Since the introduction of the ` append ` built-in, most of the functionality of the ` container/vector ` package, which was removed in Go 1, can be replicated using ` append ` and ` copy `. Since the introduction of generics, generic implementations of several of these functions are available in the [`golang.org/x/exp/slices`](https://pkg.go.dev/golang.org/x/exp/slices) package. Here are the vector methods and their slice-manipulation analogues: #### AppendVector ```go a = append(a, b...) ``` #### Copy ```go b := make([]T, len(a)) copy(b, a) // These two are often a little slower than the above one, // but they would be more efficient if there are more // elements to be appended to b after copying. b = append([]T(nil), a...) b = append(a[:0:0], a...) // This one-line implementation is equivalent to the above // two-line make+copy implementation logically. But it is // actually a bit slower (as of Go toolchain v1.16). b = append(make([]T, 0, len(a)), a...) ``` #### Cut ```go a = append(a[:i], a[j:]...) ``` #### Delete ```go a = append(a[:i], a[i+1:]...) // or a = a[:i+copy(a[i:], a[i+1:])] ``` #### Delete without preserving order ```go a[i] = a[len(a)-1] a = a[:len(a)-1] ``` **NOTE** If the type of the element is a _pointer_ or a struct with pointer fields, which need to be garbage collected, the above implementations of ` Cut ` and ` Delete ` have a potential _memory leak_ problem: some elements with values are still referenced by slice ` a ` and thus can not be collected. The following code can fix this problem: > **Cut** ```go copy(a[i:], a[j:]) for k, n := len(a)-j+i, len(a); k < n; k++ { a[k] = nil // or the zero value of T } a = a[:len(a)-j+i] ``` > **Delete** ```go copy(a[i:], a[i+1:]) a[len(a)-1] = nil // or the zero value of T a = a[:len(a)-1] ``` > **Delete without preserving order** ```go a[i] = a[len(a)-1] a[len(a)-1] = nil a = a[:len(a)-1] ``` #### Expand Insert `n` elements at position `i`: ```go a = append(a[:i], append(make([]T, n), a[i:]...)...) ``` #### Extend Append `n` elements: ```go a = append(a, make([]T, n)...) ``` #### Extend Capacity Make sure there is space to append `n` elements without re-allocating: ```go if cap(a)-len(a) < n { a = append(make([]T, 0, len(a)+n), a...) } ``` #### Filter (in place) ```go n := 0 for _, x := range a { if keep(x) { a[n] = x n++ } } a = a[:n] ``` #### Insert ```go a = append(a[:i], append([]T{x}, a[i:]...)...) ``` **NOTE**: The second ` append ` creates a new slice with its own underlying storage and copies elements in ` a[i:] ` to that slice, and these elements are then copied back to slice ` a ` (by the first ` append `). The creation of the new slice (and thus memory garbage) and the second copy can be avoided by using an alternative way: > **Insert** ```go s = append(s, 0 /* use the zero value of the element type */) copy(s[i+1:], s[i:]) s[i] = x ``` #### InsertVector ```go a = append(a[:i], append(b, a[i:]...)...) // The above one-line way copies a[i:] twice and // allocates at least once. // The following verbose way only copies elements // in a[i:] once and allocates at most once. // But, as of Go toolchain 1.16, due to lacking of // optimizations to avoid elements clearing in the // "make" call, the verbose way is not always faster. // // Future compiler optimizations might implement // both in the most efficient ways. // // Assume element type is int. func Insert(s []int, k int, vs ...int) []int { if n := len(s) + len(vs); n <= cap(s) { s2 := s[:n] copy(s2[k+len(vs):], s[k:]) copy(s2[k:], vs) return s2 } s2 := make([]int, len(s) + len(vs)) copy(s2, s[:k]) copy(s2[k:], vs) copy(s2[k+len(vs):], s[k:]) return s2 } a = Insert(a, i, b...) ``` #### Push ```go a = append(a, x) ``` #### Pop ```go x, a = a[len(a)-1], a[:len(a)-1] ``` #### Push Front/Unshift ```go a = append([]T{x}, a...) ``` #### Pop Front/Shift ```go x, a = a[0], a[1:] ``` ## Additional Tricks ### Filtering without allocating This trick uses the fact that a slice shares the same backing array and capacity as the original, so the storage is reused for the filtered slice. Of course, the original contents are modified. ```go b := a[:0] for _, x := range a { if f(x) { b = append(b, x) } } ``` For elements which must be garbage collected, the following code can be included afterwards: ```go for i := len(b); i < len(a); i++ { a[i] = nil // or the zero value of T } ``` ### Reversing To replace the contents of a slice with the same elements but in reverse order: ```go for i := len(a)/2-1; i >= 0; i-- { opp := len(a)-1-i a[i], a[opp] = a[opp], a[i] } ``` The same thing, except with two indices: ```go for left, right := 0, len(a)-1; left < right; left, right = left+1, right-1 { a[left], a[right] = a[right], a[left] } ``` ### Shuffling Fisher–Yates algorithm: > Since go1.10, this is available at [math/rand.Shuffle](https://pkg.go.dev/math/rand#Shuffle) ```go for i := len(a) - 1; i > 0; i-- { j := rand.Intn(i + 1) a[i], a[j] = a[j], a[i] } ``` ### Batching with minimal allocation Useful if you want to do batch processing on large slices. ```go actions := []int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9} batchSize := 3 batches := make([][]int, 0, (len(actions) + batchSize - 1) / batchSize) for batchSize < len(actions) { actions, batches = actions[batchSize:], append(batches, actions[0:batchSize:batchSize]) } batches = append(batches, actions) ``` Yields the following: ```go [[0 1 2] [3 4 5] [6 7 8] [9]] ``` ### In-place deduplicate (comparable) ```go import "sort" in := []int{3,2,1,4,3,2,1,4,1} // any item can be sorted sort.Ints(in) j := 0 for i := 1; i < len(in); i++ { if in[j] == in[i] { continue } j++ // preserve the original data // in[i], in[j] = in[j], in[i] // only set what is required in[j] = in[i] } result := in[:j+1] fmt.Println(result) // [1 2 3 4] ``` ### Move to front, or prepend if not present, in place if possible. ```go // moveToFront moves needle to the front of haystack, in place if possible. func moveToFront(needle string, haystack []string) []string { if len(haystack) != 0 && haystack[0] == needle { return haystack } prev := needle for i, elem := range haystack { switch { case i == 0: haystack[0] = needle prev = elem case elem == needle: haystack[i] = prev return haystack default: haystack[i] = prev prev = elem } } return append(haystack, prev) } haystack := []string{"a", "b", "c", "d", "e"} // [a b c d e] haystack = moveToFront("c", haystack) // [c a b d e] haystack = moveToFront("f", haystack) // [f c a b d e] ``` ### Sliding Window ```go func slidingWindow(size int, input []int) [][]int { // returns the input slice as the first element if len(input) <= size { return [][]int{input} } // allocate slice at the precise size we need r := make([][]int, 0, len(input)-size+1) for i, j := 0, size; j <= len(input); i, j = i+1, j+1 { r = append(r, input[i:j]) } return r } ```