309 lines
6.8 KiB
Markdown
309 lines
6.8 KiB
Markdown
|
Since the introduction of the ` append ` built-in, most of the functionality of the ` container/vector ` package, which was removed in Go 1, can be replicated using ` append ` and ` copy `.
|
|||
|
|
|||
|
Since the introduction of generics, generic implementations of several of these functions are available in the [`golang.org/x/exp/slices`](https://pkg.go.dev/golang.org/x/exp/slices) package.
|
|||
|
|
|||
|
Here are the vector methods and their slice-manipulation analogues:
|
|||
|
|
|||
|
#### AppendVector
|
|||
|
```go
|
|||
|
a = append(a, b...)
|
|||
|
```
|
|||
|
|
|||
|
#### Copy
|
|||
|
```go
|
|||
|
b := make([]T, len(a))
|
|||
|
copy(b, a)
|
|||
|
|
|||
|
// These two are often a little slower than the above one,
|
|||
|
// but they would be more efficient if there are more
|
|||
|
// elements to be appended to b after copying.
|
|||
|
b = append([]T(nil), a...)
|
|||
|
b = append(a[:0:0], a...)
|
|||
|
|
|||
|
// This one-line implementation is equivalent to the above
|
|||
|
// two-line make+copy implementation logically. But it is
|
|||
|
// actually a bit slower (as of Go toolchain v1.16).
|
|||
|
b = append(make([]T, 0, len(a)), a...)
|
|||
|
```
|
|||
|
|
|||
|
#### Cut
|
|||
|
```go
|
|||
|
a = append(a[:i], a[j:]...)
|
|||
|
```
|
|||
|
|
|||
|
#### Delete
|
|||
|
```go
|
|||
|
a = append(a[:i], a[i+1:]...)
|
|||
|
// or
|
|||
|
a = a[:i+copy(a[i:], a[i+1:])]
|
|||
|
```
|
|||
|
|
|||
|
#### Delete without preserving order
|
|||
|
```go
|
|||
|
a[i] = a[len(a)-1]
|
|||
|
a = a[:len(a)-1]
|
|||
|
|
|||
|
```
|
|||
|
**NOTE** If the type of the element is a _pointer_ or a struct with pointer fields, which need to be garbage collected, the above implementations of ` Cut ` and ` Delete ` have a potential _memory leak_ problem: some elements with values are still referenced by slice ` a ` and thus can not be collected. The following code can fix this problem:
|
|||
|
> **Cut**
|
|||
|
```go
|
|||
|
copy(a[i:], a[j:])
|
|||
|
for k, n := len(a)-j+i, len(a); k < n; k++ {
|
|||
|
a[k] = nil // or the zero value of T
|
|||
|
}
|
|||
|
a = a[:len(a)-j+i]
|
|||
|
```
|
|||
|
|
|||
|
> **Delete**
|
|||
|
```go
|
|||
|
copy(a[i:], a[i+1:])
|
|||
|
a[len(a)-1] = nil // or the zero value of T
|
|||
|
a = a[:len(a)-1]
|
|||
|
```
|
|||
|
|
|||
|
> **Delete without preserving order**
|
|||
|
```go
|
|||
|
a[i] = a[len(a)-1]
|
|||
|
a[len(a)-1] = nil
|
|||
|
a = a[:len(a)-1]
|
|||
|
```
|
|||
|
|
|||
|
#### Expand
|
|||
|
Insert `n` elements at position `i`:
|
|||
|
```go
|
|||
|
a = append(a[:i], append(make([]T, n), a[i:]...)...)
|
|||
|
```
|
|||
|
|
|||
|
#### Extend
|
|||
|
Append `n` elements:
|
|||
|
```go
|
|||
|
a = append(a, make([]T, n)...)
|
|||
|
```
|
|||
|
|
|||
|
#### Extend Capacity
|
|||
|
Make sure there is space to append `n` elements without re-allocating:
|
|||
|
```go
|
|||
|
if cap(a)-len(a) < n {
|
|||
|
a = append(make([]T, 0, len(a)+n), a...)
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
#### Filter (in place)
|
|||
|
|
|||
|
```go
|
|||
|
n := 0
|
|||
|
for _, x := range a {
|
|||
|
if keep(x) {
|
|||
|
a[n] = x
|
|||
|
n++
|
|||
|
}
|
|||
|
}
|
|||
|
a = a[:n]
|
|||
|
```
|
|||
|
|
|||
|
#### Insert
|
|||
|
```go
|
|||
|
a = append(a[:i], append([]T{x}, a[i:]...)...)
|
|||
|
```
|
|||
|
**NOTE**: The second ` append ` creates a new slice with its own underlying storage and copies elements in ` a[i:] ` to that slice, and these elements are then copied back to slice ` a ` (by the first ` append `). The creation of the new slice (and thus memory garbage) and the second copy can be avoided by using an alternative way:
|
|||
|
> **Insert**
|
|||
|
```go
|
|||
|
s = append(s, 0 /* use the zero value of the element type */)
|
|||
|
copy(s[i+1:], s[i:])
|
|||
|
s[i] = x
|
|||
|
```
|
|||
|
|
|||
|
#### InsertVector
|
|||
|
```go
|
|||
|
a = append(a[:i], append(b, a[i:]...)...)
|
|||
|
|
|||
|
// The above one-line way copies a[i:] twice and
|
|||
|
// allocates at least once.
|
|||
|
// The following verbose way only copies elements
|
|||
|
// in a[i:] once and allocates at most once.
|
|||
|
// But, as of Go toolchain 1.16, due to lacking of
|
|||
|
// optimizations to avoid elements clearing in the
|
|||
|
// "make" call, the verbose way is not always faster.
|
|||
|
//
|
|||
|
// Future compiler optimizations might implement
|
|||
|
// both in the most efficient ways.
|
|||
|
//
|
|||
|
// Assume element type is int.
|
|||
|
func Insert(s []int, k int, vs ...int) []int {
|
|||
|
if n := len(s) + len(vs); n <= cap(s) {
|
|||
|
s2 := s[:n]
|
|||
|
copy(s2[k+len(vs):], s[k:])
|
|||
|
copy(s2[k:], vs)
|
|||
|
return s2
|
|||
|
}
|
|||
|
s2 := make([]int, len(s) + len(vs))
|
|||
|
copy(s2, s[:k])
|
|||
|
copy(s2[k:], vs)
|
|||
|
copy(s2[k+len(vs):], s[k:])
|
|||
|
return s2
|
|||
|
}
|
|||
|
|
|||
|
a = Insert(a, i, b...)
|
|||
|
```
|
|||
|
|
|||
|
#### Push
|
|||
|
```go
|
|||
|
a = append(a, x)
|
|||
|
```
|
|||
|
|
|||
|
#### Pop
|
|||
|
```go
|
|||
|
x, a = a[len(a)-1], a[:len(a)-1]
|
|||
|
```
|
|||
|
|
|||
|
#### Push Front/Unshift
|
|||
|
```go
|
|||
|
a = append([]T{x}, a...)
|
|||
|
```
|
|||
|
|
|||
|
#### Pop Front/Shift
|
|||
|
```go
|
|||
|
x, a = a[0], a[1:]
|
|||
|
```
|
|||
|
|
|||
|
## Additional Tricks
|
|||
|
### Filtering without allocating
|
|||
|
|
|||
|
This trick uses the fact that a slice shares the same backing array and capacity as the original, so the storage is reused for the filtered slice. Of course, the original contents are modified.
|
|||
|
|
|||
|
```go
|
|||
|
b := a[:0]
|
|||
|
for _, x := range a {
|
|||
|
if f(x) {
|
|||
|
b = append(b, x)
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
For elements which must be garbage collected, the following code can be included afterwards:
|
|||
|
|
|||
|
```go
|
|||
|
for i := len(b); i < len(a); i++ {
|
|||
|
a[i] = nil // or the zero value of T
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
### Reversing
|
|||
|
|
|||
|
To replace the contents of a slice with the same elements but in reverse order:
|
|||
|
```go
|
|||
|
for i := len(a)/2-1; i >= 0; i-- {
|
|||
|
opp := len(a)-1-i
|
|||
|
a[i], a[opp] = a[opp], a[i]
|
|||
|
}
|
|||
|
```
|
|||
|
The same thing, except with two indices:
|
|||
|
```go
|
|||
|
for left, right := 0, len(a)-1; left < right; left, right = left+1, right-1 {
|
|||
|
a[left], a[right] = a[right], a[left]
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
### Shuffling
|
|||
|
|
|||
|
Fisher–Yates algorithm:
|
|||
|
|
|||
|
> Since go1.10, this is available at [math/rand.Shuffle](https://pkg.go.dev/math/rand#Shuffle)
|
|||
|
|
|||
|
```go
|
|||
|
for i := len(a) - 1; i > 0; i-- {
|
|||
|
j := rand.Intn(i + 1)
|
|||
|
a[i], a[j] = a[j], a[i]
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
### Batching with minimal allocation
|
|||
|
|
|||
|
Useful if you want to do batch processing on large slices.
|
|||
|
|
|||
|
```go
|
|||
|
actions := []int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
|
|||
|
batchSize := 3
|
|||
|
batches := make([][]int, 0, (len(actions) + batchSize - 1) / batchSize)
|
|||
|
|
|||
|
for batchSize < len(actions) {
|
|||
|
actions, batches = actions[batchSize:], append(batches, actions[0:batchSize:batchSize])
|
|||
|
}
|
|||
|
batches = append(batches, actions)
|
|||
|
```
|
|||
|
|
|||
|
Yields the following:
|
|||
|
```go
|
|||
|
[[0 1 2] [3 4 5] [6 7 8] [9]]
|
|||
|
```
|
|||
|
|
|||
|
### In-place deduplicate (comparable)
|
|||
|
|
|||
|
```go
|
|||
|
import "sort"
|
|||
|
|
|||
|
in := []int{3,2,1,4,3,2,1,4,1} // any item can be sorted
|
|||
|
sort.Ints(in)
|
|||
|
j := 0
|
|||
|
for i := 1; i < len(in); i++ {
|
|||
|
if in[j] == in[i] {
|
|||
|
continue
|
|||
|
}
|
|||
|
j++
|
|||
|
// preserve the original data
|
|||
|
// in[i], in[j] = in[j], in[i]
|
|||
|
// only set what is required
|
|||
|
in[j] = in[i]
|
|||
|
}
|
|||
|
result := in[:j+1]
|
|||
|
fmt.Println(result) // [1 2 3 4]
|
|||
|
```
|
|||
|
|
|||
|
### Move to front, or prepend if not present, in place if possible.
|
|||
|
|
|||
|
```go
|
|||
|
// moveToFront moves needle to the front of haystack, in place if possible.
|
|||
|
func moveToFront(needle string, haystack []string) []string {
|
|||
|
if len(haystack) != 0 && haystack[0] == needle {
|
|||
|
return haystack
|
|||
|
}
|
|||
|
prev := needle
|
|||
|
for i, elem := range haystack {
|
|||
|
switch {
|
|||
|
case i == 0:
|
|||
|
haystack[0] = needle
|
|||
|
prev = elem
|
|||
|
case elem == needle:
|
|||
|
haystack[i] = prev
|
|||
|
return haystack
|
|||
|
default:
|
|||
|
haystack[i] = prev
|
|||
|
prev = elem
|
|||
|
}
|
|||
|
}
|
|||
|
return append(haystack, prev)
|
|||
|
}
|
|||
|
|
|||
|
haystack := []string{"a", "b", "c", "d", "e"} // [a b c d e]
|
|||
|
haystack = moveToFront("c", haystack) // [c a b d e]
|
|||
|
haystack = moveToFront("f", haystack) // [f c a b d e]
|
|||
|
```
|
|||
|
|
|||
|
### Sliding Window
|
|||
|
```go
|
|||
|
func slidingWindow(size int, input []int) [][]int {
|
|||
|
// returns the input slice as the first element
|
|||
|
if len(input) <= size {
|
|||
|
return [][]int{input}
|
|||
|
}
|
|||
|
|
|||
|
// allocate slice at the precise size we need
|
|||
|
r := make([][]int, 0, len(input)-size+1)
|
|||
|
|
|||
|
for i, j := 0, size; j <= len(input); i, j = i+1, j+1 {
|
|||
|
r = append(r, input[i:j])
|
|||
|
}
|
|||
|
|
|||
|
return r
|
|||
|
}
|
|||
|
```
|