mirror of https://github.com/grpc/grpc-java.git
implemented and tested static stride scheduler for weighted round robin load balancing policy (#10272)
This commit is contained in:
parent
361616ae7c
commit
0b53dd7304
|
@ -44,10 +44,10 @@ import java.util.HashMap;
|
||||||
import java.util.HashSet;
|
import java.util.HashSet;
|
||||||
import java.util.List;
|
import java.util.List;
|
||||||
import java.util.Map;
|
import java.util.Map;
|
||||||
import java.util.PriorityQueue;
|
|
||||||
import java.util.Random;
|
import java.util.Random;
|
||||||
import java.util.concurrent.ScheduledExecutorService;
|
import java.util.concurrent.ScheduledExecutorService;
|
||||||
import java.util.concurrent.TimeUnit;
|
import java.util.concurrent.TimeUnit;
|
||||||
|
import java.util.concurrent.atomic.AtomicInteger;
|
||||||
import java.util.logging.Level;
|
import java.util.logging.Level;
|
||||||
import java.util.logging.Logger;
|
import java.util.logging.Logger;
|
||||||
|
|
||||||
|
@ -120,7 +120,7 @@ final class WeightedRoundRobinLoadBalancer extends RoundRobinLoadBalancer {
|
||||||
@Override
|
@Override
|
||||||
public void run() {
|
public void run() {
|
||||||
if (currentPicker != null && currentPicker instanceof WeightedRoundRobinPicker) {
|
if (currentPicker != null && currentPicker instanceof WeightedRoundRobinPicker) {
|
||||||
((WeightedRoundRobinPicker)currentPicker).updateWeight();
|
((WeightedRoundRobinPicker) currentPicker).updateWeight();
|
||||||
}
|
}
|
||||||
weightUpdateTimer = syncContext.schedule(this, config.weightUpdatePeriodNanos,
|
weightUpdateTimer = syncContext.schedule(this, config.weightUpdatePeriodNanos,
|
||||||
TimeUnit.NANOSECONDS, timeService);
|
TimeUnit.NANOSECONDS, timeService);
|
||||||
|
@ -258,7 +258,7 @@ final class WeightedRoundRobinLoadBalancer extends RoundRobinLoadBalancer {
|
||||||
new HashMap<>();
|
new HashMap<>();
|
||||||
private final boolean enableOobLoadReport;
|
private final boolean enableOobLoadReport;
|
||||||
private final float errorUtilizationPenalty;
|
private final float errorUtilizationPenalty;
|
||||||
private volatile EdfScheduler scheduler;
|
private volatile StaticStrideScheduler scheduler;
|
||||||
|
|
||||||
WeightedRoundRobinPicker(List<Subchannel> list, boolean enableOobLoadReport,
|
WeightedRoundRobinPicker(List<Subchannel> list, boolean enableOobLoadReport,
|
||||||
float errorUtilizationPenalty) {
|
float errorUtilizationPenalty) {
|
||||||
|
@ -279,7 +279,7 @@ final class WeightedRoundRobinLoadBalancer extends RoundRobinLoadBalancer {
|
||||||
Subchannel subchannel = list.get(scheduler.pick());
|
Subchannel subchannel = list.get(scheduler.pick());
|
||||||
if (!enableOobLoadReport) {
|
if (!enableOobLoadReport) {
|
||||||
return PickResult.withSubchannel(subchannel,
|
return PickResult.withSubchannel(subchannel,
|
||||||
OrcaPerRequestUtil.getInstance().newOrcaClientStreamTracerFactory(
|
OrcaPerRequestUtil.getInstance().newOrcaClientStreamTracerFactory(
|
||||||
subchannelToReportListenerMap.getOrDefault(subchannel,
|
subchannelToReportListenerMap.getOrDefault(subchannel,
|
||||||
((WrrSubchannel) subchannel).new OrcaReportListener(errorUtilizationPenalty))));
|
((WrrSubchannel) subchannel).new OrcaReportListener(errorUtilizationPenalty))));
|
||||||
} else {
|
} else {
|
||||||
|
@ -288,26 +288,14 @@ final class WeightedRoundRobinLoadBalancer extends RoundRobinLoadBalancer {
|
||||||
}
|
}
|
||||||
|
|
||||||
private void updateWeight() {
|
private void updateWeight() {
|
||||||
int weightedChannelCount = 0;
|
float[] newWeights = new float[list.size()];
|
||||||
double avgWeight = 0;
|
|
||||||
for (Subchannel value : list) {
|
|
||||||
double newWeight = ((WrrSubchannel) value).getWeight();
|
|
||||||
if (newWeight > 0) {
|
|
||||||
avgWeight += newWeight;
|
|
||||||
weightedChannelCount++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
EdfScheduler scheduler = new EdfScheduler(list.size(), random);
|
|
||||||
if (weightedChannelCount >= 1) {
|
|
||||||
avgWeight /= 1.0 * weightedChannelCount;
|
|
||||||
} else {
|
|
||||||
avgWeight = 1;
|
|
||||||
}
|
|
||||||
for (int i = 0; i < list.size(); i++) {
|
for (int i = 0; i < list.size(); i++) {
|
||||||
WrrSubchannel subchannel = (WrrSubchannel) list.get(i);
|
WrrSubchannel subchannel = (WrrSubchannel) list.get(i);
|
||||||
double newWeight = subchannel.getWeight();
|
double newWeight = subchannel.getWeight();
|
||||||
scheduler.add(i, newWeight > 0 ? newWeight : avgWeight);
|
newWeights[i] = newWeight > 0 ? (float) newWeight : 0.0f;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
StaticStrideScheduler scheduler = new StaticStrideScheduler(newWeights, random);
|
||||||
this.scheduler = scheduler;
|
this.scheduler = scheduler;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -340,111 +328,125 @@ final class WeightedRoundRobinLoadBalancer extends RoundRobinLoadBalancer {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/*
|
||||||
* The earliest deadline first implementation in which each object is
|
* The Static Stride Scheduler is an implementation of an earliest deadline first (EDF) scheduler
|
||||||
* chosen deterministically and periodically with frequency proportional to its weight.
|
* in which each object's deadline is the multiplicative inverse of the object's weight.
|
||||||
*
|
* <p>
|
||||||
* <p>Specifically, each object added to chooser is given a deadline equal to the multiplicative
|
* The way in which this is implemented is through a static stride scheduler.
|
||||||
* inverse of its weight. The place of each object in its deadline is tracked, and each call to
|
* The Static Stride Scheduler works by iterating through the list of subchannel weights
|
||||||
* choose returns the object with the least remaining time in its deadline.
|
* and using modular arithmetic to proportionally distribute picks, favoring entries
|
||||||
* (Ties are broken by the order in which the children were added to the chooser.) The deadline
|
* with higher weights. It is based on the observation that the intended sequence generated
|
||||||
* advances by the multiplicative inverse of the object's weight.
|
* from an EDF scheduler is a periodic one that can be achieved through modular arithmetic.
|
||||||
* For example, if items A and B are added with weights 0.5 and 0.2, successive chooses return:
|
* The Static Stride Scheduler is more performant than other implementations of the EDF
|
||||||
|
* Scheduler, as it removes the need for a priority queue (and thus mutex locks).
|
||||||
|
* <p>
|
||||||
|
* go/static-stride-scheduler
|
||||||
|
* <p>
|
||||||
*
|
*
|
||||||
* <ul>
|
* <ul>
|
||||||
* <li>In the first call, the deadlines are A=2 (1/0.5) and B=5 (1/0.2), so A is returned.
|
* <li>nextSequence() - O(1)
|
||||||
* The deadline of A is updated to 4.
|
* <li>pick() - O(n)
|
||||||
* <li>Next, the remaining deadlines are A=4 and B=5, so A is returned. The deadline of A (2) is
|
|
||||||
* updated to A=6.
|
|
||||||
* <li>Remaining deadlines are A=6 and B=5, so B is returned. The deadline of B is updated with
|
|
||||||
* with B=10.
|
|
||||||
* <li>Remaining deadlines are A=6 and B=10, so A is returned. The deadline of A is updated with
|
|
||||||
* A=8.
|
|
||||||
* <li>Remaining deadlines are A=8 and B=10, so A is returned. The deadline of A is updated with
|
|
||||||
* A=10.
|
|
||||||
* <li>Remaining deadlines are A=10 and B=10, so A is returned. The deadline of A is updated
|
|
||||||
* with A=12.
|
|
||||||
* <li>Remaining deadlines are A=12 and B=10, so B is returned. The deadline of B is updated
|
|
||||||
* with B=15.
|
|
||||||
* <li>etc.
|
|
||||||
* </ul>
|
|
||||||
*
|
|
||||||
* <p>In short: the entry with the highest weight is preferred.
|
|
||||||
*
|
|
||||||
* <ul>
|
|
||||||
* <li>add() - O(lg n)
|
|
||||||
* <li>pick() - O(lg n)
|
|
||||||
* </ul>
|
|
||||||
*
|
|
||||||
*/
|
*/
|
||||||
@VisibleForTesting
|
@VisibleForTesting
|
||||||
static final class EdfScheduler {
|
static final class StaticStrideScheduler {
|
||||||
private final PriorityQueue<ObjectState> prioQueue;
|
private final short[] scaledWeights;
|
||||||
|
private final int sizeDivisor;
|
||||||
|
private final AtomicInteger sequence;
|
||||||
|
private static final int K_MAX_WEIGHT = 0xFFFF;
|
||||||
|
|
||||||
/**
|
StaticStrideScheduler(float[] weights, Random random) {
|
||||||
* Weights below this value will be upped to this minimum weight.
|
checkArgument(weights.length >= 1, "Couldn't build scheduler: requires at least one weight");
|
||||||
*/
|
int numChannels = weights.length;
|
||||||
private static final double MINIMUM_WEIGHT = 0.0001;
|
int numWeightedChannels = 0;
|
||||||
|
double sumWeight = 0;
|
||||||
private final Object lock = new Object();
|
float maxWeight = 0;
|
||||||
|
short meanWeight = 0;
|
||||||
private final Random random;
|
for (float weight : weights) {
|
||||||
|
if (weight > 0) {
|
||||||
/**
|
sumWeight += weight;
|
||||||
* Use the item's deadline as the order in the priority queue. If the deadlines are the same,
|
maxWeight = Math.max(weight, maxWeight);
|
||||||
* use the index. Index should be unique.
|
numWeightedChannels++;
|
||||||
*/
|
|
||||||
EdfScheduler(int initialCapacity, Random random) {
|
|
||||||
this.prioQueue = new PriorityQueue<ObjectState>(initialCapacity, (o1, o2) -> {
|
|
||||||
if (o1.deadline == o2.deadline) {
|
|
||||||
return Integer.compare(o1.index, o2.index);
|
|
||||||
} else {
|
|
||||||
return Double.compare(o1.deadline, o2.deadline);
|
|
||||||
}
|
}
|
||||||
});
|
}
|
||||||
this.random = random;
|
|
||||||
|
double scalingFactor = K_MAX_WEIGHT / maxWeight;
|
||||||
|
if (numWeightedChannels > 0) {
|
||||||
|
meanWeight = (short) Math.round(scalingFactor * sumWeight / numWeightedChannels);
|
||||||
|
} else {
|
||||||
|
meanWeight = 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
// scales weights s.t. max(weights) == K_MAX_WEIGHT, meanWeight is scaled accordingly
|
||||||
|
short[] scaledWeights = new short[numChannels];
|
||||||
|
for (int i = 0; i < numChannels; i++) {
|
||||||
|
if (weights[i] <= 0) {
|
||||||
|
scaledWeights[i] = meanWeight;
|
||||||
|
} else {
|
||||||
|
scaledWeights[i] = (short) Math.round(weights[i] * scalingFactor);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
this.scaledWeights = scaledWeights;
|
||||||
|
this.sizeDivisor = numChannels;
|
||||||
|
this.sequence = new AtomicInteger(random.nextInt());
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/** Returns the next sequence number and atomically increases sequence with wraparound. */
|
||||||
* Adds the item in the scheduler. This is not thread safe.
|
private long nextSequence() {
|
||||||
*
|
return Integer.toUnsignedLong(sequence.getAndIncrement());
|
||||||
* @param index The field {@link ObjectState#index} to be added
|
|
||||||
* @param weight positive weight for the added object
|
|
||||||
*/
|
|
||||||
void add(int index, double weight) {
|
|
||||||
checkArgument(weight > 0.0, "Weights need to be positive.");
|
|
||||||
ObjectState state = new ObjectState(Math.max(weight, MINIMUM_WEIGHT), index);
|
|
||||||
// Randomize the initial deadline.
|
|
||||||
state.deadline = random.nextDouble() * (1 / state.weight);
|
|
||||||
prioQueue.add(state);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
@VisibleForTesting
|
||||||
* Picks the next WRR object.
|
long getSequence() {
|
||||||
|
return Integer.toUnsignedLong(sequence.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Selects index of next backend server.
|
||||||
|
* <p>
|
||||||
|
* A 2D array is compactly represented as a function of W(backend), where the row
|
||||||
|
* represents the generation and the column represents the backend index:
|
||||||
|
* X(backend,generation) | generation ∈ [0,kMaxWeight).
|
||||||
|
* Each element in the conceptual array is a boolean indicating whether the backend at
|
||||||
|
* this index should be picked now. If false, the counter is incremented again,
|
||||||
|
* and the new element is checked. An atomically incremented counter keeps track of our
|
||||||
|
* backend and generation through modular arithmetic within the pick() method.
|
||||||
|
* <p>
|
||||||
|
* Modular arithmetic allows us to evenly distribute picks and skips between
|
||||||
|
* generations based on W(backend).
|
||||||
|
* X(backend,generation) = (W(backend) * generation) % kMaxWeight >= kMaxWeight - W(backend)
|
||||||
|
* If we have the same three backends with weights:
|
||||||
|
* W(backend) = {2,3,6} scaled to max(W(backend)) = 6, then X(backend,generation) is:
|
||||||
|
* <p>
|
||||||
|
* B0 B1 B2
|
||||||
|
* T T T
|
||||||
|
* F F T
|
||||||
|
* F T T
|
||||||
|
* T F T
|
||||||
|
* F T T
|
||||||
|
* F F T
|
||||||
|
* The sequence of picked backend indices is given by
|
||||||
|
* walking across and down: {0,1,2,2,1,2,0,2,1,2,2}.
|
||||||
|
* <p>
|
||||||
|
* To reduce the variance and spread the wasted work among different picks,
|
||||||
|
* an offset that varies per backend index is also included to the calculation.
|
||||||
*/
|
*/
|
||||||
int pick() {
|
int pick() {
|
||||||
synchronized (lock) {
|
while (true) {
|
||||||
ObjectState minObject = prioQueue.remove();
|
long sequence = this.nextSequence();
|
||||||
minObject.deadline += 1.0 / minObject.weight;
|
int backendIndex = (int) (sequence % this.sizeDivisor);
|
||||||
prioQueue.add(minObject);
|
long generation = sequence / this.sizeDivisor;
|
||||||
return minObject.index;
|
int weight = Short.toUnsignedInt(this.scaledWeights[backendIndex]);
|
||||||
|
long offset = (long) K_MAX_WEIGHT / 2 * backendIndex;
|
||||||
|
if ((weight * generation + offset) % K_MAX_WEIGHT < K_MAX_WEIGHT - weight) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
return backendIndex;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Holds the state of the object. */
|
|
||||||
@VisibleForTesting
|
|
||||||
static class ObjectState {
|
|
||||||
private final double weight;
|
|
||||||
private final int index;
|
|
||||||
private volatile double deadline;
|
|
||||||
|
|
||||||
ObjectState(double weight, int index) {
|
|
||||||
this.weight = weight;
|
|
||||||
this.index = index;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
static final class WeightedRoundRobinLoadBalancerConfig {
|
static final class WeightedRoundRobinLoadBalancerConfig {
|
||||||
final long blackoutPeriodNanos;
|
final long blackoutPeriodNanos;
|
||||||
final long weightExpirationPeriodNanos;
|
final long weightExpirationPeriodNanos;
|
||||||
|
|
|
@ -52,7 +52,7 @@ import io.grpc.SynchronizationContext;
|
||||||
import io.grpc.internal.FakeClock;
|
import io.grpc.internal.FakeClock;
|
||||||
import io.grpc.services.InternalCallMetricRecorder;
|
import io.grpc.services.InternalCallMetricRecorder;
|
||||||
import io.grpc.services.MetricReport;
|
import io.grpc.services.MetricReport;
|
||||||
import io.grpc.xds.WeightedRoundRobinLoadBalancer.EdfScheduler;
|
import io.grpc.xds.WeightedRoundRobinLoadBalancer.StaticStrideScheduler;
|
||||||
import io.grpc.xds.WeightedRoundRobinLoadBalancer.WeightedRoundRobinLoadBalancerConfig;
|
import io.grpc.xds.WeightedRoundRobinLoadBalancer.WeightedRoundRobinLoadBalancerConfig;
|
||||||
import io.grpc.xds.WeightedRoundRobinLoadBalancer.WeightedRoundRobinPicker;
|
import io.grpc.xds.WeightedRoundRobinLoadBalancer.WeightedRoundRobinPicker;
|
||||||
import io.grpc.xds.WeightedRoundRobinLoadBalancer.WrrSubchannel;
|
import io.grpc.xds.WeightedRoundRobinLoadBalancer.WrrSubchannel;
|
||||||
|
@ -175,7 +175,7 @@ public class WeightedRoundRobinLoadBalancerTest {
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
wrr = new WeightedRoundRobinLoadBalancer(helper, fakeClock.getDeadlineTicker(),
|
wrr = new WeightedRoundRobinLoadBalancer(helper, fakeClock.getDeadlineTicker(),
|
||||||
new FakeRandom());
|
new FakeRandom(0));
|
||||||
}
|
}
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
|
@ -220,7 +220,7 @@ public class WeightedRoundRobinLoadBalancerTest {
|
||||||
0.2, 0, 0.1, 1, 0, new HashMap<>(), new HashMap<>()));
|
0.2, 0, 0.1, 1, 0, new HashMap<>(), new HashMap<>()));
|
||||||
assertThat(fakeClock.forwardTime(11, TimeUnit.SECONDS)).isEqualTo(1);
|
assertThat(fakeClock.forwardTime(11, TimeUnit.SECONDS)).isEqualTo(1);
|
||||||
assertThat(weightedPicker.pickSubchannel(mockArgs)
|
assertThat(weightedPicker.pickSubchannel(mockArgs)
|
||||||
.getSubchannel()).isEqualTo(weightedSubchannel1);
|
.getSubchannel()).isEqualTo(weightedSubchannel1);
|
||||||
assertThat(fakeClock.getPendingTasks().size()).isEqualTo(1);
|
assertThat(fakeClock.getPendingTasks().size()).isEqualTo(1);
|
||||||
weightedConfig = WeightedRoundRobinLoadBalancerConfig.newBuilder()
|
weightedConfig = WeightedRoundRobinLoadBalancerConfig.newBuilder()
|
||||||
.setWeightUpdatePeriodNanos(500_000_000L) //.5s
|
.setWeightUpdatePeriodNanos(500_000_000L) //.5s
|
||||||
|
@ -338,7 +338,7 @@ public class WeightedRoundRobinLoadBalancerTest {
|
||||||
}
|
}
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
public void pickByWeight_LargeWeight() {
|
public void pickByWeight_largeWeight() {
|
||||||
MetricReport report1 = InternalCallMetricRecorder.createMetricReport(
|
MetricReport report1 = InternalCallMetricRecorder.createMetricReport(
|
||||||
0.1, 0, 0.1, 999, 0, new HashMap<>(), new HashMap<>());
|
0.1, 0, 0.1, 999, 0, new HashMap<>(), new HashMap<>());
|
||||||
MetricReport report2 = InternalCallMetricRecorder.createMetricReport(
|
MetricReport report2 = InternalCallMetricRecorder.createMetricReport(
|
||||||
|
@ -593,6 +593,7 @@ public class WeightedRoundRobinLoadBalancerTest {
|
||||||
assertThat(fakeClock.forwardTime(500, TimeUnit.MILLISECONDS)).isEqualTo(1);
|
assertThat(fakeClock.forwardTime(500, TimeUnit.MILLISECONDS)).isEqualTo(1);
|
||||||
assertThat(weightedPicker.pickSubchannel(mockArgs)
|
assertThat(weightedPicker.pickSubchannel(mockArgs)
|
||||||
.getSubchannel()).isEqualTo(weightedSubchannel2);
|
.getSubchannel()).isEqualTo(weightedSubchannel2);
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
|
@ -750,12 +751,12 @@ public class WeightedRoundRobinLoadBalancerTest {
|
||||||
}
|
}
|
||||||
assertThat(pickCount.size()).isEqualTo(3);
|
assertThat(pickCount.size()).isEqualTo(3);
|
||||||
assertThat(Math.abs(pickCount.get(weightedSubchannel1) / 1000.0 - 4.0 / 9))
|
assertThat(Math.abs(pickCount.get(weightedSubchannel1) / 1000.0 - 4.0 / 9))
|
||||||
.isAtMost(0.001);
|
.isAtMost(0.002);
|
||||||
assertThat(Math.abs(pickCount.get(weightedSubchannel2) / 1000.0 - 2.0 / 9))
|
assertThat(Math.abs(pickCount.get(weightedSubchannel2) / 1000.0 - 2.0 / 9))
|
||||||
.isAtMost(0.001);
|
.isAtMost(0.002);
|
||||||
// subchannel3's weight is average of subchannel1 and subchannel2
|
// subchannel3's weight is average of subchannel1 and subchannel2
|
||||||
assertThat(Math.abs(pickCount.get(weightedSubchannel3) / 1000.0 - 3.0 / 9))
|
assertThat(Math.abs(pickCount.get(weightedSubchannel3) / 1000.0 - 3.0 / 9))
|
||||||
.isAtMost(0.001);
|
.isAtMost(0.002);
|
||||||
}
|
}
|
||||||
|
|
||||||
@Test
|
@Test
|
||||||
|
@ -821,37 +822,6 @@ public class WeightedRoundRobinLoadBalancerTest {
|
||||||
.isAtMost(0.001);
|
.isAtMost(0.001);
|
||||||
}
|
}
|
||||||
|
|
||||||
@Test
|
|
||||||
public void edfScheduler() {
|
|
||||||
Random random = new Random();
|
|
||||||
double totalWeight = 0;
|
|
||||||
int capacity = random.nextInt(10) + 1;
|
|
||||||
double[] weights = new double[capacity];
|
|
||||||
EdfScheduler scheduler = new EdfScheduler(capacity, random);
|
|
||||||
for (int i = 0; i < capacity; i++) {
|
|
||||||
weights[i] = random.nextDouble();
|
|
||||||
scheduler.add(i, weights[i]);
|
|
||||||
totalWeight += weights[i];
|
|
||||||
}
|
|
||||||
Map<Integer, Integer> pickCount = new HashMap<>();
|
|
||||||
for (int i = 0; i < 1000; i++) {
|
|
||||||
int result = scheduler.pick();
|
|
||||||
pickCount.put(result, pickCount.getOrDefault(result, 0) + 1);
|
|
||||||
}
|
|
||||||
for (int i = 0; i < capacity; i++) {
|
|
||||||
assertThat(Math.abs(pickCount.getOrDefault(i, 0) / 1000.0 - weights[i] / totalWeight) )
|
|
||||||
.isAtMost(0.01);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
@Test
|
|
||||||
public void edsScheduler_sameWeight() {
|
|
||||||
EdfScheduler scheduler = new EdfScheduler(2, new FakeRandom());
|
|
||||||
scheduler.add(0, 0.5);
|
|
||||||
scheduler.add(1, 0.5);
|
|
||||||
assertThat(scheduler.pick()).isEqualTo(0);
|
|
||||||
}
|
|
||||||
|
|
||||||
@Test(expected = NullPointerException.class)
|
@Test(expected = NullPointerException.class)
|
||||||
public void wrrConfig_TimeValueNonNull() {
|
public void wrrConfig_TimeValueNonNull() {
|
||||||
WeightedRoundRobinLoadBalancerConfig.newBuilder().setBlackoutPeriodNanos((Long) null);
|
WeightedRoundRobinLoadBalancerConfig.newBuilder().setBlackoutPeriodNanos((Long) null);
|
||||||
|
@ -862,6 +832,267 @@ public class WeightedRoundRobinLoadBalancerTest {
|
||||||
WeightedRoundRobinLoadBalancerConfig.newBuilder().setEnableOobLoadReport((Boolean) null);
|
WeightedRoundRobinLoadBalancerConfig.newBuilder().setEnableOobLoadReport((Boolean) null);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@Test(expected = IllegalArgumentException.class)
|
||||||
|
public void emptyWeights() {
|
||||||
|
float[] weights = {};
|
||||||
|
Random random = new Random();
|
||||||
|
StaticStrideScheduler sss = new StaticStrideScheduler(weights, random);
|
||||||
|
sss.pick();
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testPicksEqualsWeights() {
|
||||||
|
float[] weights = {1.0f, 2.0f, 3.0f};
|
||||||
|
Random random = new Random();
|
||||||
|
StaticStrideScheduler sss = new StaticStrideScheduler(weights, random);
|
||||||
|
int[] expectedPicks = new int[] {1, 2, 3};
|
||||||
|
int[] picks = new int[3];
|
||||||
|
for (int i = 0; i < 6; i++) {
|
||||||
|
picks[sss.pick()] += 1;
|
||||||
|
}
|
||||||
|
assertThat(picks).isEqualTo(expectedPicks);
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testContainsZeroWeightUseMean() {
|
||||||
|
float[] weights = {3.0f, 0.0f, 1.0f};
|
||||||
|
Random random = new Random();
|
||||||
|
StaticStrideScheduler sss = new StaticStrideScheduler(weights, random);
|
||||||
|
int[] expectedPicks = new int[] {3, 2, 1};
|
||||||
|
int[] picks = new int[3];
|
||||||
|
for (int i = 0; i < 6; i++) {
|
||||||
|
picks[sss.pick()] += 1;
|
||||||
|
}
|
||||||
|
assertThat(picks).isEqualTo(expectedPicks);
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testContainsNegativeWeightUseMean() {
|
||||||
|
float[] weights = {3.0f, -1.0f, 1.0f};
|
||||||
|
Random random = new Random();
|
||||||
|
StaticStrideScheduler sss = new StaticStrideScheduler(weights, random);
|
||||||
|
int[] expectedPicks = new int[] {3, 2, 1};
|
||||||
|
int[] picks = new int[3];
|
||||||
|
for (int i = 0; i < 6; i++) {
|
||||||
|
picks[sss.pick()] += 1;
|
||||||
|
}
|
||||||
|
assertThat(picks).isEqualTo(expectedPicks);
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testAllSameWeights() {
|
||||||
|
float[] weights = {1.0f, 1.0f, 1.0f};
|
||||||
|
Random random = new Random();
|
||||||
|
StaticStrideScheduler sss = new StaticStrideScheduler(weights, random);
|
||||||
|
int[] expectedPicks = new int[] {2, 2, 2};
|
||||||
|
int[] picks = new int[3];
|
||||||
|
for (int i = 0; i < 6; i++) {
|
||||||
|
picks[sss.pick()] += 1;
|
||||||
|
}
|
||||||
|
assertThat(picks).isEqualTo(expectedPicks);
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testAllZeroWeightsUseOne() {
|
||||||
|
float[] weights = {0.0f, 0.0f, 0.0f};
|
||||||
|
Random random = new Random();
|
||||||
|
StaticStrideScheduler sss = new StaticStrideScheduler(weights, random);
|
||||||
|
int[] expectedPicks = new int[] {2, 2, 2};
|
||||||
|
int[] picks = new int[3];
|
||||||
|
for (int i = 0; i < 6; i++) {
|
||||||
|
picks[sss.pick()] += 1;
|
||||||
|
}
|
||||||
|
assertThat(picks).isEqualTo(expectedPicks);
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testAllInvalidWeightsUseOne() {
|
||||||
|
float[] weights = {-3.1f, -0.0f, 0.0f};
|
||||||
|
Random random = new Random();
|
||||||
|
StaticStrideScheduler sss = new StaticStrideScheduler(weights, random);
|
||||||
|
int[] expectedPicks = new int[] {2, 2, 2};
|
||||||
|
int[] picks = new int[3];
|
||||||
|
for (int i = 0; i < 6; i++) {
|
||||||
|
picks[sss.pick()] += 1;
|
||||||
|
}
|
||||||
|
assertThat(picks).isEqualTo(expectedPicks);
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testLargestWeightIndexPickedEveryGeneration() {
|
||||||
|
float[] weights = {1.0f, 2.0f, 3.0f};
|
||||||
|
int largestWeightIndex = 2;
|
||||||
|
Random random = new Random();
|
||||||
|
StaticStrideScheduler sss = new StaticStrideScheduler(weights, random);
|
||||||
|
int largestWeightPickCount = 0;
|
||||||
|
int kMaxWeight = 65535;
|
||||||
|
for (int i = 0; i < largestWeightIndex * kMaxWeight; i++) {
|
||||||
|
if (sss.pick() == largestWeightIndex) {
|
||||||
|
largestWeightPickCount += 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
assertThat(largestWeightPickCount).isEqualTo(kMaxWeight);
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testStaticStrideSchedulerNonIntegers1() {
|
||||||
|
float[] weights = {2.0f, (float) (10.0 / 3.0), 1.0f};
|
||||||
|
Random random = new Random();
|
||||||
|
StaticStrideScheduler sss = new StaticStrideScheduler(weights, random);
|
||||||
|
double totalWeight = 2 + 10.0 / 3.0 + 1.0;
|
||||||
|
Map<Integer, Integer> pickCount = new HashMap<>();
|
||||||
|
for (int i = 0; i < 1000; i++) {
|
||||||
|
int result = sss.pick();
|
||||||
|
pickCount.put(result, pickCount.getOrDefault(result, 0) + 1);
|
||||||
|
}
|
||||||
|
for (int i = 0; i < 3; i++) {
|
||||||
|
assertThat(Math.abs(pickCount.getOrDefault(i, 0) / 1000.0 - weights[i] / totalWeight))
|
||||||
|
.isAtMost(0.01);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testStaticStrideSchedulerNonIntegers2() {
|
||||||
|
float[] weights = {0.5f, 0.3f, 1.0f};
|
||||||
|
Random random = new Random();
|
||||||
|
StaticStrideScheduler sss = new StaticStrideScheduler(weights, random);
|
||||||
|
double totalWeight = 1.8;
|
||||||
|
Map<Integer, Integer> pickCount = new HashMap<>();
|
||||||
|
for (int i = 0; i < 1000; i++) {
|
||||||
|
int result = sss.pick();
|
||||||
|
pickCount.put(result, pickCount.getOrDefault(result, 0) + 1);
|
||||||
|
}
|
||||||
|
for (int i = 0; i < 3; i++) {
|
||||||
|
assertThat(Math.abs(pickCount.getOrDefault(i, 0) / 1000.0 - weights[i] / totalWeight))
|
||||||
|
.isAtMost(0.01);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testTwoWeights() {
|
||||||
|
float[] weights = {1.0f, 2.0f};
|
||||||
|
Random random = new Random();
|
||||||
|
StaticStrideScheduler sss = new StaticStrideScheduler(weights, random);
|
||||||
|
double totalWeight = 3;
|
||||||
|
Map<Integer, Integer> pickCount = new HashMap<>();
|
||||||
|
for (int i = 0; i < 1000; i++) {
|
||||||
|
int result = sss.pick();
|
||||||
|
pickCount.put(result, pickCount.getOrDefault(result, 0) + 1);
|
||||||
|
}
|
||||||
|
for (int i = 0; i < 2; i++) {
|
||||||
|
assertThat(Math.abs(pickCount.getOrDefault(i, 0) / 1000.0 - weights[i] / totalWeight))
|
||||||
|
.isAtMost(0.01);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testManyWeights() {
|
||||||
|
float[] weights = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f};
|
||||||
|
Random random = new Random();
|
||||||
|
StaticStrideScheduler sss = new StaticStrideScheduler(weights, random);
|
||||||
|
double totalWeight = 15;
|
||||||
|
Map<Integer, Integer> pickCount = new HashMap<>();
|
||||||
|
for (int i = 0; i < 1000; i++) {
|
||||||
|
int result = sss.pick();
|
||||||
|
pickCount.put(result, pickCount.getOrDefault(result, 0) + 1);
|
||||||
|
}
|
||||||
|
for (int i = 0; i < 5; i++) {
|
||||||
|
assertThat(Math.abs(pickCount.getOrDefault(i, 0) / 1000.0 - weights[i] / totalWeight))
|
||||||
|
.isAtMost(0.0011);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testManyComplexWeights() {
|
||||||
|
float[] weights = {1.2f, 2.4f, 222.56f, 1.1f, 15.0f, 226342.0f, 5123.0f, 532.2f};
|
||||||
|
Random random = new Random();
|
||||||
|
StaticStrideScheduler sss = new StaticStrideScheduler(weights, random);
|
||||||
|
double totalWeight = 1.2 + 2.4 + 222.56 + 15.0 + 226342.0 + 5123.0 + 0.0001;
|
||||||
|
Map<Integer, Integer> pickCount = new HashMap<>();
|
||||||
|
for (int i = 0; i < 1000; i++) {
|
||||||
|
int result = sss.pick();
|
||||||
|
pickCount.put(result, pickCount.getOrDefault(result, 0) + 1);
|
||||||
|
}
|
||||||
|
for (int i = 0; i < 8; i++) {
|
||||||
|
assertThat(Math.abs(pickCount.getOrDefault(i, 0) / 1000.0 - weights[i] / totalWeight))
|
||||||
|
.isAtMost(0.01);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testDeterministicPicks() {
|
||||||
|
float[] weights = {2.0f, 3.0f, 6.0f};
|
||||||
|
Random random = new FakeRandom(0);
|
||||||
|
StaticStrideScheduler sss = new StaticStrideScheduler(weights, random);
|
||||||
|
assertThat(sss.getSequence()).isEqualTo(0);
|
||||||
|
assertThat(sss.pick()).isEqualTo(1);
|
||||||
|
assertThat(sss.getSequence()).isEqualTo(2);
|
||||||
|
assertThat(sss.pick()).isEqualTo(2);
|
||||||
|
assertThat(sss.getSequence()).isEqualTo(3);
|
||||||
|
assertThat(sss.pick()).isEqualTo(2);
|
||||||
|
assertThat(sss.getSequence()).isEqualTo(6);
|
||||||
|
assertThat(sss.pick()).isEqualTo(0);
|
||||||
|
assertThat(sss.getSequence()).isEqualTo(7);
|
||||||
|
assertThat(sss.pick()).isEqualTo(1);
|
||||||
|
assertThat(sss.getSequence()).isEqualTo(8);
|
||||||
|
assertThat(sss.pick()).isEqualTo(2);
|
||||||
|
assertThat(sss.getSequence()).isEqualTo(9);
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testImmediateWraparound() {
|
||||||
|
float[] weights = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f};
|
||||||
|
Random random = new FakeRandom(-1);
|
||||||
|
StaticStrideScheduler sss = new StaticStrideScheduler(weights, random);
|
||||||
|
double totalWeight = 15;
|
||||||
|
Map<Integer, Integer> pickCount = new HashMap<>();
|
||||||
|
for (int i = 0; i < 1000; i++) {
|
||||||
|
int result = sss.pick();
|
||||||
|
pickCount.put(result, pickCount.getOrDefault(result, 0) + 1);
|
||||||
|
}
|
||||||
|
for (int i = 0; i < 5; i++) {
|
||||||
|
assertThat(Math.abs(pickCount.getOrDefault(i, 0) / 1000.0 - weights[i] / totalWeight))
|
||||||
|
.isAtMost(0.001);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testWraparound() {
|
||||||
|
float[] weights = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f};
|
||||||
|
Random random = new FakeRandom(-500);
|
||||||
|
StaticStrideScheduler sss = new StaticStrideScheduler(weights, random);
|
||||||
|
double totalWeight = 15;
|
||||||
|
Map<Integer, Integer> pickCount = new HashMap<>();
|
||||||
|
for (int i = 0; i < 1000; i++) {
|
||||||
|
int result = sss.pick();
|
||||||
|
pickCount.put(result, pickCount.getOrDefault(result, 0) + 1);
|
||||||
|
}
|
||||||
|
for (int i = 0; i < 5; i++) {
|
||||||
|
assertThat(Math.abs(pickCount.getOrDefault(i, 0) / 1000.0 - weights[i] / totalWeight))
|
||||||
|
.isAtMost(0.0011);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testDeterministicWraparound() {
|
||||||
|
float[] weights = {2.0f, 3.0f, 6.0f};
|
||||||
|
Random random = new FakeRandom(-1);
|
||||||
|
StaticStrideScheduler sss = new StaticStrideScheduler(weights, random);
|
||||||
|
assertThat(sss.getSequence()).isEqualTo(0xFFFF_FFFFL);
|
||||||
|
assertThat(sss.pick()).isEqualTo(1);
|
||||||
|
assertThat(sss.getSequence()).isEqualTo(2);
|
||||||
|
assertThat(sss.pick()).isEqualTo(2);
|
||||||
|
assertThat(sss.getSequence()).isEqualTo(3);
|
||||||
|
assertThat(sss.pick()).isEqualTo(2);
|
||||||
|
assertThat(sss.getSequence()).isEqualTo(6);
|
||||||
|
assertThat(sss.pick()).isEqualTo(0);
|
||||||
|
assertThat(sss.getSequence()).isEqualTo(7);
|
||||||
|
assertThat(sss.pick()).isEqualTo(1);
|
||||||
|
assertThat(sss.getSequence()).isEqualTo(8);
|
||||||
|
assertThat(sss.pick()).isEqualTo(2);
|
||||||
|
assertThat(sss.getSequence()).isEqualTo(9);
|
||||||
|
}
|
||||||
|
|
||||||
private static class FakeSocketAddress extends SocketAddress {
|
private static class FakeSocketAddress extends SocketAddress {
|
||||||
final String name;
|
final String name;
|
||||||
|
|
||||||
|
@ -875,10 +1106,16 @@ public class WeightedRoundRobinLoadBalancerTest {
|
||||||
}
|
}
|
||||||
|
|
||||||
private static class FakeRandom extends Random {
|
private static class FakeRandom extends Random {
|
||||||
|
private int nextInt;
|
||||||
|
|
||||||
|
public FakeRandom(int nextInt) {
|
||||||
|
this.nextInt = nextInt;
|
||||||
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
public double nextDouble() {
|
public int nextInt() {
|
||||||
// return constant value to disable init deadline randomization in the scheduler
|
// return constant value to disable init deadline randomization in the scheduler
|
||||||
return 0.322023;
|
return nextInt;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue