692 lines
16 KiB
C
692 lines
16 KiB
C
/*-
|
|
* See the file LICENSE for redistribution information.
|
|
*
|
|
* Copyright (c) 2005,2007 Oracle. All rights reserved.
|
|
*
|
|
* $Id: repmgr_posix.c,v 1.29 2007/06/11 18:29:34 alanb Exp $
|
|
*/
|
|
|
|
#include "db_config.h"
|
|
|
|
#define __INCLUDE_NETWORKING 1
|
|
#define __INCLUDE_SELECT_H 1
|
|
#include "db_int.h"
|
|
|
|
/*
|
|
* A very rough guess at the maximum stack space one of our threads could ever
|
|
* need, which we hope is plenty conservative. This can be patched in the field
|
|
* if necessary.
|
|
*/
|
|
#ifdef _POSIX_THREAD_ATTR_STACKSIZE
|
|
size_t __repmgr_guesstimated_max = (128 * 1024);
|
|
#endif
|
|
|
|
static int finish_connecting __P((DB_ENV *, REPMGR_CONNECTION *));
|
|
|
|
/*
|
|
* Starts the thread described in the argument, and stores the resulting thread
|
|
* ID therein.
|
|
*
|
|
* PUBLIC: int __repmgr_thread_start __P((DB_ENV *, REPMGR_RUNNABLE *));
|
|
*/
|
|
int
|
|
__repmgr_thread_start(dbenv, runnable)
|
|
DB_ENV *dbenv;
|
|
REPMGR_RUNNABLE *runnable;
|
|
{
|
|
pthread_attr_t *attrp;
|
|
#ifdef _POSIX_THREAD_ATTR_STACKSIZE
|
|
pthread_attr_t attributes;
|
|
size_t size;
|
|
int ret;
|
|
#endif
|
|
|
|
runnable->finished = FALSE;
|
|
|
|
#ifdef _POSIX_THREAD_ATTR_STACKSIZE
|
|
attrp = &attributes;
|
|
if ((ret = pthread_attr_init(&attributes)) != 0) {
|
|
__db_err(dbenv,
|
|
ret, "pthread_attr_init in repmgr_thread_start");
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* On a 64-bit machine it seems reasonable that we could need twice as
|
|
* much stack space as we did on a 32-bit machine.
|
|
*/
|
|
size = __repmgr_guesstimated_max;
|
|
if (sizeof(size_t) > 4)
|
|
size *= 2;
|
|
#ifdef PTHREAD_STACK_MIN
|
|
if (size < PTHREAD_STACK_MIN)
|
|
size = PTHREAD_STACK_MIN;
|
|
#endif
|
|
if ((ret = pthread_attr_setstacksize(&attributes, size)) != 0) {
|
|
__db_err(dbenv,
|
|
ret, "pthread_attr_setstacksize in repmgr_thread_start");
|
|
return (ret);
|
|
}
|
|
#else
|
|
attrp = NULL;
|
|
#endif
|
|
|
|
return (pthread_create(&runnable->thread_id, attrp,
|
|
runnable->run, dbenv));
|
|
}
|
|
|
|
/*
|
|
* PUBLIC: int __repmgr_thread_join __P((REPMGR_RUNNABLE *));
|
|
*/
|
|
int
|
|
__repmgr_thread_join(thread)
|
|
REPMGR_RUNNABLE *thread;
|
|
{
|
|
return (pthread_join(thread->thread_id, NULL));
|
|
}
|
|
|
|
/*
|
|
* PUBLIC: int __repmgr_set_nonblocking __P((socket_t));
|
|
*/
|
|
int
|
|
__repmgr_set_nonblocking(fd)
|
|
socket_t fd;
|
|
{
|
|
int flags;
|
|
|
|
if ((flags = fcntl(fd, F_GETFL, 0)) < 0)
|
|
return (errno);
|
|
if (fcntl(fd, F_SETFL, flags | O_NONBLOCK) < 0)
|
|
return (errno);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* PUBLIC: int __repmgr_wake_waiting_senders __P((DB_ENV *));
|
|
*
|
|
* Wake any send()-ing threads waiting for an acknowledgement.
|
|
*
|
|
* !!!
|
|
* Caller must hold the db_rep->mutex, if this thread synchronization is to work
|
|
* properly.
|
|
*/
|
|
int
|
|
__repmgr_wake_waiting_senders(dbenv)
|
|
DB_ENV *dbenv;
|
|
{
|
|
return (pthread_cond_broadcast(&dbenv->rep_handle->ack_condition));
|
|
}
|
|
|
|
/*
|
|
* PUBLIC: int __repmgr_await_ack __P((DB_ENV *, const DB_LSN *));
|
|
*
|
|
* Waits (a limited time) for configured number of remote sites to ack the given
|
|
* LSN.
|
|
*
|
|
* !!!
|
|
* Caller must hold repmgr->mutex.
|
|
*/
|
|
int
|
|
__repmgr_await_ack(dbenv, lsnp)
|
|
DB_ENV *dbenv;
|
|
const DB_LSN *lsnp;
|
|
{
|
|
DB_REP *db_rep;
|
|
struct timespec deadline;
|
|
int ret, timed;
|
|
|
|
db_rep = dbenv->rep_handle;
|
|
|
|
if ((timed = (db_rep->ack_timeout > 0)))
|
|
__repmgr_compute_wait_deadline(dbenv, &deadline,
|
|
db_rep->ack_timeout);
|
|
else
|
|
COMPQUIET(deadline.tv_sec, 0);
|
|
|
|
while (!__repmgr_is_permanent(dbenv, lsnp)) {
|
|
if (timed)
|
|
ret = pthread_cond_timedwait(&db_rep->ack_condition,
|
|
&db_rep->mutex, &deadline);
|
|
else
|
|
ret = pthread_cond_wait(&db_rep->ack_condition,
|
|
&db_rep->mutex);
|
|
if (db_rep->finished)
|
|
return (DB_REP_UNAVAIL);
|
|
if (ret != 0)
|
|
return (ret);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Computes a deadline time a certain distance into the future, in a form
|
|
* suitable for the pthreads timed wait operation. Curiously, that call uses
|
|
* nano-second resolution; elsewhere we use microseconds.
|
|
*
|
|
* PUBLIC: void __repmgr_compute_wait_deadline __P((DB_ENV*,
|
|
* PUBLIC: struct timespec *, db_timeout_t));
|
|
*/
|
|
void
|
|
__repmgr_compute_wait_deadline(dbenv, result, wait)
|
|
DB_ENV *dbenv;
|
|
struct timespec *result;
|
|
db_timeout_t wait;
|
|
{
|
|
db_timespec v;
|
|
|
|
/*
|
|
* Start with "now"; then add the "wait" offset.
|
|
*
|
|
* A db_timespec is the same as a "struct timespec" so we can pass
|
|
* result directly to the underlying Berkeley DB OS routine.
|
|
*/
|
|
__os_gettime(dbenv, (db_timespec *)result);
|
|
|
|
/* Convert microsecond wait to a timespec. */
|
|
DB_TIMEOUT_TO_TIMESPEC(wait, &v);
|
|
|
|
timespecadd(result, &v);
|
|
}
|
|
|
|
/*
|
|
* PUBLIC: int __repmgr_init_sync __P((DB_ENV *, DB_REP *));
|
|
*
|
|
* Allocate/initialize all data necessary for thread synchronization. This
|
|
* should be an all-or-nothing affair. Other than here and in _close_sync there
|
|
* should never be a time when these resources aren't either all allocated or
|
|
* all freed. If that's true, then we can safely use the values of the file
|
|
* descriptor(s) to keep track of which it is.
|
|
*/
|
|
int
|
|
__repmgr_init_sync(dbenv, db_rep)
|
|
DB_ENV *dbenv;
|
|
DB_REP *db_rep;
|
|
{
|
|
int ret, mutex_inited, ack_inited, elect_inited, queue_inited,
|
|
file_desc[2];
|
|
|
|
COMPQUIET(dbenv, NULL);
|
|
|
|
mutex_inited = ack_inited = elect_inited = queue_inited = FALSE;
|
|
|
|
if ((ret = pthread_mutex_init(&db_rep->mutex, NULL)) != 0)
|
|
goto err;
|
|
mutex_inited = TRUE;
|
|
|
|
if ((ret = pthread_cond_init(&db_rep->ack_condition, NULL)) != 0)
|
|
goto err;
|
|
ack_inited = TRUE;
|
|
|
|
if ((ret = pthread_cond_init(&db_rep->check_election, NULL)) != 0)
|
|
goto err;
|
|
elect_inited = TRUE;
|
|
|
|
if ((ret = pthread_cond_init(&db_rep->queue_nonempty, NULL)) != 0)
|
|
goto err;
|
|
queue_inited = TRUE;
|
|
|
|
if ((ret = pipe(file_desc)) == -1) {
|
|
ret = errno;
|
|
goto err;
|
|
}
|
|
|
|
db_rep->read_pipe = file_desc[0];
|
|
db_rep->write_pipe = file_desc[1];
|
|
return (0);
|
|
err:
|
|
if (queue_inited)
|
|
(void)pthread_cond_destroy(&db_rep->queue_nonempty);
|
|
if (elect_inited)
|
|
(void)pthread_cond_destroy(&db_rep->check_election);
|
|
if (ack_inited)
|
|
(void)pthread_cond_destroy(&db_rep->ack_condition);
|
|
if (mutex_inited)
|
|
(void)pthread_mutex_destroy(&db_rep->mutex);
|
|
db_rep->read_pipe = db_rep->write_pipe = -1;
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* PUBLIC: int __repmgr_close_sync __P((DB_ENV *));
|
|
*
|
|
* Frees the thread synchronization data within a repmgr struct, in a
|
|
* platform-specific way.
|
|
*/
|
|
int
|
|
__repmgr_close_sync(dbenv)
|
|
DB_ENV *dbenv;
|
|
{
|
|
DB_REP *db_rep;
|
|
int ret, t_ret;
|
|
|
|
db_rep = dbenv->rep_handle;
|
|
|
|
if (!(REPMGR_SYNC_INITED(db_rep)))
|
|
return (0);
|
|
|
|
ret = pthread_cond_destroy(&db_rep->queue_nonempty);
|
|
|
|
if ((t_ret = pthread_cond_destroy(&db_rep->check_election)) != 0 &&
|
|
ret == 0)
|
|
ret = t_ret;
|
|
|
|
if ((t_ret = pthread_cond_destroy(&db_rep->ack_condition)) != 0 &&
|
|
ret == 0)
|
|
ret = t_ret;
|
|
|
|
if ((t_ret = pthread_mutex_destroy(&db_rep->mutex)) != 0 &&
|
|
ret == 0)
|
|
ret = t_ret;
|
|
|
|
if (close(db_rep->read_pipe) == -1 && ret == 0)
|
|
ret = errno;
|
|
if (close(db_rep->write_pipe) == -1 && ret == 0)
|
|
ret = errno;
|
|
|
|
db_rep->read_pipe = db_rep->write_pipe = -1;
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Performs net-related resource initialization other than memory initialization
|
|
* and allocation. A valid db_rep->listen_fd acts as the "all-or-nothing"
|
|
* sentinel signifying that these resources are allocated.
|
|
*
|
|
* PUBLIC: int __repmgr_net_init __P((DB_ENV *, DB_REP *));
|
|
*/
|
|
int
|
|
__repmgr_net_init(dbenv, db_rep)
|
|
DB_ENV *dbenv;
|
|
DB_REP *db_rep;
|
|
{
|
|
int ret;
|
|
struct sigaction sigact;
|
|
|
|
if ((ret = __repmgr_listen(dbenv)) != 0)
|
|
return (ret);
|
|
|
|
/*
|
|
* Make sure we're not ignoring SIGPIPE, 'cuz otherwise we'd be killed
|
|
* just for trying to write onto a socket that had been reset.
|
|
*/
|
|
if (sigaction(SIGPIPE, NULL, &sigact) == -1) {
|
|
ret = errno;
|
|
__db_err(dbenv, ret, "can't access signal handler");
|
|
goto err;
|
|
}
|
|
/*
|
|
* If we need to change the sig handler, do so, and also set a flag so
|
|
* that we remember we did.
|
|
*/
|
|
if ((db_rep->chg_sig_handler = (sigact.sa_handler == SIG_DFL))) {
|
|
sigact.sa_handler = SIG_IGN;
|
|
sigact.sa_flags = 0;
|
|
if (sigaction(SIGPIPE, &sigact, NULL) == -1) {
|
|
ret = errno;
|
|
__db_err(dbenv, ret, "can't access signal handler");
|
|
goto err;
|
|
}
|
|
}
|
|
return (0);
|
|
|
|
err:
|
|
(void)closesocket(db_rep->listen_fd);
|
|
db_rep->listen_fd = INVALID_SOCKET;
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* PUBLIC: int __repmgr_lock_mutex __P((mgr_mutex_t *));
|
|
*/
|
|
int
|
|
__repmgr_lock_mutex(mutex)
|
|
mgr_mutex_t *mutex;
|
|
{
|
|
return (pthread_mutex_lock(mutex));
|
|
}
|
|
|
|
/*
|
|
* PUBLIC: int __repmgr_unlock_mutex __P((mgr_mutex_t *));
|
|
*/
|
|
int
|
|
__repmgr_unlock_mutex(mutex)
|
|
mgr_mutex_t *mutex;
|
|
{
|
|
return (pthread_mutex_unlock(mutex));
|
|
}
|
|
|
|
/*
|
|
* Signals a condition variable.
|
|
*
|
|
* !!!
|
|
* Caller must hold mutex.
|
|
*
|
|
* PUBLIC: int __repmgr_signal __P((cond_var_t *));
|
|
*/
|
|
int
|
|
__repmgr_signal(v)
|
|
cond_var_t *v;
|
|
{
|
|
return (pthread_cond_broadcast(v));
|
|
}
|
|
|
|
/*
|
|
* PUBLIC: int __repmgr_wake_main_thread __P((DB_ENV*));
|
|
*/
|
|
int
|
|
__repmgr_wake_main_thread(dbenv)
|
|
DB_ENV *dbenv;
|
|
{
|
|
DB_REP *db_rep;
|
|
u_int8_t any_value;
|
|
|
|
COMPQUIET(any_value, 0);
|
|
db_rep = dbenv->rep_handle;
|
|
|
|
/*
|
|
* It doesn't matter what byte value we write. Just the appearance of a
|
|
* byte in the stream is enough to wake up the select() thread reading
|
|
* the pipe.
|
|
*/
|
|
if (write(db_rep->write_pipe, &any_value, 1) == -1)
|
|
return (errno);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* PUBLIC: int __repmgr_writev __P((socket_t, db_iovec_t *, int, size_t *));
|
|
*/
|
|
int
|
|
__repmgr_writev(fd, iovec, buf_count, byte_count_p)
|
|
socket_t fd;
|
|
db_iovec_t *iovec;
|
|
int buf_count;
|
|
size_t *byte_count_p;
|
|
{
|
|
int nw;
|
|
|
|
if ((nw = writev(fd, iovec, buf_count)) == -1)
|
|
return (errno);
|
|
*byte_count_p = (size_t)nw;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* PUBLIC: int __repmgr_readv __P((socket_t, db_iovec_t *, int, size_t *));
|
|
*/
|
|
int
|
|
__repmgr_readv(fd, iovec, buf_count, byte_count_p)
|
|
socket_t fd;
|
|
db_iovec_t *iovec;
|
|
int buf_count;
|
|
size_t *byte_count_p;
|
|
{
|
|
ssize_t nw;
|
|
|
|
if ((nw = readv(fd, iovec, buf_count)) == -1)
|
|
return (errno);
|
|
*byte_count_p = (size_t)nw;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* PUBLIC: int __repmgr_select_loop __P((DB_ENV *));
|
|
*/
|
|
int
|
|
__repmgr_select_loop(dbenv)
|
|
DB_ENV *dbenv;
|
|
{
|
|
struct timeval select_timeout, *select_timeout_p;
|
|
DB_REP *db_rep;
|
|
REPMGR_CONNECTION *conn, *next;
|
|
REPMGR_RETRY *retry;
|
|
db_timespec timeout;
|
|
fd_set reads, writes;
|
|
int ret, flow_control, maxfd, nready;
|
|
u_int8_t buf[10]; /* arbitrary size */
|
|
|
|
flow_control = FALSE;
|
|
|
|
db_rep = dbenv->rep_handle;
|
|
/*
|
|
* Almost this entire thread operates while holding the mutex. But note
|
|
* that it never blocks, except in the call to select() (which is the
|
|
* one place we relinquish the mutex).
|
|
*/
|
|
LOCK_MUTEX(db_rep->mutex);
|
|
if ((ret = __repmgr_first_try_connections(dbenv)) != 0)
|
|
goto out;
|
|
for (;;) {
|
|
FD_ZERO(&reads);
|
|
FD_ZERO(&writes);
|
|
|
|
/*
|
|
* Always ask for input on listening socket and signalling
|
|
* pipe.
|
|
*/
|
|
FD_SET((u_int)db_rep->listen_fd, &reads);
|
|
maxfd = db_rep->listen_fd;
|
|
|
|
FD_SET((u_int)db_rep->read_pipe, &reads);
|
|
if (db_rep->read_pipe > maxfd)
|
|
maxfd = db_rep->read_pipe;
|
|
|
|
/*
|
|
* Examine all connections to see what sort of I/O to ask for on
|
|
* each one.
|
|
*/
|
|
TAILQ_FOREACH(conn, &db_rep->connections, entries) {
|
|
if (F_ISSET(conn, CONN_CONNECTING)) {
|
|
FD_SET((u_int)conn->fd, &reads);
|
|
FD_SET((u_int)conn->fd, &writes);
|
|
if (conn->fd > maxfd)
|
|
maxfd = conn->fd;
|
|
continue;
|
|
}
|
|
|
|
if (!STAILQ_EMPTY(&conn->outbound_queue)) {
|
|
FD_SET((u_int)conn->fd, &writes);
|
|
if (conn->fd > maxfd)
|
|
maxfd = conn->fd;
|
|
}
|
|
/*
|
|
* If we haven't yet gotten site's handshake, then read
|
|
* from it even if we're flow-controlling.
|
|
*/
|
|
if (!flow_control || !IS_VALID_EID(conn->eid)) {
|
|
FD_SET((u_int)conn->fd, &reads);
|
|
if (conn->fd > maxfd)
|
|
maxfd = conn->fd;
|
|
}
|
|
}
|
|
/*
|
|
* Decide how long to wait based on when it will next be time to
|
|
* retry an idle connection. (List items are in order, so we
|
|
* only have to examine the first one.)
|
|
*/
|
|
if (TAILQ_EMPTY(&db_rep->retries))
|
|
select_timeout_p = NULL;
|
|
else {
|
|
retry = TAILQ_FIRST(&db_rep->retries);
|
|
|
|
__repmgr_timespec_diff_now(
|
|
dbenv, &retry->time, &timeout);
|
|
|
|
/* Convert the timespec to a timeval. */
|
|
select_timeout.tv_sec = timeout.tv_sec;
|
|
select_timeout.tv_usec = timeout.tv_nsec / NS_PER_US;
|
|
select_timeout_p = &select_timeout;
|
|
}
|
|
|
|
UNLOCK_MUTEX(db_rep->mutex);
|
|
|
|
if ((ret = select(maxfd + 1,
|
|
&reads, &writes, NULL, select_timeout_p)) == -1) {
|
|
switch (ret = errno) {
|
|
case EINTR:
|
|
case EWOULDBLOCK:
|
|
LOCK_MUTEX(db_rep->mutex);
|
|
continue; /* simply retry */
|
|
default:
|
|
__db_err(dbenv, ret, "select");
|
|
return (ret);
|
|
}
|
|
}
|
|
nready = ret;
|
|
|
|
LOCK_MUTEX(db_rep->mutex);
|
|
|
|
/*
|
|
* The first priority thing we must do is to clean up any
|
|
* pending defunct connections. Otherwise, if they have any
|
|
* lingering pending input, we get very confused if we try to
|
|
* process it.
|
|
*
|
|
* The TAILQ_FOREACH macro would be suitable here, except that
|
|
* it doesn't allow unlinking the current element, which is
|
|
* needed for cleanup_connection.
|
|
*/
|
|
for (conn = TAILQ_FIRST(&db_rep->connections);
|
|
conn != NULL;
|
|
conn = next) {
|
|
next = TAILQ_NEXT(conn, entries);
|
|
if (F_ISSET(conn, CONN_DEFUNCT))
|
|
__repmgr_cleanup_connection(dbenv, conn);
|
|
}
|
|
|
|
if ((ret = __repmgr_retry_connections(dbenv)) != 0)
|
|
goto out;
|
|
if (nready == 0)
|
|
continue;
|
|
|
|
/*
|
|
* Traverse the linked list. (Again, like TAILQ_FOREACH, except
|
|
* that we need the ability to unlink an element along the way.)
|
|
*/
|
|
for (conn = TAILQ_FIRST(&db_rep->connections);
|
|
conn != NULL;
|
|
conn = next) {
|
|
next = TAILQ_NEXT(conn, entries);
|
|
if (F_ISSET(conn, CONN_CONNECTING)) {
|
|
if (FD_ISSET((u_int)conn->fd, &reads) ||
|
|
FD_ISSET((u_int)conn->fd, &writes)) {
|
|
if ((ret = finish_connecting(dbenv,
|
|
conn)) == DB_REP_UNAVAIL) {
|
|
if ((ret =
|
|
__repmgr_bust_connection(
|
|
dbenv, conn, TRUE)) != 0)
|
|
goto out;
|
|
} else if (ret != 0)
|
|
goto out;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Here, the site is connected, and the FD_SET's are
|
|
* valid.
|
|
*/
|
|
if (FD_ISSET((u_int)conn->fd, &writes)) {
|
|
if ((ret = __repmgr_write_some(
|
|
dbenv, conn)) == DB_REP_UNAVAIL) {
|
|
if ((ret =
|
|
__repmgr_bust_connection(dbenv,
|
|
conn, TRUE)) != 0)
|
|
goto out;
|
|
continue;
|
|
} else if (ret != 0)
|
|
goto out;
|
|
}
|
|
|
|
if (!flow_control &&
|
|
FD_ISSET((u_int)conn->fd, &reads)) {
|
|
if ((ret = __repmgr_read_from_site(dbenv, conn))
|
|
== DB_REP_UNAVAIL) {
|
|
if ((ret =
|
|
__repmgr_bust_connection(dbenv,
|
|
conn, TRUE)) != 0)
|
|
goto out;
|
|
continue;
|
|
} else if (ret != 0)
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read any bytes in the signalling pipe. Note that we don't
|
|
* actually need to do anything with them; they're just there to
|
|
* wake us up when necessary.
|
|
*/
|
|
if (FD_ISSET((u_int)db_rep->read_pipe, &reads)) {
|
|
if (read(db_rep->read_pipe, buf, sizeof(buf)) <= 0) {
|
|
ret = errno;
|
|
goto out;
|
|
} else if (db_rep->finished) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
}
|
|
if (FD_ISSET((u_int)db_rep->listen_fd, &reads) &&
|
|
(ret = __repmgr_accept(dbenv)) != 0)
|
|
goto out;
|
|
}
|
|
out:
|
|
UNLOCK_MUTEX(db_rep->mutex);
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
finish_connecting(dbenv, conn)
|
|
DB_ENV *dbenv;
|
|
REPMGR_CONNECTION *conn;
|
|
{
|
|
DB_REP *db_rep;
|
|
REPMGR_SITE *site;
|
|
socklen_t len;
|
|
SITE_STRING_BUFFER buffer;
|
|
u_int eid;
|
|
int error, ret;
|
|
|
|
len = sizeof(error);
|
|
if (getsockopt(
|
|
conn->fd, SOL_SOCKET, SO_ERROR, (sockopt_t)&error, &len) < 0)
|
|
goto err_rpt;
|
|
if (error) {
|
|
errno = error;
|
|
goto err_rpt;
|
|
}
|
|
|
|
F_CLR(conn, CONN_CONNECTING);
|
|
return (__repmgr_send_handshake(dbenv, conn));
|
|
|
|
err_rpt:
|
|
db_rep = dbenv->rep_handle;
|
|
|
|
DB_ASSERT(dbenv, IS_VALID_EID(conn->eid));
|
|
eid = (u_int)conn->eid;
|
|
|
|
site = SITE_FROM_EID(eid);
|
|
__db_err(dbenv, errno,
|
|
"connecting to %s", __repmgr_format_site_loc(site, buffer));
|
|
|
|
/* If we've exhausted the list of possible addresses, give up. */
|
|
if (ADDR_LIST_NEXT(&site->net_addr) == NULL)
|
|
return (DB_REP_UNAVAIL);
|
|
|
|
/*
|
|
* This is just like a little mini-"bust_connection", except that we
|
|
* don't reschedule for later, 'cuz we're just about to try again right
|
|
* now.
|
|
*
|
|
* !!!
|
|
* Which means this must only be called on the select() thread, since
|
|
* only there are we allowed to actually close a connection.
|
|
*/
|
|
DB_ASSERT(dbenv, !TAILQ_EMPTY(&db_rep->connections));
|
|
__repmgr_cleanup_connection(dbenv, conn);
|
|
ret = __repmgr_connect_site(dbenv, eid);
|
|
DB_ASSERT(dbenv, ret != DB_REP_UNAVAIL);
|
|
return (ret);
|
|
}
|