try to find a vdev whose DTL doesn't contain the block we want to read
|
||||
* preferring vdevs based on determined load.
|
||||
* preferring vdevs based on determined load. If we can't, try the read on
|
||||
* any vdev we haven't already tried.
|
||||
*
|
||||
* Try to find a child whose DTL doesn't contain the block we want to read.
|
||||
* If we can't, try the read on any vdev we haven't already tried.
|
||||
* Distributed spares are an exception to the above load rule. They are
|
||||
* always preferred in order to detect gaps in the distributed spare which
|
||||
* are created when another disk in the dRAID fails. In order to restore
|
||||
* redundancy those gaps must be read to trigger the required repair IO.
|
||||
*/
|
||||
static int
|
||||
vdev_mirror_child_select(zio_t *zio)
|
||||
|
@ -518,20 +563,27 @@ vdev_mirror_child_select(zio_t *zio)
|
|||
if (mc->mc_tried || mc->mc_skipped)
|
||||
continue;
|
||||
|
||||
if (mc->mc_vd == NULL || !vdev_readable(mc->mc_vd)) {
|
||||
if (mc->mc_vd == NULL ||
|
||||
!vdev_mirror_child_readable(mc)) {
|
||||
mc->mc_error = SET_ERROR(ENXIO);
|
||||
mc->mc_tried = 1; /* don't even try */
|
||||
mc->mc_skipped = 1;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1)) {
|
||||
if (vdev_mirror_child_missing(mc, txg, 1)) {
|
||||
mc->mc_error = SET_ERROR(ESTALE);
|
||||
mc->mc_skipped = 1;
|
||||
mc->mc_speculative = 1;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (mc->mc_vd->vdev_ops == &vdev_draid_spare_ops) {
|
||||
mm->mm_preferred[0] = c;
|
||||
mm->mm_preferred_cnt = 1;
|
||||
break;
|
||||
}
|
||||
|
||||
mc->mc_load = vdev_mirror_load(mm, mc->mc_vd, mc->mc_offset);
|
||||
if (mc->mc_load > lowest_load)
|
||||
continue;
|
||||
|
@ -625,11 +677,25 @@ vdev_mirror_io_start(zio_t *zio)
|
|||
|
||||
while (children--) {
|
||||
mc = &mm->mm_child[c];
|
||||
c++;
|
||||
|
||||
/*
|
||||
* When sequentially resilvering only issue write repair
|
||||
* IOs to the vdev which is being rebuilt since performance
|
||||
* is limited by the slowest child. This is an issue for
|
||||
* faster replacement devices such as distributed spares.
|
||||
*/
|
||||
if ((zio->io_priority == ZIO_PRIORITY_REBUILD) &&
|
||||
(zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
|
||||
!(zio->io_flags & ZIO_FLAG_SCRUB) &&
|
||||
mm->mm_rebuilding && !mc->mc_rebuilding) {
|
||||
continue;
|
||||
}
|
||||
|
||||
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
|
||||
mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size,
|
||||
zio->io_type, zio->io_priority, 0,
|
||||
vdev_mirror_child_done, mc));
|
||||
c++;
|
||||
}
|
||||
|
||||
zio_execute(zio);
|
||||
|
@ -744,6 +810,8 @@ vdev_mirror_io_done(zio_t *zio)
|
|||
mc = &mm->mm_child[c];
|
||||
|
||||
if (mc->mc_error == 0) {
|
||||
vdev_ops_t *ops = mc->mc_vd->vdev_ops;
|
||||
|
||||
if (mc->mc_tried)
|
||||
continue;
|
||||
/*
|
||||
|
@ -752,15 +820,16 @@ vdev_mirror_io_done(zio_t *zio)
|
|||
* 1. it's a scrub (in which case we have
|
||||
* tried everything that was healthy)
|
||||
* - or -
|
||||
* 2. it's an indirect vdev (in which case
|
||||
* it could point to any other vdev, which
|
||||
* might have a bad DTL)
|
||||
* 2. it's an indirect or distributed spare
|
||||
* vdev (in which case it could point to any
|
||||
* other vdev, which might have a bad DTL)
|
||||
* - or -
|
||||
* 3. the DTL indicates that this data is
|
||||
* missing from this vdev
|
||||
*/
|
||||
if (!(zio->io_flags & ZIO_FLAG_SCRUB) &&
|
||||
mc->mc_vd->vdev_ops != &vdev_indirect_ops &&
|
||||
ops != &vdev_indirect_ops &&
|
||||
ops != &vdev_draid_spare_ops &&
|
||||
!vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL,
|
||||
zio->io_txg, 1))
|
||||
continue;
|
||||
|
@ -796,50 +865,90 @@ vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded)
|
|||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Return the maximum asize for a rebuild zio in the provided range.
|
||||
*/
|
||||
static uint64_t
|
||||
vdev_mirror_rebuild_asize(vdev_t *vd, uint64_t start, uint64_t asize,
|
||||
uint64_t max_segment)
|
||||
{
|
||||
uint64_t psize = MIN(P2ROUNDUP(max_segment, 1 << vd->vdev_ashift),
|
||||
SPA_MAXBLOCKSIZE);
|
||||
|
||||
return (MIN(asize, vdev_psize_to_asize(vd, psize)));
|
||||
}
|
||||
|
||||
vdev_ops_t vdev_mirror_ops = {
|
||||
.vdev_op_init = NULL,
|
||||
.vdev_op_fini = NULL,
|
||||
.vdev_op_open = vdev_mirror_open,
|
||||
.vdev_op_close = vdev_mirror_close,
|
||||
.vdev_op_asize = vdev_default_asize,
|
||||
.vdev_op_min_asize = vdev_default_min_asize,
|
||||
.vdev_op_min_alloc = NULL,
|
||||
.vdev_op_io_start = vdev_mirror_io_start,
|
||||
.vdev_op_io_done = vdev_mirror_io_done,
|
||||
.vdev_op_state_change = vdev_mirror_state_change,
|
||||
.vdev_op_need_resilver = NULL,
|
||||
.vdev_op_need_resilver = vdev_default_need_resilver,
|
||||
.vdev_op_hold = NULL,
|
||||
.vdev_op_rele = NULL,
|
||||
.vdev_op_remap = NULL,
|
||||
.vdev_op_xlate = vdev_default_xlate,
|
||||
.vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
|
||||
.vdev_op_metaslab_init = NULL,
|
||||
.vdev_op_config_generate = NULL,
|
||||
.vdev_op_nparity = NULL,
|
||||
.vdev_op_ndisks = NULL,
|
||||
.vdev_op_type = VDEV_TYPE_MIRROR, /* name of this vdev type */
|
||||
.vdev_op_leaf = B_FALSE /* not a leaf vdev */
|
||||
};
|
||||
|
||||
vdev_ops_t vdev_replacing_ops = {
|
||||
.vdev_op_init = NULL,
|
||||
.vdev_op_fini = NULL,
|
||||
.vdev_op_open = vdev_mirror_open,
|
||||
.vdev_op_close = vdev_mirror_close,
|
||||
.vdev_op_asize = vdev_default_asize,
|
||||
.vdev_op_min_asize = vdev_default_min_asize,
|
||||
.vdev_op_min_alloc = NULL,
|
||||
.vdev_op_io_start = vdev_mirror_io_start,
|
||||
.vdev_op_io_done = vdev_mirror_io_done,
|
||||
.vdev_op_state_change = vdev_mirror_state_change,
|
||||
.vdev_op_need_resilver = NULL,
|
||||
.vdev_op_need_resilver = vdev_default_need_resilver,
|
||||
.vdev_op_hold = NULL,
|
||||
.vdev_op_rele = NULL,
|
||||
.vdev_op_remap = NULL,
|
||||
.vdev_op_xlate = vdev_default_xlate,
|
||||
.vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
|
||||
.vdev_op_metaslab_init = NULL,
|
||||
.vdev_op_config_generate = NULL,
|
||||
.vdev_op_nparity = NULL,
|
||||
.vdev_op_ndisks = NULL,
|
||||
.vdev_op_type = VDEV_TYPE_REPLACING, /* name of this vdev type */
|
||||
.vdev_op_leaf = B_FALSE /* not a leaf vdev */
|
||||
};
|
||||
|
||||
vdev_ops_t vdev_spare_ops = {
|
||||
.vdev_op_init = NULL,
|
||||
.vdev_op_fini = NULL,
|
||||
.vdev_op_open = vdev_mirror_open,
|
||||
.vdev_op_close = vdev_mirror_close,
|
||||
.vdev_op_asize = vdev_default_asize,
|
||||
.vdev_op_min_asize = vdev_default_min_asize,
|
||||
.vdev_op_min_alloc = NULL,
|
||||
.vdev_op_io_start = vdev_mirror_io_start,
|
||||
.vdev_op_io_done = vdev_mirror_io_done,
|
||||
.vdev_op_state_change = vdev_mirror_state_change,
|
||||
.vdev_op_need_resilver = NULL,
|
||||
.vdev_op_need_resilver = vdev_default_need_resilver,
|
||||
.vdev_op_hold = NULL,
|
||||
.vdev_op_rele = NULL,
|
||||
.vdev_op_remap = NULL,
|
||||
.vdev_op_xlate = vdev_default_xlate,
|
||||
.vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
|
||||
.vdev_op_metaslab_init = NULL,
|
||||
.vdev_op_config_generate = NULL,
|
||||
.vdev_op_nparity = NULL,
|
||||
.vdev_op_ndisks = NULL,
|
||||
.vdev_op_type = VDEV_TYPE_SPARE, /* name of this vdev type */
|
||||
.vdev_op_leaf = B_FALSE /* not a leaf vdev */
|
||||
};
|
||||
|
|
|
@ -81,9 +81,13 @@ vdev_missing_io_done(zio_t *zio)
|
|||
}
|
||||
|
||||
vdev_ops_t vdev_missing_ops = {
|
||||
.vdev_op_init = NULL,
|
||||
.vdev_op_fini = NULL,
|
||||
.vdev_op_open = vdev_missing_open,
|
||||
.vdev_op_close = vdev_missing_close,
|
||||
.vdev_op_asize = vdev_default_asize,
|
||||
.vdev_op_min_asize = vdev_default_min_asize,
|
||||
.vdev_op_min_alloc = NULL,
|
||||
.vdev_op_io_start = vdev_missing_io_start,
|
||||
.vdev_op_io_done = vdev_missing_io_done,
|
||||
.vdev_op_state_change = NULL,
|
||||
|
@ -92,14 +96,23 @@ vdev_ops_t vdev_missing_ops = {
|
|||
.vdev_op_rele = NULL,
|
||||
.vdev_op_remap = NULL,
|
||||
.vdev_op_xlate = NULL,
|
||||
.vdev_op_rebuild_asize = NULL,
|
||||
.vdev_op_metaslab_init = NULL,
|
||||
.vdev_op_config_generate = NULL,
|
||||
.vdev_op_nparity = NULL,
|
||||
.vdev_op_ndisks = NULL,
|
||||
.vdev_op_type = VDEV_TYPE_MISSING, /* name of this vdev type */
|
||||
.vdev_op_leaf = B_TRUE /* leaf vdev */
|
||||
};
|
||||
|
||||
vdev_ops_t vdev_hole_ops = {
|
||||
.vdev_op_init = NULL,
|
||||
.vdev_op_fini = NULL,
|
||||
.vdev_op_open = vdev_missing_open,
|
||||
.vdev_op_close = vdev_missing_close,
|
||||
.vdev_op_asize = vdev_default_asize,
|
||||
.vdev_op_min_asize = vdev_default_min_asize,
|
||||
.vdev_op_min_alloc = NULL,
|
||||
.vdev_op_io_start = vdev_missing_io_start,
|
||||
.vdev_op_io_done = vdev_missing_io_done,
|
||||
.vdev_op_state_change = NULL,
|
||||
|
@ -108,6 +121,11 @@ vdev_ops_t vdev_hole_ops = {
|
|||
.vdev_op_rele = NULL,
|
||||
.vdev_op_remap = NULL,
|
||||
.vdev_op_xlate = NULL,
|
||||
.vdev_op_rebuild_asize = NULL,
|
||||
.vdev_op_metaslab_init = NULL,
|
||||
.vdev_op_config_generate = NULL,
|
||||
.vdev_op_nparity = NULL,
|
||||
.vdev_op_ndisks = NULL,
|
||||
.vdev_op_type = VDEV_TYPE_HOLE, /* name of this vdev type */
|
||||
.vdev_op_leaf = B_TRUE /* leaf vdev */
|
||||
};
|
||||
|
|
|
@ -593,6 +593,13 @@ vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
|
|||
if (zio->io_type == ZIO_TYPE_TRIM && !zfs_vdev_aggregate_trim)
|
||||
return (NULL);
|
||||
|
||||
/*
|
||||
* I/Os to distributed spares are directly dispatched to the dRAID
|
||||
* leaf vdevs for aggregation. See the comment at the end of the
|
||||
* zio_vdev_io_start() function.
|
||||
*/
|
||||
ASSERT(vq->vq_vdev->vdev_ops != &vdev_draid_spare_ops);
|
||||
|
||||
first = last = zio;
|
||||
|
||||
if (zio->io_type == ZIO_TYPE_READ)
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -149,7 +149,7 @@ vdev_raidz_math_get_ops(void)
|
|||
* Select parity generation method for raidz_map
|
||||
*/
|
||||
int
|
||||
vdev_raidz_math_generate(raidz_map_t *rm)
|
||||
vdev_raidz_math_generate(raidz_map_t *rm, raidz_row_t *rr)
|
||||
{
|
||||
raidz_gen_f gen_parity = NULL;
|
||||
|
||||
|
@ -174,7 +174,7 @@ vdev_raidz_math_generate(raidz_map_t *rm)
|
|||
if (gen_parity == NULL)
|
||||
return (RAIDZ_ORIGINAL_IMPL);
|
||||
|
||||
gen_parity(rm);
|
||||
gen_parity(rr);
|
||||
|
||||
return (0);
|
||||
}
|
||||
|
@ -241,8 +241,8 @@ reconstruct_fun_pqr_sel(raidz_map_t *rm, const int *parity_valid,
|
|||
* @nbaddata - Number of failed data columns
|
||||
*/
|
||||
int
|
||||
vdev_raidz_math_reconstruct(raidz_map_t *rm, const int *parity_valid,
|
||||
const int *dt, const int nbaddata)
|
||||
vdev_raidz_math_reconstruct(raidz_map_t *rm, raidz_row_t *rr,
|
||||
const int *parity_valid, const int *dt, const int nbaddata)
|
||||
{
|
||||
raidz_rec_f rec_fn = NULL;
|
||||
|
||||
|
@ -265,7 +265,7 @@ vdev_raidz_math_reconstruct(raidz_map_t *rm, const int *parity_valid,
|
|||
if (rec_fn == NULL)
|
||||
return (RAIDZ_ORIGINAL_IMPL);
|
||||
else
|
||||
return (rec_fn(rm, dt));
|
||||
return (rec_fn(rr, dt));
|
||||
}
|
||||
|
||||
const char *raidz_gen_name[] = {
|
||||
|
|
|
@ -26,6 +26,7 @@
|
|||
#define _VDEV_RAIDZ_MATH_IMPL_H
|
||||
|
||||
#include <sys/types.h>
|
||||
#include <sys/vdev_raidz_impl.h>
|
||||
|
||||
#define raidz_inline inline __attribute__((always_inline))
|
||||
#ifndef noinline
|
||||
|
@ -36,33 +37,33 @@
|
|||
* Functions calculate multiplication constants for data reconstruction.
|
||||
* Coefficients depend on RAIDZ geometry, indexes of failed child vdevs, and
|
||||
* used parity columns for reconstruction.
|
||||
* @rm RAIDZ map
|
||||
* @rr RAIDZ row
|
||||
* @tgtidx array of missing data indexes
|
||||
* @coeff output array of coefficients. Array must be provided by
|
||||
* user and must hold minimum MUL_CNT values.
|
||||
*/
|
||||
static noinline void
|
||||
raidz_rec_q_coeff(const raidz_map_t *rm, const int *tgtidx, unsigned *coeff)
|
||||
raidz_rec_q_coeff(const raidz_row_t *rr, const int *tgtidx, unsigned *coeff)
|
||||
{
|
||||
const unsigned ncols = raidz_ncols(rm);
|
||||
const unsigned ncols = rr->rr_cols;
|
||||
const unsigned x = tgtidx[TARGET_X];
|
||||
|
||||
coeff[MUL_Q_X] = gf_exp2(255 - (ncols - x - 1));
|
||||
}
|
||||
|
||||
static noinline void
|
||||
raidz_rec_r_coeff(const raidz_map_t *rm, const int *tgtidx, unsigned *coeff)
|
||||
raidz_rec_r_coeff(const raidz_row_t *rr, const int *tgtidx, unsigned *coeff)
|
||||
{
|
||||
const unsigned ncols = raidz_ncols(rm);
|
||||
const unsigned ncols = rr->rr_cols;
|
||||
const unsigned x = tgtidx[TARGET_X];
|
||||
|
||||
coeff[MUL_R_X] = gf_exp4(255 - (ncols - x - 1));
|
||||
}
|
||||
|
||||
static noinline void
|
||||
raidz_rec_pq_coeff(const raidz_map_t *rm, const int *tgtidx, unsigned *coeff)
|
||||
raidz_rec_pq_coeff(const raidz_row_t *rr, const int *tgtidx, unsigned *coeff)
|
||||
{
|
||||
const unsigned ncols = raidz_ncols(rm);
|
||||
const unsigned ncols = rr->rr_cols;
|
||||
const unsigned x = tgtidx[TARGET_X];
|
||||
const unsigned y = tgtidx[TARGET_Y];
|
||||
gf_t a, b, e;
|
||||
|
@ -76,9 +77,9 @@ raidz_rec_pq_coeff(const raidz_map_t *rm, const int *tgtidx, unsigned *coeff)
|
|||
}
|
||||
|
||||
static noinline void
|
||||
raidz_rec_pr_coeff(const raidz_map_t *rm, const int *tgtidx, unsigned *coeff)
|
||||
raidz_rec_pr_coeff(const raidz_row_t *rr, const int *tgtidx, unsigned *coeff)
|
||||
{
|
||||
const unsigned ncols = raidz_ncols(rm);
|
||||
const unsigned ncols = rr->rr_cols;
|
||||
const unsigned x = tgtidx[TARGET_X];
|
||||
const unsigned y = tgtidx[TARGET_Y];
|
||||
|
||||
|
@ -93,9 +94,9 @@ raidz_rec_pr_coeff(const raidz_map_t *rm, const int *tgtidx, unsigned *coeff)
|
|||
}
|
||||
|
||||
static noinline void
|
||||
raidz_rec_qr_coeff(const raidz_map_t *rm, const int *tgtidx, unsigned *coeff)
|
||||
raidz_rec_qr_coeff(const raidz_row_t *rr, const int *tgtidx, unsigned *coeff)
|
||||
{
|
||||
const unsigned ncols = raidz_ncols(rm);
|
||||
const unsigned ncols = rr->rr_cols;
|
||||
const unsigned x = tgtidx[TARGET_X];
|
||||
const unsigned y = tgtidx[TARGET_Y];
|
||||
|
||||
|
@ -114,9 +115,9 @@ raidz_rec_qr_coeff(const raidz_map_t *rm, const int *tgtidx, unsigned *coeff)
|
|||
}
|
||||
|
||||
static noinline void
|
||||
raidz_rec_pqr_coeff(const raidz_map_t *rm, const int *tgtidx, unsigned *coeff)
|
||||
raidz_rec_pqr_coeff(const raidz_row_t *rr, const int *tgtidx, unsigned *coeff)
|
||||
{
|
||||
const unsigned ncols = raidz_ncols(rm);
|
||||
const unsigned ncols = rr->rr_cols;
|
||||
const unsigned x = tgtidx[TARGET_X];
|
||||
const unsigned y = tgtidx[TARGET_Y];
|
||||
const unsigned z = tgtidx[TARGET_Z];
|
||||
|
@ -347,26 +348,26 @@ raidz_mul_abd_cb(void *dc, size_t size, void *private)
|
|||
/*
|
||||
* Generate P parity (RAIDZ1)
|
||||
*
|
||||
* @rm RAIDZ map
|
||||
* @rr RAIDZ row
|
||||
*/
|
||||
static raidz_inline void
|
||||
raidz_generate_p_impl(raidz_map_t * const rm)
|
||||
raidz_generate_p_impl(raidz_row_t * const rr)
|
||||
{
|
||||
size_t c;
|
||||
const size_t ncols = raidz_ncols(rm);
|
||||
const size_t psize = rm->rm_col[CODE_P].rc_size;
|
||||
abd_t *pabd = rm->rm_col[CODE_P].rc_abd;
|
||||
const size_t ncols = rr->rr_cols;
|
||||
const size_t psize = rr->rr_col[CODE_P].rc_size;
|
||||
abd_t *pabd = rr->rr_col[CODE_P].rc_abd;
|
||||
size_t size;
|
||||
abd_t *dabd;
|
||||
|
||||
raidz_math_begin();
|
||||
|
||||
/* start with first data column */
|
||||
raidz_copy(pabd, rm->rm_col[1].rc_abd, psize);
|
||||
raidz_copy(pabd, rr->rr_col[1].rc_abd, psize);
|
||||
|
||||
for (c = 2; c < ncols; c++) {
|
||||
dabd = rm->rm_col[c].rc_abd;
|
||||
size = rm->rm_col[c].rc_size;
|
||||
dabd = rr->rr_col[c].rc_abd;
|
||||
size = rr->rr_col[c].rc_size;
|
||||
|
||||
/* add data column */
|
||||
raidz_add(pabd, dabd, size);
|
||||
|
@ -414,29 +415,29 @@ raidz_gen_pq_add(void **c, const void *dc, const size_t csize,
|
|||
/*
|
||||
* Generate PQ parity (RAIDZ2)
|
||||
*
|
||||
* @rm RAIDZ map
|
||||
* @rr RAIDZ row
|
||||
*/
|
||||
static raidz_inline void
|
||||
raidz_generate_pq_impl(raidz_map_t * const rm)
|
||||
raidz_generate_pq_impl(raidz_row_t * const rr)
|
||||
{
|
||||
size_t c;
|
||||
const size_t ncols = raidz_ncols(rm);
|
||||
const size_t csize = rm->rm_col[CODE_P].rc_size;
|
||||
const size_t ncols = rr->rr_cols;
|
||||
const size_t csize = rr->rr_col[CODE_P].rc_size;
|
||||
size_t dsize;
|
||||
abd_t *dabd;
|
||||
abd_t *cabds[] = {
|
||||
rm->rm_col[CODE_P].rc_abd,
|
||||
rm->rm_col[CODE_Q].rc_abd
|
||||
rr->rr_col[CODE_P].rc_abd,
|
||||
rr->rr_col[CODE_Q].rc_abd
|
||||
};
|
||||
|
||||
raidz_math_begin();
|
||||
|
||||
raidz_copy(cabds[CODE_P], rm->rm_col[2].rc_abd, csize);
|
||||
raidz_copy(cabds[CODE_Q], rm->rm_col[2].rc_abd, csize);
|
||||
raidz_copy(cabds[CODE_P], rr->rr_col[2].rc_abd, csize);
|
||||
raidz_copy(cabds[CODE_Q], rr->rr_col[2].rc_abd, csize);
|
||||
|
||||
for (c = 3; c < ncols; c++) {
|
||||
dabd = rm->rm_col[c].rc_abd;
|
||||
dsize = rm->rm_col[c].rc_size;
|
||||
dabd = rr->rr_col[c].rc_abd;
|
||||
dsize = rr->rr_col[c].rc_size;
|
||||
|
||||
abd_raidz_gen_iterate(cabds, dabd, csize, dsize, 2,
|
||||
raidz_gen_pq_add);
|
||||
|
@ -487,31 +488,31 @@ raidz_gen_pqr_add(void **c, const void *dc, const size_t csize,
|
|||
/*
|
||||
* Generate PQR parity (RAIDZ2)
|
||||
*
|
||||
* @rm RAIDZ map
|
||||
* @rr RAIDZ row
|
||||
*/
|
||||
static raidz_inline void
|
||||
raidz_generate_pqr_impl(raidz_map_t * const rm)
|
||||
raidz_generate_pqr_impl(raidz_row_t * const rr)
|
||||
{
|
||||
size_t c;
|
||||
const size_t ncols = raidz_ncols(rm);
|
||||
const size_t csize = rm->rm_col[CODE_P].rc_size;
|
||||
const size_t ncols = rr->rr_cols;
|
||||
const size_t csize = rr->rr_col[CODE_P].rc_size;
|
||||
size_t dsize;
|
||||
abd_t *dabd;
|
||||
abd_t *cabds[] = {
|
||||
rm->rm_col[CODE_P].rc_abd,
|
||||
rm->rm_col[CODE_Q].rc_abd,
|
||||
rm->rm_col[CODE_R].rc_abd
|
||||
rr->rr_col[CODE_P].rc_abd,
|
||||
rr->rr_col[CODE_Q].rc_abd,
|
||||
rr->rr_col[CODE_R].rc_abd
|
||||
};
|
||||
|
||||
raidz_math_begin();
|
||||
|
||||
raidz_copy(cabds[CODE_P], rm->rm_col[3].rc_abd, csize);
|
||||
raidz_copy(cabds[CODE_Q], rm->rm_col[3].rc_abd, csize);
|
||||
raidz_copy(cabds[CODE_R], rm->rm_col[3].rc_abd, csize);
|
||||
raidz_copy(cabds[CODE_P], rr->rr_col[3].rc_abd, csize);
|
||||
raidz_copy(cabds[CODE_Q], rr->rr_col[3].rc_abd, csize);
|
||||
raidz_copy(cabds[CODE_R], rr->rr_col[3].rc_abd, csize);
|
||||
|
||||
for (c = 4; c < ncols; c++) {
|
||||
dabd = rm->rm_col[c].rc_abd;
|
||||
dsize = rm->rm_col[c].rc_size;
|
||||
dabd = rr->rr_col[c].rc_abd;
|
||||
dsize = rr->rr_col[c].rc_size;
|
||||
|
||||
abd_raidz_gen_iterate(cabds, dabd, csize, dsize, 3,
|
||||
raidz_gen_pqr_add);
|
||||
|
@ -579,33 +580,36 @@ raidz_generate_pqr_impl(raidz_map_t * const rm)
|
|||
* @syn_method raidz_add_abd()
|
||||
* @rec_method not applicable
|
||||
*
|
||||
* @rm RAIDZ map
|
||||
* @rr RAIDZ row
|
||||
* @tgtidx array of missing data indexes
|
||||
*/
|
||||
static raidz_inline int
|
||||
raidz_reconstruct_p_impl(raidz_map_t *rm, const int *tgtidx)
|
||||
raidz_reconstruct_p_impl(raidz_row_t *rr, const int *tgtidx)
|
||||
{
|
||||
size_t c;
|
||||
const size_t firstdc = raidz_parity(rm);
|
||||
const size_t ncols = raidz_ncols(rm);
|
||||
const size_t firstdc = rr->rr_firstdatacol;
|
||||
const size_t ncols = rr->rr_cols;
|
||||
const size_t x = tgtidx[TARGET_X];
|
||||
const size_t xsize = rm->rm_col[x].rc_size;
|
||||
abd_t *xabd = rm->rm_col[x].rc_abd;
|
||||
const size_t xsize = rr->rr_col[x].rc_size;
|
||||
abd_t *xabd = rr->rr_col[x].rc_abd;
|
||||
size_t size;
|
||||
abd_t *dabd;
|
||||
|
||||
if (xabd == NULL)
|
||||
return (1 << CODE_P);
|
||||
|
||||
raidz_math_begin();
|
||||
|
||||
/* copy P into target */
|
||||
raidz_copy(xabd, rm->rm_col[CODE_P].rc_abd, xsize);
|
||||
raidz_copy(xabd, rr->rr_col[CODE_P].rc_abd, xsize);
|
||||
|
||||
/* generate p_syndrome */
|
||||
for (c = firstdc; c < ncols; c++) {
|
||||
if (c == x)
|
||||
continue;
|
||||
|
||||
dabd = rm->rm_col[c].rc_abd;
|
||||
size = MIN(rm->rm_col[c].rc_size, xsize);
|
||||
dabd = rr->rr_col[c].rc_abd;
|
||||
size = MIN(rr->rr_col[c].rc_size, xsize);
|
||||
|
||||
raidz_add(xabd, dabd, size);
|
||||
}
|
||||
|
@ -653,30 +657,33 @@ raidz_syn_q_abd(void **xc, const void *dc, const size_t xsize,
|
|||
* @syn_method raidz_add_abd()
|
||||
* @rec_method raidz_mul_abd_cb()
|
||||
*
|
||||
* @rm RAIDZ map
|
||||
* @rr RAIDZ row
|
||||
* @tgtidx array of missing data indexes
|
||||
*/
|
||||
static raidz_inline int
|
||||
raidz_reconstruct_q_impl(raidz_map_t *rm, const int *tgtidx)
|
||||
raidz_reconstruct_q_impl(raidz_row_t *rr, const int *tgtidx)
|
||||
{
|
||||
size_t c;
|
||||
size_t dsize;
|
||||
abd_t *dabd;
|
||||
const size_t firstdc = raidz_parity(rm);
|
||||
const size_t ncols = raidz_ncols(rm);
|
||||
const size_t firstdc = rr->rr_firstdatacol;
|
||||
const size_t ncols = rr->rr_cols;
|
||||
const size_t x = tgtidx[TARGET_X];
|
||||
abd_t *xabd = rm->rm_col[x].rc_abd;
|
||||
const size_t xsize = rm->rm_col[x].rc_size;
|
||||
abd_t *xabd = rr->rr_col[x].rc_abd;
|
||||
const size_t xsize = rr->rr_col[x].rc_size;
|
||||
abd_t *tabds[] = { xabd };
|
||||
|
||||
if (xabd == NULL)
|
||||
return (1 << CODE_Q);
|
||||
|
||||
unsigned coeff[MUL_CNT];
|
||||
raidz_rec_q_coeff(rm, tgtidx, coeff);
|
||||
raidz_rec_q_coeff(rr, tgtidx, coeff);
|
||||
|
||||
raidz_math_begin();
|
||||
|
||||
/* Start with first data column if present */
|
||||
if (firstdc != x) {
|
||||
raidz_copy(xabd, rm->rm_col[firstdc].rc_abd, xsize);
|
||||
raidz_copy(xabd, rr->rr_col[firstdc].rc_abd, xsize);
|
||||
} else {
|
||||
raidz_zero(xabd, xsize);
|
||||
}
|
||||
|
@ -687,8 +694,8 @@ raidz_reconstruct_q_impl(raidz_map_t *rm, const int *tgtidx)
|
|||
dabd = NULL;
|
||||
dsize = 0;
|
||||
} else {
|
||||
dabd = rm->rm_col[c].rc_abd;
|
||||
dsize = rm->rm_col[c].rc_size;
|
||||
dabd = rr->rr_col[c].rc_abd;
|
||||
dsize = rr->rr_col[c].rc_size;
|
||||
}
|
||||
|
||||
abd_raidz_gen_iterate(tabds, dabd, xsize, dsize, 1,
|
||||
|
@ -696,7 +703,7 @@ raidz_reconstruct_q_impl(raidz_map_t *rm, const int *tgtidx)
|
|||
}
|
||||
|
||||
/* add Q to the syndrome */
|
||||
raidz_add(xabd, rm->rm_col[CODE_Q].rc_abd, xsize);
|
||||
raidz_add(xabd, rr->rr_col[CODE_Q].rc_abd, xsize);
|
||||
|
||||
/* transform the syndrome */
|
||||
abd_iterate_func(xabd, 0, xsize, raidz_mul_abd_cb, (void*) coeff);
|
||||
|
@ -744,30 +751,33 @@ raidz_syn_r_abd(void **xc, const void *dc, const size_t tsize,
|
|||
* @syn_method raidz_add_abd()
|
||||
* @rec_method raidz_mul_abd_cb()
|
||||
*
|
||||
* @rm RAIDZ map
|
||||
* @rr RAIDZ rr
|
||||
* @tgtidx array of missing data indexes
|
||||
*/
|
||||
static raidz_inline int
|
||||
raidz_reconstruct_r_impl(raidz_map_t *rm, const int *tgtidx)
|
||||
raidz_reconstruct_r_impl(raidz_row_t *rr, const int *tgtidx)
|
||||
{
|
||||
size_t c;
|
||||
size_t dsize;
|
||||
abd_t *dabd;
|
||||
const size_t firstdc = raidz_parity(rm);
|
||||
const size_t ncols = raidz_ncols(rm);
|
||||
const size_t firstdc = rr->rr_firstdatacol;
|
||||
const size_t ncols = rr->rr_cols;
|
||||
const size_t x = tgtidx[TARGET_X];
|
||||
const size_t xsize = rm->rm_col[x].rc_size;
|
||||
abd_t *xabd = rm->rm_col[x].rc_abd;
|
||||
const size_t xsize = rr->rr_col[x].rc_size;
|
||||
abd_t *xabd = rr->rr_col[x].rc_abd;
|
||||
abd_t *tabds[] = { xabd };
|
||||
|
||||
if (xabd == NULL)
|
||||
return (1 << CODE_R);
|
||||
|
||||
unsigned coeff[MUL_CNT];
|
||||
raidz_rec_r_coeff(rm, tgtidx, coeff);
|
||||
raidz_rec_r_coeff(rr, tgtidx, coeff);
|
||||
|
||||
raidz_math_begin();
|
||||
|
||||
/* Start with first data column if present */
|
||||
if (firstdc != x) {
|
||||
raidz_copy(xabd, rm->rm_col[firstdc].rc_abd, xsize);
|
||||
raidz_copy(xabd, rr->rr_col[firstdc].rc_abd, xsize);
|
||||
} else {
|
||||
raidz_zero(xabd, xsize);
|
||||
}
|
||||
|
@ -779,8 +789,8 @@ raidz_reconstruct_r_impl(raidz_map_t *rm, const int *tgtidx)
|
|||
dabd = NULL;
|
||||
dsize = 0;
|
||||
} else {
|
||||
dabd = rm->rm_col[c].rc_abd;
|
||||
dsize = rm->rm_col[c].rc_size;
|
||||
dabd = rr->rr_col[c].rc_abd;
|
||||
dsize = rr->rr_col[c].rc_size;
|
||||
}
|
||||
|
||||
abd_raidz_gen_iterate(tabds, dabd, xsize, dsize, 1,
|
||||
|
@ -788,7 +798,7 @@ raidz_reconstruct_r_impl(raidz_map_t *rm, const int *tgtidx)
|
|||
}
|
||||
|
||||
/* add R to the syndrome */
|
||||
raidz_add(xabd, rm->rm_col[CODE_R].rc_abd, xsize);
|
||||
raidz_add(xabd, rr->rr_col[CODE_R].rc_abd, xsize);
|
||||
|
||||
/* transform the syndrome */
|
||||
abd_iterate_func(xabd, 0, xsize, raidz_mul_abd_cb, (void *)coeff);
|
||||
|
@ -881,31 +891,34 @@ raidz_rec_pq_abd(void **tc, const size_t tsize, void **c,
|
|||
* @syn_method raidz_syn_pq_abd()
|
||||
* @rec_method raidz_rec_pq_abd()
|
||||
*
|
||||
* @rm RAIDZ map
|
||||
* @rr RAIDZ row
|
||||
* @tgtidx array of missing data indexes
|
||||
*/
|
||||
static raidz_inline int
|
||||
raidz_reconstruct_pq_impl(raidz_map_t *rm, const int *tgtidx)
|
||||
raidz_reconstruct_pq_impl(raidz_row_t *rr, const int *tgtidx)
|
||||
{
|
||||
size_t c;
|
||||
size_t dsize;
|
||||
abd_t *dabd;
|
||||
const size_t firstdc = raidz_parity(rm);
|
||||
const size_t ncols = raidz_ncols(rm);
|
||||
const size_t firstdc = rr->rr_firstdatacol;
|
||||
const size_t ncols = rr->rr_cols;
|
||||
const size_t x = tgtidx[TARGET_X];
|
||||
const size_t y = tgtidx[TARGET_Y];
|
||||
const size_t xsize = rm->rm_col[x].rc_size;
|
||||
const size_t ysize = rm->rm_col[y].rc_size;
|
||||
abd_t *xabd = rm->rm_col[x].rc_abd;
|
||||
abd_t *yabd = rm->rm_col[y].rc_abd;
|
||||
const size_t xsize = rr->rr_col[x].rc_size;
|
||||
const size_t ysize = rr->rr_col[y].rc_size;
|
||||
abd_t *xabd = rr->rr_col[x].rc_abd;
|
||||
abd_t *yabd = rr->rr_col[y].rc_abd;
|
||||
abd_t *tabds[2] = { xabd, yabd };
|
||||
abd_t *cabds[] = {
|
||||
rm->rm_col[CODE_P].rc_abd,
|
||||
rm->rm_col[CODE_Q].rc_abd
|
||||
rr->rr_col[CODE_P].rc_abd,
|
||||
rr->rr_col[CODE_Q].rc_abd
|
||||
};
|
||||
|
||||
if (xabd == NULL)
|
||||
return ((1 << CODE_P) | (1 << CODE_Q));
|
||||
|
||||
unsigned coeff[MUL_CNT];
|
||||
raidz_rec_pq_coeff(rm, tgtidx, coeff);
|
||||
raidz_rec_pq_coeff(rr, tgtidx, coeff);
|
||||
|
||||
/*
|
||||
* Check if some of targets is shorter then others
|
||||
|
@ -921,8 +934,8 @@ raidz_reconstruct_pq_impl(raidz_map_t *rm, const int *tgtidx)
|
|||
|
||||
/* Start with first data column if present */
|
||||
if (firstdc != x) {
|
||||
raidz_copy(xabd, rm->rm_col[firstdc].rc_abd, xsize);
|
||||
raidz_copy(yabd, rm->rm_col[firstdc].rc_abd, xsize);
|
||||
raidz_copy(xabd, rr->rr_col[firstdc].rc_abd, xsize);
|
||||
raidz_copy(yabd, rr->rr_col[firstdc].rc_abd, xsize);
|
||||
} else {
|
||||
raidz_zero(xabd, xsize);
|
||||
raidz_zero(yabd, xsize);
|
||||
|
@ -934,8 +947,8 @@ raidz_reconstruct_pq_impl(raidz_map_t *rm, const int *tgtidx)
|
|||
dabd = NULL;
|
||||
dsize = 0;
|
||||
} else {
|
||||
dabd = rm->rm_col[c].rc_abd;
|
||||
dsize = rm->rm_col[c].rc_size;
|
||||
dabd = rr->rr_col[c].rc_abd;
|
||||
dsize = rr->rr_col[c].rc_size;
|
||||
}
|
||||
|
||||
abd_raidz_gen_iterate(tabds, dabd, xsize, dsize, 2,
|
||||
|
@ -946,7 +959,7 @@ raidz_reconstruct_pq_impl(raidz_map_t *rm, const int *tgtidx)
|
|||
|
||||
/* Copy shorter targets back to the original abd buffer */
|
||||
if (ysize < xsize)
|
||||
raidz_copy(rm->rm_col[y].rc_abd, yabd, ysize);
|
||||
raidz_copy(rr->rr_col[y].rc_abd, yabd, ysize);
|
||||
|
||||
raidz_math_end();
|
||||
|
||||
|
@ -1038,30 +1051,34 @@ raidz_rec_pr_abd(void **t, const size_t tsize, void **c,
|
|||
* @syn_method raidz_syn_pr_abd()
|
||||
* @rec_method raidz_rec_pr_abd()
|
||||
*
|
||||
* @rm RAIDZ map
|
||||
* @rr RAIDZ row
|
||||
* @tgtidx array of missing data indexes
|
||||
*/
|
||||
static raidz_inline int
|
||||
raidz_reconstruct_pr_impl(raidz_map_t *rm, const int *tgtidx)
|
||||
raidz_reconstruct_pr_impl(raidz_row_t *rr, const int *tgtidx)
|
||||
{
|
||||
size_t c;
|
||||
size_t dsize;
|
||||
abd_t *dabd;
|
||||
const size_t firstdc = raidz_parity(rm);
|
||||
const size_t ncols = raidz_ncols(rm);
|
||||
const size_t firstdc = rr->rr_firstdatacol;
|
||||
const size_t ncols = rr->rr_cols;
|
||||
const size_t x = tgtidx[0];
|
||||
const size_t y = tgtidx[1];
|
||||
const size_t xsize = rm->rm_col[x].rc_size;
|
||||
const size_t ysize = rm->rm_col[y].rc_size;
|
||||
abd_t *xabd = rm->rm_col[x].rc_abd;
|
||||
abd_t *yabd = rm->rm_col[y].rc_abd;
|
||||
const size_t xsize = rr->rr_col[x].rc_size;
|
||||
const size_t ysize = rr->rr_col[y].rc_size;
|
||||
abd_t *xabd = rr->rr_col[x].rc_abd;
|
||||
abd_t *yabd = rr->rr_col[y].rc_abd;
|
||||
abd_t *tabds[2] = { xabd, yabd };
|
||||
abd_t *cabds[] = {
|
||||
rm->rm_col[CODE_P].rc_abd,
|
||||
rm->rm_col[CODE_R].rc_abd
|
||||
rr->rr_col[CODE_P].rc_abd,
|
||||
rr->rr_col[CODE_R].rc_abd
|
||||
};
|
||||
|
||||
if (xabd == NULL)
|
||||
return ((1 << CODE_P) | (1 << CODE_R));
|
||||
|
||||
unsigned coeff[MUL_CNT];
|
||||
raidz_rec_pr_coeff(rm, tgtidx, coeff);
|
||||
raidz_rec_pr_coeff(rr, tgtidx, coeff);
|
||||
|
||||
/*
|
||||
* Check if some of targets are shorter then others.
|
||||
|
@ -1077,8 +1094,8 @@ raidz_reconstruct_pr_impl(raidz_map_t *rm, const int *tgtidx)
|
|||
|
||||
/* Start with first data column if present */
|
||||
if (firstdc != x) {
|
||||
raidz_copy(xabd, rm->rm_col[firstdc].rc_abd, xsize);
|
||||
raidz_copy(yabd, rm->rm_col[firstdc].rc_abd, xsize);
|
||||
raidz_copy(xabd, rr->rr_col[firstdc].rc_abd, xsize);
|
||||
raidz_copy(yabd, rr->rr_col[firstdc].rc_abd, xsize);
|
||||
} else {
|
||||
raidz_zero(xabd, xsize);
|
||||
raidz_zero(yabd, xsize);
|
||||
|
@ -1090,8 +1107,8 @@ raidz_reconstruct_pr_impl(raidz_map_t *rm, const int *tgtidx)
|
|||
dabd = NULL;
|
||||
dsize = 0;
|
||||
} else {
|
||||
dabd = rm->rm_col[c].rc_abd;
|
||||
dsize = rm->rm_col[c].rc_size;
|
||||
dabd = rr->rr_col[c].rc_abd;
|
||||
dsize = rr->rr_col[c].rc_size;
|
||||
}
|
||||
|
||||
abd_raidz_gen_iterate(tabds, dabd, xsize, dsize, 2,
|
||||
|
@ -1104,14 +1121,14 @@ raidz_reconstruct_pr_impl(raidz_map_t *rm, const int *tgtidx)
|
|||
* Copy shorter targets back to the original abd buffer
|
||||
*/
|
||||
if (ysize < xsize)
|
||||
raidz_copy(rm->rm_col[y].rc_abd, yabd, ysize);
|
||||
raidz_copy(rr->rr_col[y].rc_abd, yabd, ysize);
|
||||
|
||||
raidz_math_end();
|
||||
|
||||
if (ysize < xsize)
|
||||
abd_free(yabd);
|
||||
|
||||
return ((1 << CODE_P) | (1 << CODE_Q));
|
||||
return ((1 << CODE_P) | (1 << CODE_R));
|
||||
}
|
||||
|
||||
|
||||
|
@ -1201,30 +1218,34 @@ raidz_rec_qr_abd(void **t, const size_t tsize, void **c,
|
|||
* @syn_method raidz_syn_qr_abd()
|
||||
* @rec_method raidz_rec_qr_abd()
|
||||
*
|
||||
* @rm RAIDZ map
|
||||
* @rr RAIDZ row
|
||||
* @tgtidx array of missing data indexes
|
||||
*/
|
||||
static raidz_inline int
|
||||
raidz_reconstruct_qr_impl(raidz_map_t *rm, const int *tgtidx)
|
||||
raidz_reconstruct_qr_impl(raidz_row_t *rr, const int *tgtidx)
|
||||
{
|
||||
size_t c;
|
||||
size_t dsize;
|
||||
abd_t *dabd;
|
||||
const size_t firstdc = raidz_parity(rm);
|
||||
const size_t ncols = raidz_ncols(rm);
|
||||
const size_t firstdc = rr->rr_firstdatacol;
|
||||
const size_t ncols = rr->rr_cols;
|
||||
const size_t x = tgtidx[TARGET_X];
|
||||
const size_t y = tgtidx[TARGET_Y];
|
||||
const size_t xsize = rm->rm_col[x].rc_size;
|
||||
const size_t ysize = rm->rm_col[y].rc_size;
|
||||
abd_t *xabd = rm->rm_col[x].rc_abd;
|
||||
abd_t *yabd = rm->rm_col[y].rc_abd;
|
||||
const size_t xsize = rr->rr_col[x].rc_size;
|
||||
const size_t ysize = rr->rr_col[y].rc_size;
|
||||
abd_t *xabd = rr->rr_col[x].rc_abd;
|
||||
abd_t *yabd = rr->rr_col[y].rc_abd;
|
||||
abd_t *tabds[2] = { xabd, yabd };
|
||||
abd_t *cabds[] = {
|
||||
rm->rm_col[CODE_Q].rc_abd,
|
||||
rm->rm_col[CODE_R].rc_abd
|
||||
rr->rr_col[CODE_Q].rc_abd,
|
||||
rr->rr_col[CODE_R].rc_abd
|
||||
};
|
||||
|
||||
if (xabd == NULL)
|
||||
return ((1 << CODE_Q) | (1 << CODE_R));
|
||||
|
||||
unsigned coeff[MUL_CNT];
|
||||
raidz_rec_qr_coeff(rm, tgtidx, coeff);
|
||||
raidz_rec_qr_coeff(rr, tgtidx, coeff);
|
||||
|
||||
/*
|
||||
* Check if some of targets is shorter then others
|
||||
|
@ -1240,8 +1261,8 @@ raidz_reconstruct_qr_impl(raidz_map_t *rm, const int *tgtidx)
|
|||
|
||||
/* Start with first data column if present */
|
||||
if (firstdc != x) {
|
||||
raidz_copy(xabd, rm->rm_col[firstdc].rc_abd, xsize);
|
||||
raidz_copy(yabd, rm->rm_col[firstdc].rc_abd, xsize);
|
||||
raidz_copy(xabd, rr->rr_col[firstdc].rc_abd, xsize);
|
||||
raidz_copy(yabd, rr->rr_col[firstdc].rc_abd, xsize);
|
||||
} else {
|
||||
raidz_zero(xabd, xsize);
|
||||
raidz_zero(yabd, xsize);
|
||||
|
@ -1253,8 +1274,8 @@ raidz_reconstruct_qr_impl(raidz_map_t *rm, const int *tgtidx)
|
|||
dabd = NULL;
|
||||
dsize = 0;
|
||||
} else {
|
||||
dabd = rm->rm_col[c].rc_abd;
|
||||
dsize = rm->rm_col[c].rc_size;
|
||||
dabd = rr->rr_col[c].rc_abd;
|
||||
dsize = rr->rr_col[c].rc_size;
|
||||
}
|
||||
|
||||
abd_raidz_gen_iterate(tabds, dabd, xsize, dsize, 2,
|
||||
|
@ -1267,7 +1288,7 @@ raidz_reconstruct_qr_impl(raidz_map_t *rm, const int *tgtidx)
|
|||
* Copy shorter targets back to the original abd buffer
|
||||
*/
|
||||
if (ysize < xsize)
|
||||
raidz_copy(rm->rm_col[y].rc_abd, yabd, ysize);
|
||||
raidz_copy(rr->rr_col[y].rc_abd, yabd, ysize);
|
||||
|
||||
raidz_math_end();
|
||||
|
||||
|
@ -1384,34 +1405,38 @@ raidz_rec_pqr_abd(void **t, const size_t tsize, void **c,
|
|||
* @syn_method raidz_syn_pqr_abd()
|
||||
* @rec_method raidz_rec_pqr_abd()
|
||||
*
|
||||
* @rm RAIDZ map
|
||||
* @rr RAIDZ row
|
||||
* @tgtidx array of missing data indexes
|
||||
*/
|
||||
static raidz_inline int
|
||||
raidz_reconstruct_pqr_impl(raidz_map_t *rm, const int *tgtidx)
|
||||
raidz_reconstruct_pqr_impl(raidz_row_t *rr, const int *tgtidx)
|
||||
{
|
||||
size_t c;
|
||||
size_t dsize;
|
||||
abd_t *dabd;
|
||||
const size_t firstdc = raidz_parity(rm);
|
||||
const size_t ncols = raidz_ncols(rm);
|
||||
const size_t firstdc = rr->rr_firstdatacol;
|
||||
const size_t ncols = rr->rr_cols;
|
||||
const size_t x = tgtidx[TARGET_X];
|
||||
const size_t y = tgtidx[TARGET_Y];
|
||||
const size_t z = tgtidx[TARGET_Z];
|
||||
const size_t xsize = rm->rm_col[x].rc_size;
|
||||
const size_t ysize = rm->rm_col[y].rc_size;
|
||||
const size_t zsize = rm->rm_col[z].rc_size;
|
||||
abd_t *xabd = rm->rm_col[x].rc_abd;
|
||||
abd_t *yabd = rm->rm_col[y].rc_abd;
|
||||
abd_t *zabd = rm->rm_col[z].rc_abd;
|
||||
const size_t xsize = rr->rr_col[x].rc_size;
|
||||
const size_t ysize = rr->rr_col[y].rc_size;
|
||||
const size_t zsize = rr->rr_col[z].rc_size;
|
||||
abd_t *xabd = rr->rr_col[x].rc_abd;
|
||||
abd_t *yabd = rr->rr_col[y].rc_abd;
|
||||
abd_t *zabd = rr->rr_col[z].rc_abd;
|
||||
abd_t *tabds[] = { xabd, yabd, zabd };
|
||||
abd_t *cabds[] = {
|
||||
rm->rm_col[CODE_P].rc_abd,
|
||||
rm->rm_col[CODE_Q].rc_abd,
|
||||
rm->rm_col[CODE_R].rc_abd
|
||||
rr->rr_col[CODE_P].rc_abd,
|
||||
rr->rr_col[CODE_Q].rc_abd,
|
||||
rr->rr_col[CODE_R].rc_abd
|
||||
};
|
||||
|
||||
if (xabd == NULL)
|
||||
return ((1 << CODE_P) | (1 << CODE_Q) | (1 << CODE_R));
|
||||
|
||||
unsigned coeff[MUL_CNT];
|
||||
raidz_rec_pqr_coeff(rm, tgtidx, coeff);
|
||||
raidz_rec_pqr_coeff(rr, tgtidx, coeff);
|
||||
|
||||
/*
|
||||
* Check if some of targets is shorter then others
|
||||
|
@ -1431,9 +1456,9 @@ raidz_reconstruct_pqr_impl(raidz_map_t *rm, const int *tgtidx)
|
|||
|
||||
/* Start with first data column if present */
|
||||
if (firstdc != x) {
|
||||
raidz_copy(xabd, rm->rm_col[firstdc].rc_abd, xsize);
|
||||
raidz_copy(yabd, rm->rm_col[firstdc].rc_abd, xsize);
|
||||
raidz_copy(zabd, rm->rm_col[firstdc].rc_abd, xsize);
|
||||
raidz_copy(xabd, rr->rr_col[firstdc].rc_abd, xsize);
|
||||
raidz_copy(yabd, rr->rr_col[firstdc].rc_abd, xsize);
|
||||
raidz_copy(zabd, rr->rr_col[firstdc].rc_abd, xsize);
|
||||
} else {
|
||||
raidz_zero(xabd, xsize);
|
||||
raidz_zero(yabd, xsize);
|
||||
|
@ -1446,8 +1471,8 @@ raidz_reconstruct_pqr_impl(raidz_map_t *rm, const int *tgtidx)
|
|||
dabd = NULL;
|
||||
dsize = 0;
|
||||
} else {
|
||||
dabd = rm->rm_col[c].rc_abd;
|
||||
dsize = rm->rm_col[c].rc_size;
|
||||
dabd = rr->rr_col[c].rc_abd;
|
||||
dsize = rr->rr_col[c].rc_size;
|
||||
}
|
||||
|
||||
abd_raidz_gen_iterate(tabds, dabd, xsize, dsize, 3,
|
||||
|
@ -1460,9 +1485,9 @@ raidz_reconstruct_pqr_impl(raidz_map_t *rm, const int *tgtidx)
|
|||
* Copy shorter targets back to the original abd buffer
|
||||
*/
|
||||
if (ysize < xsize)
|
||||
raidz_copy(rm->rm_col[y].rc_abd, yabd, ysize);
|
||||
raidz_copy(rr->rr_col[y].rc_abd, yabd, ysize);
|
||||
if (zsize < xsize)
|
||||
raidz_copy(rm->rm_col[z].rc_abd, zabd, zsize);
|
||||
raidz_copy(rr->rr_col[z].rc_abd, zabd, zsize);
|
||||
|
||||
raidz_math_end();
|
||||
|
||||
|
|
|
@ -25,6 +25,7 @@
|
|||
*/
|
||||
|
||||
#include <sys/vdev_impl.h>
|
||||
#include <sys/vdev_draid.h>
|
||||
#include <sys/dsl_scan.h>
|
||||
#include <sys/spa_impl.h>
|
||||
#include <sys/metaslab_impl.h>
|
||||
|
@ -63,13 +64,15 @@
|
|||
*
|
||||
* Limitations:
|
||||
*
|
||||
* - Only supported for mirror vdev types. Due to the variable stripe
|
||||
* width used by raidz sequential reconstruction is not possible.
|
||||
* - Sequential reconstruction is not possible on RAIDZ due to its
|
||||
* variable stripe width. Note dRAID uses a fixed stripe width which
|
||||
* avoids this issue, but comes at the expense of some usable capacity.
|
||||
*
|
||||
* - Block checksums are not verified during sequential reconstuction.
|
||||
* - Block checksums are not verified during sequential reconstruction.
|
||||
* Similar to traditional RAID the parity/mirror data is reconstructed
|
||||
* but cannot be immediately double checked. For this reason when the
|
||||
* last active resilver completes the pool is automatically scrubbed.
|
||||
* last active resilver completes the pool is automatically scrubbed
|
||||
* by default.
|
||||
*
|
||||
* - Deferred resilvers using sequential reconstruction are not currently
|
||||
* supported. When adding another vdev to an active top-level resilver
|
||||
|
@ -77,8 +80,8 @@
|
|||
*
|
||||
* Advantages:
|
||||
*
|
||||
* - Sequential reconstuction is performed in LBA order which may be faster
|
||||
* than healing reconstuction particularly when using using HDDs (or
|
||||
* - Sequential reconstruction is performed in LBA order which may be faster
|
||||
* than healing reconstruction particularly when using using HDDs (or
|
||||
* especially with SMR devices). Only allocated capacity is resilvered.
|
||||
*
|
||||
* - Sequential reconstruction is not constrained by ZFS block boundaries.
|
||||
|
@ -86,9 +89,9 @@
|
|||
* allowing all of these logical blocks to be repaired with a single IO.
|
||||
*
|
||||
* - Unlike a healing resilver or scrub which are pool wide operations,
|
||||
* sequential reconstruction is handled by the top-level mirror vdevs.
|
||||
* This allows for it to be started or canceled on a top-level vdev
|
||||
* without impacting any other top-level vdevs in the pool.
|
||||
* sequential reconstruction is handled by the top-level vdevs. This
|
||||
* allows for it to be started or canceled on a top-level vdev without
|
||||
* impacting any other top-level vdevs in the pool.
|
||||
*
|
||||
* - Data only referenced by a pool checkpoint will be repaired because
|
||||
* that space is reflected in the space maps. This differs for a
|
||||
|
@ -97,18 +100,36 @@
|
|||
|
||||
|
||||
/*
|
||||
* Maximum number of queued rebuild I/Os top-level vdev. The number of
|
||||
* concurrent rebuild I/Os issued to the device is controlled by the
|
||||
* zfs_vdev_rebuild_min_active and zfs_vdev_rebuild_max_active module
|
||||
* options.
|
||||
*/
|
||||
unsigned int zfs_rebuild_queue_limit = 20;
|
||||
|
||||
/*
|
||||
* Size of rebuild reads; defaults to 1MiB and is capped at SPA_MAXBLOCKSIZE.
|
||||
* Size of rebuild reads; defaults to 1MiB per data disk and is capped at
|
||||
* SPA_MAXBLOCKSIZE.
|
||||
*/
|
||||
unsigned long zfs_rebuild_max_segment = 1024 * 1024;
|
||||
|
||||
/*
|
||||
* Maximum number of parallelly executed bytes per leaf vdev caused by a
|
||||
* sequential resilver. We attempt to strike a balance here between keeping
|
||||
* the vdev queues full of I/Os at all times and not overflowing the queues
|
||||
* to cause long latency, which would cause long txg sync times.
|
||||
*
|
||||
* A large default value can be safely used here because the default target
|
||||
* segment size is also large (zfs_rebuild_max_segment=1M). This helps keep
|
||||
* the queue depth short.
|
||||
*
|
||||
* 32MB was selected as the default value to achieve good performance with
|
||||
* a large 90-drive dRAID HDD configuration (draid2:8d:90c:2s). A sequential
|
||||
* rebuild was unable to saturate all of the drives using smaller values.
|
||||
* With a value of 32MB the sequential resilver write rate was measured at
|
||||
* 800MB/s sustained while rebuilding to a distributed spare.
|
||||
*/
|
||||
unsigned long zfs_rebuild_vdev_limit = 32 << 20;
|
||||
|
||||
/*
|
||||
* Automatically start a pool scrub when the last active sequential resilver
|
||||
* completes in order to verify the checksums of all blocks which have been
|
||||
* resilvered. This option is enabled by default and is strongly recommended.
|
||||
*/
|
||||
int zfs_rebuild_scrub_enabled = 1;
|
||||
|
||||
/*
|
||||
* For vdev_rebuild_initiate_sync() and vdev_rebuild_reset_sync().
|
||||
*/
|
||||
|
@ -306,7 +327,16 @@ vdev_rebuild_complete_sync(void *arg, dmu_tx_t *tx)
|
|||
vd->vdev_rebuilding = B_FALSE;
|
||||
mutex_exit(&vd->vdev_rebuild_lock);
|
||||
|
||||
spa_notify_waiters(spa);
|
||||
/*
|
||||
* While we're in syncing context take the opportunity to
|
||||
* setup the scrub when there are no more active rebuilds.
|
||||
*/
|
||||
if (!vdev_rebuild_active(spa->spa_root_vdev) &&
|
||||
zfs_rebuild_scrub_enabled) {
|
||||
pool_scan_func_t func = POOL_SCAN_SCRUB;
|
||||
dsl_scan_setup_sync(&func, tx);
|
||||
}
|
||||
|
||||
cv_broadcast(&vd->vdev_rebuild_cv);
|
||||
}
|
||||
|
||||
|
@ -438,7 +468,7 @@ vdev_rebuild_cb(zio_t *zio)
|
|||
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
|
||||
vdev_t *vd = vr->vr_top_vdev;
|
||||
|
||||
mutex_enter(&vd->vdev_rebuild_io_lock);
|
||||
mutex_enter(&vr->vr_io_lock);
|
||||
if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
|
||||
/*
|
||||
* The I/O failed because the top-level vdev was unavailable.
|
||||
|
@ -455,34 +485,30 @@ vdev_rebuild_cb(zio_t *zio)
|
|||
|
||||
abd_free(zio->io_abd);
|
||||
|
||||
ASSERT3U(vd->vdev_rebuild_inflight, >, 0);
|
||||
vd->vdev_rebuild_inflight--;
|
||||
cv_broadcast(&vd->vdev_rebuild_io_cv);
|
||||
mutex_exit(&vd->vdev_rebuild_io_lock);
|
||||
ASSERT3U(vr->vr_bytes_inflight, >, 0);
|
||||
vr->vr_bytes_inflight -= zio->io_size;
|
||||
cv_broadcast(&vr->vr_io_cv);
|
||||
mutex_exit(&vr->vr_io_lock);
|
||||
|
||||
spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
|
||||
}
|
||||
|
||||
/*
|
||||
* Rebuild the data in this range by constructing a special dummy block
|
||||
* pointer for the given range. It has no relation to any existing blocks
|
||||
* in the pool. But by disabling checksum verification and issuing a scrub
|
||||
* I/O mirrored vdevs will replicate the block using any available mirror
|
||||
* leaf vdevs.
|
||||
* Initialize a block pointer that can be used to read the given segment
|
||||
* for sequential rebuild.
|
||||
*/
|
||||
static void
|
||||
vdev_rebuild_rebuild_block(vdev_rebuild_t *vr, uint64_t start, uint64_t asize,
|
||||
uint64_t txg)
|
||||
vdev_rebuild_blkptr_init(blkptr_t *bp, vdev_t *vd, uint64_t start,
|
||||
uint64_t asize)
|
||||
{
|
||||
vdev_t *vd = vr->vr_top_vdev;
|
||||
spa_t *spa = vd->vdev_spa;
|
||||
uint64_t psize = asize;
|
||||
|
||||
ASSERT(vd->vdev_ops == &vdev_mirror_ops ||
|
||||
ASSERT(vd->vdev_ops == &vdev_draid_ops ||
|
||||
vd->vdev_ops == &vdev_mirror_ops ||
|
||||
vd->vdev_ops == &vdev_replacing_ops ||
|
||||
vd->vdev_ops == &vdev_spare_ops);
|
||||
|
||||
blkptr_t blk, *bp = &blk;
|
||||
uint64_t psize = vd->vdev_ops == &vdev_draid_ops ?
|
||||
vdev_draid_asize_to_psize(vd, asize) : asize;
|
||||
|
||||
BP_ZERO(bp);
|
||||
|
||||
DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
|
||||
|
@ -499,19 +525,6 @@ vdev_rebuild_rebuild_block(vdev_rebuild_t *vr, uint64_t start, uint64_t asize,
|
|||
BP_SET_LEVEL(bp, 0);
|
||||
BP_SET_DEDUP(bp, 0);
|
||||
BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
|
||||
|
||||
/*
|
||||
* We increment the issued bytes by the asize rather than the psize
|
||||
* so the scanned and issued bytes may be directly compared. This
|
||||
* is consistent with the scrub/resilver issued reporting.
|
||||
*/
|
||||
vr->vr_pass_bytes_issued += asize;
|
||||
vr->vr_rebuild_phys.vrp_bytes_issued += asize;
|
||||
|
||||
zio_nowait(zio_read(spa->spa_txg_zio[txg & TXG_MASK], spa, bp,
|
||||
abd_alloc(psize, B_FALSE), psize, vdev_rebuild_cb, vr,
|
||||
ZIO_PRIORITY_REBUILD, ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL |
|
||||
ZIO_FLAG_RESILVER, NULL));
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -525,6 +538,7 @@ vdev_rebuild_range(vdev_rebuild_t *vr, uint64_t start, uint64_t size)
|
|||
uint64_t ms_id __maybe_unused = vr->vr_scan_msp->ms_id;
|
||||
vdev_t *vd = vr->vr_top_vdev;
|
||||
spa_t *spa = vd->vdev_spa;
|
||||
blkptr_t blk;
|
||||
|
||||
ASSERT3U(ms_id, ==, start >> vd->vdev_ms_shift);
|
||||
ASSERT3U(ms_id, ==, (start + size - 1) >> vd->vdev_ms_shift);
|
||||
|
@ -532,14 +546,26 @@ vdev_rebuild_range(vdev_rebuild_t *vr, uint64_t start, uint64_t size)
|
|||
vr->vr_pass_bytes_scanned += size;
|
||||
vr->vr_rebuild_phys.vrp_bytes_scanned += size;
|
||||
|
||||
mutex_enter(&vd->vdev_rebuild_io_lock);
|
||||
/*
|
||||
* Rebuild the data in this range by constructing a special block
|
||||
* pointer. It has no relation to any existing blocks in the pool.
|
||||
* However, by disabling checksum verification and issuing a scrub IO
|
||||
* we can reconstruct and repair any children with missing data.
|
||||
*/
|
||||
vdev_rebuild_blkptr_init(&blk, vd, start, size);
|
||||
uint64_t psize = BP_GET_PSIZE(&blk);
|
||||
|
||||
if (!vdev_dtl_need_resilver(vd, &blk.blk_dva[0], psize, TXG_UNKNOWN))
|
||||
return (0);
|
||||
|
||||
mutex_enter(&vr->vr_io_lock);
|
||||
|
||||
/* Limit in flight rebuild I/Os */
|
||||
while (vd->vdev_rebuild_inflight >= zfs_rebuild_queue_limit)
|
||||
cv_wait(&vd->vdev_rebuild_io_cv, &vd->vdev_rebuild_io_lock);
|
||||
while (vr->vr_bytes_inflight >= vr->vr_bytes_inflight_max)
|
||||
cv_wait(&vr->vr_io_cv, &vr->vr_io_lock);
|
||||
|
||||
vd->vdev_rebuild_inflight++;
|
||||
mutex_exit(&vd->vdev_rebuild_io_lock);
|
||||
vr->vr_bytes_inflight += psize;
|
||||
mutex_exit(&vr->vr_io_lock);
|
||||
|
||||
dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
|
||||
VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
|
||||
|
@ -558,45 +584,29 @@ vdev_rebuild_range(vdev_rebuild_t *vr, uint64_t start, uint64_t size)
|
|||
|
||||
/* When exiting write out our progress. */
|
||||
if (vdev_rebuild_should_stop(vd)) {
|
||||
mutex_enter(&vd->vdev_rebuild_io_lock);
|
||||
vd->vdev_rebuild_inflight--;
|
||||
mutex_exit(&vd->vdev_rebuild_io_lock);
|
||||
mutex_enter(&vr->vr_io_lock);
|
||||
vr->vr_bytes_inflight -= psize;
|
||||
mutex_exit(&vr->vr_io_lock);
|
||||
spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
|
||||
mutex_exit(&vd->vdev_rebuild_lock);
|
||||
dmu_tx_commit(tx);
|
||||
return (SET_ERROR(EINTR));
|
||||
}
|
||||
mutex_exit(&vd->vdev_rebuild_lock);
|
||||
|
||||
vr->vr_scan_offset[txg & TXG_MASK] = start + size;
|
||||
vdev_rebuild_rebuild_block(vr, start, size, txg);
|
||||
|
||||
dmu_tx_commit(tx);
|
||||
|
||||
vr->vr_scan_offset[txg & TXG_MASK] = start + size;
|
||||
vr->vr_pass_bytes_issued += size;
|
||||
vr->vr_rebuild_phys.vrp_bytes_issued += size;
|
||||
|
||||
zio_nowait(zio_read(spa->spa_txg_zio[txg & TXG_MASK], spa, &blk,
|
||||
abd_alloc(psize, B_FALSE), psize, vdev_rebuild_cb, vr,
|
||||
ZIO_PRIORITY_REBUILD, ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL |
|
||||
ZIO_FLAG_RESILVER, NULL));
|
||||
|
||||
return (0);
|
||||
}
|
||||
|
||||
/*
|
||||
* Split range into legally-sized logical chunks given the constraints of the
|
||||
* top-level mirror vdev type.
|
||||
*/
|
||||
static uint64_t
|
||||
vdev_rebuild_chunk_size(vdev_t *vd, uint64_t start, uint64_t size)
|
||||
{
|
||||
uint64_t chunk_size, max_asize, max_segment;
|
||||
|
||||
ASSERT(vd->vdev_ops == &vdev_mirror_ops ||
|
||||
vd->vdev_ops == &vdev_replacing_ops ||
|
||||
vd->vdev_ops == &vdev_spare_ops);
|
||||
|
||||
max_segment = MIN(P2ROUNDUP(zfs_rebuild_max_segment,
|
||||
1 << vd->vdev_ashift), SPA_MAXBLOCKSIZE);
|
||||
max_asize = vdev_psize_to_asize(vd, max_segment);
|
||||
chunk_size = MIN(size, max_asize);
|
||||
|
||||
return (chunk_size);
|
||||
}
|
||||
|
||||
/*
|
||||
* Issues rebuild I/Os for all ranges in the provided vr->vr_tree range tree.
|
||||
*/
|
||||
|
@ -625,7 +635,14 @@ vdev_rebuild_ranges(vdev_rebuild_t *vr)
|
|||
while (size > 0) {
|
||||
uint64_t chunk_size;
|
||||
|
||||
chunk_size = vdev_rebuild_chunk_size(vd, start, size);
|
||||
/*
|
||||
* Split range into legally-sized logical chunks
|
||||
* given the constraints of the top-level vdev
|
||||
* being rebuilt (dRAID or mirror).
|
||||
*/
|
||||
ASSERT3P(vd->vdev_ops, !=, NULL);
|
||||
chunk_size = vd->vdev_ops->vdev_op_rebuild_asize(vd,
|
||||
start, size, zfs_rebuild_max_segment);
|
||||
|
||||
error = vdev_rebuild_range(vr, start, chunk_size);
|
||||
if (error != 0)
|
||||
|
@ -747,10 +764,16 @@ vdev_rebuild_thread(void *arg)
|
|||
vr->vr_top_vdev = vd;
|
||||
vr->vr_scan_msp = NULL;
|
||||
vr->vr_scan_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
|
||||
mutex_init(&vr->vr_io_lock, NULL, MUTEX_DEFAULT, NULL);
|
||||
cv_init(&vr->vr_io_cv, NULL, CV_DEFAULT, NULL);
|
||||
|
||||
vr->vr_pass_start_time = gethrtime();
|
||||
vr->vr_pass_bytes_scanned = 0;
|
||||
vr->vr_pass_bytes_issued = 0;
|
||||
|
||||
vr->vr_bytes_inflight_max = MAX(1ULL << 20,
|
||||
zfs_rebuild_vdev_limit * vd->vdev_children);
|
||||
|
||||
uint64_t update_est_time = gethrtime();
|
||||
vdev_rebuild_update_bytes_est(vd, 0);
|
||||
|
||||
|
@ -780,21 +803,32 @@ vdev_rebuild_thread(void *arg)
|
|||
|
||||
ASSERT0(range_tree_space(vr->vr_scan_tree));
|
||||
|
||||
/*
|
||||
* Disable any new allocations to this metaslab and wait
|
||||
* for any writes inflight to complete. This is needed to
|
||||
* ensure all allocated ranges are rebuilt.
|
||||
*/
|
||||
/* Disable any new allocations to this metaslab */
|
||||
metaslab_disable(msp);
|
||||
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
||||
txg_wait_synced(dsl, 0);
|
||||
|
||||
mutex_enter(&msp->ms_sync_lock);
|
||||
mutex_enter(&msp->ms_lock);
|
||||
|
||||
/*
|
||||
* If there are outstanding allocations wait for them to be
|
||||
* synced. This is needed to ensure all allocated ranges are
|
||||
* on disk and therefore will be rebuilt.
|
||||
*/
|
||||
for (int j = 0; j < TXG_SIZE; j++) {
|
||||
if (range_tree_space(msp->ms_allocating[j])) {
|
||||
mutex_exit(&msp->ms_lock);
|
||||
mutex_exit(&msp->ms_sync_lock);
|
||||
txg_wait_synced(dsl, 0);
|
||||
mutex_enter(&msp->ms_sync_lock);
|
||||
mutex_enter(&msp->ms_lock);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* When a metaslab has been allocated from read its allocated
|
||||
* ranges from the space map object in to the vr_scan_tree.
|
||||
* ranges from the space map object into the vr_scan_tree.
|
||||
* Then add inflight / unflushed ranges and remove inflight /
|
||||
* unflushed frees. This is the minimum range to be rebuilt.
|
||||
*/
|
||||
|
@ -827,7 +861,7 @@ vdev_rebuild_thread(void *arg)
|
|||
/*
|
||||
* To provide an accurate estimate re-calculate the estimated
|
||||
* size every 5 minutes to account for recent allocations and
|
||||
* frees made space maps which have not yet been rebuilt.
|
||||
* frees made to space maps which have not yet been rebuilt.
|
||||
*/
|
||||
if (gethrtime() > update_est_time + SEC2NSEC(300)) {
|
||||
update_est_time = gethrtime();
|
||||
|
@ -851,11 +885,14 @@ vdev_rebuild_thread(void *arg)
|
|||
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
||||
|
||||
/* Wait for any remaining rebuild I/O to complete */
|
||||
mutex_enter(&vd->vdev_rebuild_io_lock);
|
||||
while (vd->vdev_rebuild_inflight > 0)
|
||||
cv_wait(&vd->vdev_rebuild_io_cv, &vd->vdev_rebuild_io_lock);
|
||||
mutex_enter(&vr->vr_io_lock);
|
||||
while (vr->vr_bytes_inflight > 0)
|
||||
cv_wait(&vr->vr_io_cv, &vr->vr_io_lock);
|
||||
|
||||
mutex_exit(&vd->vdev_rebuild_io_lock);
|
||||
mutex_exit(&vr->vr_io_lock);
|
||||
|
||||
mutex_destroy(&vr->vr_io_lock);
|
||||
cv_destroy(&vr->vr_io_cv);
|
||||
|
||||
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
|
||||
|
||||
|
@ -1101,4 +1138,10 @@ vdev_rebuild_get_stats(vdev_t *tvd, vdev_rebuild_stat_t *vrs)
|
|||
/* BEGIN CSTYLED */
|
||||
ZFS_MODULE_PARAM(zfs, zfs_, rebuild_max_segment, ULONG, ZMOD_RW,
|
||||
"Max segment size in bytes of rebuild reads");
|
||||
|
||||
ZFS_MODULE_PARAM(zfs, zfs_, rebuild_vdev_limit, ULONG, ZMOD_RW,
|
||||
"Max bytes in flight per leaf vdev for sequential resilvers");
|
||||
|
||||
ZFS_MODULE_PARAM(zfs, zfs_, rebuild_scrub_enabled, INT, ZMOD_RW,
|
||||
"Automatically scrub after sequential resilver completes");
|
||||
/* END CSTYLED */
|
||||
|
|
|
@ -250,7 +250,7 @@ vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
|
|||
spa_vdev_removal_t *svr = NULL;
|
||||
uint64_t txg __maybe_unused = dmu_tx_get_txg(tx);
|
||||
|
||||
ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
|
||||
ASSERT0(vdev_get_nparity(vd));
|
||||
svr = spa_vdev_removal_create(vd);
|
||||
|
||||
ASSERT(vd->vdev_removing);
|
||||
|
@ -1120,7 +1120,7 @@ static void
|
|||
vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
|
||||
{
|
||||
ASSERT3P(zlist, !=, NULL);
|
||||
ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
|
||||
ASSERT0(vdev_get_nparity(vd));
|
||||
|
||||
if (vd->vdev_leaf_zap != 0) {
|
||||
char zkey[32];
|
||||
|
@ -2041,7 +2041,7 @@ spa_vdev_remove_top_check(vdev_t *vd)
|
|||
|
||||
/*
|
||||
* All vdevs in normal class must have the same ashift
|
||||
* and not be raidz.
|
||||
* and not be raidz or draid.
|
||||
*/
|
||||
vdev_t *rvd = spa->spa_root_vdev;
|
||||
int num_indirect = 0;
|
||||
|
@ -2064,7 +2064,7 @@ spa_vdev_remove_top_check(vdev_t *vd)
|
|||
num_indirect++;
|
||||
if (!vdev_is_concrete(cvd))
|
||||
continue;
|
||||
if (cvd->vdev_ops == &vdev_raidz_ops)
|
||||
if (vdev_get_nparity(cvd) != 0)
|
||||
return (SET_ERROR(EINVAL));
|
||||
/*
|
||||
* Need the mirror to be mirror of leaf vdevs only
|
||||
|
@ -2217,8 +2217,19 @@ spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
|
|||
* in this pool.
|
||||
*/
|
||||
if (vd == NULL || unspare) {
|
||||
char *type;
|
||||
boolean_t draid_spare = B_FALSE;
|
||||
|
||||
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type)
|
||||
== 0 && strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0)
|
||||
draid_spare = B_TRUE;
|
||||
|
||||
if (vd == NULL && draid_spare) {
|
||||
error = SET_ERROR(ENOTSUP);
|
||||
} else {
|
||||
if (vd == NULL)
|
||||
vd = spa_lookup_by_guid(spa, guid, B_TRUE);
|
||||
vd = spa_lookup_by_guid(spa,
|
||||
guid, B_TRUE);
|
||||
ev = spa_event_create(spa, vd, NULL,
|
||||
ESC_ZFS_VDEV_REMOVE_AUX);
|
||||
|
||||
|
@ -2229,6 +2240,7 @@ spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
|
|||
ZPOOL_CONFIG_SPARES, spares, nspares, nv);
|
||||
spa_load_spares(spa);
|
||||
spa->spa_spares.sav_sync = B_TRUE;
|
||||
}
|
||||
} else {
|
||||
error = SET_ERROR(EBUSY);
|
||||
}
|
||||
|
|
|
@ -142,9 +142,13 @@ vdev_root_state_change(vdev_t *vd, int faulted, int degraded)
|
|||
}
|
||||
|
||||
vdev_ops_t vdev_root_ops = {
|
||||
.vdev_op_init = NULL,
|
||||
.vdev_op_fini = NULL,
|
||||
.vdev_op_open = vdev_root_open,
|
||||
.vdev_op_close = vdev_root_close,
|
||||
.vdev_op_asize = vdev_default_asize,
|
||||
.vdev_op_min_asize = vdev_default_min_asize,
|
||||
.vdev_op_min_alloc = NULL,
|
||||
.vdev_op_io_start = NULL, /* not applicable to the root */
|
||||
.vdev_op_io_done = NULL, /* not applicable to the root */
|
||||
.vdev_op_state_change = vdev_root_state_change,
|
||||
|
@ -153,6 +157,11 @@ vdev_ops_t vdev_root_ops = {
|
|||
.vdev_op_rele = NULL,
|
||||
.vdev_op_remap = NULL,
|
||||
.vdev_op_xlate = NULL,
|
||||
.vdev_op_rebuild_asize = NULL,
|
||||
.vdev_op_metaslab_init = NULL,
|
||||
.vdev_op_config_generate = NULL,
|
||||
.vdev_op_nparity = NULL,
|
||||
.vdev_op_ndisks = NULL,
|
||||
.vdev_op_type = VDEV_TYPE_ROOT, /* name of this vdev type */
|
||||
.vdev_op_leaf = B_FALSE /* not a leaf vdev */
|
||||
};
|
||||
|
|
|
@ -311,7 +311,8 @@ vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state,
|
|||
vd->vdev_trim_secure = secure;
|
||||
}
|
||||
|
||||
boolean_t resumed = !!(vd->vdev_trim_state == VDEV_TRIM_SUSPENDED);
|
||||
vdev_trim_state_t old_state = vd->vdev_trim_state;
|
||||
boolean_t resumed = (old_state == VDEV_TRIM_SUSPENDED);
|
||||
vd->vdev_trim_state = new_state;
|
||||
|
||||
dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
|
||||
|
@ -332,9 +333,12 @@ vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state,
|
|||
"vdev=%s suspended", vd->vdev_path);
|
||||
break;
|
||||
case VDEV_TRIM_CANCELED:
|
||||
if (old_state == VDEV_TRIM_ACTIVE ||
|
||||
old_state == VDEV_TRIM_SUSPENDED) {
|
||||
spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL);
|
||||
spa_history_log_internal(spa, "trim", tx,
|
||||
"vdev=%s canceled", vd->vdev_path);
|
||||
}
|
||||
break;
|
||||
case VDEV_TRIM_COMPLETE:
|
||||
spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_FINISH);
|
||||
|
@ -601,6 +605,32 @@ vdev_trim_ranges(trim_args_t *ta)
|
|||
return (0);
|
||||
}
|
||||
|
||||
static void
|
||||
vdev_trim_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs)
|
||||
{
|
||||
uint64_t *last_rs_end = (uint64_t *)arg;
|
||||
|
||||
if (physical_rs->rs_end > *last_rs_end)
|
||||
*last_rs_end = physical_rs->rs_end;
|
||||
}
|
||||
|
||||
static void
|
||||
vdev_trim_xlate_progress(void *arg, range_seg64_t *physical_rs)
|
||||
{
|
||||
vdev_t *vd = (vdev_t *)arg;
|
||||
|
||||
uint64_t size = physical_rs->rs_end - physical_rs->rs_start;
|
||||
vd->vdev_trim_bytes_est += size;
|
||||
|
||||
if (vd->vdev_trim_last_offset >= physical_rs->rs_end) {
|
||||
vd->vdev_trim_bytes_done += size;
|
||||
} else if (vd->vdev_trim_last_offset > physical_rs->rs_start &&
|
||||
vd->vdev_trim_last_offset <= physical_rs->rs_end) {
|
||||
vd->vdev_trim_bytes_done +=
|
||||
vd->vdev_trim_last_offset - physical_rs->rs_start;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Calculates the completion percentage of a manual TRIM.
|
||||
*/
|
||||
|
@ -618,27 +648,35 @@ vdev_trim_calculate_progress(vdev_t *vd)
|
|||
metaslab_t *msp = vd->vdev_top->vdev_ms[i];
|
||||
mutex_enter(&msp->ms_lock);
|
||||
|
||||
uint64_t ms_free = msp->ms_size -
|
||||
metaslab_allocated_space(msp);
|
||||
|
||||
if (vd->vdev_top->vdev_ops == &vdev_raidz_ops)
|
||||
ms_free /= vd->vdev_top->vdev_children;
|
||||
uint64_t ms_free = (msp->ms_size -
|
||||
metaslab_allocated_space(msp)) /
|
||||
vdev_get_ndisks(vd->vdev_top);
|
||||
|
||||
/*
|
||||
* Convert the metaslab range to a physical range
|
||||
* on our vdev. We use this to determine if we are
|
||||
* in the middle of this metaslab range.
|
||||
*/
|
||||
range_seg64_t logical_rs, physical_rs;
|
||||
range_seg64_t logical_rs, physical_rs, remain_rs;
|
||||
logical_rs.rs_start = msp->ms_start;
|
||||
logical_rs.rs_end = msp->ms_start + msp->ms_size;
|
||||
vdev_xlate(vd, &logical_rs, &physical_rs);
|
||||
|
||||
/* Metaslab space after this offset has not been trimmed. */
|
||||
vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs);
|
||||
if (vd->vdev_trim_last_offset <= physical_rs.rs_start) {
|
||||
vd->vdev_trim_bytes_est += ms_free;
|
||||
mutex_exit(&msp->ms_lock);
|
||||
continue;
|
||||
} else if (vd->vdev_trim_last_offset > physical_rs.rs_end) {
|
||||
}
|
||||
|
||||
/* Metaslab space before this offset has been trimmed */
|
||||
uint64_t last_rs_end = physical_rs.rs_end;
|
||||
if (!vdev_xlate_is_empty(&remain_rs)) {
|
||||
vdev_xlate_walk(vd, &remain_rs,
|
||||
vdev_trim_xlate_last_rs_end, &last_rs_end);
|
||||
}
|
||||
|
||||
if (vd->vdev_trim_last_offset > last_rs_end) {
|
||||
vd->vdev_trim_bytes_done += ms_free;
|
||||
vd->vdev_trim_bytes_est += ms_free;
|
||||
mutex_exit(&msp->ms_lock);
|
||||
|
@ -659,21 +697,9 @@ vdev_trim_calculate_progress(vdev_t *vd)
|
|||
rs != NULL; rs = zfs_btree_next(bt, &idx, &idx)) {
|
||||
logical_rs.rs_start = rs_get_start(rs, rt);
|
||||
logical_rs.rs_end = rs_get_end(rs, rt);
|
||||
vdev_xlate(vd, &logical_rs, &physical_rs);
|
||||
|
||||
uint64_t size = physical_rs.rs_end -
|
||||
physical_rs.rs_start;
|
||||
vd->vdev_trim_bytes_est += size;
|
||||
if (vd->vdev_trim_last_offset >= physical_rs.rs_end) {
|
||||
vd->vdev_trim_bytes_done += size;
|
||||
} else if (vd->vdev_trim_last_offset >
|
||||
physical_rs.rs_start &&
|
||||
vd->vdev_trim_last_offset <=
|
||||
physical_rs.rs_end) {
|
||||
vd->vdev_trim_bytes_done +=
|
||||
vd->vdev_trim_last_offset -
|
||||
physical_rs.rs_start;
|
||||
}
|
||||
vdev_xlate_walk(vd, &logical_rs,
|
||||
vdev_trim_xlate_progress, vd);
|
||||
}
|
||||
mutex_exit(&msp->ms_lock);
|
||||
}
|
||||
|
@ -741,8 +767,38 @@ vdev_trim_load(vdev_t *vd)
|
|||
return (err);
|
||||
}
|
||||
|
||||
static void
|
||||
vdev_trim_xlate_range_add(void *arg, range_seg64_t *physical_rs)
|
||||
{
|
||||
trim_args_t *ta = arg;
|
||||
vdev_t *vd = ta->trim_vdev;
|
||||
|
||||
/*
|
||||
* Only a manual trim will be traversing the vdev sequentially.
|
||||
* For an auto trim all valid ranges should be added.
|
||||
*/
|
||||
if (ta->trim_type == TRIM_TYPE_MANUAL) {
|
||||
|
||||
/* Only add segments that we have not visited yet */
|
||||
if (physical_rs->rs_end <= vd->vdev_trim_last_offset)
|
||||
return;
|
||||
|
||||
/* Pick up where we left off mid-range. */
|
||||
if (vd->vdev_trim_last_offset > physical_rs->rs_start) {
|
||||
ASSERT3U(physical_rs->rs_end, >,
|
||||
vd->vdev_trim_last_offset);
|
||||
physical_rs->rs_start = vd->vdev_trim_last_offset;
|
||||
}
|
||||
}
|
||||
|
||||
ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start);
|
||||
|
||||
range_tree_add(ta->trim_tree, physical_rs->rs_start,
|
||||
physical_rs->rs_end - physical_rs->rs_start);
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert the logical range into a physical range and add it to the
|
||||
* Convert the logical range into physical ranges and add them to the
|
||||
* range tree passed in the trim_args_t.
|
||||
*/
|
||||
static void
|
||||
|
@ -750,7 +806,7 @@ vdev_trim_range_add(void *arg, uint64_t start, uint64_t size)
|
|||
{
|
||||
trim_args_t *ta = arg;
|
||||
vdev_t *vd = ta->trim_vdev;
|
||||
range_seg64_t logical_rs, physical_rs;
|
||||
range_seg64_t logical_rs;
|
||||
logical_rs.rs_start = start;
|
||||
logical_rs.rs_end = start + size;
|
||||
|
||||
|
@ -767,44 +823,7 @@ vdev_trim_range_add(void *arg, uint64_t start, uint64_t size)
|
|||
}
|
||||
|
||||
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
||||
vdev_xlate(vd, &logical_rs, &physical_rs);
|
||||
|
||||
IMPLY(vd->vdev_top == vd,
|
||||
logical_rs.rs_start == physical_rs.rs_start);
|
||||
IMPLY(vd->vdev_top == vd,
|
||||
logical_rs.rs_end == physical_rs.rs_end);
|
||||
|
||||
/*
|
||||
* Only a manual trim will be traversing the vdev sequentially.
|
||||
* For an auto trim all valid ranges should be added.
|
||||
*/
|
||||
if (ta->trim_type == TRIM_TYPE_MANUAL) {
|
||||
|
||||
/* Only add segments that we have not visited yet */
|
||||
if (physical_rs.rs_end <= vd->vdev_trim_last_offset)
|
||||
return;
|
||||
|
||||
/* Pick up where we left off mid-range. */
|
||||
if (vd->vdev_trim_last_offset > physical_rs.rs_start) {
|
||||
ASSERT3U(physical_rs.rs_end, >,
|
||||
vd->vdev_trim_last_offset);
|
||||
physical_rs.rs_start = vd->vdev_trim_last_offset;
|
||||
}
|
||||
}
|
||||
|
||||
ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
|
||||
|
||||
/*
|
||||
* With raidz, it's possible that the logical range does not live on
|
||||
* this leaf vdev. We only add the physical range to this vdev's if it
|
||||
* has a length greater than 0.
|
||||
*/
|
||||
if (physical_rs.rs_end > physical_rs.rs_start) {
|
||||
range_tree_add(ta->trim_tree, physical_rs.rs_start,
|
||||
physical_rs.rs_end - physical_rs.rs_start);
|
||||
} else {
|
||||
ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
|
||||
}
|
||||
vdev_xlate_walk(vd, &logical_rs, vdev_trim_xlate_range_add, arg);
|
||||
}
|
||||
|
||||
/*
|
||||
|
|
|
@ -1111,7 +1111,9 @@ zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
|
|||
bcopy(info, report->zcr_ckinfo, sizeof (*info));
|
||||
}
|
||||
|
||||
report->zcr_align = 1ULL << vd->vdev_top->vdev_ashift;
|
||||
report->zcr_sector = 1ULL << vd->vdev_top->vdev_ashift;
|
||||
report->zcr_align =
|
||||
vdev_psize_to_asize(vd->vdev_top, report->zcr_sector);
|
||||
report->zcr_length = length;
|
||||
|
||||
#ifdef _KERNEL
|
||||
|
|
|
@ -1702,16 +1702,16 @@ zio_write_compress(zio_t *zio)
|
|||
return (zio);
|
||||
} else {
|
||||
/*
|
||||
* Round up compressed size up to the ashift
|
||||
* of the smallest-ashift device, and zero the tail.
|
||||
* This ensures that the compressed size of the BP
|
||||
* (and thus compressratio property) are correct,
|
||||
* Round compressed size up to the minimum allocation
|
||||
* size of the smallest-ashift device, and zero the
|
||||
* tail. This ensures that the compressed size of the
|
||||
* BP (and thus compressratio property) are correct,
|
||||
* in that we charge for the padding used to fill out
|
||||
* the last sector.
|
||||
*/
|
||||
ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
|
||||
size_t rounded = (size_t)P2ROUNDUP(psize,
|
||||
1ULL << spa->spa_min_ashift);
|
||||
ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT);
|
||||
size_t rounded = (size_t)roundup(psize,
|
||||
spa->spa_min_alloc);
|
||||
if (rounded >= lsize) {
|
||||
compress = ZIO_COMPRESS_OFF;
|
||||
zio_buf_free(cbuf, lsize);
|
||||
|
@ -3754,19 +3754,37 @@ zio_vdev_io_start(zio_t *zio)
|
|||
* However, indirect vdevs point off to other vdevs which may have
|
||||
* DTL's, so we never bypass them. The child i/os on concrete vdevs
|
||||
* will be properly bypassed instead.
|
||||
*
|
||||
* Leaf DTL_PARTIAL can be empty when a legitimate write comes from
|
||||
* a dRAID spare vdev. For example, when a dRAID spare is first
|
||||
* used, its spare blocks need to be written to but the leaf vdev's
|
||||
* of such blocks can have empty DTL_PARTIAL.
|
||||
*
|
||||
* There seemed no clean way to allow such writes while bypassing
|
||||
* spurious ones. At this point, just avoid all bypassing for dRAID
|
||||
* for correctness.
|
||||
*/
|
||||
if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
|
||||
!(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
|
||||
zio->io_txg != 0 && /* not a delegated i/o */
|
||||
vd->vdev_ops != &vdev_indirect_ops &&
|
||||
vd->vdev_top->vdev_ops != &vdev_draid_ops &&
|
||||
!vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
|
||||
ASSERT(zio->io_type == ZIO_TYPE_WRITE);
|
||||
zio_vdev_io_bypass(zio);
|
||||
return (zio);
|
||||
}
|
||||
|
||||
if (vd->vdev_ops->vdev_op_leaf && (zio->io_type == ZIO_TYPE_READ ||
|
||||
zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM)) {
|
||||
/*
|
||||
* Select the next best leaf I/O to process. Distributed spares are
|
||||
* excluded since they dispatch the I/O directly to a leaf vdev after
|
||||
* applying the dRAID mapping.
|
||||
*/
|
||||
if (vd->vdev_ops->vdev_op_leaf &&
|
||||
vd->vdev_ops != &vdev_draid_spare_ops &&
|
||||
(zio->io_type == ZIO_TYPE_READ ||
|
||||
zio->io_type == ZIO_TYPE_WRITE ||
|
||||
zio->io_type == ZIO_TYPE_TRIM)) {
|
||||
|
||||
if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
|
||||
return (zio);
|
||||
|
@ -3803,8 +3821,8 @@ zio_vdev_io_done(zio_t *zio)
|
|||
if (zio->io_delay)
|
||||
zio->io_delay = gethrtime() - zio->io_delay;
|
||||
|
||||
if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
|
||||
|
||||
if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
|
||||
vd->vdev_ops != &vdev_draid_spare_ops) {
|
||||
vdev_queue_io_done(zio);
|
||||
|
||||
if (zio->io_type == ZIO_TYPE_WRITE)
|
||||
|
@ -4206,7 +4224,7 @@ zio_checksum_verify(zio_t *zio)
|
|||
if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
|
||||
return (zio);
|
||||
|
||||
ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
|
||||
ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
|
||||
}
|
||||
|
||||
if ((error = zio_checksum_error(zio, &info)) != 0) {
|
||||
|
|
|
@ -265,6 +265,12 @@ zio_handle_fault_injection(zio_t *zio, int error)
|
|||
if (zio->io_type != ZIO_TYPE_READ)
|
||||
return (0);
|
||||
|
||||
/*
|
||||
* A rebuild I/O has no checksum to verify.
|
||||
*/
|
||||
if (zio->io_priority == ZIO_PRIORITY_REBUILD && error == ECKSUM)
|
||||
return (0);
|
||||
|
||||
rw_enter(&inject_lock, RW_READER);
|
||||
|
||||
for (handler = list_head(&inject_handlers); handler != NULL;
|
||||
|
|
|
@ -36,6 +36,7 @@ export ZPOOL_SCRIPT_DIR=$$CMD_DIR/zpool/zpool.d
|
|||
export ZPOOL_SCRIPTS_PATH=$$CMD_DIR/zpool/zpool.d
|
||||
export CONTRIB_DIR=@abs_top_builddir@/contrib
|
||||
export LIB_DIR=@abs_top_builddir@/lib
|
||||
export SYSCONF_DIR=@abs_top_builddir@/etc
|
||||
|
||||
export INSTALL_UDEV_DIR=@udevdir@
|
||||
export INSTALL_UDEV_RULE_DIR=@udevruledir@
|
||||
|
|
|
@ -166,6 +166,8 @@ if [ "${INSTALL}" = "yes" ]; then
|
|||
"$INSTALL_UDEV_RULE_DIR/90-zfs.rules"
|
||||
install "$CMD_DIR/zpool/zpool.d" \
|
||||
"$INSTALL_SYSCONF_DIR/zfs/zpool.d"
|
||||
install "$SYSCONF_DIR/zfs/draid.d" \
|
||||
"$INSTALL_SYSCONF_DIR/zfs/draid.d"
|
||||
install "$CONTRIB_DIR/pyzfs/libzfs_core" \
|
||||
"$INSTALL_PYTHON_DIR/libzfs_core"
|
||||
# Ideally we would install these in the configured ${libdir}, which is
|
||||
|
@ -185,6 +187,7 @@ else
|
|||
remove "$INSTALL_UDEV_RULE_DIR/69-vdev.rules"
|
||||
remove "$INSTALL_UDEV_RULE_DIR/90-zfs.rules"
|
||||
remove "$INSTALL_SYSCONF_DIR/zfs/zpool.d"
|
||||
remove "$INSTALL_SYSCONF_DIR/zfs/draid.d"
|
||||
remove "$INSTALL_PYTHON_DIR/libzfs_core"
|
||||
remove "/lib/libzfs_core.so"
|
||||
remove "/lib/libnvpair.so"
|
||||
|
|
|
@ -18,6 +18,7 @@
|
|||
#
|
||||
# Copyright (c) 2015 by Delphix. All rights reserved.
|
||||
# Copyright (C) 2016 Lawrence Livermore National Security, LLC.
|
||||
# Copyright (c) 2017, Intel Corporation.
|
||||
#
|
||||
|
||||
BASE_DIR=$(dirname "$0")
|
||||
|
@ -246,27 +247,60 @@ while [[ $timeout -eq 0 ]] || [[ $curtime -le $((starttime + timeout)) ]]; do
|
|||
or_die rm -rf "$workdir"
|
||||
or_die mkdir "$workdir"
|
||||
|
||||
# switch between common arrangements & fully randomized
|
||||
if [[ $((RANDOM % 2)) -eq 0 ]]; then
|
||||
mirrors=2
|
||||
raidz=0
|
||||
parity=1
|
||||
vdevs=2
|
||||
else
|
||||
mirrors=$(((RANDOM % 3) * 1))
|
||||
parity=$(((RANDOM % 3) + 1))
|
||||
raidz=$((((RANDOM % 9) + parity + 1) * (RANDOM % 2)))
|
||||
vdevs=$(((RANDOM % 3) + 3))
|
||||
fi
|
||||
# switch between three types of configs
|
||||
# 1/3 basic, 1/3 raidz mix, and 1/3 draid mix
|
||||
choice=$((RANDOM % 3))
|
||||
|
||||
# ashift range 9 - 15
|
||||
align=$(((RANDOM % 2) * 3 + 9))
|
||||
runtime=$((RANDOM % 100))
|
||||
|
||||
# randomly use special classes
|
||||
class="special=random"
|
||||
|
||||
if [[ $choice -eq 0 ]]; then
|
||||
# basic mirror only
|
||||
parity=1
|
||||
mirrors=2
|
||||
draid_data=0
|
||||
draid_spares=0
|
||||
raid_children=0
|
||||
vdevs=2
|
||||
raid_type="raidz"
|
||||
elif [[ $choice -eq 1 ]]; then
|
||||
# fully randomized mirror/raidz (sans dRAID)
|
||||
parity=$(((RANDOM % 3) + 1))
|
||||
mirrors=$(((RANDOM % 3) * 1))
|
||||
draid_data=0
|
||||
draid_spares=0
|
||||
raid_children=$((((RANDOM % 9) + parity + 1) * (RANDOM % 2)))
|
||||
vdevs=$(((RANDOM % 3) + 3))
|
||||
raid_type="raidz"
|
||||
else
|
||||
# fully randomized dRAID (sans mirror/raidz)
|
||||
parity=$(((RANDOM % 3) + 1))
|
||||
mirrors=0
|
||||
draid_data=$(((RANDOM % 8) + 3))
|
||||
draid_spares=$(((RANDOM % 2) + parity))
|
||||
stripe=$((draid_data + parity))
|
||||
extra=$((draid_spares + (RANDOM % 4)))
|
||||
raid_children=$(((((RANDOM % 4) + 1) * stripe) + extra))
|
||||
vdevs=$((RANDOM % 3))
|
||||
raid_type="draid"
|
||||
fi
|
||||
|
||||
# run from 30 to 120 seconds
|
||||
runtime=$(((RANDOM % 90) + 30))
|
||||
passtime=$((RANDOM % (runtime / 3 + 1) + 10))
|
||||
|
||||
zopt="$zopt -K $raid_type"
|
||||
zopt="$zopt -m $mirrors"
|
||||
zopt="$zopt -r $raidz"
|
||||
zopt="$zopt -r $raid_children"
|
||||
zopt="$zopt -D $draid_data"
|
||||
zopt="$zopt -S $draid_spares"
|
||||
zopt="$zopt -R $parity"
|
||||
zopt="$zopt -v $vdevs"
|
||||
zopt="$zopt -a $align"
|
||||
zopt="$zopt -C $class"
|
||||
zopt="$zopt -T $runtime"
|
||||
zopt="$zopt -P $passtime"
|
||||
zopt="$zopt -s $size"
|
||||
|
|
|
@ -333,6 +333,8 @@ tests = ['zpool_create_001_pos', 'zpool_create_002_pos',
|
|||
'zpool_create_020_pos', 'zpool_create_021_pos', 'zpool_create_022_pos',
|
||||
'zpool_create_023_neg', 'zpool_create_024_pos',
|
||||
'zpool_create_encrypted', 'zpool_create_crypt_combos',
|
||||
'zpool_create_draid_001_pos', 'zpool_create_draid_002_pos',
|
||||
'zpool_create_draid_003_pos', 'zpool_create_draid_004_pos',
|
||||
'zpool_create_features_001_pos', 'zpool_create_features_002_pos',
|
||||
'zpool_create_features_003_pos', 'zpool_create_features_004_neg',
|
||||
'zpool_create_features_005_pos',
|
||||
|
@ -375,7 +377,7 @@ tests = ['zpool_import_001_pos', 'zpool_import_002_pos',
|
|||
'zpool_import_006_pos', 'zpool_import_007_pos', 'zpool_import_008_pos',
|
||||
'zpool_import_009_neg', 'zpool_import_010_pos', 'zpool_import_011_neg',
|
||||
'zpool_import_012_pos', 'zpool_import_013_neg', 'zpool_import_014_pos',
|
||||
'zpool_import_015_pos',
|
||||
'zpool_import_015_pos', 'zpool_import_016_pos', 'zpool_import_017_pos',
|
||||
'zpool_import_features_001_pos', 'zpool_import_features_002_neg',
|
||||
'zpool_import_features_003_pos', 'zpool_import_missing_001_pos',
|
||||
'zpool_import_missing_002_pos', 'zpool_import_missing_003_pos',
|
||||
|
@ -710,12 +712,14 @@ tests = ['redacted_compressed', 'redacted_contents', 'redacted_deleted',
|
|||
tags = ['functional', 'redacted_send']
|
||||
|
||||
[tests/functional/raidz]
|
||||
tests = ['raidz_001_neg', 'raidz_002_pos']
|
||||
tests = ['raidz_001_neg', 'raidz_002_pos', 'raidz_003_pos', 'raidz_004_pos']
|
||||
tags = ['functional', 'raidz']
|
||||
|
||||
[tests/functional/redundancy]
|
||||
tests = ['redundancy_001_pos', 'redundancy_002_pos', 'redundancy_003_pos',
|
||||
'redundancy_004_neg']
|
||||
tests = ['redundancy_draid1', 'redundancy_draid2', 'redundancy_draid3',
|
||||
'redundancy_draid_spare1', 'redundancy_draid_spare2',
|
||||
'redundancy_draid_spare3', 'redundancy_mirror', 'redundancy_raidz1',
|
||||
'redundancy_raidz2', 'redundancy_raidz3', 'redundancy_stripe']
|
||||
tags = ['functional', 'redundancy']
|
||||
|
||||
[tests/functional/refquota]
|
||||
|
|
|
@ -218,6 +218,7 @@ maybe = {
|
|||
'no_space/enospc_002_pos': ['FAIL', enospc_reason],
|
||||
'projectquota/setup': ['SKIP', exec_reason],
|
||||
'redundancy/redundancy_004_neg': ['FAIL', '7290'],
|
||||
'redundancy/redundancy_draid_spare3': ['SKIP', known_reason],
|
||||
'reservation/reservation_008_pos': ['FAIL', '7741'],
|
||||
'reservation/reservation_018_pos': ['FAIL', '5642'],
|
||||
'rsend/rsend_019_pos': ['FAIL', '6086'],
|
||||
|
|
|
@ -6,6 +6,7 @@ SUBDIRS = \
|
|||
chg_usr_exec \
|
||||
devname2devid \
|
||||
dir_rd_update \
|
||||
draid \
|
||||
file_check \
|
||||
file_trunc \
|
||||
file_write \
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
/draid
|
|
@ -0,0 +1,15 @@
|
|||
include $(top_srcdir)/config/Rules.am
|
||||
|
||||
pkgexecdir = $(datadir)/@PACKAGE@/zfs-tests/bin
|
||||
|
||||
AM_CFLAGS += $(ZLIB_CFLAGS)
|
||||
|
||||
pkgexec_PROGRAMS = draid
|
||||
|
||||
draid_SOURCES = draid.c
|
||||
|
||||
draid_LDADD = \
|
||||
$(abs_top_builddir)/lib/libzpool/libzpool.la \
|
||||
$(abs_top_builddir)/lib/libnvpair/libnvpair.la
|
||||
|
||||
draid_LDADD += $(ZLIB_LIBS)
|
File diff suppressed because it is too large
Load Diff
|
@ -197,6 +197,7 @@ export ZFSTEST_FILES='badsend
|
|||
chg_usr_exec
|
||||
devname2devid
|
||||
dir_rd_update
|
||||
draid
|
||||
file_check
|
||||
file_trunc
|
||||
file_write
|
||||
|
|
|
@ -2336,7 +2336,7 @@ function check_pool_status # pool token keyword <verbose>
|
|||
function is_pool_resilvering #pool <verbose>
|
||||
{
|
||||
check_pool_status "$1" "scan" \
|
||||
"resilver[ ()0-9A-Za-z_-]* in progress since" $2
|
||||
"resilver[ ()0-9A-Za-z:_-]* in progress since" $2
|
||||
return $?
|
||||
}
|
||||
|
||||
|
|
|
@ -60,6 +60,7 @@ MULTIHOST_IMPORT_INTERVALS multihost.import_intervals zfs_multihost_import_inter
|
|||
MULTIHOST_INTERVAL multihost.interval zfs_multihost_interval
|
||||
OVERRIDE_ESTIMATE_RECORDSIZE send.override_estimate_recordsize zfs_override_estimate_recordsize
|
||||
PREFETCH_DISABLE prefetch.disable zfs_prefetch_disable
|
||||
REBUILD_SCRUB_ENABLED rebuild_scrub_enabled zfs_rebuild_scrub_enabled
|
||||
REMOVAL_SUSPEND_PROGRESS removal_suspend_progress zfs_removal_suspend_progress
|
||||
REMOVE_MAX_SEGMENT remove_max_segment zfs_remove_max_segment
|
||||
RESILVER_MIN_TIME_MS resilver_min_time_ms zfs_resilver_min_time_ms
|
||||
|
|
|
@ -66,7 +66,8 @@ function setup_filesystem #disklist #pool #fs #mntpoint #type #vdev
|
|||
|
||||
if [[ $vdev != "" && \
|
||||
$vdev != "mirror" && \
|
||||
$vdev != "raidz" ]] ; then
|
||||
$vdev != "raidz" && \
|
||||
$vdev != "draid" ]] ; then
|
||||
|
||||
log_note "Wrong vdev: (\"$vdev\")"
|
||||
return 1
|
||||
|
|
|
@ -55,23 +55,26 @@ log_assert "'zpool add <pool> <vdev> ...' can add devices to the pool."
|
|||
|
||||
log_onexit cleanup
|
||||
|
||||
set -A keywords "" "mirror" "raidz" "raidz1" "spare"
|
||||
set -A keywords "" "mirror" "raidz" "raidz1" "draid:1s" "draid1:1s" "spare"
|
||||
|
||||
pooldevs="${DISK0} \
|
||||
\"${DISK0} ${DISK1}\" \
|
||||
\"${DISK0} ${DISK1} ${DISK2}\""
|
||||
mirrordevs="\"${DISK0} ${DISK1}\""
|
||||
raidzdevs="\"${DISK0} ${DISK1}\""
|
||||
draiddevs="\"${DISK0} ${DISK1} ${DISK2}\""
|
||||
|
||||
disk0=$TEST_BASE_DIR/disk0
|
||||
disk1=$TEST_BASE_DIR/disk1
|
||||
truncate -s $MINVDEVSIZE $disk0 $disk1
|
||||
disk2=$TEST_BASE_DIR/disk2
|
||||
truncate -s $MINVDEVSIZE $disk0 $disk1 $disk2
|
||||
|
||||
typeset -i i=0
|
||||
typeset vdev
|
||||
eval set -A poolarray $pooldevs
|
||||
eval set -A mirrorarray $mirrordevs
|
||||
eval set -A raidzarray $raidzdevs
|
||||
eval set -A draidarray $draiddevs
|
||||
|
||||
while (( $i < ${#keywords[*]} )); do
|
||||
|
||||
|
@ -107,6 +110,19 @@ while (( $i < ${#keywords[*]} )); do
|
|||
destroy_pool "$TESTPOOL"
|
||||
done
|
||||
|
||||
;;
|
||||
draid:1s|draid1:1s)
|
||||
for vdev in "${draidarray[@]}"; do
|
||||
create_pool "$TESTPOOL" "${keywords[i]}" \
|
||||
"$disk0" "$disk1" "$disk2"
|
||||
log_must poolexists "$TESTPOOL"
|
||||
log_must zpool add "$TESTPOOL" ${keywords[i]} $vdev
|
||||
log_must vdevs_in_pool "$TESTPOOL" "$vdev"
|
||||
log_must vdevs_in_pool "$TESTPOOL" "draid1-0-0"
|
||||
log_must vdevs_in_pool "$TESTPOOL" "draid1-1-0"
|
||||
destroy_pool "$TESTPOOL"
|
||||
done
|
||||
|
||||
;;
|
||||
esac
|
||||
|
||||
|
|
|
@ -27,6 +27,10 @@ dist_pkgdata_SCRIPTS = \
|
|||
zpool_create_024_pos.ksh \
|
||||
zpool_create_encrypted.ksh \
|
||||
zpool_create_crypt_combos.ksh \
|
||||
zpool_create_draid_001_pos.ksh \
|
||||
zpool_create_draid_002_pos.ksh \
|
||||
zpool_create_draid_003_pos.ksh \
|
||||
zpool_create_draid_004_pos.ksh \
|
||||
zpool_create_features_001_pos.ksh \
|
||||
zpool_create_features_002_pos.ksh \
|
||||
zpool_create_features_003_pos.ksh \
|
||||
|
@ -36,5 +40,6 @@ dist_pkgdata_SCRIPTS = \
|
|||
zpool_create_tempname.ksh
|
||||
|
||||
dist_pkgdata_DATA = \
|
||||
draidcfg.gz \
|
||||
zpool_create.cfg \
|
||||
zpool_create.shlib
|
||||
|
|
Binary file not shown.
|
@ -64,14 +64,16 @@ pooldevs="${DISK0} \
|
|||
\"${DISK0} ${DISK1}\" \
|
||||
\"${DISK0} ${DISK1} ${DISK2}\" \
|
||||
\"$disk1 $disk2\""
|
||||
raidzdevs="\"${DISK0} ${DISK1} ${DISK2}\""
|
||||
mirrordevs="\"${DISK0} ${DISK1}\" \
|
||||
$raidzdevs \
|
||||
\"$disk1 $disk2\""
|
||||
raidzdevs="\"${DISK0} ${DISK1} ${DISK2}\""
|
||||
draiddevs="\"${DISK0} ${DISK1} ${DISK2}\""
|
||||
|
||||
create_pool_test "$TESTPOOL" "" "$pooldevs"
|
||||
create_pool_test "$TESTPOOL" "mirror" "$mirrordevs"
|
||||
create_pool_test "$TESTPOOL" "raidz" "$raidzdevs"
|
||||
create_pool_test "$TESTPOOL" "raidz1" "$raidzdevs"
|
||||
create_pool_test "$TESTPOOL" "draid" "$draiddevs"
|
||||
|
||||
log_pass "'zpool create <pool> <vspec> ...' success."
|
||||
|
|
|
@ -54,7 +54,7 @@ log_assert "'zpool create [-R root][-m mountpoint] <pool> <vdev> ...' can create
|
|||
"an alternate pool or a new pool mounted at the specified mountpoint."
|
||||
log_onexit cleanup
|
||||
|
||||
set -A pooltype "" "mirror" "raidz" "raidz1" "raidz2"
|
||||
set -A pooltype "" "mirror" "raidz" "raidz1" "raidz2" "draid" "draid2"
|
||||
|
||||
#
|
||||
# cleanup the pools created in previous case if zpool_create_004_pos timedout
|
||||
|
@ -67,8 +67,8 @@ done
|
|||
rm -rf $TESTDIR
|
||||
log_must mkdir -p $TESTDIR
|
||||
typeset -i i=1
|
||||
while (( i < 4 )); do
|
||||
log_must mkfile $FILESIZE $TESTDIR/file.$i
|
||||
while (( i < 5 )); do
|
||||
log_must truncate -s $FILESIZE $TESTDIR/file.$i
|
||||
|
||||
(( i = i + 1 ))
|
||||
done
|
||||
|
@ -87,7 +87,7 @@ do
|
|||
log_must zpool destroy -f $TESTPOOL
|
||||
[[ -d $TESTDIR1 ]] && rm -rf $TESTDIR1
|
||||
log_must zpool create $opt $TESTPOOL ${pooltype[i]} \
|
||||
$file.1 $file.2 $file.3
|
||||
$file.1 $file.2 $file.3 $file.4
|
||||
! poolexists $TESTPOOL && \
|
||||
log_fail "Creating pool with $opt fails."
|
||||
mpt=`zfs mount | egrep "^$TESTPOOL[^/]" | awk '{print $2}'`
|
||||
|
|
|
@ -97,6 +97,20 @@ set -A valid_args \
|
|||
"raidz2 $vdev0 $vdev1 $vdev2 spare $vdev3 raidz2 $vdev4 $vdev5 $vdev6" \
|
||||
"raidz3 $vdev0 $vdev1 $vdev2 $vdev3 \
|
||||
mirror $vdev4 $vdev5 $vdev6 $vdev7" \
|
||||
"draid $vdev0 $vdev1 $vdev2 mirror $vdev3 $vdev4" \
|
||||
"draid $vdev0 $vdev1 $vdev2 raidz1 $vdev3 $vdev4 $vdev5" \
|
||||
"draid $vdev0 $vdev1 $vdev2 draid1 $vdev3 $vdev4 $vdev5" \
|
||||
"draid $vdev0 $vdev1 $vdev2 special mirror $vdev3 $vdev4" \
|
||||
"draid2 $vdev0 $vdev1 $vdev2 $vdev3 mirror $vdev4 $vdev5 $vdev6" \
|
||||
"draid2 $vdev0 $vdev1 $vdev2 $vdev3 raidz2 $vdev4 $vdev5 $vdev6" \
|
||||
"draid2 $vdev0 $vdev1 $vdev2 $vdev3 draid2 $vdev4 $vdev5 $vdev6 $vdev7"\
|
||||
"draid2 $vdev0 $vdev1 $vdev2 $vdev3 \
|
||||
special mirror $vdev4 $vdev5 $vdev6" \
|
||||
"draid2 $vdev0 $vdev1 $vdev2 $vdev3 \
|
||||
special mirror $vdev4 $vdev5 $vdev6 \
|
||||
cache $vdev7 log mirror $vdev8 $vdev9" \
|
||||
"draid $vdev0 $vdev1 $vdev2 draid $vdev4 $vdev5 $vdev6 $vdev7 \
|
||||
special mirror $vdev8 $vdev9" \
|
||||
"spare $vdev0 $vdev1 $vdev2 mirror $vdev3 $vdev4 raidz $vdev5 $vdev6"
|
||||
|
||||
set -A forced_args \
|
||||
|
@ -109,11 +123,19 @@ set -A forced_args \
|
|||
"raidz $vdev0 $vdev1 raidz2 $vdev2 $vdev3 $vdev4" \
|
||||
"raidz $vdev0 $vdev1 raidz2 $vdev2 $vdev3 $vdev4 spare $vdev5" \
|
||||
"raidz $vdev0 $vdev1 spare $vdev2 raidz2 $vdev3 $vdev4 $vdev5" \
|
||||
"raidz $vdev0 $vdev1 draid2 $vdev2 $vdev3 $vdev4 $vdev5" \
|
||||
"raidz $vdev0 $vdev1 draid3 $vdev2 $vdev3 $vdev4 $vdev5 $vdev6" \
|
||||
"mirror $vdev0 $vdev1 raidz $vdev2 $vdev3 raidz2 $vdev4 $vdev5 $vdev6" \
|
||||
"mirror $vdev0 $vdev1 raidz $vdev2 $vdev3 \
|
||||
raidz2 $vdev4 $vdev5 $vdev6 spare $vdev7" \
|
||||
"mirror $vdev0 $vdev1 raidz $vdev2 $vdev3 \
|
||||
spare $vdev4 raidz2 $vdev5 $vdev6 $vdev7" \
|
||||
"mirror $vdev0 $vdev1 draid $vdev2 $vdev3 $vdev4 \
|
||||
draid2 $vdev5 $vdev6 $vdev7 $vdev8 spare $vdev9" \
|
||||
"draid $vdev0 $vdev1 $vdev2 $vdev3 \
|
||||
draid2 $vdev4 $vdev5 $vdev6 $vdev7 $vdev8" \
|
||||
"draid $vdev0 $vdev1 $vdev2 draid $vdev4 $vdev5 $vdev6 \
|
||||
special mirror $vdev7 $vdev8 $vdev9" \
|
||||
"spare $vdev0 $vdev1 $vdev2 mirror $vdev3 $vdev4 \
|
||||
raidz2 $vdev5 $vdev6 $vdev7"
|
||||
|
||||
|
|
|
@ -54,13 +54,16 @@ set -A args "" "-?" "-n" "-f" "-nf" "-fn" "-f -n" "--f" "-e" "-s" \
|
|||
"$TESTPOOL c0txd0" "$TESTPOOL c0t0dx" "$TESTPOOL cxtxdx" \
|
||||
"$TESTPOOL mirror" "$TESTPOOL raidz" "$TESTPOOL mirror raidz" \
|
||||
"$TESTPOOL raidz1" "$TESTPOOL mirror raidz1" \
|
||||
"$TESTPOOL draid1" "$TESTPOOL mirror draid1" \
|
||||
"$TESTPOOL mirror c?t?d?" "$TESTPOOL mirror $DISK0 c0t1d?" \
|
||||
"$TESTPOOL RAIDZ $DISK0 $DISK1" \
|
||||
"$TESTPOOL $DISK0 log $DISK1 log $DISK2" \
|
||||
"$TESTPOOL $DISK0 spare $DISK1 spare $DISK2" \
|
||||
"$TESTPOOL RAIDZ1 $DISK0 $DISK1" \
|
||||
"$TESTPOOL MIRROR $DISK0" "$TESTPOOL raidz $DISK0" \
|
||||
"$TESTPOOL raidz1 $DISK0" \
|
||||
"$TESTPOOL RAIDZ1 $DISK0 $DISK1" "$TESTPOOL MIRROR $DISK0" \
|
||||
"$TESTPOOL DRAID $DISK1 $DISK2 $DISK3" "$TESTPOOL raidz $DISK0" \
|
||||
"$TESTPOOL raidz1 $DISK0" "$TESTPOOL draid $DISK0" \
|
||||
"$TESTPOOL draid2 $DISK0 $DISK1" \
|
||||
"$TESTPOOL draid $DISK0 $DISK1 $DISK2 spare s0-draid1-0" \
|
||||
"1tank $DISK0" "1234 $DISK0" "?tank $DISK0" \
|
||||
"tan%k $DISK0" "ta@# $DISK0" "tan+k $DISK0" \
|
||||
"$BYND_MAX_NAME $DISK0"
|
||||
|
|
|
@ -63,7 +63,7 @@ log_onexit cleanup
|
|||
|
||||
unset NOINUSE_CHECK
|
||||
typeset opt
|
||||
for opt in "" "mirror" "raidz" "raidz1"; do
|
||||
for opt in "" "mirror" "raidz" "draid"; do
|
||||
if [[ $opt == "" ]]; then
|
||||
typeset disks=$DISK0
|
||||
else
|
||||
|
|
|
@ -63,15 +63,16 @@ log_must zfs create $TESTPOOL/$TESTFS
|
|||
log_must zfs set mountpoint=$TESTDIR $TESTPOOL/$TESTFS
|
||||
|
||||
typeset -l devsize=$(($SPA_MINDEVSIZE - 1024 * 1024))
|
||||
for files in $TESTDIR/file1 $TESTDIR/file2
|
||||
for files in $TESTDIR/file1 $TESTDIR/file2 $TESTDIR/file3
|
||||
do
|
||||
log_must mkfile $devsize $files
|
||||
log_must truncate -s $devsize $files
|
||||
done
|
||||
|
||||
set -A args \
|
||||
"$TOOSMALL $TESTDIR/file1" "$TESTPOOL1 $TESTDIR/file1 $TESTDIR/file2" \
|
||||
"$TOOSMALL mirror $TESTDIR/file1 $TESTDIR/file2" \
|
||||
"$TOOSMALL raidz $TESTDIR/file1 $TESTDIR/file2"
|
||||
"$TOOSMALL raidz $TESTDIR/file1 $TESTDIR/file2" \
|
||||
"$TOOSMALL draid $TESTDIR/file1 $TESTDIR/file2 $TESTDIR/file3"
|
||||
|
||||
typeset -i i=0
|
||||
while [[ $i -lt ${#args[*]} ]]; do
|
||||
|
|
|
@ -54,7 +54,7 @@ function cleanup
|
|||
destroy_pool $pool
|
||||
done
|
||||
|
||||
rm -rf $disk1 $disk2 $disk3
|
||||
rm -rf $disk1 $disk2 $disk3 $disk4
|
||||
|
||||
if [[ -n $saved_dump_dev ]]; then
|
||||
log_must dumpadm -u -d $saved_dump_dev
|
||||
|
@ -66,12 +66,16 @@ log_onexit cleanup
|
|||
|
||||
disk1=$(create_blockfile $FILESIZE)
|
||||
disk2=$(create_blockfile $FILESIZE)
|
||||
disk3=$(create_blockfile $FILESIZE1)
|
||||
disk3=$(create_blockfile $FILESIZE)
|
||||
disk4=$(create_blockfile $FILESIZE1)
|
||||
mirror1="$DISK0 $DISK1"
|
||||
mirror2="$disk1 $disk2"
|
||||
raidz1=$mirror1
|
||||
raidz2=$mirror2
|
||||
diff_size_dev="$disk2 $disk3"
|
||||
draid1="$DISK0 $DISK1 $DISK2"
|
||||
draid2="$disk1 $disk2 $disk3"
|
||||
diff_size_dev="$disk2 $disk4"
|
||||
draid_diff_size_dev="$disk1 $disk2 $disk4"
|
||||
vfstab_dev=$(find_vfstab_dev)
|
||||
|
||||
if is_illumos; then
|
||||
|
@ -91,13 +95,17 @@ set -A arg \
|
|||
"$TESTPOOL1 mirror mirror $mirror1 mirror $mirror2" \
|
||||
"$TESTPOOL1 raidz raidz $raidz1 raidz $raidz2" \
|
||||
"$TESTPOOL1 raidz1 raidz1 $raidz1 raidz1 $raidz2" \
|
||||
"$TESTPOOL1 draid draid $draid draid $draid2" \
|
||||
"$TESTPOOL1 mirror raidz $raidz1 raidz $raidz2" \
|
||||
"$TESTPOOL1 mirror raidz1 $raidz1 raidz1 $raidz2" \
|
||||
"$TESTPOOL1 mirror draid $draid1 draid $draid2" \
|
||||
"$TESTPOOL1 raidz mirror $mirror1 mirror $mirror2" \
|
||||
"$TESTPOOL1 raidz1 mirror $mirror1 mirror $mirror2" \
|
||||
"$TESTPOOL1 draid1 mirror $mirror1 mirror $mirror2" \
|
||||
"$TESTPOOL1 mirror $diff_size_dev" \
|
||||
"$TESTPOOL1 raidz $diff_size_dev" \
|
||||
"$TESTPOOL1 raidz1 $diff_size_dev" \
|
||||
"$TESTPOOL1 draid1 $draid_diff_size_dev" \
|
||||
"$TESTPOOL1 mirror $mirror1 spare $mirror2 spare $diff_size_dev" \
|
||||
"$TESTPOOL1 $vfstab_dev" \
|
||||
"$TESTPOOL1 ${DISK0}s10" \
|
||||
|
|
|
@ -0,0 +1,75 @@
|
|||
#!/bin/ksh -p
|
||||
#
|
||||
# CDDL HEADER START
|
||||
#
|
||||
# The contents of this file are subject to the terms of the
|
||||
# Common Development and Distribution License (the "License").
|
||||
# You may not use this file except in compliance with the License.
|
||||
#
|
||||
# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
||||
# or http://www.opensolaris.org/os/licensing.
|
||||
# See the License for the specific language governing permissions
|
||||
# and limitations under the License.
|
||||
#
|
||||
# When distributing Covered Code, include this CDDL HEADER in each
|
||||
# file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
||||
# If applicable, add the following below this CDDL HEADER, with the
|
||||
# fields enclosed by brackets "[]" replaced with your own identifying
|
||||
# information: Portions Copyright [yyyy] [name of copyright owner]
|
||||
#
|
||||
# CDDL HEADER END
|
||||
#
|
||||
|
||||
#
|
||||
# Copyright (c) 2020 Lawrence Livermore National Security, LLC.
|
||||
|
||||
. $STF_SUITE/include/libtest.shlib
|
||||
|
||||
#
|
||||
# DESCRIPTION:
|
||||
# Create a variety of dRAID pools using the minimal dRAID vdev syntax.
|
||||
#
|
||||
# STRATEGY:
|
||||
# 1) Create the required number of allowed dRAID vdevs.
|
||||
# 2) Create few pools of various sizes using the draid1|draid2|draid3 syntax.
|
||||
#
|
||||
|
||||
verify_runnable "global"
|
||||
|
||||
function cleanup
|
||||
{
|
||||
poolexists $TESTPOOL && destroy_pool $TESTPOOL
|
||||
|
||||
rm -f $all_vdevs
|
||||
rmdir $TESTDIR
|
||||
}
|
||||
|
||||
log_assert "'zpool create <pool> <draid1|2|3> ...' can create a pool."
|
||||
|
||||
log_onexit cleanup
|
||||
|
||||
all_vdevs=$(echo $TESTDIR/file.{01..84})
|
||||
|
||||
mkdir $TESTDIR
|
||||
log_must truncate -s $MINVDEVSIZE $all_vdevs
|
||||
|
||||
# Verify all configurations up to 24 vdevs.
|
||||
for parity in {1..3}; do
|
||||
for children in {$((parity + 2))..24}; do
|
||||
vdevs=$(echo $TESTDIR/file.{01..${children}})
|
||||
log_must zpool create $TESTPOOL draid$parity $vdevs
|
||||
log_must poolexists $TESTPOOL
|
||||
destroy_pool $TESTPOOL
|
||||
done
|
||||
done
|
||||
|
||||
# Spot check a few large configurations.
|
||||
children_counts="53 84"
|
||||
for children in $children_counts; do
|
||||
vdevs=$(echo $TESTDIR/file.{01..${children}})
|
||||
log_must zpool create $TESTPOOL draid $vdevs
|
||||
log_must poolexists $TESTPOOL
|
||||
destroy_pool $TESTPOOL
|
||||
done
|
||||
|
||||
log_pass "'zpool create <pool> <draid1|2|3> <vdevs> ...' success."
|
|
@ -0,0 +1,82 @@
|
|||
#!/bin/ksh -p
|
||||
#
|
||||
# CDDL HEADER START
|
||||
#
|
||||
# The contents of this file are subject to the terms of the
|
||||
# Common Development and Distribution License (the "License").
|
||||
# You may not use this file except in compliance with the License.
|
||||
#
|
||||
# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
||||
# or http://www.opensolaris.org/os/licensing.
|
||||
# See the License for the specific language governing permissions
|
||||
# and limitations under the License.
|
||||
#
|
||||
# When distributing Covered Code, include this CDDL HEADER in each
|
||||
# file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
||||
# If applicable, add the following below this CDDL HEADER, with the
|
||||
# fields enclosed by brackets "[]" replaced with your own identifying
|
||||
# information: Portions Copyright [yyyy] [name of copyright owner]
|
||||
#
|
||||
# CDDL HEADER END
|
||||
#
|
||||
|
||||
#
|
||||
# Copyright (c) 2020 Lawrence Livermore National Security, LLC.
|
||||
|
||||
. $STF_SUITE/include/libtest.shlib
|
||||
|
||||
#
|
||||
# DESCRIPTION:
|
||||
# Create dRAID pool using the maximum number of vdevs (255). Then verify
|
||||
# that creating a pool with 256 fails as expected.
|
||||
#
|
||||
# STRATEGY:
|
||||
# 1) Verify a pool with fewer than the required vdevs fails.
|
||||
# 2) Verify pools with a valid number of vdevs succeed.
|
||||
# 3) Verify a pool which exceeds the maximum number of vdevs fails.
|
||||
#
|
||||
|
||||
verify_runnable "global"
|
||||
|
||||
function cleanup
|
||||
{
|
||||
poolexists $TESTPOOL && destroy_pool $TESTPOOL
|
||||
|
||||
rm -f $all_vdevs
|
||||
rmdir $TESTDIR
|
||||
}
|
||||
|
||||
log_assert "'zpool create <pool> draid <vdevs>'"
|
||||
|
||||
log_onexit cleanup
|
||||
|
||||
all_vdevs=$(echo $TESTDIR/file.{01..256})
|
||||
|
||||
mkdir $TESTDIR
|
||||
log_must truncate -s $MINVDEVSIZE $all_vdevs
|
||||
|
||||
# Below maximum dRAID vdev count for specified parity level.
|
||||
log_mustnot zpool create $TESTPOOL draid1 $(echo $TESTDIR/file.{01..01})
|
||||
log_mustnot zpool create $TESTPOOL draid2 $(echo $TESTDIR/file.{01..02})
|
||||
log_mustnot zpool create $TESTPOOL draid3 $(echo $TESTDIR/file.{01..03})
|
||||
|
||||
# Verify pool sizes from 2-10. Values in between are skipped to speed
|
||||
# up the test case but will be exercised by the random pool creation
|
||||
# done in zpool_create_draid_002_pos.ksh.
|
||||
for (( i=2; i<=10; i++ )); do
|
||||
log_must zpool create $TESTPOOL draid:${i}c \
|
||||
$(echo $TESTDIR/file.{01..$i})
|
||||
log_must destroy_pool $TESTPOOL
|
||||
done
|
||||
|
||||
# Verify pool sizes from 254-255.
|
||||
for (( i=254; i<=255; i++ )); do
|
||||
log_must zpool create $TESTPOOL draid:${i}c \
|
||||
$(echo $TESTDIR/file.{01..$i})
|
||||
log_must destroy_pool $TESTPOOL
|
||||
done
|
||||
|
||||
# Exceeds maximum dRAID vdev count (256).
|
||||
log_mustnot zpool create $TESTPOOL draid $(echo $TESTDIR/file.{01..256})
|
||||
|
||||
log_pass "'zpool create <pool> draid <vdevs>'"
|
|
@ -0,0 +1,112 @@
|
|||
#!/bin/ksh -p
|
||||
#
|
||||
# CDDL HEADER START
|
||||
#
|
||||
# The contents of this file are subject to the terms of the
|
||||
# Common Development and Distribution License (the "License").
|
||||
# You may not use this file except in compliance with the License.
|
||||
#
|
||||
# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
||||
# or http://www.opensolaris.org/os/licensing.
|
||||
# See the License for the specific language governing permissions
|
||||
# and limitations under the License.
|
||||
#
|
||||
# When distributing Covered Code, include this CDDL HEADER in each
|
||||
# file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
||||
# If applicable, add the following below this CDDL HEADER, with the
|
||||
# fields enclosed by brackets "[]" replaced with your own identifying
|
||||
# information: Portions Copyright [yyyy] [name of copyright owner]
|
||||
#
|
||||
# CDDL HEADER END
|
||||
#
|
||||
|
||||
#
|
||||
# Copyright (c) 2020 Lawrence Livermore National Security, LLC.
|
||||
|
||||
. $STF_SUITE/include/libtest.shlib
|
||||
|
||||
#
|
||||
# DESCRIPTION:
|
||||
# Verify allowed striped widths (data+parity) and hot spares may be
|
||||
# configured at pool creation time.
|
||||
#
|
||||
# STRATEGY:
|
||||
# 1) Test valid stripe/spare combinations given the number of children.
|
||||
# 2) Test invalid stripe/spare/children combinations outside the allow limits.
|
||||
#
|
||||
|
||||
verify_runnable "global"
|
||||
|
||||
function cleanup
|
||||
{
|
||||
poolexists $TESTPOOL && destroy_pool $TESTPOOL
|
||||
|
||||
rm -f $draid_vdevs
|
||||
rmdir $TESTDIR
|
||||
}
|
||||
|
||||
log_assert "'zpool create <pool> draid:#d:#c:#s <vdevs>'"
|
||||
|
||||
log_onexit cleanup
|
||||
|
||||
mkdir $TESTDIR
|
||||
|
||||
# Generate 10 random valid configurations to test.
|
||||
for (( i=0; i<10; i++ )); do
|
||||
parity=$(random_int_between 1 3)
|
||||
spares=$(random_int_between 0 3)
|
||||
data=$(random_int_between 1 16)
|
||||
|
||||
(( min_children = (data + parity + spares) ))
|
||||
children=$(random_int_between $min_children 32)
|
||||
|
||||
draid="draid${parity}:${data}d:${children}c:${spares}s"
|
||||
|
||||
draid_vdevs=$(echo $TESTDIR/file.{01..$children})
|
||||
log_must truncate -s $MINVDEVSIZE $draid_vdevs
|
||||
|
||||
log_must zpool create $TESTPOOL $draid $draid_vdevs
|
||||
log_must poolexists $TESTPOOL
|
||||
destroy_pool $TESTPOOL
|
||||
|
||||
rm -f $draid_vdevs
|
||||
done
|
||||
|
||||
children=32
|
||||
draid_vdevs=$(echo $TESTDIR/file.{01..$children})
|
||||
log_must truncate -s $MINVDEVSIZE $draid_vdevs
|
||||
|
||||
mkdir $TESTDIR
|
||||
log_must truncate -s $MINVDEVSIZE $draid_vdevs
|
||||
|
||||
# Out of order and unknown suffixes should fail.
|
||||
log_mustnot zpool create $TESTPOOL draid:d8 $draid_vdevs
|
||||
log_mustnot zpool create $TESTPOOL draid:s3 $draid_vdevs
|
||||
log_mustnot zpool create $TESTPOOL draid:c32 $draid_vdevs
|
||||
log_mustnot zpool create $TESTPOOL draid:10x $draid_vdevs
|
||||
log_mustnot zpool create $TESTPOOL draid:x10 $draid_vdevs
|
||||
|
||||
# Exceeds maximum data disks (limited by total children)
|
||||
log_must zpool create $TESTPOOL draid2:30d $draid_vdevs
|
||||
log_must destroy_pool $TESTPOOL
|
||||
log_mustnot zpool create $TESTPOOL draid2:31d $draid_vdevs
|
||||
|
||||
# At least one data disk must be requested.
|
||||
log_mustnot zpool create $TESTPOOL draid2:0d $draid_vdevs
|
||||
|
||||
# Check invalid parity levels.
|
||||
log_mustnot zpool create $TESTPOOL draid0 $draid_vdevs
|
||||
log_mustnot zpool create $TESTPOOL draid4 $draid_vdevs
|
||||
|
||||
# Spares are limited: spares < children - (parity + data).
|
||||
log_must zpool create $TESTPOOL draid2:20d:10s $draid_vdevs
|
||||
log_must destroy_pool $TESTPOOL
|
||||
log_mustnot zpool create $TESTPOOL draid2:20d:11s $draid_vdevs
|
||||
|
||||
# The required children argument is enforced.
|
||||
log_mustnot zpool create $TESTPOOL draid2:0c $draid_vdevs
|
||||
log_mustnot zpool create $TESTPOOL draid2:31c $draid_vdevs
|
||||
log_must zpool create $TESTPOOL draid2:32c $draid_vdevs
|
||||
destroy_pool $TESTPOOL
|
||||
|
||||
log_pass "'zpool create <pool> draid:#d:#c:#s <vdevs>'"
|
|
@ -0,0 +1,43 @@
|
|||
#!/bin/ksh -p
|
||||
#
|
||||
# CDDL HEADER START
|
||||
#
|
||||
# The contents of this file are subject to the terms of the
|
||||
# Common Development and Distribution License (the "License").
|
||||
# You may not use this file except in compliance with the License.
|
||||
#
|
||||
# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
||||
# or http://www.opensolaris.org/os/licensing.
|
||||
# See the License for the specific language governing permissions
|
||||
# and limitations under the License.
|
||||
#
|
||||
# When distributing Covered Code, include this CDDL HEADER in each
|
||||
# file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
||||
# If applicable, add the following below this CDDL HEADER, with the
|
||||
# fields enclosed by brackets "[]" replaced with your own identifying
|
||||
# information: Portions Copyright [yyyy] [name of copyright owner]
|
||||
#
|
||||
# CDDL HEADER END
|
||||
#
|
||||
|
||||
#
|
||||
# Copyright (c) 2020 Lawrence Livermore National Security, LLC.
|
||||
#
|
||||
|
||||
. $STF_SUITE/include/libtest.shlib
|
||||
|
||||
#
|
||||
# DESCRIPTION:
|
||||
# Verify generated dRAID permutation maps against the authoritative
|
||||
# reference file contains the full permutations.
|
||||
#
|
||||
|
||||
verify_runnable "global"
|
||||
|
||||
log_assert "'draid verify'"
|
||||
|
||||
DRAIDCFG="$STF_SUITE/tests/functional/cli_root/zpool_create/draidcfg.gz"
|
||||
|
||||
log_must draid verify $DRAIDCFG
|
||||
|
||||
log_pass "'draid verify'"
|
|
@ -72,7 +72,7 @@ log_onexit cleanup
|
|||
|
||||
log_assert "zpool can be autoexpanded after set autoexpand=on on vdev expansion"
|
||||
|
||||
for type in " " mirror raidz raidz2; do
|
||||
for type in " " mirror raidz draid; do
|
||||
log_note "Setting up loopback, scsi_debug, and file vdevs"
|
||||
log_must truncate -s $org_size $FILE_LO
|
||||
DEV1=$(losetup -f)
|
||||
|
@ -144,6 +144,16 @@ for type in " " mirror raidz raidz2; do
|
|||
if [[ $? -ne 0 ]] ; then
|
||||
log_fail "pool $TESTPOOL1 has not expanded"
|
||||
fi
|
||||
elif [[ $type == "draid" ]]; then
|
||||
typeset expansion_size=$((2*($exp_size-$org_size)))
|
||||
zpool history -il $TESTPOOL1 | \
|
||||
grep "pool '$TESTPOOL1' size:" | \
|
||||
grep "vdev online" | \
|
||||
grep "(+${expansion_size})" >/dev/null 2>&1
|
||||
|
||||
if [[ $? -ne 0 ]]; then
|
||||
log_fail "pool $TESTPOOL has not expanded"
|
||||
fi
|
||||
else
|
||||
typeset expansion_size=$((3*($exp_size-$org_size)))
|
||||
zpool history -il $TESTPOOL1 | \
|
||||
|
|
|
@ -63,7 +63,7 @@ log_onexit cleanup
|
|||
|
||||
log_assert "zpool can expand after zpool online -e zvol vdevs on vdev expansion"
|
||||
|
||||
for type in " " mirror raidz raidz2; do
|
||||
for type in " " mirror raidz draid:1s; do
|
||||
# Initialize the file devices and the pool
|
||||
for i in 1 2 3; do
|
||||
log_must truncate -s $org_size ${TEMPFILE}.$i
|
||||
|
@ -92,6 +92,8 @@ for type in " " mirror raidz raidz2; do
|
|||
|
||||
if [[ $type == "mirror" ]]; then
|
||||
typeset expected_zpool_expandsize=$(($exp_size-$org_size))
|
||||
elif [[ $type == "draid:1s" ]]; then
|
||||
typeset expected_zpool_expandsize=$((2*($exp_size-$org_size)))
|
||||
else
|
||||
typeset expected_zpool_expandsize=$((3*($exp_size-$org_size)))
|
||||
fi
|
||||
|
@ -147,6 +149,17 @@ for type in " " mirror raidz raidz2; do
|
|||
log_fail "pool $TESTPOOL1 has not expanded " \
|
||||
"after zpool online -e"
|
||||
fi
|
||||
elif [[ $type == "draid:1s" ]]; then
|
||||
typeset expansion_size=$((2*($exp_size-$org_size)))
|
||||
zpool history -il $TESTPOOL1 | \
|
||||
grep "pool '$TESTPOOL1' size:" | \
|
||||
grep "vdev online" | \
|
||||
grep "(+${expansion_size})" >/dev/null 2>&1
|
||||
|
||||
if [[ $? -ne 0 ]] ; then
|
||||
log_fail "pool $TESTPOOL1 has not expanded " \
|
||||
"after zpool online -e"
|
||||
fi
|
||||
else
|
||||
typeset expansion_size=$((3*($exp_size-$org_size)))
|
||||
zpool history -il $TESTPOOL1 | \
|
||||
|
@ -160,9 +173,17 @@ for type in " " mirror raidz raidz2; do
|
|||
fi
|
||||
fi
|
||||
else
|
||||
log_fail "pool $TESTPOOL1 did not expand after vdev expansion " \
|
||||
"and zpool online -e"
|
||||
log_fail "pool $TESTPOOL1 did not expand after vdev " \
|
||||
"expansion and zpool online -e"
|
||||
fi
|
||||
|
||||
# For dRAID pools verify the distributed spare was resized after
|
||||
# expansion and it is large enough to be used to replace a pool vdev.
|
||||
if [[ $type == "draid:1s" ]]; then
|
||||
log_must zpool replace -w $TESTPOOL1 $TEMPFILE.3 draid1-0-0
|
||||
verify_pool $TESTPOOL1
|
||||
fi
|
||||
|
||||
log_must zpool destroy $TESTPOOL1
|
||||
done
|
||||
log_pass "zpool can expand after zpool online -e"
|
||||
|
|
|
@ -73,7 +73,7 @@ log_onexit cleanup
|
|||
|
||||
log_assert "zpool can not expand if set autoexpand=off after vdev expansion"
|
||||
|
||||
for type in " " mirror raidz raidz2; do
|
||||
for type in " " mirror raidz draid; do
|
||||
log_note "Setting up loopback, scsi_debug, and file vdevs"
|
||||
log_must truncate -s $org_size $FILE_LO
|
||||
DEV1=$(losetup -f)
|
||||
|
|
|
@ -61,7 +61,7 @@ log_onexit cleanup
|
|||
|
||||
log_assert "After vdev expansion, all 4 labels have the same set of uberblocks."
|
||||
|
||||
for type in " " mirror raidz raidz2; do
|
||||
for type in " " mirror raidz draid; do
|
||||
for i in 1 2 3; do
|
||||
log_must truncate -s $org_size ${TEMPFILE}.$i
|
||||
done
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue