Vendored secp256k1 (#8)

* Vendor secp256k1

* Don’t use GMP

* Remove modulemaps

Should be easier to build on iOS

* Tests no longer needs libsecp256k1

* Fix typo in readme
This commit is contained in:
Johan Nordberg 2018-06-06 13:26:36 +02:00 committed by GitHub
parent a9f7638bba
commit d00e2e41ea
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
35 changed files with 7910 additions and 65 deletions

View File

@ -1,35 +1,4 @@
version: 2
get_secp256k1_version: &get_secp256k1_version
run:
name: Get latest libsecp256k1 version
command: |
VERSION=`git ls-remote https://github.com/bitcoin-core/secp256k1.git | grep "HEAD$" | cut -f1`
echo $VERSION | tee .libsecp256k1_head
restore_secp256k1_mac: &restore_secp256k1_mac
restore_cache:
keys:
- macos-libsecp256k1-{{ checksum ".libsecp256k1_head" }}
install_secp256k1_mac: &install_secp256k1_mac
run:
name: Install libsecp256k1
command: |
test -f /usr/local/include/secp256k1.h && exit
brew install autoconf automake libtool
git clone https://github.com/bitcoin-core/secp256k1.git && cd secp256k1
./autogen.sh && ./configure --enable-module-recovery
make install
save_secp256k1_mac: &save_secp256k1_mac
save_cache:
key: macos-libsecp256k1-{{ checksum ".libsecp256k1_head" }}
when: always
paths:
- /usr/local/include/secp256k1.h
- /usr/local/include/secp256k1_recovery.h
- /usr/local/lib/libsecp256k1.0.dylib
- /usr/local/lib/libsecp256k1.a
- /usr/local/lib/libsecp256k1.dylib
- /usr/local/lib/libsecp256k1.la
- /usr/local/lib/pkgconfig/libsecp256k1.pc
show_swift_version: &show_swift_version
run:
name: Swift version
@ -40,10 +9,6 @@ jobs:
xcode: "9.3.0"
steps:
- checkout
- <<: *get_secp256k1_version
- <<: *restore_secp256k1_mac
- <<: *install_secp256k1_mac
- <<: *save_secp256k1_mac
- <<: *show_swift_version
- run:
name: Run unit tests
@ -53,10 +18,6 @@ jobs:
xcode: "9.3.0"
steps:
- checkout
- <<: *get_secp256k1_version
- <<: *restore_secp256k1_mac
- <<: *install_secp256k1_mac
- <<: *save_secp256k1_mac
- <<: *show_swift_version
- run:
name: Run integration tests
@ -66,28 +27,10 @@ jobs:
- image: swift:4
steps:
- checkout
- <<: *get_secp256k1_version
- restore_cache:
keys:
- linux-libsecp256k1-{{ checksum ".libsecp256k1_head" }}
- run:
name: Install libsecp256k1
command: |
test -f /usr/local/include/secp256k1.h && exit
git clone https://github.com/bitcoin-core/secp256k1.git && cd secp256k1
apt-get update && apt-get install -y autoconf libtool
./autogen.sh && ./configure --enable-module-recovery
make install
- save_cache:
key: linux-libsecp256k1-{{ checksum ".libsecp256k1_head" }}
when: always
paths:
- /usr/local/lib
- /usr/local/include
- <<: *show_swift_version
- run:
name: Run tests
command: ldconfig && swift test
command: swift test
workflows:
version: 2
build:

View File

@ -8,7 +8,6 @@ let package = Package(
.library(name: "Steem", targets: ["Steem"]),
],
dependencies: [
.package(url: "https://github.com/steemit/swift-secp256k1.git", from: "1.1.0"),
.package(url: "https://github.com/Flight-School/AnyCodable.git", .revision("396ccc3dba5bdee04c1e742e7fab40582861401e")),
.package(url: "https://github.com/jnordberg/OrderedDictionary.git", .branch("swiftpm")),
],
@ -17,9 +16,13 @@ let package = Package(
name: "Crypto",
dependencies: []
),
.target(
name: "secp256k1",
dependencies: []
),
.target(
name: "Steem",
dependencies: ["Crypto", "AnyCodable", "OrderedDictionary"]
dependencies: ["Crypto", "AnyCodable", "OrderedDictionary", "secp256k1"]
),
.testTarget(
name: "SteemTests",

View File

@ -20,7 +20,7 @@ In your Package.swift add:
```
dependencies: [
.package(url: "https://github.com/steemit/swift-steem.git")
.package(url: "https://github.com/steemit/swift-steem.git", .branch("master"))
]
```

View File

@ -1,4 +0,0 @@
module Crypto {
header "crypto.h"
export *
}

View File

@ -0,0 +1,767 @@
#ifndef SECP256K1_H
#define SECP256K1_H
#ifdef __cplusplus
extern "C" {
#endif
#include <stddef.h>
/* These rules specify the order of arguments in API calls:
*
* 1. Context pointers go first, followed by output arguments, combined
* output/input arguments, and finally input-only arguments.
* 2. Array lengths always immediately the follow the argument whose length
* they describe, even if this violates rule 1.
* 3. Within the OUT/OUTIN/IN groups, pointers to data that is typically generated
* later go first. This means: signatures, public nonces, private nonces,
* messages, public keys, secret keys, tweaks.
* 4. Arguments that are not data pointers go last, from more complex to less
* complex: function pointers, algorithm names, messages, void pointers,
* counts, flags, booleans.
* 5. Opaque data pointers follow the function pointer they are to be passed to.
*/
/** Opaque data structure that holds context information (precomputed tables etc.).
*
* The purpose of context structures is to cache large precomputed data tables
* that are expensive to construct, and also to maintain the randomization data
* for blinding.
*
* Do not create a new context object for each operation, as construction is
* far slower than all other API calls (~100 times slower than an ECDSA
* verification).
*
* A constructed context can safely be used from multiple threads
* simultaneously, but API call that take a non-const pointer to a context
* need exclusive access to it. In particular this is the case for
* secp256k1_context_destroy and secp256k1_context_randomize.
*
* Regarding randomization, either do it once at creation time (in which case
* you do not need any locking for the other calls), or use a read-write lock.
*/
typedef struct secp256k1_context_struct secp256k1_context;
/** Opaque data structure that holds rewriteable "scratch space"
*
* The purpose of this structure is to replace dynamic memory allocations,
* because we target architectures where this may not be available. It is
* essentially a resizable (within specified parameters) block of bytes,
* which is initially created either by memory allocation or TODO as a pointer
* into some fixed rewritable space.
*
* Unlike the context object, this cannot safely be shared between threads
* without additional synchronization logic.
*/
typedef struct secp256k1_scratch_space_struct secp256k1_scratch_space;
/** Opaque data structure that holds a parsed and valid public key.
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 64 bytes in size, and can be safely copied/moved.
* If you need to convert to a format suitable for storage, transmission, or
* comparison, use secp256k1_ec_pubkey_serialize and secp256k1_ec_pubkey_parse.
*/
typedef struct {
unsigned char data[64];
} secp256k1_pubkey;
/** Opaque data structured that holds a parsed ECDSA signature.
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 64 bytes in size, and can be safely copied/moved.
* If you need to convert to a format suitable for storage, transmission, or
* comparison, use the secp256k1_ecdsa_signature_serialize_* and
* secp256k1_ecdsa_signature_parse_* functions.
*/
typedef struct {
unsigned char data[64];
} secp256k1_ecdsa_signature;
/** A pointer to a function to deterministically generate a nonce.
*
* Returns: 1 if a nonce was successfully generated. 0 will cause signing to fail.
* Out: nonce32: pointer to a 32-byte array to be filled by the function.
* In: msg32: the 32-byte message hash being verified (will not be NULL)
* key32: pointer to a 32-byte secret key (will not be NULL)
* algo16: pointer to a 16-byte array describing the signature
* algorithm (will be NULL for ECDSA for compatibility).
* data: Arbitrary data pointer that is passed through.
* attempt: how many iterations we have tried to find a nonce.
* This will almost always be 0, but different attempt values
* are required to result in a different nonce.
*
* Except for test cases, this function should compute some cryptographic hash of
* the message, the algorithm, the key and the attempt.
*/
typedef int (*secp256k1_nonce_function)(
unsigned char *nonce32,
const unsigned char *msg32,
const unsigned char *key32,
const unsigned char *algo16,
void *data,
unsigned int attempt
);
# if !defined(SECP256K1_GNUC_PREREQ)
# if defined(__GNUC__)&&defined(__GNUC_MINOR__)
# define SECP256K1_GNUC_PREREQ(_maj,_min) \
((__GNUC__<<16)+__GNUC_MINOR__>=((_maj)<<16)+(_min))
# else
# define SECP256K1_GNUC_PREREQ(_maj,_min) 0
# endif
# endif
# if (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L) )
# if SECP256K1_GNUC_PREREQ(2,7)
# define SECP256K1_INLINE __inline__
# elif (defined(_MSC_VER))
# define SECP256K1_INLINE __inline
# else
# define SECP256K1_INLINE
# endif
# else
# define SECP256K1_INLINE inline
# endif
#ifndef SECP256K1_API
# if defined(_WIN32)
# ifdef SECP256K1_BUILD
# define SECP256K1_API __declspec(dllexport)
# else
# define SECP256K1_API
# endif
# elif defined(__GNUC__) && defined(SECP256K1_BUILD)
# define SECP256K1_API __attribute__ ((visibility ("default")))
# else
# define SECP256K1_API
# endif
#endif
/**Warning attributes
* NONNULL is not used if SECP256K1_BUILD is set to avoid the compiler optimizing out
* some paranoid null checks. */
# if defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4)
# define SECP256K1_WARN_UNUSED_RESULT __attribute__ ((__warn_unused_result__))
# else
# define SECP256K1_WARN_UNUSED_RESULT
# endif
# if !defined(SECP256K1_BUILD) && defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4)
# define SECP256K1_ARG_NONNULL(_x) __attribute__ ((__nonnull__(_x)))
# else
# define SECP256K1_ARG_NONNULL(_x)
# endif
/** All flags' lower 8 bits indicate what they're for. Do not use directly. */
#define SECP256K1_FLAGS_TYPE_MASK ((1 << 8) - 1)
#define SECP256K1_FLAGS_TYPE_CONTEXT (1 << 0)
#define SECP256K1_FLAGS_TYPE_COMPRESSION (1 << 1)
/** The higher bits contain the actual data. Do not use directly. */
#define SECP256K1_FLAGS_BIT_CONTEXT_VERIFY (1 << 8)
#define SECP256K1_FLAGS_BIT_CONTEXT_SIGN (1 << 9)
#define SECP256K1_FLAGS_BIT_COMPRESSION (1 << 8)
/** Flags to pass to secp256k1_context_create. */
#define SECP256K1_CONTEXT_VERIFY (SECP256K1_FLAGS_TYPE_CONTEXT | SECP256K1_FLAGS_BIT_CONTEXT_VERIFY)
#define SECP256K1_CONTEXT_SIGN (SECP256K1_FLAGS_TYPE_CONTEXT | SECP256K1_FLAGS_BIT_CONTEXT_SIGN)
#define SECP256K1_CONTEXT_NONE (SECP256K1_FLAGS_TYPE_CONTEXT)
/** Flag to pass to secp256k1_ec_pubkey_serialize and secp256k1_ec_privkey_export. */
#define SECP256K1_EC_COMPRESSED (SECP256K1_FLAGS_TYPE_COMPRESSION | SECP256K1_FLAGS_BIT_COMPRESSION)
#define SECP256K1_EC_UNCOMPRESSED (SECP256K1_FLAGS_TYPE_COMPRESSION)
/** Prefix byte used to tag various encoded curvepoints for specific purposes */
#define SECP256K1_TAG_PUBKEY_EVEN 0x02
#define SECP256K1_TAG_PUBKEY_ODD 0x03
#define SECP256K1_TAG_PUBKEY_UNCOMPRESSED 0x04
#define SECP256K1_TAG_PUBKEY_HYBRID_EVEN 0x06
#define SECP256K1_TAG_PUBKEY_HYBRID_ODD 0x07
/** Create a secp256k1 context object.
*
* Returns: a newly created context object.
* In: flags: which parts of the context to initialize.
*
* See also secp256k1_context_randomize.
*/
SECP256K1_API secp256k1_context* secp256k1_context_create(
unsigned int flags
) SECP256K1_WARN_UNUSED_RESULT;
/** Copies a secp256k1 context object.
*
* Returns: a newly created context object.
* Args: ctx: an existing context to copy (cannot be NULL)
*/
SECP256K1_API secp256k1_context* secp256k1_context_clone(
const secp256k1_context* ctx
) SECP256K1_ARG_NONNULL(1) SECP256K1_WARN_UNUSED_RESULT;
/** Destroy a secp256k1 context object.
*
* The context pointer may not be used afterwards.
* Args: ctx: an existing context to destroy (cannot be NULL)
*/
SECP256K1_API void secp256k1_context_destroy(
secp256k1_context* ctx
);
/** Set a callback function to be called when an illegal argument is passed to
* an API call. It will only trigger for violations that are mentioned
* explicitly in the header.
*
* The philosophy is that these shouldn't be dealt with through a
* specific return value, as calling code should not have branches to deal with
* the case that this code itself is broken.
*
* On the other hand, during debug stage, one would want to be informed about
* such mistakes, and the default (crashing) may be inadvisable.
* When this callback is triggered, the API function called is guaranteed not
* to cause a crash, though its return value and output arguments are
* undefined.
*
* Args: ctx: an existing context object (cannot be NULL)
* In: fun: a pointer to a function to call when an illegal argument is
* passed to the API, taking a message and an opaque pointer
* (NULL restores a default handler that calls abort).
* data: the opaque pointer to pass to fun above.
*/
SECP256K1_API void secp256k1_context_set_illegal_callback(
secp256k1_context* ctx,
void (*fun)(const char* message, void* data),
const void* data
) SECP256K1_ARG_NONNULL(1);
/** Set a callback function to be called when an internal consistency check
* fails. The default is crashing.
*
* This can only trigger in case of a hardware failure, miscompilation,
* memory corruption, serious bug in the library, or other error would can
* otherwise result in undefined behaviour. It will not trigger due to mere
* incorrect usage of the API (see secp256k1_context_set_illegal_callback
* for that). After this callback returns, anything may happen, including
* crashing.
*
* Args: ctx: an existing context object (cannot be NULL)
* In: fun: a pointer to a function to call when an internal error occurs,
* taking a message and an opaque pointer (NULL restores a default
* handler that calls abort).
* data: the opaque pointer to pass to fun above.
*/
SECP256K1_API void secp256k1_context_set_error_callback(
secp256k1_context* ctx,
void (*fun)(const char* message, void* data),
const void* data
) SECP256K1_ARG_NONNULL(1);
/** Create a secp256k1 scratch space object.
*
* Returns: a newly created scratch space.
* Args: ctx: an existing context object (cannot be NULL)
* In: max_size: maximum amount of memory to allocate
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT secp256k1_scratch_space* secp256k1_scratch_space_create(
const secp256k1_context* ctx,
size_t max_size
) SECP256K1_ARG_NONNULL(1);
/** Destroy a secp256k1 scratch space.
*
* The pointer may not be used afterwards.
* Args: scratch: space to destroy
*/
SECP256K1_API void secp256k1_scratch_space_destroy(
secp256k1_scratch_space* scratch
);
/** Parse a variable-length public key into the pubkey object.
*
* Returns: 1 if the public key was fully valid.
* 0 if the public key could not be parsed or is invalid.
* Args: ctx: a secp256k1 context object.
* Out: pubkey: pointer to a pubkey object. If 1 is returned, it is set to a
* parsed version of input. If not, its value is undefined.
* In: input: pointer to a serialized public key
* inputlen: length of the array pointed to by input
*
* This function supports parsing compressed (33 bytes, header byte 0x02 or
* 0x03), uncompressed (65 bytes, header byte 0x04), or hybrid (65 bytes, header
* byte 0x06 or 0x07) format public keys.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_parse(
const secp256k1_context* ctx,
secp256k1_pubkey* pubkey,
const unsigned char *input,
size_t inputlen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize a pubkey object into a serialized byte sequence.
*
* Returns: 1 always.
* Args: ctx: a secp256k1 context object.
* Out: output: a pointer to a 65-byte (if compressed==0) or 33-byte (if
* compressed==1) byte array to place the serialized key
* in.
* In/Out: outputlen: a pointer to an integer which is initially set to the
* size of output, and is overwritten with the written
* size.
* In: pubkey: a pointer to a secp256k1_pubkey containing an
* initialized public key.
* flags: SECP256K1_EC_COMPRESSED if serialization should be in
* compressed format, otherwise SECP256K1_EC_UNCOMPRESSED.
*/
SECP256K1_API int secp256k1_ec_pubkey_serialize(
const secp256k1_context* ctx,
unsigned char *output,
size_t *outputlen,
const secp256k1_pubkey* pubkey,
unsigned int flags
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Parse an ECDSA signature in compact (64 bytes) format.
*
* Returns: 1 when the signature could be parsed, 0 otherwise.
* Args: ctx: a secp256k1 context object
* Out: sig: a pointer to a signature object
* In: input64: a pointer to the 64-byte array to parse
*
* The signature must consist of a 32-byte big endian R value, followed by a
* 32-byte big endian S value. If R or S fall outside of [0..order-1], the
* encoding is invalid. R and S with value 0 are allowed in the encoding.
*
* After the call, sig will always be initialized. If parsing failed or R or
* S are zero, the resulting sig value is guaranteed to fail validation for any
* message and public key.
*/
SECP256K1_API int secp256k1_ecdsa_signature_parse_compact(
const secp256k1_context* ctx,
secp256k1_ecdsa_signature* sig,
const unsigned char *input64
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Parse a DER ECDSA signature.
*
* Returns: 1 when the signature could be parsed, 0 otherwise.
* Args: ctx: a secp256k1 context object
* Out: sig: a pointer to a signature object
* In: input: a pointer to the signature to be parsed
* inputlen: the length of the array pointed to be input
*
* This function will accept any valid DER encoded signature, even if the
* encoded numbers are out of range.
*
* After the call, sig will always be initialized. If parsing failed or the
* encoded numbers are out of range, signature validation with it is
* guaranteed to fail for every message and public key.
*/
SECP256K1_API int secp256k1_ecdsa_signature_parse_der(
const secp256k1_context* ctx,
secp256k1_ecdsa_signature* sig,
const unsigned char *input,
size_t inputlen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize an ECDSA signature in DER format.
*
* Returns: 1 if enough space was available to serialize, 0 otherwise
* Args: ctx: a secp256k1 context object
* Out: output: a pointer to an array to store the DER serialization
* In/Out: outputlen: a pointer to a length integer. Initially, this integer
* should be set to the length of output. After the call
* it will be set to the length of the serialization (even
* if 0 was returned).
* In: sig: a pointer to an initialized signature object
*/
SECP256K1_API int secp256k1_ecdsa_signature_serialize_der(
const secp256k1_context* ctx,
unsigned char *output,
size_t *outputlen,
const secp256k1_ecdsa_signature* sig
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Serialize an ECDSA signature in compact (64 byte) format.
*
* Returns: 1
* Args: ctx: a secp256k1 context object
* Out: output64: a pointer to a 64-byte array to store the compact serialization
* In: sig: a pointer to an initialized signature object
*
* See secp256k1_ecdsa_signature_parse_compact for details about the encoding.
*/
SECP256K1_API int secp256k1_ecdsa_signature_serialize_compact(
const secp256k1_context* ctx,
unsigned char *output64,
const secp256k1_ecdsa_signature* sig
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Verify an ECDSA signature.
*
* Returns: 1: correct signature
* 0: incorrect or unparseable signature
* Args: ctx: a secp256k1 context object, initialized for verification.
* In: sig: the signature being verified (cannot be NULL)
* msg32: the 32-byte message hash being verified (cannot be NULL)
* pubkey: pointer to an initialized public key to verify with (cannot be NULL)
*
* To avoid accepting malleable signatures, only ECDSA signatures in lower-S
* form are accepted.
*
* If you need to accept ECDSA signatures from sources that do not obey this
* rule, apply secp256k1_ecdsa_signature_normalize to the signature prior to
* validation, but be aware that doing so results in malleable signatures.
*
* For details, see the comments for that function.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify(
const secp256k1_context* ctx,
const secp256k1_ecdsa_signature *sig,
const unsigned char *msg32,
const secp256k1_pubkey *pubkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Convert a signature to a normalized lower-S form.
*
* Returns: 1 if sigin was not normalized, 0 if it already was.
* Args: ctx: a secp256k1 context object
* Out: sigout: a pointer to a signature to fill with the normalized form,
* or copy if the input was already normalized. (can be NULL if
* you're only interested in whether the input was already
* normalized).
* In: sigin: a pointer to a signature to check/normalize (cannot be NULL,
* can be identical to sigout)
*
* With ECDSA a third-party can forge a second distinct signature of the same
* message, given a single initial signature, but without knowing the key. This
* is done by negating the S value modulo the order of the curve, 'flipping'
* the sign of the random point R which is not included in the signature.
*
* Forgery of the same message isn't universally problematic, but in systems
* where message malleability or uniqueness of signatures is important this can
* cause issues. This forgery can be blocked by all verifiers forcing signers
* to use a normalized form.
*
* The lower-S form reduces the size of signatures slightly on average when
* variable length encodings (such as DER) are used and is cheap to verify,
* making it a good choice. Security of always using lower-S is assured because
* anyone can trivially modify a signature after the fact to enforce this
* property anyway.
*
* The lower S value is always between 0x1 and
* 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0,
* inclusive.
*
* No other forms of ECDSA malleability are known and none seem likely, but
* there is no formal proof that ECDSA, even with this additional restriction,
* is free of other malleability. Commonly used serialization schemes will also
* accept various non-unique encodings, so care should be taken when this
* property is required for an application.
*
* The secp256k1_ecdsa_sign function will by default create signatures in the
* lower-S form, and secp256k1_ecdsa_verify will not accept others. In case
* signatures come from a system that cannot enforce this property,
* secp256k1_ecdsa_signature_normalize must be called before verification.
*/
SECP256K1_API int secp256k1_ecdsa_signature_normalize(
const secp256k1_context* ctx,
secp256k1_ecdsa_signature *sigout,
const secp256k1_ecdsa_signature *sigin
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(3);
/** An implementation of RFC6979 (using HMAC-SHA256) as nonce generation function.
* If a data pointer is passed, it is assumed to be a pointer to 32 bytes of
* extra entropy.
*/
SECP256K1_API extern const secp256k1_nonce_function secp256k1_nonce_function_rfc6979;
/** A default safe nonce generation function (currently equal to secp256k1_nonce_function_rfc6979). */
SECP256K1_API extern const secp256k1_nonce_function secp256k1_nonce_function_default;
/** Create an ECDSA signature.
*
* Returns: 1: signature created
* 0: the nonce generation function failed, or the private key was invalid.
* Args: ctx: pointer to a context object, initialized for signing (cannot be NULL)
* Out: sig: pointer to an array where the signature will be placed (cannot be NULL)
* In: msg32: the 32-byte message hash being signed (cannot be NULL)
* seckey: pointer to a 32-byte secret key (cannot be NULL)
* noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used
* ndata: pointer to arbitrary data used by the nonce generation function (can be NULL)
*
* The created signature is always in lower-S form. See
* secp256k1_ecdsa_signature_normalize for more details.
*/
SECP256K1_API int secp256k1_ecdsa_sign(
const secp256k1_context* ctx,
secp256k1_ecdsa_signature *sig,
const unsigned char *msg32,
const unsigned char *seckey,
secp256k1_nonce_function noncefp,
const void *ndata
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Verify an ECDSA secret key.
*
* Returns: 1: secret key is valid
* 0: secret key is invalid
* Args: ctx: pointer to a context object (cannot be NULL)
* In: seckey: pointer to a 32-byte secret key (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_verify(
const secp256k1_context* ctx,
const unsigned char *seckey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
/** Compute the public key for a secret key.
*
* Returns: 1: secret was valid, public key stores
* 0: secret was invalid, try again
* Args: ctx: pointer to a context object, initialized for signing (cannot be NULL)
* Out: pubkey: pointer to the created public key (cannot be NULL)
* In: seckey: pointer to a 32-byte private key (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_create(
const secp256k1_context* ctx,
secp256k1_pubkey *pubkey,
const unsigned char *seckey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Negates a private key in place.
*
* Returns: 1 always
* Args: ctx: pointer to a context object
* In/Out: seckey: pointer to the 32-byte private key to be negated (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_negate(
const secp256k1_context* ctx,
unsigned char *seckey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
/** Negates a public key in place.
*
* Returns: 1 always
* Args: ctx: pointer to a context object
* In/Out: pubkey: pointer to the public key to be negated (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_negate(
const secp256k1_context* ctx,
secp256k1_pubkey *pubkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
/** Tweak a private key by adding tweak to it.
* Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for
* uniformly random 32-byte arrays, or if the resulting private key
* would be invalid (only when the tweak is the complement of the
* private key). 1 otherwise.
* Args: ctx: pointer to a context object (cannot be NULL).
* In/Out: seckey: pointer to a 32-byte private key.
* In: tweak: pointer to a 32-byte tweak.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_add(
const secp256k1_context* ctx,
unsigned char *seckey,
const unsigned char *tweak
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Tweak a public key by adding tweak times the generator to it.
* Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for
* uniformly random 32-byte arrays, or if the resulting public key
* would be invalid (only when the tweak is the complement of the
* corresponding private key). 1 otherwise.
* Args: ctx: pointer to a context object initialized for validation
* (cannot be NULL).
* In/Out: pubkey: pointer to a public key object.
* In: tweak: pointer to a 32-byte tweak.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_add(
const secp256k1_context* ctx,
secp256k1_pubkey *pubkey,
const unsigned char *tweak
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Tweak a private key by multiplying it by a tweak.
* Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for
* uniformly random 32-byte arrays, or equal to zero. 1 otherwise.
* Args: ctx: pointer to a context object (cannot be NULL).
* In/Out: seckey: pointer to a 32-byte private key.
* In: tweak: pointer to a 32-byte tweak.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_mul(
const secp256k1_context* ctx,
unsigned char *seckey,
const unsigned char *tweak
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Tweak a public key by multiplying it by a tweak value.
* Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for
* uniformly random 32-byte arrays, or equal to zero. 1 otherwise.
* Args: ctx: pointer to a context object initialized for validation
* (cannot be NULL).
* In/Out: pubkey: pointer to a public key obkect.
* In: tweak: pointer to a 32-byte tweak.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_mul(
const secp256k1_context* ctx,
secp256k1_pubkey *pubkey,
const unsigned char *tweak
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Updates the context randomization to protect against side-channel leakage.
* Returns: 1: randomization successfully updated
* 0: error
* Args: ctx: pointer to a context object (cannot be NULL)
* In: seed32: pointer to a 32-byte random seed (NULL resets to initial state)
*
* While secp256k1 code is written to be constant-time no matter what secret
* values are, it's possible that a future compiler may output code which isn't,
* and also that the CPU may not emit the same radio frequencies or draw the same
* amount power for all values.
*
* This function provides a seed which is combined into the blinding value: that
* blinding value is added before each multiplication (and removed afterwards) so
* that it does not affect function results, but shields against attacks which
* rely on any input-dependent behaviour.
*
* You should call this after secp256k1_context_create or
* secp256k1_context_clone, and may call this repeatedly afterwards.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_context_randomize(
secp256k1_context* ctx,
const unsigned char *seed32
) SECP256K1_ARG_NONNULL(1);
/** Add a number of public keys together.
* Returns: 1: the sum of the public keys is valid.
* 0: the sum of the public keys is not valid.
* Args: ctx: pointer to a context object
* Out: out: pointer to a public key object for placing the resulting public key
* (cannot be NULL)
* In: ins: pointer to array of pointers to public keys (cannot be NULL)
* n: the number of public keys to add together (must be at least 1)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_combine(
const secp256k1_context* ctx,
secp256k1_pubkey *out,
const secp256k1_pubkey * const * ins,
size_t n
) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Compute an EC Diffie-Hellman secret in constant time
* Returns: 1: exponentiation was successful
* 0: scalar was invalid (zero or overflow)
* Args: ctx: pointer to a context object (cannot be NULL)
* Out: result: a 32-byte array which will be populated by an ECDH
* secret computed from the point and scalar
* In: pubkey: a pointer to a secp256k1_pubkey containing an
* initialized public key
* privkey: a 32-byte scalar with which to multiply the point
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdh(
const secp256k1_context* ctx,
unsigned char *result,
const secp256k1_pubkey *pubkey,
const unsigned char *privkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Opaque data structured that holds a parsed ECDSA signature,
* supporting pubkey recovery.
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 65 bytes in size, and can be safely copied/moved.
* If you need to convert to a format suitable for storage or transmission, use
* the secp256k1_ecdsa_signature_serialize_* and
* secp256k1_ecdsa_signature_parse_* functions.
*
* Furthermore, it is guaranteed that identical signatures (including their
* recoverability) will have identical representation, so they can be
* memcmp'ed.
*/
typedef struct {
unsigned char data[65];
} secp256k1_ecdsa_recoverable_signature;
/** Parse a compact ECDSA signature (64 bytes + recovery id).
*
* Returns: 1 when the signature could be parsed, 0 otherwise
* Args: ctx: a secp256k1 context object
* Out: sig: a pointer to a signature object
* In: input64: a pointer to a 64-byte compact signature
* recid: the recovery id (0, 1, 2 or 3)
*/
SECP256K1_API int secp256k1_ecdsa_recoverable_signature_parse_compact(
const secp256k1_context* ctx,
secp256k1_ecdsa_recoverable_signature* sig,
const unsigned char *input64,
int recid
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Convert a recoverable signature into a normal signature.
*
* Returns: 1
* Out: sig: a pointer to a normal signature (cannot be NULL).
* In: sigin: a pointer to a recoverable signature (cannot be NULL).
*/
SECP256K1_API int secp256k1_ecdsa_recoverable_signature_convert(
const secp256k1_context* ctx,
secp256k1_ecdsa_signature* sig,
const secp256k1_ecdsa_recoverable_signature* sigin
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize an ECDSA signature in compact format (64 bytes + recovery id).
*
* Returns: 1
* Args: ctx: a secp256k1 context object
* Out: output64: a pointer to a 64-byte array of the compact signature (cannot be NULL)
* recid: a pointer to an integer to hold the recovery id (can be NULL).
* In: sig: a pointer to an initialized signature object (cannot be NULL)
*/
SECP256K1_API int secp256k1_ecdsa_recoverable_signature_serialize_compact(
const secp256k1_context* ctx,
unsigned char *output64,
int *recid,
const secp256k1_ecdsa_recoverable_signature* sig
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Create a recoverable ECDSA signature.
*
* Returns: 1: signature created
* 0: the nonce generation function failed, or the private key was invalid.
* Args: ctx: pointer to a context object, initialized for signing (cannot be NULL)
* Out: sig: pointer to an array where the signature will be placed (cannot be NULL)
* In: msg32: the 32-byte message hash being signed (cannot be NULL)
* seckey: pointer to a 32-byte secret key (cannot be NULL)
* noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used
* ndata: pointer to arbitrary data used by the nonce generation function (can be NULL)
*/
SECP256K1_API int secp256k1_ecdsa_sign_recoverable(
const secp256k1_context* ctx,
secp256k1_ecdsa_recoverable_signature *sig,
const unsigned char *msg32,
const unsigned char *seckey,
secp256k1_nonce_function noncefp,
const void *ndata
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Recover an ECDSA public key from a signature.
*
* Returns: 1: public key successfully recovered (which guarantees a correct signature).
* 0: otherwise.
* Args: ctx: pointer to a context object, initialized for verification (cannot be NULL)
* Out: pubkey: pointer to the recovered public key (cannot be NULL)
* In: sig: pointer to initialized signature that supports pubkey recovery (cannot be NULL)
* msg32: the 32-byte message hash assumed to be signed (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_recover(
const secp256k1_context* ctx,
secp256k1_pubkey *pubkey,
const secp256k1_ecdsa_recoverable_signature *sig,
const unsigned char *msg32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
#ifdef __cplusplus
}
#endif
#endif /* SECP256K1_H */

View File

@ -0,0 +1,21 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_ECDSA_H
#define SECP256K1_ECDSA_H
#include <stddef.h>
#include "scalar.h"
#include "group.h"
#include "ecmult.h"
static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *r, secp256k1_scalar *s, const unsigned char *sig, size_t size);
static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar *r, const secp256k1_scalar *s);
static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const secp256k1_scalar* r, const secp256k1_scalar* s, const secp256k1_ge *pubkey, const secp256k1_scalar *message);
static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar* r, secp256k1_scalar* s, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid);
#endif /* SECP256K1_ECDSA_H */

View File

@ -0,0 +1,313 @@
/**********************************************************************
* Copyright (c) 2013-2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_ECDSA_IMPL_H
#define SECP256K1_ECDSA_IMPL_H
#include "scalar.h"
#include "field.h"
#include "group.h"
#include "ecmult.h"
#include "ecmult_gen.h"
#include "ecdsa.h"
/** Group order for secp256k1 defined as 'n' in "Standards for Efficient Cryptography" (SEC2) 2.7.1
* sage: for t in xrange(1023, -1, -1):
* .. p = 2**256 - 2**32 - t
* .. if p.is_prime():
* .. print '%x'%p
* .. break
* 'fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f'
* sage: a = 0
* sage: b = 7
* sage: F = FiniteField (p)
* sage: '%x' % (EllipticCurve ([F (a), F (b)]).order())
* 'fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141'
*/
static const secp256k1_fe secp256k1_ecdsa_const_order_as_fe = SECP256K1_FE_CONST(
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
0xBAAEDCE6UL, 0xAF48A03BUL, 0xBFD25E8CUL, 0xD0364141UL
);
/** Difference between field and order, values 'p' and 'n' values defined in
* "Standards for Efficient Cryptography" (SEC2) 2.7.1.
* sage: p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
* sage: a = 0
* sage: b = 7
* sage: F = FiniteField (p)
* sage: '%x' % (p - EllipticCurve ([F (a), F (b)]).order())
* '14551231950b75fc4402da1722fc9baee'
*/
static const secp256k1_fe secp256k1_ecdsa_const_p_minus_order = SECP256K1_FE_CONST(
0, 0, 0, 1, 0x45512319UL, 0x50B75FC4UL, 0x402DA172UL, 0x2FC9BAEEUL
);
static int secp256k1_der_read_len(const unsigned char **sigp, const unsigned char *sigend) {
int lenleft, b1;
size_t ret = 0;
if (*sigp >= sigend) {
return -1;
}
b1 = *((*sigp)++);
if (b1 == 0xFF) {
/* X.690-0207 8.1.3.5.c the value 0xFF shall not be used. */
return -1;
}
if ((b1 & 0x80) == 0) {
/* X.690-0207 8.1.3.4 short form length octets */
return b1;
}
if (b1 == 0x80) {
/* Indefinite length is not allowed in DER. */
return -1;
}
/* X.690-207 8.1.3.5 long form length octets */
lenleft = b1 & 0x7F;
if (lenleft > sigend - *sigp) {
return -1;
}
if (**sigp == 0) {
/* Not the shortest possible length encoding. */
return -1;
}
if ((size_t)lenleft > sizeof(size_t)) {
/* The resulting length would exceed the range of a size_t, so
* certainly longer than the passed array size.
*/
return -1;
}
while (lenleft > 0) {
ret = (ret << 8) | **sigp;
if (ret + lenleft > (size_t)(sigend - *sigp)) {
/* Result exceeds the length of the passed array. */
return -1;
}
(*sigp)++;
lenleft--;
}
if (ret < 128) {
/* Not the shortest possible length encoding. */
return -1;
}
return ret;
}
static int secp256k1_der_parse_integer(secp256k1_scalar *r, const unsigned char **sig, const unsigned char *sigend) {
int overflow = 0;
unsigned char ra[32] = {0};
int rlen;
if (*sig == sigend || **sig != 0x02) {
/* Not a primitive integer (X.690-0207 8.3.1). */
return 0;
}
(*sig)++;
rlen = secp256k1_der_read_len(sig, sigend);
if (rlen <= 0 || (*sig) + rlen > sigend) {
/* Exceeds bounds or not at least length 1 (X.690-0207 8.3.1). */
return 0;
}
if (**sig == 0x00 && rlen > 1 && (((*sig)[1]) & 0x80) == 0x00) {
/* Excessive 0x00 padding. */
return 0;
}
if (**sig == 0xFF && rlen > 1 && (((*sig)[1]) & 0x80) == 0x80) {
/* Excessive 0xFF padding. */
return 0;
}
if ((**sig & 0x80) == 0x80) {
/* Negative. */
overflow = 1;
}
while (rlen > 0 && **sig == 0) {
/* Skip leading zero bytes */
rlen--;
(*sig)++;
}
if (rlen > 32) {
overflow = 1;
}
if (!overflow) {
memcpy(ra + 32 - rlen, *sig, rlen);
secp256k1_scalar_set_b32(r, ra, &overflow);
}
if (overflow) {
secp256k1_scalar_set_int(r, 0);
}
(*sig) += rlen;
return 1;
}
static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *rr, secp256k1_scalar *rs, const unsigned char *sig, size_t size) {
const unsigned char *sigend = sig + size;
int rlen;
if (sig == sigend || *(sig++) != 0x30) {
/* The encoding doesn't start with a constructed sequence (X.690-0207 8.9.1). */
return 0;
}
rlen = secp256k1_der_read_len(&sig, sigend);
if (rlen < 0 || sig + rlen > sigend) {
/* Tuple exceeds bounds */
return 0;
}
if (sig + rlen != sigend) {
/* Garbage after tuple. */
return 0;
}
if (!secp256k1_der_parse_integer(rr, &sig, sigend)) {
return 0;
}
if (!secp256k1_der_parse_integer(rs, &sig, sigend)) {
return 0;
}
if (sig != sigend) {
/* Trailing garbage inside tuple. */
return 0;
}
return 1;
}
static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar* ar, const secp256k1_scalar* as) {
unsigned char r[33] = {0}, s[33] = {0};
unsigned char *rp = r, *sp = s;
size_t lenR = 33, lenS = 33;
secp256k1_scalar_get_b32(&r[1], ar);
secp256k1_scalar_get_b32(&s[1], as);
while (lenR > 1 && rp[0] == 0 && rp[1] < 0x80) { lenR--; rp++; }
while (lenS > 1 && sp[0] == 0 && sp[1] < 0x80) { lenS--; sp++; }
if (*size < 6+lenS+lenR) {
*size = 6 + lenS + lenR;
return 0;
}
*size = 6 + lenS + lenR;
sig[0] = 0x30;
sig[1] = 4 + lenS + lenR;
sig[2] = 0x02;
sig[3] = lenR;
memcpy(sig+4, rp, lenR);
sig[4+lenR] = 0x02;
sig[5+lenR] = lenS;
memcpy(sig+lenR+6, sp, lenS);
return 1;
}
static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const secp256k1_scalar *sigr, const secp256k1_scalar *sigs, const secp256k1_ge *pubkey, const secp256k1_scalar *message) {
unsigned char c[32];
secp256k1_scalar sn, u1, u2;
#if !defined(EXHAUSTIVE_TEST_ORDER)
secp256k1_fe xr;
#endif
secp256k1_gej pubkeyj;
secp256k1_gej pr;
if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) {
return 0;
}
secp256k1_scalar_inverse_var(&sn, sigs);
secp256k1_scalar_mul(&u1, &sn, message);
secp256k1_scalar_mul(&u2, &sn, sigr);
secp256k1_gej_set_ge(&pubkeyj, pubkey);
secp256k1_ecmult(ctx, &pr, &pubkeyj, &u2, &u1);
if (secp256k1_gej_is_infinity(&pr)) {
return 0;
}
#if defined(EXHAUSTIVE_TEST_ORDER)
{
secp256k1_scalar computed_r;
secp256k1_ge pr_ge;
secp256k1_ge_set_gej(&pr_ge, &pr);
secp256k1_fe_normalize(&pr_ge.x);
secp256k1_fe_get_b32(c, &pr_ge.x);
secp256k1_scalar_set_b32(&computed_r, c, NULL);
return secp256k1_scalar_eq(sigr, &computed_r);
}
#else
secp256k1_scalar_get_b32(c, sigr);
secp256k1_fe_set_b32(&xr, c);
/** We now have the recomputed R point in pr, and its claimed x coordinate (modulo n)
* in xr. Naively, we would extract the x coordinate from pr (requiring a inversion modulo p),
* compute the remainder modulo n, and compare it to xr. However:
*
* xr == X(pr) mod n
* <=> exists h. (xr + h * n < p && xr + h * n == X(pr))
* [Since 2 * n > p, h can only be 0 or 1]
* <=> (xr == X(pr)) || (xr + n < p && xr + n == X(pr))
* [In Jacobian coordinates, X(pr) is pr.x / pr.z^2 mod p]
* <=> (xr == pr.x / pr.z^2 mod p) || (xr + n < p && xr + n == pr.x / pr.z^2 mod p)
* [Multiplying both sides of the equations by pr.z^2 mod p]
* <=> (xr * pr.z^2 mod p == pr.x) || (xr + n < p && (xr + n) * pr.z^2 mod p == pr.x)
*
* Thus, we can avoid the inversion, but we have to check both cases separately.
* secp256k1_gej_eq_x implements the (xr * pr.z^2 mod p == pr.x) test.
*/
if (secp256k1_gej_eq_x_var(&xr, &pr)) {
/* xr * pr.z^2 mod p == pr.x, so the signature is valid. */
return 1;
}
if (secp256k1_fe_cmp_var(&xr, &secp256k1_ecdsa_const_p_minus_order) >= 0) {
/* xr + n >= p, so we can skip testing the second case. */
return 0;
}
secp256k1_fe_add(&xr, &secp256k1_ecdsa_const_order_as_fe);
if (secp256k1_gej_eq_x_var(&xr, &pr)) {
/* (xr + n) * pr.z^2 mod p == pr.x, so the signature is valid. */
return 1;
}
return 0;
#endif
}
static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid) {
unsigned char b[32];
secp256k1_gej rp;
secp256k1_ge r;
secp256k1_scalar n;
int overflow = 0;
secp256k1_ecmult_gen(ctx, &rp, nonce);
secp256k1_ge_set_gej(&r, &rp);
secp256k1_fe_normalize(&r.x);
secp256k1_fe_normalize(&r.y);
secp256k1_fe_get_b32(b, &r.x);
secp256k1_scalar_set_b32(sigr, b, &overflow);
/* These two conditions should be checked before calling */
VERIFY_CHECK(!secp256k1_scalar_is_zero(sigr));
VERIFY_CHECK(overflow == 0);
if (recid) {
/* The overflow condition is cryptographically unreachable as hitting it requires finding the discrete log
* of some P where P.x >= order, and only 1 in about 2^127 points meet this criteria.
*/
*recid = (overflow ? 2 : 0) | (secp256k1_fe_is_odd(&r.y) ? 1 : 0);
}
secp256k1_scalar_mul(&n, sigr, seckey);
secp256k1_scalar_add(&n, &n, message);
secp256k1_scalar_inverse(sigs, nonce);
secp256k1_scalar_mul(sigs, sigs, &n);
secp256k1_scalar_clear(&n);
secp256k1_gej_clear(&rp);
secp256k1_ge_clear(&r);
if (secp256k1_scalar_is_zero(sigs)) {
return 0;
}
if (secp256k1_scalar_is_high(sigs)) {
secp256k1_scalar_negate(sigs, sigs);
if (recid) {
*recid ^= 1;
}
}
return 1;
}
#endif /* SECP256K1_ECDSA_IMPL_H */

View File

@ -0,0 +1,25 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_ECKEY_H
#define SECP256K1_ECKEY_H
#include <stddef.h>
#include "group.h"
#include "scalar.h"
#include "ecmult.h"
#include "ecmult_gen.h"
static int secp256k1_eckey_pubkey_parse(secp256k1_ge *elem, const unsigned char *pub, size_t size);
static int secp256k1_eckey_pubkey_serialize(secp256k1_ge *elem, unsigned char *pub, size_t *size, int compressed);
static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar *key, const secp256k1_scalar *tweak);
static int secp256k1_eckey_pubkey_tweak_add(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak);
static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar *key, const secp256k1_scalar *tweak);
static int secp256k1_eckey_pubkey_tweak_mul(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak);
#endif /* SECP256K1_ECKEY_H */

View File

@ -0,0 +1,100 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_ECKEY_IMPL_H
#define SECP256K1_ECKEY_IMPL_H
#include "eckey.h"
#include "scalar.h"
#include "field.h"
#include "group.h"
#include "ecmult_gen.h"
static int secp256k1_eckey_pubkey_parse(secp256k1_ge *elem, const unsigned char *pub, size_t size) {
if (size == 33 && (pub[0] == SECP256K1_TAG_PUBKEY_EVEN || pub[0] == SECP256K1_TAG_PUBKEY_ODD)) {
secp256k1_fe x;
return secp256k1_fe_set_b32(&x, pub+1) && secp256k1_ge_set_xo_var(elem, &x, pub[0] == SECP256K1_TAG_PUBKEY_ODD);
} else if (size == 65 && (pub[0] == 0x04 || pub[0] == 0x06 || pub[0] == 0x07)) {
secp256k1_fe x, y;
if (!secp256k1_fe_set_b32(&x, pub+1) || !secp256k1_fe_set_b32(&y, pub+33)) {
return 0;
}
secp256k1_ge_set_xy(elem, &x, &y);
if ((pub[0] == SECP256K1_TAG_PUBKEY_HYBRID_EVEN || pub[0] == SECP256K1_TAG_PUBKEY_HYBRID_ODD) &&
secp256k1_fe_is_odd(&y) != (pub[0] == SECP256K1_TAG_PUBKEY_HYBRID_ODD)) {
return 0;
}
return secp256k1_ge_is_valid_var(elem);
} else {
return 0;
}
}
static int secp256k1_eckey_pubkey_serialize(secp256k1_ge *elem, unsigned char *pub, size_t *size, int compressed) {
if (secp256k1_ge_is_infinity(elem)) {
return 0;
}
secp256k1_fe_normalize_var(&elem->x);
secp256k1_fe_normalize_var(&elem->y);
secp256k1_fe_get_b32(&pub[1], &elem->x);
if (compressed) {
*size = 33;
pub[0] = secp256k1_fe_is_odd(&elem->y) ? SECP256K1_TAG_PUBKEY_ODD : SECP256K1_TAG_PUBKEY_EVEN;
} else {
*size = 65;
pub[0] = SECP256K1_TAG_PUBKEY_UNCOMPRESSED;
secp256k1_fe_get_b32(&pub[33], &elem->y);
}
return 1;
}
static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar *key, const secp256k1_scalar *tweak) {
secp256k1_scalar_add(key, key, tweak);
if (secp256k1_scalar_is_zero(key)) {
return 0;
}
return 1;
}
static int secp256k1_eckey_pubkey_tweak_add(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak) {
secp256k1_gej pt;
secp256k1_scalar one;
secp256k1_gej_set_ge(&pt, key);
secp256k1_scalar_set_int(&one, 1);
secp256k1_ecmult(ctx, &pt, &pt, &one, tweak);
if (secp256k1_gej_is_infinity(&pt)) {
return 0;
}
secp256k1_ge_set_gej(key, &pt);
return 1;
}
static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar *key, const secp256k1_scalar *tweak) {
if (secp256k1_scalar_is_zero(tweak)) {
return 0;
}
secp256k1_scalar_mul(key, key, tweak);
return 1;
}
static int secp256k1_eckey_pubkey_tweak_mul(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak) {
secp256k1_scalar zero;
secp256k1_gej pt;
if (secp256k1_scalar_is_zero(tweak)) {
return 0;
}
secp256k1_scalar_set_int(&zero, 0);
secp256k1_gej_set_ge(&pt, key);
secp256k1_ecmult(ctx, &pt, &pt, tweak, &zero);
secp256k1_ge_set_gej(key, &pt);
return 1;
}
#endif /* SECP256K1_ECKEY_IMPL_H */

View File

@ -0,0 +1,47 @@
/**********************************************************************
* Copyright (c) 2013, 2014, 2017 Pieter Wuille, Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_ECMULT_H
#define SECP256K1_ECMULT_H
#include "num.h"
#include "group.h"
#include "scalar.h"
#include "scratch.h"
typedef struct {
/* For accelerating the computation of a*P + b*G: */
secp256k1_ge_storage (*pre_g)[]; /* odd multiples of the generator */
#ifdef USE_ENDOMORPHISM
secp256k1_ge_storage (*pre_g_128)[]; /* odd multiples of 2^128*generator */
#endif
} secp256k1_ecmult_context;
static void secp256k1_ecmult_context_init(secp256k1_ecmult_context *ctx);
static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const secp256k1_callback *cb);
static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context *dst,
const secp256k1_ecmult_context *src, const secp256k1_callback *cb);
static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context *ctx);
static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx);
/** Double multiply: R = na*A + ng*G */
static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng);
typedef int (secp256k1_ecmult_multi_callback)(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data);
/**
* Multi-multiply: R = inp_g_sc * G + sum_i ni * Ai.
* Chooses the right algorithm for a given number of points and scratch space
* size. Resets and overwrites the given scratch space. If the points do not
* fit in the scratch space the algorithm is repeatedly run with batches of
* points.
* Returns: 1 on success (including when inp_g_sc is NULL and n is 0)
* 0 if there is not enough scratch space for a single point or
* callback returns 0
*/
static int secp256k1_ecmult_multi_var(const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n);
#endif /* SECP256K1_ECMULT_H */

View File

@ -0,0 +1,17 @@
/**********************************************************************
* Copyright (c) 2015 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_ECMULT_CONST_H
#define SECP256K1_ECMULT_CONST_H
#include "scalar.h"
#include "group.h"
/* Here `bits` should be set to the maximum bitlength of the _absolute value_ of `q`, plus
* one because we internally sometimes add 2 to the number during the WNAF conversion. */
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *q, int bits);
#endif /* SECP256K1_ECMULT_CONST_H */

View File

@ -0,0 +1,257 @@
/**********************************************************************
* Copyright (c) 2015 Pieter Wuille, Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_ECMULT_CONST_IMPL_H
#define SECP256K1_ECMULT_CONST_IMPL_H
#include "scalar.h"
#include "group.h"
#include "ecmult_const.h"
#include "ecmult_impl.h"
/* This is like `ECMULT_TABLE_GET_GE` but is constant time */
#define ECMULT_CONST_TABLE_GET_GE(r,pre,n,w) do { \
int m; \
int abs_n = (n) * (((n) > 0) * 2 - 1); \
int idx_n = abs_n / 2; \
secp256k1_fe neg_y; \
VERIFY_CHECK(((n) & 1) == 1); \
VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
VERIFY_SETUP(secp256k1_fe_clear(&(r)->x)); \
VERIFY_SETUP(secp256k1_fe_clear(&(r)->y)); \
for (m = 0; m < ECMULT_TABLE_SIZE(w); m++) { \
/* This loop is used to avoid secret data in array indices. See
* the comment in ecmult_gen_impl.h for rationale. */ \
secp256k1_fe_cmov(&(r)->x, &(pre)[m].x, m == idx_n); \
secp256k1_fe_cmov(&(r)->y, &(pre)[m].y, m == idx_n); \
} \
(r)->infinity = 0; \
secp256k1_fe_negate(&neg_y, &(r)->y, 1); \
secp256k1_fe_cmov(&(r)->y, &neg_y, (n) != abs_n); \
} while(0)
/** Convert a number to WNAF notation.
* The number becomes represented by sum(2^{wi} * wnaf[i], i=0..WNAF_SIZE(w)+1) - return_val.
* It has the following guarantees:
* - each wnaf[i] an odd integer between -(1 << w) and (1 << w)
* - each wnaf[i] is nonzero
* - the number of words set is always WNAF_SIZE(w) + 1
*
* Adapted from `The Width-w NAF Method Provides Small Memory and Fast Elliptic Scalar
* Multiplications Secure against Side Channel Attacks`, Okeya and Tagaki. M. Joye (Ed.)
* CT-RSA 2003, LNCS 2612, pp. 328-443, 2003. Springer-Verlagy Berlin Heidelberg 2003
*
* Numbers reference steps of `Algorithm SPA-resistant Width-w NAF with Odd Scalar` on pp. 335
*/
static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w, int size) {
int global_sign;
int skew = 0;
int word = 0;
/* 1 2 3 */
int u_last;
int u;
int flip;
int bit;
secp256k1_scalar neg_s;
int not_neg_one;
/* Note that we cannot handle even numbers by negating them to be odd, as is
* done in other implementations, since if our scalars were specified to have
* width < 256 for performance reasons, their negations would have width 256
* and we'd lose any performance benefit. Instead, we use a technique from
* Section 4.2 of the Okeya/Tagaki paper, which is to add either 1 (for even)
* or 2 (for odd) to the number we are encoding, returning a skew value indicating
* this, and having the caller compensate after doing the multiplication.
*
* In fact, we _do_ want to negate numbers to minimize their bit-lengths (and in
* particular, to ensure that the outputs from the endomorphism-split fit into
* 128 bits). If we negate, the parity of our number flips, inverting which of
* {1, 2} we want to add to the scalar when ensuring that it's odd. Further
* complicating things, -1 interacts badly with `secp256k1_scalar_cadd_bit` and
* we need to special-case it in this logic. */
flip = secp256k1_scalar_is_high(&s);
/* We add 1 to even numbers, 2 to odd ones, noting that negation flips parity */
bit = flip ^ !secp256k1_scalar_is_even(&s);
/* We check for negative one, since adding 2 to it will cause an overflow */
secp256k1_scalar_negate(&neg_s, &s);
not_neg_one = !secp256k1_scalar_is_one(&neg_s);
secp256k1_scalar_cadd_bit(&s, bit, not_neg_one);
/* If we had negative one, flip == 1, s.d[0] == 0, bit == 1, so caller expects
* that we added two to it and flipped it. In fact for -1 these operations are
* identical. We only flipped, but since skewing is required (in the sense that
* the skew must be 1 or 2, never zero) and flipping is not, we need to change
* our flags to claim that we only skewed. */
global_sign = secp256k1_scalar_cond_negate(&s, flip);
global_sign *= not_neg_one * 2 - 1;
skew = 1 << bit;
/* 4 */
u_last = secp256k1_scalar_shr_int(&s, w);
while (word * w < size) {
int sign;
int even;
/* 4.1 4.4 */
u = secp256k1_scalar_shr_int(&s, w);
/* 4.2 */
even = ((u & 1) == 0);
sign = 2 * (u_last > 0) - 1;
u += sign * even;
u_last -= sign * even * (1 << w);
/* 4.3, adapted for global sign change */
wnaf[word++] = u_last * global_sign;
u_last = u;
}
wnaf[word] = u * global_sign;
VERIFY_CHECK(secp256k1_scalar_is_zero(&s));
VERIFY_CHECK(word == WNAF_SIZE_BITS(size, w));
return skew;
}
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *scalar, int size) {
secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
secp256k1_ge tmpa;
secp256k1_fe Z;
int skew_1;
#ifdef USE_ENDOMORPHISM
secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
int wnaf_lam[1 + WNAF_SIZE(WINDOW_A - 1)];
int skew_lam;
secp256k1_scalar q_1, q_lam;
#endif
int wnaf_1[1 + WNAF_SIZE(WINDOW_A - 1)];
int i;
secp256k1_scalar sc = *scalar;
/* build wnaf representation for q. */
int rsize = size;
#ifdef USE_ENDOMORPHISM
if (size > 128) {
rsize = 128;
/* split q into q_1 and q_lam (where q = q_1 + q_lam*lambda, and q_1 and q_lam are ~128 bit) */
secp256k1_scalar_split_lambda(&q_1, &q_lam, &sc);
skew_1 = secp256k1_wnaf_const(wnaf_1, q_1, WINDOW_A - 1, 128);
skew_lam = secp256k1_wnaf_const(wnaf_lam, q_lam, WINDOW_A - 1, 128);
} else
#endif
{
skew_1 = secp256k1_wnaf_const(wnaf_1, sc, WINDOW_A - 1, size);
#ifdef USE_ENDOMORPHISM
skew_lam = 0;
#endif
}
/* Calculate odd multiples of a.
* All multiples are brought to the same Z 'denominator', which is stored
* in Z. Due to secp256k1' isomorphism we can do all operations pretending
* that the Z coordinate was 1, use affine addition formulae, and correct
* the Z coordinate of the result once at the end.
*/
secp256k1_gej_set_ge(r, a);
secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, r);
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
secp256k1_fe_normalize_weak(&pre_a[i].y);
}
#ifdef USE_ENDOMORPHISM
if (size > 128) {
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]);
}
}
#endif
/* first loop iteration (separated out so we can directly set r, rather
* than having it start at infinity, get doubled several times, then have
* its new value added to it) */
i = wnaf_1[WNAF_SIZE_BITS(rsize, WINDOW_A - 1)];
VERIFY_CHECK(i != 0);
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A);
secp256k1_gej_set_ge(r, &tmpa);
#ifdef USE_ENDOMORPHISM
if (size > 128) {
i = wnaf_lam[WNAF_SIZE_BITS(rsize, WINDOW_A - 1)];
VERIFY_CHECK(i != 0);
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, i, WINDOW_A);
secp256k1_gej_add_ge(r, r, &tmpa);
}
#endif
/* remaining loop iterations */
for (i = WNAF_SIZE_BITS(rsize, WINDOW_A - 1) - 1; i >= 0; i--) {
int n;
int j;
for (j = 0; j < WINDOW_A - 1; ++j) {
secp256k1_gej_double_nonzero(r, r, NULL);
}
n = wnaf_1[i];
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
VERIFY_CHECK(n != 0);
secp256k1_gej_add_ge(r, r, &tmpa);
#ifdef USE_ENDOMORPHISM
if (size > 128) {
n = wnaf_lam[i];
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A);
VERIFY_CHECK(n != 0);
secp256k1_gej_add_ge(r, r, &tmpa);
}
#endif
}
secp256k1_fe_mul(&r->z, &r->z, &Z);
{
/* Correct for wNAF skew */
secp256k1_ge correction = *a;
secp256k1_ge_storage correction_1_stor;
#ifdef USE_ENDOMORPHISM
secp256k1_ge_storage correction_lam_stor;
#endif
secp256k1_ge_storage a2_stor;
secp256k1_gej tmpj;
secp256k1_gej_set_ge(&tmpj, &correction);
secp256k1_gej_double_var(&tmpj, &tmpj, NULL);
secp256k1_ge_set_gej(&correction, &tmpj);
secp256k1_ge_to_storage(&correction_1_stor, a);
#ifdef USE_ENDOMORPHISM
if (size > 128) {
secp256k1_ge_to_storage(&correction_lam_stor, a);
}
#endif
secp256k1_ge_to_storage(&a2_stor, &correction);
/* For odd numbers this is 2a (so replace it), for even ones a (so no-op) */
secp256k1_ge_storage_cmov(&correction_1_stor, &a2_stor, skew_1 == 2);
#ifdef USE_ENDOMORPHISM
if (size > 128) {
secp256k1_ge_storage_cmov(&correction_lam_stor, &a2_stor, skew_lam == 2);
}
#endif
/* Apply the correction */
secp256k1_ge_from_storage(&correction, &correction_1_stor);
secp256k1_ge_neg(&correction, &correction);
secp256k1_gej_add_ge(r, r, &correction);
#ifdef USE_ENDOMORPHISM
if (size > 128) {
secp256k1_ge_from_storage(&correction, &correction_lam_stor);
secp256k1_ge_neg(&correction, &correction);
secp256k1_ge_mul_lambda(&correction, &correction);
secp256k1_gej_add_ge(r, r, &correction);
}
#endif
}
}
#endif /* SECP256K1_ECMULT_CONST_IMPL_H */

View File

@ -0,0 +1,43 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_ECMULT_GEN_H
#define SECP256K1_ECMULT_GEN_H
#include "scalar.h"
#include "group.h"
typedef struct {
/* For accelerating the computation of a*G:
* To harden against timing attacks, use the following mechanism:
* * Break up the multiplicand into groups of 4 bits, called n_0, n_1, n_2, ..., n_63.
* * Compute sum(n_i * 16^i * G + U_i, i=0..63), where:
* * U_i = U * 2^i (for i=0..62)
* * U_i = U * (1-2^63) (for i=63)
* where U is a point with no known corresponding scalar. Note that sum(U_i, i=0..63) = 0.
* For each i, and each of the 16 possible values of n_i, (n_i * 16^i * G + U_i) is
* precomputed (call it prec(i, n_i)). The formula now becomes sum(prec(i, n_i), i=0..63).
* None of the resulting prec group elements have a known scalar, and neither do any of
* the intermediate sums while computing a*G.
*/
secp256k1_ge_storage (*prec)[64][16]; /* prec[j][i] = 16^j * i * G + U_i */
secp256k1_scalar blind;
secp256k1_gej initial;
} secp256k1_ecmult_gen_context;
static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context* ctx);
static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context* ctx, const secp256k1_callback* cb);
static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context *dst,
const secp256k1_ecmult_gen_context* src, const secp256k1_callback* cb);
static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context* ctx);
static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx);
/** Multiply with the generator: R = a*G */
static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context* ctx, secp256k1_gej *r, const secp256k1_scalar *a);
static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32);
#endif /* SECP256K1_ECMULT_GEN_H */

View File

@ -0,0 +1,210 @@
/**********************************************************************
* Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_ECMULT_GEN_IMPL_H
#define SECP256K1_ECMULT_GEN_IMPL_H
#include "scalar.h"
#include "group.h"
#include "ecmult_gen.h"
#include "hash_impl.h"
#ifdef USE_ECMULT_STATIC_PRECOMPUTATION
#include "ecmult_static_context.h"
#endif
static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context *ctx) {
ctx->prec = NULL;
}
static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx, const secp256k1_callback* cb) {
#ifndef USE_ECMULT_STATIC_PRECOMPUTATION
secp256k1_ge prec[1024];
secp256k1_gej gj;
secp256k1_gej nums_gej;
int i, j;
#endif
if (ctx->prec != NULL) {
return;
}
#ifndef USE_ECMULT_STATIC_PRECOMPUTATION
ctx->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*ctx->prec));
/* get the generator */
secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g);
/* Construct a group element with no known corresponding scalar (nothing up my sleeve). */
{
static const unsigned char nums_b32[33] = "The scalar for this x is unknown";
secp256k1_fe nums_x;
secp256k1_ge nums_ge;
int r;
r = secp256k1_fe_set_b32(&nums_x, nums_b32);
(void)r;
VERIFY_CHECK(r);
r = secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0);
(void)r;
VERIFY_CHECK(r);
secp256k1_gej_set_ge(&nums_gej, &nums_ge);
/* Add G to make the bits in x uniformly distributed. */
secp256k1_gej_add_ge_var(&nums_gej, &nums_gej, &secp256k1_ge_const_g, NULL);
}
/* compute prec. */
{
secp256k1_gej precj[1024]; /* Jacobian versions of prec. */
secp256k1_gej gbase;
secp256k1_gej numsbase;
gbase = gj; /* 16^j * G */
numsbase = nums_gej; /* 2^j * nums. */
for (j = 0; j < 64; j++) {
/* Set precj[j*16 .. j*16+15] to (numsbase, numsbase + gbase, ..., numsbase + 15*gbase). */
precj[j*16] = numsbase;
for (i = 1; i < 16; i++) {
secp256k1_gej_add_var(&precj[j*16 + i], &precj[j*16 + i - 1], &gbase, NULL);
}
/* Multiply gbase by 16. */
for (i = 0; i < 4; i++) {
secp256k1_gej_double_var(&gbase, &gbase, NULL);
}
/* Multiply numbase by 2. */
secp256k1_gej_double_var(&numsbase, &numsbase, NULL);
if (j == 62) {
/* In the last iteration, numsbase is (1 - 2^j) * nums instead. */
secp256k1_gej_neg(&numsbase, &numsbase);
secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej, NULL);
}
}
secp256k1_ge_set_all_gej_var(prec, precj, 1024, cb);
}
for (j = 0; j < 64; j++) {
for (i = 0; i < 16; i++) {
secp256k1_ge_to_storage(&(*ctx->prec)[j][i], &prec[j*16 + i]);
}
}
#else
(void)cb;
ctx->prec = (secp256k1_ge_storage (*)[64][16])secp256k1_ecmult_static_context;
#endif
secp256k1_ecmult_gen_blind(ctx, NULL);
}
static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx) {
return ctx->prec != NULL;
}
static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context *dst,
const secp256k1_ecmult_gen_context *src, const secp256k1_callback* cb) {
if (src->prec == NULL) {
dst->prec = NULL;
} else {
#ifndef USE_ECMULT_STATIC_PRECOMPUTATION
dst->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*dst->prec));
memcpy(dst->prec, src->prec, sizeof(*dst->prec));
#else
(void)cb;
dst->prec = src->prec;
#endif
dst->initial = src->initial;
dst->blind = src->blind;
}
}
static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context *ctx) {
#ifndef USE_ECMULT_STATIC_PRECOMPUTATION
free(ctx->prec);
#endif
secp256k1_scalar_clear(&ctx->blind);
secp256k1_gej_clear(&ctx->initial);
ctx->prec = NULL;
}
static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *gn) {
secp256k1_ge add;
secp256k1_ge_storage adds;
secp256k1_scalar gnb;
int bits;
int i, j;
memset(&adds, 0, sizeof(adds));
*r = ctx->initial;
/* Blind scalar/point multiplication by computing (n-b)G + bG instead of nG. */
secp256k1_scalar_add(&gnb, gn, &ctx->blind);
add.infinity = 0;
for (j = 0; j < 64; j++) {
bits = secp256k1_scalar_get_bits(&gnb, j * 4, 4);
for (i = 0; i < 16; i++) {
/** This uses a conditional move to avoid any secret data in array indexes.
* _Any_ use of secret indexes has been demonstrated to result in timing
* sidechannels, even when the cache-line access patterns are uniform.
* See also:
* "A word of warning", CHES 2013 Rump Session, by Daniel J. Bernstein and Peter Schwabe
* (https://cryptojedi.org/peter/data/chesrump-20130822.pdf) and
* "Cache Attacks and Countermeasures: the Case of AES", RSA 2006,
* by Dag Arne Osvik, Adi Shamir, and Eran Tromer
* (http://www.tau.ac.il/~tromer/papers/cache.pdf)
*/
secp256k1_ge_storage_cmov(&adds, &(*ctx->prec)[j][i], i == bits);
}
secp256k1_ge_from_storage(&add, &adds);
secp256k1_gej_add_ge(r, r, &add);
}
bits = 0;
secp256k1_ge_clear(&add);
secp256k1_scalar_clear(&gnb);
}
/* Setup blinding values for secp256k1_ecmult_gen. */
static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32) {
secp256k1_scalar b;
secp256k1_gej gb;
secp256k1_fe s;
unsigned char nonce32[32];
secp256k1_rfc6979_hmac_sha256 rng;
int retry;
unsigned char keydata[64] = {0};
if (seed32 == NULL) {
/* When seed is NULL, reset the initial point and blinding value. */
secp256k1_gej_set_ge(&ctx->initial, &secp256k1_ge_const_g);
secp256k1_gej_neg(&ctx->initial, &ctx->initial);
secp256k1_scalar_set_int(&ctx->blind, 1);
}
/* The prior blinding value (if not reset) is chained forward by including it in the hash. */
secp256k1_scalar_get_b32(nonce32, &ctx->blind);
/** Using a CSPRNG allows a failure free interface, avoids needing large amounts of random data,
* and guards against weak or adversarial seeds. This is a simpler and safer interface than
* asking the caller for blinding values directly and expecting them to retry on failure.
*/
memcpy(keydata, nonce32, 32);
if (seed32 != NULL) {
memcpy(keydata + 32, seed32, 32);
}
secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, seed32 ? 64 : 32);
memset(keydata, 0, sizeof(keydata));
/* Retry for out of range results to achieve uniformity. */
do {
secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
retry = !secp256k1_fe_set_b32(&s, nonce32);
retry |= secp256k1_fe_is_zero(&s);
} while (retry); /* This branch true is cryptographically unreachable. Requires sha256_hmac output > Fp. */
/* Randomize the projection to defend against multiplier sidechannels. */
secp256k1_gej_rescale(&ctx->initial, &s);
secp256k1_fe_clear(&s);
do {
secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
secp256k1_scalar_set_b32(&b, nonce32, &retry);
/* A blinding value of 0 works, but would undermine the projection hardening. */
retry |= secp256k1_scalar_is_zero(&b);
} while (retry); /* This branch true is cryptographically unreachable. Requires sha256_hmac output > order. */
secp256k1_rfc6979_hmac_sha256_finalize(&rng);
memset(nonce32, 0, 32);
secp256k1_ecmult_gen(ctx, &gb, &b);
secp256k1_scalar_negate(&b, &b);
ctx->blind = b;
ctx->initial = gb;
secp256k1_scalar_clear(&b);
secp256k1_gej_clear(&gb);
}
#endif /* SECP256K1_ECMULT_GEN_IMPL_H */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,121 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_FIELD_H
#define SECP256K1_FIELD_H
/** Field element module.
*
* Field elements can be represented in several ways, but code accessing
* it (and implementations) need to take certain properties into account:
* - Each field element can be normalized or not.
* - Each field element has a magnitude, which represents how far away
* its representation is away from normalization. Normalized elements
* always have a magnitude of 1, but a magnitude of 1 doesn't imply
* normality.
*/
#include "field_10x26.h"
#include "util.h"
/** Normalize a field element. */
static void secp256k1_fe_normalize(secp256k1_fe *r);
/** Weakly normalize a field element: reduce it magnitude to 1, but don't fully normalize. */
static void secp256k1_fe_normalize_weak(secp256k1_fe *r);
/** Normalize a field element, without constant-time guarantee. */
static void secp256k1_fe_normalize_var(secp256k1_fe *r);
/** Verify whether a field element represents zero i.e. would normalize to a zero value. The field
* implementation may optionally normalize the input, but this should not be relied upon. */
static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r);
/** Verify whether a field element represents zero i.e. would normalize to a zero value. The field
* implementation may optionally normalize the input, but this should not be relied upon. */
static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r);
/** Set a field element equal to a small integer. Resulting field element is normalized. */
static void secp256k1_fe_set_int(secp256k1_fe *r, int a);
/** Sets a field element equal to zero, initializing all fields. */
static void secp256k1_fe_clear(secp256k1_fe *a);
/** Verify whether a field element is zero. Requires the input to be normalized. */
static int secp256k1_fe_is_zero(const secp256k1_fe *a);
/** Check the "oddness" of a field element. Requires the input to be normalized. */
static int secp256k1_fe_is_odd(const secp256k1_fe *a);
/** Compare two field elements. Requires magnitude-1 inputs. */
static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b);
/** Same as secp256k1_fe_equal, but may be variable time. */
static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b);
/** Compare two field elements. Requires both inputs to be normalized */
static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b);
/** Set a field element equal to 32-byte big endian value. If successful, the resulting field element is normalized. */
static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a);
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a);
/** Set a field element equal to the additive inverse of another. Takes a maximum magnitude of the input
* as an argument. The magnitude of the output is one higher. */
static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m);
/** Multiplies the passed field element with a small integer constant. Multiplies the magnitude by that
* small integer. */
static void secp256k1_fe_mul_int(secp256k1_fe *r, int a);
/** Adds a field element to another. The result has the sum of the inputs' magnitudes as magnitude. */
static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a);
/** Sets a field element to be the product of two others. Requires the inputs' magnitudes to be at most 8.
* The output magnitude is 1 (but not guaranteed to be normalized). */
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b);
/** Sets a field element to be the square of another. Requires the input's magnitude to be at most 8.
* The output magnitude is 1 (but not guaranteed to be normalized). */
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a);
/** If a has a square root, it is computed in r and 1 is returned. If a does not
* have a square root, the root of its negation is computed and 0 is returned.
* The input's magnitude can be at most 8. The output magnitude is 1 (but not
* guaranteed to be normalized). The result in r will always be a square
* itself. */
static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a);
/** Checks whether a field element is a quadratic residue. */
static int secp256k1_fe_is_quad_var(const secp256k1_fe *a);
/** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be
* at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a);
/** Potentially faster version of secp256k1_fe_inv, without constant-time guarantee. */
static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a);
/** Calculate the (modular) inverses of a batch of field elements. Requires the inputs' magnitudes to be
* at most 8. The output magnitudes are 1 (but not guaranteed to be normalized). The inputs and
* outputs must not overlap in memory. */
static void secp256k1_fe_inv_all_var(secp256k1_fe *r, const secp256k1_fe *a, size_t len);
/** Convert a field element to the storage type. */
static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a);
/** Convert a field element back from the storage type. */
static void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a);
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */
static void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag);
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */
static void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag);
#endif /* SECP256K1_FIELD_H */

View File

@ -0,0 +1,48 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_FIELD_REPR_H
#define SECP256K1_FIELD_REPR_H
#include <stdint.h>
typedef struct {
/* X = sum(i=0..9, elem[i]*2^26) mod n */
uint32_t n[10];
#ifdef VERIFY
int magnitude;
int normalized;
#endif
} secp256k1_fe;
/* Unpacks a constant into a overlapping multi-limbed FE element. */
#define SECP256K1_FE_CONST_INNER(d7, d6, d5, d4, d3, d2, d1, d0) { \
(d0) & 0x3FFFFFFUL, \
(((uint32_t)d0) >> 26) | (((uint32_t)(d1) & 0xFFFFFUL) << 6), \
(((uint32_t)d1) >> 20) | (((uint32_t)(d2) & 0x3FFFUL) << 12), \
(((uint32_t)d2) >> 14) | (((uint32_t)(d3) & 0xFFUL) << 18), \
(((uint32_t)d3) >> 8) | (((uint32_t)(d4) & 0x3UL) << 24), \
(((uint32_t)d4) >> 2) & 0x3FFFFFFUL, \
(((uint32_t)d4) >> 28) | (((uint32_t)(d5) & 0x3FFFFFUL) << 4), \
(((uint32_t)d5) >> 22) | (((uint32_t)(d6) & 0xFFFFUL) << 10), \
(((uint32_t)d6) >> 16) | (((uint32_t)(d7) & 0x3FFUL) << 16), \
(((uint32_t)d7) >> 10) \
}
#ifdef VERIFY
#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0)), 1, 1}
#else
#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0))}
#endif
typedef struct {
uint32_t n[8];
} secp256k1_fe_storage;
#define SECP256K1_FE_STORAGE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{ (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }}
#define SECP256K1_FE_STORAGE_CONST_GET(d) d.n[7], d.n[6], d.n[5], d.n[4],d.n[3], d.n[2], d.n[1], d.n[0]
#endif /* SECP256K1_FIELD_REPR_H */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,306 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_FIELD_IMPL_H
#define SECP256K1_FIELD_IMPL_H
#define USE_FIELD_INV_BUILTIN
#include "util.h"
#include "field_10x26_impl.h"
SECP256K1_INLINE static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b) {
secp256k1_fe na;
secp256k1_fe_negate(&na, a, 1);
secp256k1_fe_add(&na, b);
return secp256k1_fe_normalizes_to_zero(&na);
}
SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b) {
secp256k1_fe na;
secp256k1_fe_negate(&na, a, 1);
secp256k1_fe_add(&na, b);
return secp256k1_fe_normalizes_to_zero_var(&na);
}
static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a) {
/** Given that p is congruent to 3 mod 4, we can compute the square root of
* a mod p as the (p+1)/4'th power of a.
*
* As (p+1)/4 is an even number, it will have the same result for a and for
* (-a). Only one of these two numbers actually has a square root however,
* so we test at the end by squaring and comparing to the input.
* Also because (p+1)/4 is an even number, the computed square root is
* itself always a square (a ** ((p+1)/4) is the square of a ** ((p+1)/8)).
*/
secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
int j;
/** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in
* { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
* 1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
*/
secp256k1_fe_sqr(&x2, a);
secp256k1_fe_mul(&x2, &x2, a);
secp256k1_fe_sqr(&x3, &x2);
secp256k1_fe_mul(&x3, &x3, a);
x6 = x3;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x6, &x6);
}
secp256k1_fe_mul(&x6, &x6, &x3);
x9 = x6;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x9, &x9);
}
secp256k1_fe_mul(&x9, &x9, &x3);
x11 = x9;
for (j=0; j<2; j++) {
secp256k1_fe_sqr(&x11, &x11);
}
secp256k1_fe_mul(&x11, &x11, &x2);
x22 = x11;
for (j=0; j<11; j++) {
secp256k1_fe_sqr(&x22, &x22);
}
secp256k1_fe_mul(&x22, &x22, &x11);
x44 = x22;
for (j=0; j<22; j++) {
secp256k1_fe_sqr(&x44, &x44);
}
secp256k1_fe_mul(&x44, &x44, &x22);
x88 = x44;
for (j=0; j<44; j++) {
secp256k1_fe_sqr(&x88, &x88);
}
secp256k1_fe_mul(&x88, &x88, &x44);
x176 = x88;
for (j=0; j<88; j++) {
secp256k1_fe_sqr(&x176, &x176);
}
secp256k1_fe_mul(&x176, &x176, &x88);
x220 = x176;
for (j=0; j<44; j++) {
secp256k1_fe_sqr(&x220, &x220);
}
secp256k1_fe_mul(&x220, &x220, &x44);
x223 = x220;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x223, &x223);
}
secp256k1_fe_mul(&x223, &x223, &x3);
/* The final result is then assembled using a sliding window over the blocks. */
t1 = x223;
for (j=0; j<23; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(&t1, &t1, &x22);
for (j=0; j<6; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(&t1, &t1, &x2);
secp256k1_fe_sqr(&t1, &t1);
secp256k1_fe_sqr(r, &t1);
/* Check that a square root was actually calculated */
secp256k1_fe_sqr(&t1, r);
return secp256k1_fe_equal(&t1, a);
}
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a) {
secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
int j;
/** The binary representation of (p - 2) has 5 blocks of 1s, with lengths in
* { 1, 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
* [1], [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
*/
secp256k1_fe_sqr(&x2, a);
secp256k1_fe_mul(&x2, &x2, a);
secp256k1_fe_sqr(&x3, &x2);
secp256k1_fe_mul(&x3, &x3, a);
x6 = x3;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x6, &x6);
}
secp256k1_fe_mul(&x6, &x6, &x3);
x9 = x6;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x9, &x9);
}
secp256k1_fe_mul(&x9, &x9, &x3);
x11 = x9;
for (j=0; j<2; j++) {
secp256k1_fe_sqr(&x11, &x11);
}
secp256k1_fe_mul(&x11, &x11, &x2);
x22 = x11;
for (j=0; j<11; j++) {
secp256k1_fe_sqr(&x22, &x22);
}
secp256k1_fe_mul(&x22, &x22, &x11);
x44 = x22;
for (j=0; j<22; j++) {
secp256k1_fe_sqr(&x44, &x44);
}
secp256k1_fe_mul(&x44, &x44, &x22);
x88 = x44;
for (j=0; j<44; j++) {
secp256k1_fe_sqr(&x88, &x88);
}
secp256k1_fe_mul(&x88, &x88, &x44);
x176 = x88;
for (j=0; j<88; j++) {
secp256k1_fe_sqr(&x176, &x176);
}
secp256k1_fe_mul(&x176, &x176, &x88);
x220 = x176;
for (j=0; j<44; j++) {
secp256k1_fe_sqr(&x220, &x220);
}
secp256k1_fe_mul(&x220, &x220, &x44);
x223 = x220;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x223, &x223);
}
secp256k1_fe_mul(&x223, &x223, &x3);
/* The final result is then assembled using a sliding window over the blocks. */
t1 = x223;
for (j=0; j<23; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(&t1, &t1, &x22);
for (j=0; j<5; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(&t1, &t1, a);
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(&t1, &t1, &x2);
for (j=0; j<2; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(r, a, &t1);
}
static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a) {
#if defined(USE_FIELD_INV_BUILTIN)
secp256k1_fe_inv(r, a);
#elif defined(USE_FIELD_INV_NUM)
secp256k1_num n, m;
static const secp256k1_fe negone = SECP256K1_FE_CONST(
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL,
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, 0xFFFFFC2EUL
);
/* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
static const unsigned char prime[32] = {
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
};
unsigned char b[32];
int res;
secp256k1_fe c = *a;
secp256k1_fe_normalize_var(&c);
secp256k1_fe_get_b32(b, &c);
secp256k1_num_set_bin(&n, b, 32);
secp256k1_num_set_bin(&m, prime, 32);
secp256k1_num_mod_inverse(&n, &n, &m);
secp256k1_num_get_bin(b, 32, &n);
res = secp256k1_fe_set_b32(r, b);
(void)res;
VERIFY_CHECK(res);
/* Verify the result is the (unique) valid inverse using non-GMP code. */
secp256k1_fe_mul(&c, &c, r);
secp256k1_fe_add(&c, &negone);
CHECK(secp256k1_fe_normalizes_to_zero_var(&c));
#else
#error "Please select field inverse implementation"
#endif
}
static void secp256k1_fe_inv_all_var(secp256k1_fe *r, const secp256k1_fe *a, size_t len) {
secp256k1_fe u;
size_t i;
if (len < 1) {
return;
}
VERIFY_CHECK((r + len <= a) || (a + len <= r));
r[0] = a[0];
i = 0;
while (++i < len) {
secp256k1_fe_mul(&r[i], &r[i - 1], &a[i]);
}
secp256k1_fe_inv_var(&u, &r[--i]);
while (i > 0) {
size_t j = i--;
secp256k1_fe_mul(&r[j], &r[i], &u);
secp256k1_fe_mul(&u, &u, &a[j]);
}
r[0] = u;
}
static int secp256k1_fe_is_quad_var(const secp256k1_fe *a) {
#ifndef USE_NUM_NONE
unsigned char b[32];
secp256k1_num n;
secp256k1_num m;
/* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
static const unsigned char prime[32] = {
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
};
secp256k1_fe c = *a;
secp256k1_fe_normalize_var(&c);
secp256k1_fe_get_b32(b, &c);
secp256k1_num_set_bin(&n, b, 32);
secp256k1_num_set_bin(&m, prime, 32);
return secp256k1_num_jacobi(&n, &m) >= 0;
#else
secp256k1_fe r;
return secp256k1_fe_sqrt(&r, a);
#endif
}
#endif /* SECP256K1_FIELD_IMPL_H */

View File

@ -0,0 +1,147 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_GROUP_H
#define SECP256K1_GROUP_H
#include "num.h"
#include "field.h"
/** A group element of the secp256k1 curve, in affine coordinates. */
typedef struct {
secp256k1_fe x;
secp256k1_fe y;
int infinity; /* whether this represents the point at infinity */
} secp256k1_ge;
#define SECP256K1_GE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), 0}
#define SECP256K1_GE_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
/** A group element of the secp256k1 curve, in jacobian coordinates. */
typedef struct {
secp256k1_fe x; /* actual X: x/z^2 */
secp256k1_fe y; /* actual Y: y/z^3 */
secp256k1_fe z;
int infinity; /* whether this represents the point at infinity */
} secp256k1_gej;
#define SECP256K1_GEJ_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1), 0}
#define SECP256K1_GEJ_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
typedef struct {
secp256k1_fe_storage x;
secp256k1_fe_storage y;
} secp256k1_ge_storage;
#define SECP256K1_GE_STORAGE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_STORAGE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_STORAGE_CONST((i),(j),(k),(l),(m),(n),(o),(p))}
#define SECP256K1_GE_STORAGE_CONST_GET(t) SECP256K1_FE_STORAGE_CONST_GET(t.x), SECP256K1_FE_STORAGE_CONST_GET(t.y)
/** Set a group element equal to the point with given X and Y coordinates */
static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y);
/** Set a group element (affine) equal to the point with the given X coordinate
* and a Y coordinate that is a quadratic residue modulo p. The return value
* is true iff a coordinate with the given X coordinate exists.
*/
static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x);
/** Set a group element (affine) equal to the point with the given X coordinate, and given oddness
* for Y. Return value indicates whether the result is valid. */
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd);
/** Check whether a group element is the point at infinity. */
static int secp256k1_ge_is_infinity(const secp256k1_ge *a);
/** Check whether a group element is valid (i.e., on the curve). */
static int secp256k1_ge_is_valid_var(const secp256k1_ge *a);
static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a);
/** Set a group element equal to another which is given in jacobian coordinates */
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a);
/** Set a batch of group elements equal to the inputs given in jacobian coordinates */
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len, const secp256k1_callback *cb);
/** Set a batch of group elements equal to the inputs given in jacobian
* coordinates (with known z-ratios). zr must contain the known z-ratios such
* that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. */
static void secp256k1_ge_set_table_gej_var(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr, size_t len);
/** Bring a batch inputs given in jacobian coordinates (with known z-ratios) to
* the same global z "denominator". zr must contain the known z-ratios such
* that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. The x and y
* coordinates of the result are stored in r, the common z coordinate is
* stored in globalz. */
static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr);
/** Set a group element (affine) equal to the point at infinity. */
static void secp256k1_ge_set_infinity(secp256k1_ge *r);
/** Set a group element (jacobian) equal to the point at infinity. */
static void secp256k1_gej_set_infinity(secp256k1_gej *r);
/** Set a group element (jacobian) equal to another which is given in affine coordinates. */
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a);
/** Compare the X coordinate of a group element (jacobian). */
static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a);
/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */
static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a);
/** Check whether a group element is the point at infinity. */
static int secp256k1_gej_is_infinity(const secp256k1_gej *a);
/** Check whether a group element's y coordinate is a quadratic residue. */
static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a);
/** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0).
* a may not be zero. Constant time. */
static void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr);
/** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0). */
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr);
/** Set r equal to the sum of a and b. If rzr is non-NULL, r->z = a->z * *rzr (a cannot be infinity in that case). */
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr);
/** Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity). */
static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b);
/** Set r equal to the sum of a and b (with b given in affine coordinates). This is more efficient
than secp256k1_gej_add_var. It is identical to secp256k1_gej_add_ge but without constant-time
guarantee, and b is allowed to be infinity. If rzr is non-NULL, r->z = a->z * *rzr (a cannot be infinity in that case). */
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr);
/** Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv). */
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv);
#ifdef USE_ENDOMORPHISM
/** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */
static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a);
#endif
/** Clear a secp256k1_gej to prevent leaking sensitive information. */
static void secp256k1_gej_clear(secp256k1_gej *r);
/** Clear a secp256k1_ge to prevent leaking sensitive information. */
static void secp256k1_ge_clear(secp256k1_ge *r);
/** Convert a group element to the storage type. */
static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a);
/** Convert a group element back from the storage type. */
static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a);
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */
static void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag);
/** Rescale a jacobian point by b which must be non-zero. Constant-time. */
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b);
#endif /* SECP256K1_GROUP_H */

View File

@ -0,0 +1,706 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_GROUP_IMPL_H
#define SECP256K1_GROUP_IMPL_H
#include "num.h"
#include "field.h"
#include "group.h"
/* These points can be generated in sage as follows:
*
* 0. Setup a worksheet with the following parameters.
* b = 4 # whatever CURVE_B will be set to
* F = FiniteField (0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F)
* C = EllipticCurve ([F (0), F (b)])
*
* 1. Determine all the small orders available to you. (If there are
* no satisfactory ones, go back and change b.)
* print C.order().factor(limit=1000)
*
* 2. Choose an order as one of the prime factors listed in the above step.
* (You can also multiply some to get a composite order, though the
* tests will crash trying to invert scalars during signing.) We take a
* random point and scale it to drop its order to the desired value.
* There is some probability this won't work; just try again.
* order = 199
* P = C.random_point()
* P = (int(P.order()) / int(order)) * P
* assert(P.order() == order)
*
* 3. Print the values. You'll need to use a vim macro or something to
* split the hex output into 4-byte chunks.
* print "%x %x" % P.xy()
*/
#if defined(EXHAUSTIVE_TEST_ORDER)
# if EXHAUSTIVE_TEST_ORDER == 199
const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
0xFA7CC9A7, 0x0737F2DB, 0xA749DD39, 0x2B4FB069,
0x3B017A7D, 0xA808C2F1, 0xFB12940C, 0x9EA66C18,
0x78AC123A, 0x5ED8AEF3, 0x8732BC91, 0x1F3A2868,
0x48DF246C, 0x808DAE72, 0xCFE52572, 0x7F0501ED
);
const int CURVE_B = 4;
# elif EXHAUSTIVE_TEST_ORDER == 13
const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
0xedc60018, 0xa51a786b, 0x2ea91f4d, 0x4c9416c0,
0x9de54c3b, 0xa1316554, 0x6cf4345c, 0x7277ef15,
0x54cb1b6b, 0xdc8c1273, 0x087844ea, 0x43f4603e,
0x0eaf9a43, 0xf6effe55, 0x939f806d, 0x37adf8ac
);
const int CURVE_B = 2;
# else
# error No known generator for the specified exhaustive test group order.
# endif
#else
/** Generator for secp256k1, value 'g' defined in
* "Standards for Efficient Cryptography" (SEC2) 2.7.1.
*/
static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
0x79BE667EUL, 0xF9DCBBACUL, 0x55A06295UL, 0xCE870B07UL,
0x029BFCDBUL, 0x2DCE28D9UL, 0x59F2815BUL, 0x16F81798UL,
0x483ADA77UL, 0x26A3C465UL, 0x5DA4FBFCUL, 0x0E1108A8UL,
0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL
);
const int CURVE_B = 7;
#endif
static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) {
secp256k1_fe zi2;
secp256k1_fe zi3;
secp256k1_fe_sqr(&zi2, zi);
secp256k1_fe_mul(&zi3, &zi2, zi);
secp256k1_fe_mul(&r->x, &a->x, &zi2);
secp256k1_fe_mul(&r->y, &a->y, &zi3);
r->infinity = a->infinity;
}
static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y) {
r->infinity = 0;
r->x = *x;
r->y = *y;
}
static int secp256k1_ge_is_infinity(const secp256k1_ge *a) {
return a->infinity;
}
static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a) {
*r = *a;
secp256k1_fe_normalize_weak(&r->y);
secp256k1_fe_negate(&r->y, &r->y, 1);
}
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a) {
secp256k1_fe z2, z3;
r->infinity = a->infinity;
secp256k1_fe_inv(&a->z, &a->z);
secp256k1_fe_sqr(&z2, &a->z);
secp256k1_fe_mul(&z3, &a->z, &z2);
secp256k1_fe_mul(&a->x, &a->x, &z2);
secp256k1_fe_mul(&a->y, &a->y, &z3);
secp256k1_fe_set_int(&a->z, 1);
r->x = a->x;
r->y = a->y;
}
static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) {
secp256k1_fe z2, z3;
r->infinity = a->infinity;
if (a->infinity) {
return;
}
secp256k1_fe_inv_var(&a->z, &a->z);
secp256k1_fe_sqr(&z2, &a->z);
secp256k1_fe_mul(&z3, &a->z, &z2);
secp256k1_fe_mul(&a->x, &a->x, &z2);
secp256k1_fe_mul(&a->y, &a->y, &z3);
secp256k1_fe_set_int(&a->z, 1);
r->x = a->x;
r->y = a->y;
}
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len, const secp256k1_callback *cb) {
secp256k1_fe *az;
secp256k1_fe *azi;
size_t i;
size_t count = 0;
az = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * len);
for (i = 0; i < len; i++) {
if (!a[i].infinity) {
az[count++] = a[i].z;
}
}
azi = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * count);
secp256k1_fe_inv_all_var(azi, az, count);
free(az);
count = 0;
for (i = 0; i < len; i++) {
r[i].infinity = a[i].infinity;
if (!a[i].infinity) {
secp256k1_ge_set_gej_zinv(&r[i], &a[i], &azi[count++]);
}
}
free(azi);
}
static void secp256k1_ge_set_table_gej_var(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr, size_t len) {
size_t i = len - 1;
secp256k1_fe zi;
if (len > 0) {
/* Compute the inverse of the last z coordinate, and use it to compute the last affine output. */
secp256k1_fe_inv(&zi, &a[i].z);
secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi);
/* Work out way backwards, using the z-ratios to scale the x/y values. */
while (i > 0) {
secp256k1_fe_mul(&zi, &zi, &zr[i]);
i--;
secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi);
}
}
}
static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr) {
size_t i = len - 1;
secp256k1_fe zs;
if (len > 0) {
/* The z of the final point gives us the "global Z" for the table. */
r[i].x = a[i].x;
r[i].y = a[i].y;
*globalz = a[i].z;
r[i].infinity = 0;
zs = zr[i];
/* Work our way backwards, using the z-ratios to scale the x/y values. */
while (i > 0) {
if (i != len - 1) {
secp256k1_fe_mul(&zs, &zs, &zr[i]);
}
i--;
secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zs);
}
}
}
static void secp256k1_gej_set_infinity(secp256k1_gej *r) {
r->infinity = 1;
secp256k1_fe_clear(&r->x);
secp256k1_fe_clear(&r->y);
secp256k1_fe_clear(&r->z);
}
static void secp256k1_ge_set_infinity(secp256k1_ge *r) {
r->infinity = 1;
secp256k1_fe_clear(&r->x);
secp256k1_fe_clear(&r->y);
}
static void secp256k1_gej_clear(secp256k1_gej *r) {
r->infinity = 0;
secp256k1_fe_clear(&r->x);
secp256k1_fe_clear(&r->y);
secp256k1_fe_clear(&r->z);
}
static void secp256k1_ge_clear(secp256k1_ge *r) {
r->infinity = 0;
secp256k1_fe_clear(&r->x);
secp256k1_fe_clear(&r->y);
}
static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x) {
secp256k1_fe x2, x3, c;
r->x = *x;
secp256k1_fe_sqr(&x2, x);
secp256k1_fe_mul(&x3, x, &x2);
r->infinity = 0;
secp256k1_fe_set_int(&c, CURVE_B);
secp256k1_fe_add(&c, &x3);
return secp256k1_fe_sqrt(&r->y, &c);
}
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) {
if (!secp256k1_ge_set_xquad(r, x)) {
return 0;
}
secp256k1_fe_normalize_var(&r->y);
if (secp256k1_fe_is_odd(&r->y) != odd) {
secp256k1_fe_negate(&r->y, &r->y, 1);
}
return 1;
}
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a) {
r->infinity = a->infinity;
r->x = a->x;
r->y = a->y;
secp256k1_fe_set_int(&r->z, 1);
}
static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a) {
secp256k1_fe r, r2;
VERIFY_CHECK(!a->infinity);
secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x);
r2 = a->x; secp256k1_fe_normalize_weak(&r2);
return secp256k1_fe_equal_var(&r, &r2);
}
static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a) {
r->infinity = a->infinity;
r->x = a->x;
r->y = a->y;
r->z = a->z;
secp256k1_fe_normalize_weak(&r->y);
secp256k1_fe_negate(&r->y, &r->y, 1);
}
static int secp256k1_gej_is_infinity(const secp256k1_gej *a) {
return a->infinity;
}
static int secp256k1_gej_is_valid_var(const secp256k1_gej *a) {
secp256k1_fe y2, x3, z2, z6;
if (a->infinity) {
return 0;
}
/** y^2 = x^3 + 7
* (Y/Z^3)^2 = (X/Z^2)^3 + 7
* Y^2 / Z^6 = X^3 / Z^6 + 7
* Y^2 = X^3 + 7*Z^6
*/
secp256k1_fe_sqr(&y2, &a->y);
secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
secp256k1_fe_sqr(&z2, &a->z);
secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2);
secp256k1_fe_mul_int(&z6, CURVE_B);
secp256k1_fe_add(&x3, &z6);
secp256k1_fe_normalize_weak(&x3);
return secp256k1_fe_equal_var(&y2, &x3);
}
static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) {
secp256k1_fe y2, x3, c;
if (a->infinity) {
return 0;
}
/* y^2 = x^3 + 7 */
secp256k1_fe_sqr(&y2, &a->y);
secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
secp256k1_fe_set_int(&c, CURVE_B);
secp256k1_fe_add(&x3, &c);
secp256k1_fe_normalize_weak(&x3);
return secp256k1_fe_equal_var(&y2, &x3);
}
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) {
/* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate.
*
* Note that there is an implementation described at
* https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
* which trades a multiply for a square, but in practice this is actually slower,
* mainly because it requires more normalizations.
*/
secp256k1_fe t1,t2,t3,t4;
/** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity,
* Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have
* y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p.
*
* Having said this, if this function receives a point on a sextic twist, e.g. by
* a fault attack, it is possible for y to be 0. This happens for y^2 = x^3 + 6,
* since -6 does have a cube root mod p. For this point, this function will not set
* the infinity flag even though the point doubles to infinity, and the result
* point will be gibberish (z = 0 but infinity = 0).
*/
r->infinity = a->infinity;
if (r->infinity) {
if (rzr != NULL) {
secp256k1_fe_set_int(rzr, 1);
}
return;
}
if (rzr != NULL) {
*rzr = a->y;
secp256k1_fe_normalize_weak(rzr);
secp256k1_fe_mul_int(rzr, 2);
}
secp256k1_fe_mul(&r->z, &a->z, &a->y);
secp256k1_fe_mul_int(&r->z, 2); /* Z' = 2*Y*Z (2) */
secp256k1_fe_sqr(&t1, &a->x);
secp256k1_fe_mul_int(&t1, 3); /* T1 = 3*X^2 (3) */
secp256k1_fe_sqr(&t2, &t1); /* T2 = 9*X^4 (1) */
secp256k1_fe_sqr(&t3, &a->y);
secp256k1_fe_mul_int(&t3, 2); /* T3 = 2*Y^2 (2) */
secp256k1_fe_sqr(&t4, &t3);
secp256k1_fe_mul_int(&t4, 2); /* T4 = 8*Y^4 (2) */
secp256k1_fe_mul(&t3, &t3, &a->x); /* T3 = 2*X*Y^2 (1) */
r->x = t3;
secp256k1_fe_mul_int(&r->x, 4); /* X' = 8*X*Y^2 (4) */
secp256k1_fe_negate(&r->x, &r->x, 4); /* X' = -8*X*Y^2 (5) */
secp256k1_fe_add(&r->x, &t2); /* X' = 9*X^4 - 8*X*Y^2 (6) */
secp256k1_fe_negate(&t2, &t2, 1); /* T2 = -9*X^4 (2) */
secp256k1_fe_mul_int(&t3, 6); /* T3 = 12*X*Y^2 (6) */
secp256k1_fe_add(&t3, &t2); /* T3 = 12*X*Y^2 - 9*X^4 (8) */
secp256k1_fe_mul(&r->y, &t1, &t3); /* Y' = 36*X^3*Y^2 - 27*X^6 (1) */
secp256k1_fe_negate(&t2, &t4, 2); /* T2 = -8*Y^4 (3) */
secp256k1_fe_add(&r->y, &t2); /* Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) */
}
static SECP256K1_INLINE void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) {
VERIFY_CHECK(!secp256k1_gej_is_infinity(a));
secp256k1_gej_double_var(r, a, rzr);
}
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr) {
/* Operations: 12 mul, 4 sqr, 2 normalize, 12 mul_int/add/negate */
secp256k1_fe z22, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
if (a->infinity) {
VERIFY_CHECK(rzr == NULL);
*r = *b;
return;
}
if (b->infinity) {
if (rzr != NULL) {
secp256k1_fe_set_int(rzr, 1);
}
*r = *a;
return;
}
r->infinity = 0;
secp256k1_fe_sqr(&z22, &b->z);
secp256k1_fe_sqr(&z12, &a->z);
secp256k1_fe_mul(&u1, &a->x, &z22);
secp256k1_fe_mul(&u2, &b->x, &z12);
secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z);
secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
if (secp256k1_fe_normalizes_to_zero_var(&h)) {
if (secp256k1_fe_normalizes_to_zero_var(&i)) {
secp256k1_gej_double_var(r, a, rzr);
} else {
if (rzr != NULL) {
secp256k1_fe_set_int(rzr, 0);
}
r->infinity = 1;
}
return;
}
secp256k1_fe_sqr(&i2, &i);
secp256k1_fe_sqr(&h2, &h);
secp256k1_fe_mul(&h3, &h, &h2);
secp256k1_fe_mul(&h, &h, &b->z);
if (rzr != NULL) {
*rzr = h;
}
secp256k1_fe_mul(&r->z, &a->z, &h);
secp256k1_fe_mul(&t, &u1, &h2);
r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
secp256k1_fe_add(&r->y, &h3);
}
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr) {
/* 8 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
secp256k1_fe z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
if (a->infinity) {
VERIFY_CHECK(rzr == NULL);
secp256k1_gej_set_ge(r, b);
return;
}
if (b->infinity) {
if (rzr != NULL) {
secp256k1_fe_set_int(rzr, 1);
}
*r = *a;
return;
}
r->infinity = 0;
secp256k1_fe_sqr(&z12, &a->z);
u1 = a->x; secp256k1_fe_normalize_weak(&u1);
secp256k1_fe_mul(&u2, &b->x, &z12);
s1 = a->y; secp256k1_fe_normalize_weak(&s1);
secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
if (secp256k1_fe_normalizes_to_zero_var(&h)) {
if (secp256k1_fe_normalizes_to_zero_var(&i)) {
secp256k1_gej_double_var(r, a, rzr);
} else {
if (rzr != NULL) {
secp256k1_fe_set_int(rzr, 0);
}
r->infinity = 1;
}
return;
}
secp256k1_fe_sqr(&i2, &i);
secp256k1_fe_sqr(&h2, &h);
secp256k1_fe_mul(&h3, &h, &h2);
if (rzr != NULL) {
*rzr = h;
}
secp256k1_fe_mul(&r->z, &a->z, &h);
secp256k1_fe_mul(&t, &u1, &h2);
r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
secp256k1_fe_add(&r->y, &h3);
}
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv) {
/* 9 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
secp256k1_fe az, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
if (b->infinity) {
*r = *a;
return;
}
if (a->infinity) {
secp256k1_fe bzinv2, bzinv3;
r->infinity = b->infinity;
secp256k1_fe_sqr(&bzinv2, bzinv);
secp256k1_fe_mul(&bzinv3, &bzinv2, bzinv);
secp256k1_fe_mul(&r->x, &b->x, &bzinv2);
secp256k1_fe_mul(&r->y, &b->y, &bzinv3);
secp256k1_fe_set_int(&r->z, 1);
return;
}
r->infinity = 0;
/** We need to calculate (rx,ry,rz) = (ax,ay,az) + (bx,by,1/bzinv). Due to
* secp256k1's isomorphism we can multiply the Z coordinates on both sides
* by bzinv, and get: (rx,ry,rz*bzinv) = (ax,ay,az*bzinv) + (bx,by,1).
* This means that (rx,ry,rz) can be calculated as
* (ax,ay,az*bzinv) + (bx,by,1), when not applying the bzinv factor to rz.
* The variable az below holds the modified Z coordinate for a, which is used
* for the computation of rx and ry, but not for rz.
*/
secp256k1_fe_mul(&az, &a->z, bzinv);
secp256k1_fe_sqr(&z12, &az);
u1 = a->x; secp256k1_fe_normalize_weak(&u1);
secp256k1_fe_mul(&u2, &b->x, &z12);
s1 = a->y; secp256k1_fe_normalize_weak(&s1);
secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az);
secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
if (secp256k1_fe_normalizes_to_zero_var(&h)) {
if (secp256k1_fe_normalizes_to_zero_var(&i)) {
secp256k1_gej_double_var(r, a, NULL);
} else {
r->infinity = 1;
}
return;
}
secp256k1_fe_sqr(&i2, &i);
secp256k1_fe_sqr(&h2, &h);
secp256k1_fe_mul(&h3, &h, &h2);
r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h);
secp256k1_fe_mul(&t, &u1, &h2);
r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
secp256k1_fe_add(&r->y, &h3);
}
static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b) {
/* Operations: 7 mul, 5 sqr, 4 normalize, 21 mul_int/add/negate/cmov */
static const secp256k1_fe fe_1 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr;
secp256k1_fe m_alt, rr_alt;
int infinity, degenerate;
VERIFY_CHECK(!b->infinity);
VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
/** In:
* Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks.
* In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002.
* we find as solution for a unified addition/doubling formula:
* lambda = ((x1 + x2)^2 - x1 * x2 + a) / (y1 + y2), with a = 0 for secp256k1's curve equation.
* x3 = lambda^2 - (x1 + x2)
* 2*y3 = lambda * (x1 + x2 - 2 * x3) - (y1 + y2).
*
* Substituting x_i = Xi / Zi^2 and yi = Yi / Zi^3, for i=1,2,3, gives:
* U1 = X1*Z2^2, U2 = X2*Z1^2
* S1 = Y1*Z2^3, S2 = Y2*Z1^3
* Z = Z1*Z2
* T = U1+U2
* M = S1+S2
* Q = T*M^2
* R = T^2-U1*U2
* X3 = 4*(R^2-Q)
* Y3 = 4*(R*(3*Q-2*R^2)-M^4)
* Z3 = 2*M*Z
* (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.)
*
* This formula has the benefit of being the same for both addition
* of distinct points and doubling. However, it breaks down in the
* case that either point is infinity, or that y1 = -y2. We handle
* these cases in the following ways:
*
* - If b is infinity we simply bail by means of a VERIFY_CHECK.
*
* - If a is infinity, we detect this, and at the end of the
* computation replace the result (which will be meaningless,
* but we compute to be constant-time) with b.x : b.y : 1.
*
* - If a = -b, we have y1 = -y2, which is a degenerate case.
* But here the answer is infinity, so we simply set the
* infinity flag of the result, overriding the computed values
* without even needing to cmov.
*
* - If y1 = -y2 but x1 != x2, which does occur thanks to certain
* properties of our curve (specifically, 1 has nontrivial cube
* roots in our field, and the curve equation has no x coefficient)
* then the answer is not infinity but also not given by the above
* equation. In this case, we cmov in place an alternate expression
* for lambda. Specifically (y1 - y2)/(x1 - x2). Where both these
* expressions for lambda are defined, they are equal, and can be
* obtained from each other by multiplication by (y1 + y2)/(y1 + y2)
* then substitution of x^3 + 7 for y^2 (using the curve equation).
* For all pairs of nonzero points (a, b) at least one is defined,
* so this covers everything.
*/
secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */
u1 = a->x; secp256k1_fe_normalize_weak(&u1); /* u1 = U1 = X1*Z2^2 (1) */
secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */
s1 = a->y; secp256k1_fe_normalize_weak(&s1); /* s1 = S1 = Y1*Z2^3 (1) */
secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z1^2 (1) */
secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */
t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */
m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */
secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */
secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 */
secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (2) */
secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (3) */
/** If lambda = R/M = 0/0 we have a problem (except in the "trivial"
* case that Z = z1z2 = 0, and this is special-cased later on). */
degenerate = secp256k1_fe_normalizes_to_zero(&m) &
secp256k1_fe_normalizes_to_zero(&rr);
/* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2.
* This means either x1 == beta*x2 or beta*x1 == x2, where beta is
* a nontrivial cube root of one. In either case, an alternate
* non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2),
* so we set R/M equal to this. */
rr_alt = s1;
secp256k1_fe_mul_int(&rr_alt, 2); /* rr = Y1*Z2^3 - Y2*Z1^3 (2) */
secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 */
secp256k1_fe_cmov(&rr_alt, &rr, !degenerate);
secp256k1_fe_cmov(&m_alt, &m, !degenerate);
/* Now Ralt / Malt = lambda and is guaranteed not to be 0/0.
* From here on out Ralt and Malt represent the numerator
* and denominator of lambda; R and M represent the explicit
* expressions x1^2 + x2^2 + x1x2 and y1 + y2. */
secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */
secp256k1_fe_mul(&q, &n, &t); /* q = Q = T*Malt^2 (1) */
/* These two lines use the observation that either M == Malt or M == 0,
* so M^3 * Malt is either Malt^4 (which is computed by squaring), or
* zero (which is "computed" by cmov). So the cost is one squaring
* versus two multiplications. */
secp256k1_fe_sqr(&n, &n);
secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (2) */
secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */
secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Malt*Z (1) */
infinity = secp256k1_fe_normalizes_to_zero(&r->z) * (1 - a->infinity);
secp256k1_fe_mul_int(&r->z, 2); /* r->z = Z3 = 2*Malt*Z (2) */
secp256k1_fe_negate(&q, &q, 1); /* q = -Q (2) */
secp256k1_fe_add(&t, &q); /* t = Ralt^2-Q (3) */
secp256k1_fe_normalize_weak(&t);
r->x = t; /* r->x = Ralt^2-Q (1) */
secp256k1_fe_mul_int(&t, 2); /* t = 2*x3 (2) */
secp256k1_fe_add(&t, &q); /* t = 2*x3 - Q: (4) */
secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*x3 - Q) (1) */
secp256k1_fe_add(&t, &n); /* t = Ralt*(2*x3 - Q) + M^3*Malt (3) */
secp256k1_fe_negate(&r->y, &t, 3); /* r->y = Ralt*(Q - 2x3) - M^3*Malt (4) */
secp256k1_fe_normalize_weak(&r->y);
secp256k1_fe_mul_int(&r->x, 4); /* r->x = X3 = 4*(Ralt^2-Q) */
secp256k1_fe_mul_int(&r->y, 4); /* r->y = Y3 = 4*Ralt*(Q - 2x3) - 4*M^3*Malt (4) */
/** In case a->infinity == 1, replace r with (b->x, b->y, 1). */
secp256k1_fe_cmov(&r->x, &b->x, a->infinity);
secp256k1_fe_cmov(&r->y, &b->y, a->infinity);
secp256k1_fe_cmov(&r->z, &fe_1, a->infinity);
r->infinity = infinity;
}
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *s) {
/* Operations: 4 mul, 1 sqr */
secp256k1_fe zz;
VERIFY_CHECK(!secp256k1_fe_is_zero(s));
secp256k1_fe_sqr(&zz, s);
secp256k1_fe_mul(&r->x, &r->x, &zz); /* r->x *= s^2 */
secp256k1_fe_mul(&r->y, &r->y, &zz);
secp256k1_fe_mul(&r->y, &r->y, s); /* r->y *= s^3 */
secp256k1_fe_mul(&r->z, &r->z, s); /* r->z *= s */
}
static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a) {
secp256k1_fe x, y;
VERIFY_CHECK(!a->infinity);
x = a->x;
secp256k1_fe_normalize(&x);
y = a->y;
secp256k1_fe_normalize(&y);
secp256k1_fe_to_storage(&r->x, &x);
secp256k1_fe_to_storage(&r->y, &y);
}
static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a) {
secp256k1_fe_from_storage(&r->x, &a->x);
secp256k1_fe_from_storage(&r->y, &a->y);
r->infinity = 0;
}
static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag) {
secp256k1_fe_storage_cmov(&r->x, &a->x, flag);
secp256k1_fe_storage_cmov(&r->y, &a->y, flag);
}
#ifdef USE_ENDOMORPHISM
static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) {
static const secp256k1_fe beta = SECP256K1_FE_CONST(
0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul,
0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul
);
*r = *a;
secp256k1_fe_mul(&r->x, &r->x, &beta);
}
#endif
static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a) {
secp256k1_fe yz;
if (a->infinity) {
return 0;
}
/* We rely on the fact that the Jacobi symbol of 1 / a->z^3 is the same as
* that of a->z. Thus a->y / a->z^3 is a quadratic residue iff a->y * a->z
is */
secp256k1_fe_mul(&yz, &a->y, &a->z);
return secp256k1_fe_is_quad_var(&yz);
}
#endif /* SECP256K1_GROUP_IMPL_H */

View File

@ -0,0 +1,41 @@
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_HASH_H
#define SECP256K1_HASH_H
#include <stdlib.h>
#include <stdint.h>
typedef struct {
uint32_t s[8];
uint32_t buf[16]; /* In big endian */
size_t bytes;
} secp256k1_sha256;
static void secp256k1_sha256_initialize(secp256k1_sha256 *hash);
static void secp256k1_sha256_write(secp256k1_sha256 *hash, const unsigned char *data, size_t size);
static void secp256k1_sha256_finalize(secp256k1_sha256 *hash, unsigned char *out32);
typedef struct {
secp256k1_sha256 inner, outer;
} secp256k1_hmac_sha256;
static void secp256k1_hmac_sha256_initialize(secp256k1_hmac_sha256 *hash, const unsigned char *key, size_t size);
static void secp256k1_hmac_sha256_write(secp256k1_hmac_sha256 *hash, const unsigned char *data, size_t size);
static void secp256k1_hmac_sha256_finalize(secp256k1_hmac_sha256 *hash, unsigned char *out32);
typedef struct {
unsigned char v[32];
unsigned char k[32];
int retry;
} secp256k1_rfc6979_hmac_sha256;
static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256 *rng, const unsigned char *key, size_t keylen);
static void secp256k1_rfc6979_hmac_sha256_generate(secp256k1_rfc6979_hmac_sha256 *rng, unsigned char *out, size_t outlen);
static void secp256k1_rfc6979_hmac_sha256_finalize(secp256k1_rfc6979_hmac_sha256 *rng);
#endif /* SECP256K1_HASH_H */

View File

@ -0,0 +1,282 @@
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_HASH_IMPL_H
#define SECP256K1_HASH_IMPL_H
#include "hash.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#define Ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
#define Maj(x,y,z) (((x) & (y)) | ((z) & ((x) | (y))))
#define Sigma0(x) (((x) >> 2 | (x) << 30) ^ ((x) >> 13 | (x) << 19) ^ ((x) >> 22 | (x) << 10))
#define Sigma1(x) (((x) >> 6 | (x) << 26) ^ ((x) >> 11 | (x) << 21) ^ ((x) >> 25 | (x) << 7))
#define sigma0(x) (((x) >> 7 | (x) << 25) ^ ((x) >> 18 | (x) << 14) ^ ((x) >> 3))
#define sigma1(x) (((x) >> 17 | (x) << 15) ^ ((x) >> 19 | (x) << 13) ^ ((x) >> 10))
#define Round(a,b,c,d,e,f,g,h,k,w) do { \
uint32_t t1 = (h) + Sigma1(e) + Ch((e), (f), (g)) + (k) + (w); \
uint32_t t2 = Sigma0(a) + Maj((a), (b), (c)); \
(d) += t1; \
(h) = t1 + t2; \
} while(0)
#ifdef WORDS_BIGENDIAN
#define BE32(x) (x)
#else
#define BE32(p) ((((p) & 0xFF) << 24) | (((p) & 0xFF00) << 8) | (((p) & 0xFF0000) >> 8) | (((p) & 0xFF000000) >> 24))
#endif
static void secp256k1_sha256_initialize(secp256k1_sha256 *hash) {
hash->s[0] = 0x6a09e667ul;
hash->s[1] = 0xbb67ae85ul;
hash->s[2] = 0x3c6ef372ul;
hash->s[3] = 0xa54ff53aul;
hash->s[4] = 0x510e527ful;
hash->s[5] = 0x9b05688cul;
hash->s[6] = 0x1f83d9abul;
hash->s[7] = 0x5be0cd19ul;
hash->bytes = 0;
}
/** Perform one SHA-256 transformation, processing 16 big endian 32-bit words. */
static void secp256k1_sha256_transform(uint32_t* s, const uint32_t* chunk) {
uint32_t a = s[0], b = s[1], c = s[2], d = s[3], e = s[4], f = s[5], g = s[6], h = s[7];
uint32_t w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15;
Round(a, b, c, d, e, f, g, h, 0x428a2f98, w0 = BE32(chunk[0]));
Round(h, a, b, c, d, e, f, g, 0x71374491, w1 = BE32(chunk[1]));
Round(g, h, a, b, c, d, e, f, 0xb5c0fbcf, w2 = BE32(chunk[2]));
Round(f, g, h, a, b, c, d, e, 0xe9b5dba5, w3 = BE32(chunk[3]));
Round(e, f, g, h, a, b, c, d, 0x3956c25b, w4 = BE32(chunk[4]));
Round(d, e, f, g, h, a, b, c, 0x59f111f1, w5 = BE32(chunk[5]));
Round(c, d, e, f, g, h, a, b, 0x923f82a4, w6 = BE32(chunk[6]));
Round(b, c, d, e, f, g, h, a, 0xab1c5ed5, w7 = BE32(chunk[7]));
Round(a, b, c, d, e, f, g, h, 0xd807aa98, w8 = BE32(chunk[8]));
Round(h, a, b, c, d, e, f, g, 0x12835b01, w9 = BE32(chunk[9]));
Round(g, h, a, b, c, d, e, f, 0x243185be, w10 = BE32(chunk[10]));
Round(f, g, h, a, b, c, d, e, 0x550c7dc3, w11 = BE32(chunk[11]));
Round(e, f, g, h, a, b, c, d, 0x72be5d74, w12 = BE32(chunk[12]));
Round(d, e, f, g, h, a, b, c, 0x80deb1fe, w13 = BE32(chunk[13]));
Round(c, d, e, f, g, h, a, b, 0x9bdc06a7, w14 = BE32(chunk[14]));
Round(b, c, d, e, f, g, h, a, 0xc19bf174, w15 = BE32(chunk[15]));
Round(a, b, c, d, e, f, g, h, 0xe49b69c1, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, c, d, e, f, g, 0xefbe4786, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, b, c, d, e, f, 0x0fc19dc6, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, a, b, c, d, e, 0x240ca1cc, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, h, a, b, c, d, 0x2de92c6f, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, g, h, a, b, c, 0x4a7484aa, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, f, g, h, a, b, 0x5cb0a9dc, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, e, f, g, h, a, 0x76f988da, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, d, e, f, g, h, 0x983e5152, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, c, d, e, f, g, 0xa831c66d, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, b, c, d, e, f, 0xb00327c8, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, a, b, c, d, e, 0xbf597fc7, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, h, a, b, c, d, 0xc6e00bf3, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, g, h, a, b, c, 0xd5a79147, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, f, g, h, a, b, 0x06ca6351, w14 += sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, e, f, g, h, a, 0x14292967, w15 += sigma1(w13) + w8 + sigma0(w0));
Round(a, b, c, d, e, f, g, h, 0x27b70a85, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, c, d, e, f, g, 0x2e1b2138, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, b, c, d, e, f, 0x4d2c6dfc, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, a, b, c, d, e, 0x53380d13, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, h, a, b, c, d, 0x650a7354, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, g, h, a, b, c, 0x766a0abb, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, f, g, h, a, b, 0x81c2c92e, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, e, f, g, h, a, 0x92722c85, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, d, e, f, g, h, 0xa2bfe8a1, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, c, d, e, f, g, 0xa81a664b, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, b, c, d, e, f, 0xc24b8b70, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, a, b, c, d, e, 0xc76c51a3, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, h, a, b, c, d, 0xd192e819, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, g, h, a, b, c, 0xd6990624, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, f, g, h, a, b, 0xf40e3585, w14 += sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, e, f, g, h, a, 0x106aa070, w15 += sigma1(w13) + w8 + sigma0(w0));
Round(a, b, c, d, e, f, g, h, 0x19a4c116, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, c, d, e, f, g, 0x1e376c08, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, b, c, d, e, f, 0x2748774c, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, a, b, c, d, e, 0x34b0bcb5, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, h, a, b, c, d, 0x391c0cb3, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, g, h, a, b, c, 0x4ed8aa4a, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, f, g, h, a, b, 0x5b9cca4f, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, e, f, g, h, a, 0x682e6ff3, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, d, e, f, g, h, 0x748f82ee, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, c, d, e, f, g, 0x78a5636f, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, b, c, d, e, f, 0x84c87814, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, a, b, c, d, e, 0x8cc70208, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, h, a, b, c, d, 0x90befffa, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, g, h, a, b, c, 0xa4506ceb, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, f, g, h, a, b, 0xbef9a3f7, w14 + sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, e, f, g, h, a, 0xc67178f2, w15 + sigma1(w13) + w8 + sigma0(w0));
s[0] += a;
s[1] += b;
s[2] += c;
s[3] += d;
s[4] += e;
s[5] += f;
s[6] += g;
s[7] += h;
}
static void secp256k1_sha256_write(secp256k1_sha256 *hash, const unsigned char *data, size_t len) {
size_t bufsize = hash->bytes & 0x3F;
hash->bytes += len;
while (bufsize + len >= 64) {
/* Fill the buffer, and process it. */
size_t chunk_len = 64 - bufsize;
memcpy(((unsigned char*)hash->buf) + bufsize, data, chunk_len);
data += chunk_len;
len -= chunk_len;
secp256k1_sha256_transform(hash->s, hash->buf);
bufsize = 0;
}
if (len) {
/* Fill the buffer with what remains. */
memcpy(((unsigned char*)hash->buf) + bufsize, data, len);
}
}
static void secp256k1_sha256_finalize(secp256k1_sha256 *hash, unsigned char *out32) {
static const unsigned char pad[64] = {0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
uint32_t sizedesc[2];
uint32_t out[8];
int i = 0;
sizedesc[0] = BE32(hash->bytes >> 29);
sizedesc[1] = BE32(hash->bytes << 3);
secp256k1_sha256_write(hash, pad, 1 + ((119 - (hash->bytes % 64)) % 64));
secp256k1_sha256_write(hash, (const unsigned char*)sizedesc, 8);
for (i = 0; i < 8; i++) {
out[i] = BE32(hash->s[i]);
hash->s[i] = 0;
}
memcpy(out32, (const unsigned char*)out, 32);
}
static void secp256k1_hmac_sha256_initialize(secp256k1_hmac_sha256 *hash, const unsigned char *key, size_t keylen) {
size_t n;
unsigned char rkey[64];
if (keylen <= sizeof(rkey)) {
memcpy(rkey, key, keylen);
memset(rkey + keylen, 0, sizeof(rkey) - keylen);
} else {
secp256k1_sha256 sha256;
secp256k1_sha256_initialize(&sha256);
secp256k1_sha256_write(&sha256, key, keylen);
secp256k1_sha256_finalize(&sha256, rkey);
memset(rkey + 32, 0, 32);
}
secp256k1_sha256_initialize(&hash->outer);
for (n = 0; n < sizeof(rkey); n++) {
rkey[n] ^= 0x5c;
}
secp256k1_sha256_write(&hash->outer, rkey, sizeof(rkey));
secp256k1_sha256_initialize(&hash->inner);
for (n = 0; n < sizeof(rkey); n++) {
rkey[n] ^= 0x5c ^ 0x36;
}
secp256k1_sha256_write(&hash->inner, rkey, sizeof(rkey));
memset(rkey, 0, sizeof(rkey));
}
static void secp256k1_hmac_sha256_write(secp256k1_hmac_sha256 *hash, const unsigned char *data, size_t size) {
secp256k1_sha256_write(&hash->inner, data, size);
}
static void secp256k1_hmac_sha256_finalize(secp256k1_hmac_sha256 *hash, unsigned char *out32) {
unsigned char temp[32];
secp256k1_sha256_finalize(&hash->inner, temp);
secp256k1_sha256_write(&hash->outer, temp, 32);
memset(temp, 0, 32);
secp256k1_sha256_finalize(&hash->outer, out32);
}
static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256 *rng, const unsigned char *key, size_t keylen) {
secp256k1_hmac_sha256 hmac;
static const unsigned char zero[1] = {0x00};
static const unsigned char one[1] = {0x01};
memset(rng->v, 0x01, 32); /* RFC6979 3.2.b. */
memset(rng->k, 0x00, 32); /* RFC6979 3.2.c. */
/* RFC6979 3.2.d. */
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_write(&hmac, zero, 1);
secp256k1_hmac_sha256_write(&hmac, key, keylen);
secp256k1_hmac_sha256_finalize(&hmac, rng->k);
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_finalize(&hmac, rng->v);
/* RFC6979 3.2.f. */
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_write(&hmac, one, 1);
secp256k1_hmac_sha256_write(&hmac, key, keylen);
secp256k1_hmac_sha256_finalize(&hmac, rng->k);
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_finalize(&hmac, rng->v);
rng->retry = 0;
}
static void secp256k1_rfc6979_hmac_sha256_generate(secp256k1_rfc6979_hmac_sha256 *rng, unsigned char *out, size_t outlen) {
/* RFC6979 3.2.h. */
static const unsigned char zero[1] = {0x00};
if (rng->retry) {
secp256k1_hmac_sha256 hmac;
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_write(&hmac, zero, 1);
secp256k1_hmac_sha256_finalize(&hmac, rng->k);
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_finalize(&hmac, rng->v);
}
while (outlen > 0) {
secp256k1_hmac_sha256 hmac;
int now = outlen;
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_finalize(&hmac, rng->v);
if (now > 32) {
now = 32;
}
memcpy(out, rng->v, now);
out += now;
outlen -= now;
}
rng->retry = 1;
}
static void secp256k1_rfc6979_hmac_sha256_finalize(secp256k1_rfc6979_hmac_sha256 *rng) {
memset(rng->k, 0, 32);
memset(rng->v, 0, 32);
rng->retry = 0;
}
#undef BE32
#undef Round
#undef sigma1
#undef sigma0
#undef Sigma1
#undef Sigma0
#undef Maj
#undef Ch
#endif /* SECP256K1_HASH_IMPL_H */

View File

@ -0,0 +1,54 @@
/**********************************************************************
* Copyright (c) 2015 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODULE_ECDH_MAIN_H
#define SECP256K1_MODULE_ECDH_MAIN_H
#include "secp256k1.h"
#include "../../ecmult_const_impl.h"
int secp256k1_ecdh(const secp256k1_context* ctx, unsigned char *result, const secp256k1_pubkey *point, const unsigned char *scalar) {
int ret = 0;
int overflow = 0;
secp256k1_gej res;
secp256k1_ge pt;
secp256k1_scalar s;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(result != NULL);
ARG_CHECK(point != NULL);
ARG_CHECK(scalar != NULL);
secp256k1_pubkey_load(ctx, &pt, point);
secp256k1_scalar_set_b32(&s, scalar, &overflow);
if (overflow || secp256k1_scalar_is_zero(&s)) {
ret = 0;
} else {
unsigned char x[32];
unsigned char y[1];
secp256k1_sha256 sha;
secp256k1_ecmult_const(&res, &pt, &s, 256);
secp256k1_ge_set_gej(&pt, &res);
/* Compute a hash of the point in compressed form
* Note we cannot use secp256k1_eckey_pubkey_serialize here since it does not
* expect its output to be secret and has a timing sidechannel. */
secp256k1_fe_normalize(&pt.x);
secp256k1_fe_normalize(&pt.y);
secp256k1_fe_get_b32(x, &pt.x);
y[0] = 0x02 | secp256k1_fe_is_odd(&pt.y);
secp256k1_sha256_initialize(&sha);
secp256k1_sha256_write(&sha, y, sizeof(y));
secp256k1_sha256_write(&sha, x, sizeof(x));
secp256k1_sha256_finalize(&sha, result);
ret = 1;
}
secp256k1_scalar_clear(&s);
return ret;
}
#endif /* SECP256K1_MODULE_ECDH_MAIN_H */

View File

@ -0,0 +1,193 @@
/**********************************************************************
* Copyright (c) 2013-2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODULE_RECOVERY_MAIN_H
#define SECP256K1_MODULE_RECOVERY_MAIN_H
#include "secp256k1.h"
static void secp256k1_ecdsa_recoverable_signature_load(const secp256k1_context* ctx, secp256k1_scalar* r, secp256k1_scalar* s, int* recid, const secp256k1_ecdsa_recoverable_signature* sig) {
(void)ctx;
if (sizeof(secp256k1_scalar) == 32) {
/* When the secp256k1_scalar type is exactly 32 byte, use its
* representation inside secp256k1_ecdsa_signature, as conversion is very fast.
* Note that secp256k1_ecdsa_signature_save must use the same representation. */
memcpy(r, &sig->data[0], 32);
memcpy(s, &sig->data[32], 32);
} else {
secp256k1_scalar_set_b32(r, &sig->data[0], NULL);
secp256k1_scalar_set_b32(s, &sig->data[32], NULL);
}
*recid = sig->data[64];
}
static void secp256k1_ecdsa_recoverable_signature_save(secp256k1_ecdsa_recoverable_signature* sig, const secp256k1_scalar* r, const secp256k1_scalar* s, int recid) {
if (sizeof(secp256k1_scalar) == 32) {
memcpy(&sig->data[0], r, 32);
memcpy(&sig->data[32], s, 32);
} else {
secp256k1_scalar_get_b32(&sig->data[0], r);
secp256k1_scalar_get_b32(&sig->data[32], s);
}
sig->data[64] = recid;
}
int secp256k1_ecdsa_recoverable_signature_parse_compact(const secp256k1_context* ctx, secp256k1_ecdsa_recoverable_signature* sig, const unsigned char *input64, int recid) {
secp256k1_scalar r, s;
int ret = 1;
int overflow = 0;
(void)ctx;
ARG_CHECK(sig != NULL);
ARG_CHECK(input64 != NULL);
ARG_CHECK(recid >= 0 && recid <= 3);
secp256k1_scalar_set_b32(&r, &input64[0], &overflow);
ret &= !overflow;
secp256k1_scalar_set_b32(&s, &input64[32], &overflow);
ret &= !overflow;
if (ret) {
secp256k1_ecdsa_recoverable_signature_save(sig, &r, &s, recid);
} else {
memset(sig, 0, sizeof(*sig));
}
return ret;
}
int secp256k1_ecdsa_recoverable_signature_serialize_compact(const secp256k1_context* ctx, unsigned char *output64, int *recid, const secp256k1_ecdsa_recoverable_signature* sig) {
secp256k1_scalar r, s;
(void)ctx;
ARG_CHECK(output64 != NULL);
ARG_CHECK(sig != NULL);
ARG_CHECK(recid != NULL);
secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, recid, sig);
secp256k1_scalar_get_b32(&output64[0], &r);
secp256k1_scalar_get_b32(&output64[32], &s);
return 1;
}
int secp256k1_ecdsa_recoverable_signature_convert(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const secp256k1_ecdsa_recoverable_signature* sigin) {
secp256k1_scalar r, s;
int recid;
(void)ctx;
ARG_CHECK(sig != NULL);
ARG_CHECK(sigin != NULL);
secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, &recid, sigin);
secp256k1_ecdsa_signature_save(sig, &r, &s);
return 1;
}
static int secp256k1_ecdsa_sig_recover(const secp256k1_ecmult_context *ctx, const secp256k1_scalar *sigr, const secp256k1_scalar* sigs, secp256k1_ge *pubkey, const secp256k1_scalar *message, int recid) {
unsigned char brx[32];
secp256k1_fe fx;
secp256k1_ge x;
secp256k1_gej xj;
secp256k1_scalar rn, u1, u2;
secp256k1_gej qj;
int r;
if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) {
return 0;
}
secp256k1_scalar_get_b32(brx, sigr);
r = secp256k1_fe_set_b32(&fx, brx);
(void)r;
VERIFY_CHECK(r); /* brx comes from a scalar, so is less than the order; certainly less than p */
if (recid & 2) {
if (secp256k1_fe_cmp_var(&fx, &secp256k1_ecdsa_const_p_minus_order) >= 0) {
return 0;
}
secp256k1_fe_add(&fx, &secp256k1_ecdsa_const_order_as_fe);
}
if (!secp256k1_ge_set_xo_var(&x, &fx, recid & 1)) {
return 0;
}
secp256k1_gej_set_ge(&xj, &x);
secp256k1_scalar_inverse_var(&rn, sigr);
secp256k1_scalar_mul(&u1, &rn, message);
secp256k1_scalar_negate(&u1, &u1);
secp256k1_scalar_mul(&u2, &rn, sigs);
secp256k1_ecmult(ctx, &qj, &xj, &u2, &u1);
secp256k1_ge_set_gej_var(pubkey, &qj);
return !secp256k1_gej_is_infinity(&qj);
}
int secp256k1_ecdsa_sign_recoverable(const secp256k1_context* ctx, secp256k1_ecdsa_recoverable_signature *signature, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void* noncedata) {
secp256k1_scalar r, s;
secp256k1_scalar sec, non, msg;
int recid;
int ret = 0;
int overflow = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
ARG_CHECK(msg32 != NULL);
ARG_CHECK(signature != NULL);
ARG_CHECK(seckey != NULL);
if (noncefp == NULL) {
noncefp = secp256k1_nonce_function_default;
}
secp256k1_scalar_set_b32(&sec, seckey, &overflow);
/* Fail if the secret key is invalid. */
if (!overflow && !secp256k1_scalar_is_zero(&sec)) {
unsigned char nonce32[32];
unsigned int count = 0;
secp256k1_scalar_set_b32(&msg, msg32, NULL);
while (1) {
ret = noncefp(nonce32, msg32, seckey, NULL, (void*)noncedata, count);
if (!ret) {
break;
}
secp256k1_scalar_set_b32(&non, nonce32, &overflow);
if (!secp256k1_scalar_is_zero(&non) && !overflow) {
if (secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, &r, &s, &sec, &msg, &non, &recid)) {
break;
}
}
count++;
}
memset(nonce32, 0, 32);
secp256k1_scalar_clear(&msg);
secp256k1_scalar_clear(&non);
secp256k1_scalar_clear(&sec);
}
if (ret) {
secp256k1_ecdsa_recoverable_signature_save(signature, &r, &s, recid);
} else {
memset(signature, 0, sizeof(*signature));
}
return ret;
}
int secp256k1_ecdsa_recover(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const secp256k1_ecdsa_recoverable_signature *signature, const unsigned char *msg32) {
secp256k1_ge q;
secp256k1_scalar r, s;
secp256k1_scalar m;
int recid;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
ARG_CHECK(msg32 != NULL);
ARG_CHECK(signature != NULL);
ARG_CHECK(pubkey != NULL);
secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, &recid, signature);
VERIFY_CHECK(recid >= 0 && recid < 4); /* should have been caught in parse_compact */
secp256k1_scalar_set_b32(&m, msg32, NULL);
if (secp256k1_ecdsa_sig_recover(&ctx->ecmult_ctx, &r, &s, &q, &m, recid)) {
secp256k1_pubkey_save(pubkey, &q);
return 1;
} else {
memset(pubkey, 0, sizeof(*pubkey));
return 0;
}
}
#endif /* SECP256K1_MODULE_RECOVERY_MAIN_H */

View File

@ -0,0 +1,12 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_NUM_H
#define SECP256K1_NUM_H
#define USE_NUM_NONE
#endif /* SECP256K1_NUM_H */

View File

@ -0,0 +1,12 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_NUM_IMPL_H
#define SECP256K1_NUM_IMPL_H
#include "num.h"
#endif /* SECP256K1_NUM_IMPL_H */

View File

@ -0,0 +1,95 @@
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_SCALAR_H
#define SECP256K1_SCALAR_H
#define USE_SCALAR_INV_BUILTIN
#include "num.h"
#include "scalar_8x32.h"
/** Clear a scalar to prevent the leak of sensitive data. */
static void secp256k1_scalar_clear(secp256k1_scalar *r);
/** Access bits from a scalar. All requested bits must belong to the same 32-bit limb. */
static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count);
/** Access bits from a scalar. Not constant time. */
static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count);
/** Set a scalar from a big endian byte array. */
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow);
/** Set a scalar to an unsigned integer. */
static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v);
/** Convert a scalar to a byte array. */
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a);
/** Add two scalars together (modulo the group order). Returns whether it overflowed. */
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b);
/** Conditionally add a power of two to a scalar. The result is not allowed to overflow. */
static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag);
/** Multiply two scalars (modulo the group order). */
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b);
/** Shift a scalar right by some amount strictly between 0 and 16, returning
* the low bits that were shifted off */
static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n);
/** Compute the square of a scalar (modulo the group order). */
static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a);
/** Compute the inverse of a scalar (modulo the group order). */
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *a);
/** Compute the inverse of a scalar (modulo the group order), without constant-time guarantee. */
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *a);
/** Compute the complement of a scalar (modulo the group order). */
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a);
/** Check whether a scalar equals zero. */
static int secp256k1_scalar_is_zero(const secp256k1_scalar *a);
/** Check whether a scalar equals one. */
static int secp256k1_scalar_is_one(const secp256k1_scalar *a);
/** Check whether a scalar, considered as an nonnegative integer, is even. */
static int secp256k1_scalar_is_even(const secp256k1_scalar *a);
/** Check whether a scalar is higher than the group order divided by 2. */
static int secp256k1_scalar_is_high(const secp256k1_scalar *a);
/** Conditionally negate a number, in constant time.
* Returns -1 if the number was negated, 1 otherwise */
static int secp256k1_scalar_cond_negate(secp256k1_scalar *a, int flag);
#ifndef USE_NUM_NONE
/** Convert a scalar to a number. */
static void secp256k1_scalar_get_num(secp256k1_num *r, const secp256k1_scalar *a);
/** Get the order of the group as a number. */
static void secp256k1_scalar_order_get_num(secp256k1_num *r);
#endif
/** Compare two scalars. */
static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b);
#ifdef USE_ENDOMORPHISM
/** Find r1 and r2 such that r1+r2*2^128 = a. */
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a);
/** Find r1 and r2 such that r1+r2*lambda = a, and r1 and r2 are maximum 128 bits long (see secp256k1_gej_mul_lambda). */
static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a);
#endif
/** Multiply a and b (without taking the modulus!), divide by 2**shift, and round to the nearest integer. Shift must be at least 256. */
static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift);
#endif /* SECP256K1_SCALAR_H */

View File

@ -0,0 +1,19 @@
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_SCALAR_REPR_H
#define SECP256K1_SCALAR_REPR_H
#include <stdint.h>
/** A scalar modulo the group order of the secp256k1 curve. */
typedef struct {
uint32_t d[8];
} secp256k1_scalar;
#define SECP256K1_SCALAR_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{(d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7)}}
#endif /* SECP256K1_SCALAR_REPR_H */

View File

@ -0,0 +1,721 @@
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_SCALAR_REPR_IMPL_H
#define SECP256K1_SCALAR_REPR_IMPL_H
/* Limbs of the secp256k1 order. */
#define SECP256K1_N_0 ((uint32_t)0xD0364141UL)
#define SECP256K1_N_1 ((uint32_t)0xBFD25E8CUL)
#define SECP256K1_N_2 ((uint32_t)0xAF48A03BUL)
#define SECP256K1_N_3 ((uint32_t)0xBAAEDCE6UL)
#define SECP256K1_N_4 ((uint32_t)0xFFFFFFFEUL)
#define SECP256K1_N_5 ((uint32_t)0xFFFFFFFFUL)
#define SECP256K1_N_6 ((uint32_t)0xFFFFFFFFUL)
#define SECP256K1_N_7 ((uint32_t)0xFFFFFFFFUL)
/* Limbs of 2^256 minus the secp256k1 order. */
#define SECP256K1_N_C_0 (~SECP256K1_N_0 + 1)
#define SECP256K1_N_C_1 (~SECP256K1_N_1)
#define SECP256K1_N_C_2 (~SECP256K1_N_2)
#define SECP256K1_N_C_3 (~SECP256K1_N_3)
#define SECP256K1_N_C_4 (1)
/* Limbs of half the secp256k1 order. */
#define SECP256K1_N_H_0 ((uint32_t)0x681B20A0UL)
#define SECP256K1_N_H_1 ((uint32_t)0xDFE92F46UL)
#define SECP256K1_N_H_2 ((uint32_t)0x57A4501DUL)
#define SECP256K1_N_H_3 ((uint32_t)0x5D576E73UL)
#define SECP256K1_N_H_4 ((uint32_t)0xFFFFFFFFUL)
#define SECP256K1_N_H_5 ((uint32_t)0xFFFFFFFFUL)
#define SECP256K1_N_H_6 ((uint32_t)0xFFFFFFFFUL)
#define SECP256K1_N_H_7 ((uint32_t)0x7FFFFFFFUL)
SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar *r) {
r->d[0] = 0;
r->d[1] = 0;
r->d[2] = 0;
r->d[3] = 0;
r->d[4] = 0;
r->d[5] = 0;
r->d[6] = 0;
r->d[7] = 0;
}
SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) {
r->d[0] = v;
r->d[1] = 0;
r->d[2] = 0;
r->d[3] = 0;
r->d[4] = 0;
r->d[5] = 0;
r->d[6] = 0;
r->d[7] = 0;
}
SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
VERIFY_CHECK((offset + count - 1) >> 5 == offset >> 5);
return (a->d[offset >> 5] >> (offset & 0x1F)) & ((1 << count) - 1);
}
SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
VERIFY_CHECK(count < 32);
VERIFY_CHECK(offset + count <= 256);
if ((offset + count - 1) >> 5 == offset >> 5) {
return secp256k1_scalar_get_bits(a, offset, count);
} else {
VERIFY_CHECK((offset >> 5) + 1 < 8);
return ((a->d[offset >> 5] >> (offset & 0x1F)) | (a->d[(offset >> 5) + 1] << (32 - (offset & 0x1F)))) & ((((uint32_t)1) << count) - 1);
}
}
SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) {
int yes = 0;
int no = 0;
no |= (a->d[7] < SECP256K1_N_7); /* No need for a > check. */
no |= (a->d[6] < SECP256K1_N_6); /* No need for a > check. */
no |= (a->d[5] < SECP256K1_N_5); /* No need for a > check. */
no |= (a->d[4] < SECP256K1_N_4);
yes |= (a->d[4] > SECP256K1_N_4) & ~no;
no |= (a->d[3] < SECP256K1_N_3) & ~yes;
yes |= (a->d[3] > SECP256K1_N_3) & ~no;
no |= (a->d[2] < SECP256K1_N_2) & ~yes;
yes |= (a->d[2] > SECP256K1_N_2) & ~no;
no |= (a->d[1] < SECP256K1_N_1) & ~yes;
yes |= (a->d[1] > SECP256K1_N_1) & ~no;
yes |= (a->d[0] >= SECP256K1_N_0) & ~no;
return yes;
}
SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, uint32_t overflow) {
uint64_t t;
VERIFY_CHECK(overflow <= 1);
t = (uint64_t)r->d[0] + overflow * SECP256K1_N_C_0;
r->d[0] = t & 0xFFFFFFFFUL; t >>= 32;
t += (uint64_t)r->d[1] + overflow * SECP256K1_N_C_1;
r->d[1] = t & 0xFFFFFFFFUL; t >>= 32;
t += (uint64_t)r->d[2] + overflow * SECP256K1_N_C_2;
r->d[2] = t & 0xFFFFFFFFUL; t >>= 32;
t += (uint64_t)r->d[3] + overflow * SECP256K1_N_C_3;
r->d[3] = t & 0xFFFFFFFFUL; t >>= 32;
t += (uint64_t)r->d[4] + overflow * SECP256K1_N_C_4;
r->d[4] = t & 0xFFFFFFFFUL; t >>= 32;
t += (uint64_t)r->d[5];
r->d[5] = t & 0xFFFFFFFFUL; t >>= 32;
t += (uint64_t)r->d[6];
r->d[6] = t & 0xFFFFFFFFUL; t >>= 32;
t += (uint64_t)r->d[7];
r->d[7] = t & 0xFFFFFFFFUL;
return overflow;
}
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
int overflow;
uint64_t t = (uint64_t)a->d[0] + b->d[0];
r->d[0] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)a->d[1] + b->d[1];
r->d[1] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)a->d[2] + b->d[2];
r->d[2] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)a->d[3] + b->d[3];
r->d[3] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)a->d[4] + b->d[4];
r->d[4] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)a->d[5] + b->d[5];
r->d[5] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)a->d[6] + b->d[6];
r->d[6] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)a->d[7] + b->d[7];
r->d[7] = t & 0xFFFFFFFFULL; t >>= 32;
overflow = t + secp256k1_scalar_check_overflow(r);
VERIFY_CHECK(overflow == 0 || overflow == 1);
secp256k1_scalar_reduce(r, overflow);
return overflow;
}
static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) {
uint64_t t;
VERIFY_CHECK(bit < 256);
bit += ((uint32_t) flag - 1) & 0x100; /* forcing (bit >> 5) > 7 makes this a noop */
t = (uint64_t)r->d[0] + (((uint32_t)((bit >> 5) == 0)) << (bit & 0x1F));
r->d[0] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)r->d[1] + (((uint32_t)((bit >> 5) == 1)) << (bit & 0x1F));
r->d[1] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)r->d[2] + (((uint32_t)((bit >> 5) == 2)) << (bit & 0x1F));
r->d[2] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)r->d[3] + (((uint32_t)((bit >> 5) == 3)) << (bit & 0x1F));
r->d[3] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)r->d[4] + (((uint32_t)((bit >> 5) == 4)) << (bit & 0x1F));
r->d[4] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)r->d[5] + (((uint32_t)((bit >> 5) == 5)) << (bit & 0x1F));
r->d[5] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)r->d[6] + (((uint32_t)((bit >> 5) == 6)) << (bit & 0x1F));
r->d[6] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)r->d[7] + (((uint32_t)((bit >> 5) == 7)) << (bit & 0x1F));
r->d[7] = t & 0xFFFFFFFFULL;
#ifdef VERIFY
VERIFY_CHECK((t >> 32) == 0);
VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0);
#endif
}
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) {
int over;
r->d[0] = (uint32_t)b32[31] | (uint32_t)b32[30] << 8 | (uint32_t)b32[29] << 16 | (uint32_t)b32[28] << 24;
r->d[1] = (uint32_t)b32[27] | (uint32_t)b32[26] << 8 | (uint32_t)b32[25] << 16 | (uint32_t)b32[24] << 24;
r->d[2] = (uint32_t)b32[23] | (uint32_t)b32[22] << 8 | (uint32_t)b32[21] << 16 | (uint32_t)b32[20] << 24;
r->d[3] = (uint32_t)b32[19] | (uint32_t)b32[18] << 8 | (uint32_t)b32[17] << 16 | (uint32_t)b32[16] << 24;
r->d[4] = (uint32_t)b32[15] | (uint32_t)b32[14] << 8 | (uint32_t)b32[13] << 16 | (uint32_t)b32[12] << 24;
r->d[5] = (uint32_t)b32[11] | (uint32_t)b32[10] << 8 | (uint32_t)b32[9] << 16 | (uint32_t)b32[8] << 24;
r->d[6] = (uint32_t)b32[7] | (uint32_t)b32[6] << 8 | (uint32_t)b32[5] << 16 | (uint32_t)b32[4] << 24;
r->d[7] = (uint32_t)b32[3] | (uint32_t)b32[2] << 8 | (uint32_t)b32[1] << 16 | (uint32_t)b32[0] << 24;
over = secp256k1_scalar_reduce(r, secp256k1_scalar_check_overflow(r));
if (overflow) {
*overflow = over;
}
}
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) {
bin[0] = a->d[7] >> 24; bin[1] = a->d[7] >> 16; bin[2] = a->d[7] >> 8; bin[3] = a->d[7];
bin[4] = a->d[6] >> 24; bin[5] = a->d[6] >> 16; bin[6] = a->d[6] >> 8; bin[7] = a->d[6];
bin[8] = a->d[5] >> 24; bin[9] = a->d[5] >> 16; bin[10] = a->d[5] >> 8; bin[11] = a->d[5];
bin[12] = a->d[4] >> 24; bin[13] = a->d[4] >> 16; bin[14] = a->d[4] >> 8; bin[15] = a->d[4];
bin[16] = a->d[3] >> 24; bin[17] = a->d[3] >> 16; bin[18] = a->d[3] >> 8; bin[19] = a->d[3];
bin[20] = a->d[2] >> 24; bin[21] = a->d[2] >> 16; bin[22] = a->d[2] >> 8; bin[23] = a->d[2];
bin[24] = a->d[1] >> 24; bin[25] = a->d[1] >> 16; bin[26] = a->d[1] >> 8; bin[27] = a->d[1];
bin[28] = a->d[0] >> 24; bin[29] = a->d[0] >> 16; bin[30] = a->d[0] >> 8; bin[31] = a->d[0];
}
SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) {
return (a->d[0] | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0;
}
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) {
uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(a) == 0);
uint64_t t = (uint64_t)(~a->d[0]) + SECP256K1_N_0 + 1;
r->d[0] = t & nonzero; t >>= 32;
t += (uint64_t)(~a->d[1]) + SECP256K1_N_1;
r->d[1] = t & nonzero; t >>= 32;
t += (uint64_t)(~a->d[2]) + SECP256K1_N_2;
r->d[2] = t & nonzero; t >>= 32;
t += (uint64_t)(~a->d[3]) + SECP256K1_N_3;
r->d[3] = t & nonzero; t >>= 32;
t += (uint64_t)(~a->d[4]) + SECP256K1_N_4;
r->d[4] = t & nonzero; t >>= 32;
t += (uint64_t)(~a->d[5]) + SECP256K1_N_5;
r->d[5] = t & nonzero; t >>= 32;
t += (uint64_t)(~a->d[6]) + SECP256K1_N_6;
r->d[6] = t & nonzero; t >>= 32;
t += (uint64_t)(~a->d[7]) + SECP256K1_N_7;
r->d[7] = t & nonzero;
}
SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) {
return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0;
}
static int secp256k1_scalar_is_high(const secp256k1_scalar *a) {
int yes = 0;
int no = 0;
no |= (a->d[7] < SECP256K1_N_H_7);
yes |= (a->d[7] > SECP256K1_N_H_7) & ~no;
no |= (a->d[6] < SECP256K1_N_H_6) & ~yes; /* No need for a > check. */
no |= (a->d[5] < SECP256K1_N_H_5) & ~yes; /* No need for a > check. */
no |= (a->d[4] < SECP256K1_N_H_4) & ~yes; /* No need for a > check. */
no |= (a->d[3] < SECP256K1_N_H_3) & ~yes;
yes |= (a->d[3] > SECP256K1_N_H_3) & ~no;
no |= (a->d[2] < SECP256K1_N_H_2) & ~yes;
yes |= (a->d[2] > SECP256K1_N_H_2) & ~no;
no |= (a->d[1] < SECP256K1_N_H_1) & ~yes;
yes |= (a->d[1] > SECP256K1_N_H_1) & ~no;
yes |= (a->d[0] > SECP256K1_N_H_0) & ~no;
return yes;
}
static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
/* If we are flag = 0, mask = 00...00 and this is a no-op;
* if we are flag = 1, mask = 11...11 and this is identical to secp256k1_scalar_negate */
uint32_t mask = !flag - 1;
uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(r) == 0);
uint64_t t = (uint64_t)(r->d[0] ^ mask) + ((SECP256K1_N_0 + 1) & mask);
r->d[0] = t & nonzero; t >>= 32;
t += (uint64_t)(r->d[1] ^ mask) + (SECP256K1_N_1 & mask);
r->d[1] = t & nonzero; t >>= 32;
t += (uint64_t)(r->d[2] ^ mask) + (SECP256K1_N_2 & mask);
r->d[2] = t & nonzero; t >>= 32;
t += (uint64_t)(r->d[3] ^ mask) + (SECP256K1_N_3 & mask);
r->d[3] = t & nonzero; t >>= 32;
t += (uint64_t)(r->d[4] ^ mask) + (SECP256K1_N_4 & mask);
r->d[4] = t & nonzero; t >>= 32;
t += (uint64_t)(r->d[5] ^ mask) + (SECP256K1_N_5 & mask);
r->d[5] = t & nonzero; t >>= 32;
t += (uint64_t)(r->d[6] ^ mask) + (SECP256K1_N_6 & mask);
r->d[6] = t & nonzero; t >>= 32;
t += (uint64_t)(r->d[7] ^ mask) + (SECP256K1_N_7 & mask);
r->d[7] = t & nonzero;
return 2 * (mask == 0) - 1;
}
/* Inspired by the macros in OpenSSL's crypto/bn/asm/x86_64-gcc.c. */
/** Add a*b to the number defined by (c0,c1,c2). c2 must never overflow. */
#define muladd(a,b) { \
uint32_t tl, th; \
{ \
uint64_t t = (uint64_t)a * b; \
th = t >> 32; /* at most 0xFFFFFFFE */ \
tl = t; \
} \
c0 += tl; /* overflow is handled on the next line */ \
th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFF */ \
c1 += th; /* overflow is handled on the next line */ \
c2 += (c1 < th) ? 1 : 0; /* never overflows by contract (verified in the next line) */ \
VERIFY_CHECK((c1 >= th) || (c2 != 0)); \
}
/** Add a*b to the number defined by (c0,c1). c1 must never overflow. */
#define muladd_fast(a,b) { \
uint32_t tl, th; \
{ \
uint64_t t = (uint64_t)a * b; \
th = t >> 32; /* at most 0xFFFFFFFE */ \
tl = t; \
} \
c0 += tl; /* overflow is handled on the next line */ \
th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFF */ \
c1 += th; /* never overflows by contract (verified in the next line) */ \
VERIFY_CHECK(c1 >= th); \
}
/** Add 2*a*b to the number defined by (c0,c1,c2). c2 must never overflow. */
#define muladd2(a,b) { \
uint32_t tl, th, th2, tl2; \
{ \
uint64_t t = (uint64_t)a * b; \
th = t >> 32; /* at most 0xFFFFFFFE */ \
tl = t; \
} \
th2 = th + th; /* at most 0xFFFFFFFE (in case th was 0x7FFFFFFF) */ \
c2 += (th2 < th) ? 1 : 0; /* never overflows by contract (verified the next line) */ \
VERIFY_CHECK((th2 >= th) || (c2 != 0)); \
tl2 = tl + tl; /* at most 0xFFFFFFFE (in case the lowest 63 bits of tl were 0x7FFFFFFF) */ \
th2 += (tl2 < tl) ? 1 : 0; /* at most 0xFFFFFFFF */ \
c0 += tl2; /* overflow is handled on the next line */ \
th2 += (c0 < tl2) ? 1 : 0; /* second overflow is handled on the next line */ \
c2 += (c0 < tl2) & (th2 == 0); /* never overflows by contract (verified the next line) */ \
VERIFY_CHECK((c0 >= tl2) || (th2 != 0) || (c2 != 0)); \
c1 += th2; /* overflow is handled on the next line */ \
c2 += (c1 < th2) ? 1 : 0; /* never overflows by contract (verified the next line) */ \
VERIFY_CHECK((c1 >= th2) || (c2 != 0)); \
}
/** Add a to the number defined by (c0,c1,c2). c2 must never overflow. */
#define sumadd(a) { \
unsigned int over; \
c0 += (a); /* overflow is handled on the next line */ \
over = (c0 < (a)) ? 1 : 0; \
c1 += over; /* overflow is handled on the next line */ \
c2 += (c1 < over) ? 1 : 0; /* never overflows by contract */ \
}
/** Add a to the number defined by (c0,c1). c1 must never overflow, c2 must be zero. */
#define sumadd_fast(a) { \
c0 += (a); /* overflow is handled on the next line */ \
c1 += (c0 < (a)) ? 1 : 0; /* never overflows by contract (verified the next line) */ \
VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \
VERIFY_CHECK(c2 == 0); \
}
/** Extract the lowest 32 bits of (c0,c1,c2) into n, and left shift the number 32 bits. */
#define extract(n) { \
(n) = c0; \
c0 = c1; \
c1 = c2; \
c2 = 0; \
}
/** Extract the lowest 32 bits of (c0,c1,c2) into n, and left shift the number 32 bits. c2 is required to be zero. */
#define extract_fast(n) { \
(n) = c0; \
c0 = c1; \
c1 = 0; \
VERIFY_CHECK(c2 == 0); \
}
static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint32_t *l) {
uint64_t c;
uint32_t n0 = l[8], n1 = l[9], n2 = l[10], n3 = l[11], n4 = l[12], n5 = l[13], n6 = l[14], n7 = l[15];
uint32_t m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12;
uint32_t p0, p1, p2, p3, p4, p5, p6, p7, p8;
/* 96 bit accumulator. */
uint32_t c0, c1, c2;
/* Reduce 512 bits into 385. */
/* m[0..12] = l[0..7] + n[0..7] * SECP256K1_N_C. */
c0 = l[0]; c1 = 0; c2 = 0;
muladd_fast(n0, SECP256K1_N_C_0);
extract_fast(m0);
sumadd_fast(l[1]);
muladd(n1, SECP256K1_N_C_0);
muladd(n0, SECP256K1_N_C_1);
extract(m1);
sumadd(l[2]);
muladd(n2, SECP256K1_N_C_0);
muladd(n1, SECP256K1_N_C_1);
muladd(n0, SECP256K1_N_C_2);
extract(m2);
sumadd(l[3]);
muladd(n3, SECP256K1_N_C_0);
muladd(n2, SECP256K1_N_C_1);
muladd(n1, SECP256K1_N_C_2);
muladd(n0, SECP256K1_N_C_3);
extract(m3);
sumadd(l[4]);
muladd(n4, SECP256K1_N_C_0);
muladd(n3, SECP256K1_N_C_1);
muladd(n2, SECP256K1_N_C_2);
muladd(n1, SECP256K1_N_C_3);
sumadd(n0);
extract(m4);
sumadd(l[5]);
muladd(n5, SECP256K1_N_C_0);
muladd(n4, SECP256K1_N_C_1);
muladd(n3, SECP256K1_N_C_2);
muladd(n2, SECP256K1_N_C_3);
sumadd(n1);
extract(m5);
sumadd(l[6]);
muladd(n6, SECP256K1_N_C_0);
muladd(n5, SECP256K1_N_C_1);
muladd(n4, SECP256K1_N_C_2);
muladd(n3, SECP256K1_N_C_3);
sumadd(n2);
extract(m6);
sumadd(l[7]);
muladd(n7, SECP256K1_N_C_0);
muladd(n6, SECP256K1_N_C_1);
muladd(n5, SECP256K1_N_C_2);
muladd(n4, SECP256K1_N_C_3);
sumadd(n3);
extract(m7);
muladd(n7, SECP256K1_N_C_1);
muladd(n6, SECP256K1_N_C_2);
muladd(n5, SECP256K1_N_C_3);
sumadd(n4);
extract(m8);
muladd(n7, SECP256K1_N_C_2);
muladd(n6, SECP256K1_N_C_3);
sumadd(n5);
extract(m9);
muladd(n7, SECP256K1_N_C_3);
sumadd(n6);
extract(m10);
sumadd_fast(n7);
extract_fast(m11);
VERIFY_CHECK(c0 <= 1);
m12 = c0;
/* Reduce 385 bits into 258. */
/* p[0..8] = m[0..7] + m[8..12] * SECP256K1_N_C. */
c0 = m0; c1 = 0; c2 = 0;
muladd_fast(m8, SECP256K1_N_C_0);
extract_fast(p0);
sumadd_fast(m1);
muladd(m9, SECP256K1_N_C_0);
muladd(m8, SECP256K1_N_C_1);
extract(p1);
sumadd(m2);
muladd(m10, SECP256K1_N_C_0);
muladd(m9, SECP256K1_N_C_1);
muladd(m8, SECP256K1_N_C_2);
extract(p2);
sumadd(m3);
muladd(m11, SECP256K1_N_C_0);
muladd(m10, SECP256K1_N_C_1);
muladd(m9, SECP256K1_N_C_2);
muladd(m8, SECP256K1_N_C_3);
extract(p3);
sumadd(m4);
muladd(m12, SECP256K1_N_C_0);
muladd(m11, SECP256K1_N_C_1);
muladd(m10, SECP256K1_N_C_2);
muladd(m9, SECP256K1_N_C_3);
sumadd(m8);
extract(p4);
sumadd(m5);
muladd(m12, SECP256K1_N_C_1);
muladd(m11, SECP256K1_N_C_2);
muladd(m10, SECP256K1_N_C_3);
sumadd(m9);
extract(p5);
sumadd(m6);
muladd(m12, SECP256K1_N_C_2);
muladd(m11, SECP256K1_N_C_3);
sumadd(m10);
extract(p6);
sumadd_fast(m7);
muladd_fast(m12, SECP256K1_N_C_3);
sumadd_fast(m11);
extract_fast(p7);
p8 = c0 + m12;
VERIFY_CHECK(p8 <= 2);
/* Reduce 258 bits into 256. */
/* r[0..7] = p[0..7] + p[8] * SECP256K1_N_C. */
c = p0 + (uint64_t)SECP256K1_N_C_0 * p8;
r->d[0] = c & 0xFFFFFFFFUL; c >>= 32;
c += p1 + (uint64_t)SECP256K1_N_C_1 * p8;
r->d[1] = c & 0xFFFFFFFFUL; c >>= 32;
c += p2 + (uint64_t)SECP256K1_N_C_2 * p8;
r->d[2] = c & 0xFFFFFFFFUL; c >>= 32;
c += p3 + (uint64_t)SECP256K1_N_C_3 * p8;
r->d[3] = c & 0xFFFFFFFFUL; c >>= 32;
c += p4 + (uint64_t)p8;
r->d[4] = c & 0xFFFFFFFFUL; c >>= 32;
c += p5;
r->d[5] = c & 0xFFFFFFFFUL; c >>= 32;
c += p6;
r->d[6] = c & 0xFFFFFFFFUL; c >>= 32;
c += p7;
r->d[7] = c & 0xFFFFFFFFUL; c >>= 32;
/* Final reduction of r. */
secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r));
}
static void secp256k1_scalar_mul_512(uint32_t *l, const secp256k1_scalar *a, const secp256k1_scalar *b) {
/* 96 bit accumulator. */
uint32_t c0 = 0, c1 = 0, c2 = 0;
/* l[0..15] = a[0..7] * b[0..7]. */
muladd_fast(a->d[0], b->d[0]);
extract_fast(l[0]);
muladd(a->d[0], b->d[1]);
muladd(a->d[1], b->d[0]);
extract(l[1]);
muladd(a->d[0], b->d[2]);
muladd(a->d[1], b->d[1]);
muladd(a->d[2], b->d[0]);
extract(l[2]);
muladd(a->d[0], b->d[3]);
muladd(a->d[1], b->d[2]);
muladd(a->d[2], b->d[1]);
muladd(a->d[3], b->d[0]);
extract(l[3]);
muladd(a->d[0], b->d[4]);
muladd(a->d[1], b->d[3]);
muladd(a->d[2], b->d[2]);
muladd(a->d[3], b->d[1]);
muladd(a->d[4], b->d[0]);
extract(l[4]);
muladd(a->d[0], b->d[5]);
muladd(a->d[1], b->d[4]);
muladd(a->d[2], b->d[3]);
muladd(a->d[3], b->d[2]);
muladd(a->d[4], b->d[1]);
muladd(a->d[5], b->d[0]);
extract(l[5]);
muladd(a->d[0], b->d[6]);
muladd(a->d[1], b->d[5]);
muladd(a->d[2], b->d[4]);
muladd(a->d[3], b->d[3]);
muladd(a->d[4], b->d[2]);
muladd(a->d[5], b->d[1]);
muladd(a->d[6], b->d[0]);
extract(l[6]);
muladd(a->d[0], b->d[7]);
muladd(a->d[1], b->d[6]);
muladd(a->d[2], b->d[5]);
muladd(a->d[3], b->d[4]);
muladd(a->d[4], b->d[3]);
muladd(a->d[5], b->d[2]);
muladd(a->d[6], b->d[1]);
muladd(a->d[7], b->d[0]);
extract(l[7]);
muladd(a->d[1], b->d[7]);
muladd(a->d[2], b->d[6]);
muladd(a->d[3], b->d[5]);
muladd(a->d[4], b->d[4]);
muladd(a->d[5], b->d[3]);
muladd(a->d[6], b->d[2]);
muladd(a->d[7], b->d[1]);
extract(l[8]);
muladd(a->d[2], b->d[7]);
muladd(a->d[3], b->d[6]);
muladd(a->d[4], b->d[5]);
muladd(a->d[5], b->d[4]);
muladd(a->d[6], b->d[3]);
muladd(a->d[7], b->d[2]);
extract(l[9]);
muladd(a->d[3], b->d[7]);
muladd(a->d[4], b->d[6]);
muladd(a->d[5], b->d[5]);
muladd(a->d[6], b->d[4]);
muladd(a->d[7], b->d[3]);
extract(l[10]);
muladd(a->d[4], b->d[7]);
muladd(a->d[5], b->d[6]);
muladd(a->d[6], b->d[5]);
muladd(a->d[7], b->d[4]);
extract(l[11]);
muladd(a->d[5], b->d[7]);
muladd(a->d[6], b->d[6]);
muladd(a->d[7], b->d[5]);
extract(l[12]);
muladd(a->d[6], b->d[7]);
muladd(a->d[7], b->d[6]);
extract(l[13]);
muladd_fast(a->d[7], b->d[7]);
extract_fast(l[14]);
VERIFY_CHECK(c1 == 0);
l[15] = c0;
}
static void secp256k1_scalar_sqr_512(uint32_t *l, const secp256k1_scalar *a) {
/* 96 bit accumulator. */
uint32_t c0 = 0, c1 = 0, c2 = 0;
/* l[0..15] = a[0..7]^2. */
muladd_fast(a->d[0], a->d[0]);
extract_fast(l[0]);
muladd2(a->d[0], a->d[1]);
extract(l[1]);
muladd2(a->d[0], a->d[2]);
muladd(a->d[1], a->d[1]);
extract(l[2]);
muladd2(a->d[0], a->d[3]);
muladd2(a->d[1], a->d[2]);
extract(l[3]);
muladd2(a->d[0], a->d[4]);
muladd2(a->d[1], a->d[3]);
muladd(a->d[2], a->d[2]);
extract(l[4]);
muladd2(a->d[0], a->d[5]);
muladd2(a->d[1], a->d[4]);
muladd2(a->d[2], a->d[3]);
extract(l[5]);
muladd2(a->d[0], a->d[6]);
muladd2(a->d[1], a->d[5]);
muladd2(a->d[2], a->d[4]);
muladd(a->d[3], a->d[3]);
extract(l[6]);
muladd2(a->d[0], a->d[7]);
muladd2(a->d[1], a->d[6]);
muladd2(a->d[2], a->d[5]);
muladd2(a->d[3], a->d[4]);
extract(l[7]);
muladd2(a->d[1], a->d[7]);
muladd2(a->d[2], a->d[6]);
muladd2(a->d[3], a->d[5]);
muladd(a->d[4], a->d[4]);
extract(l[8]);
muladd2(a->d[2], a->d[7]);
muladd2(a->d[3], a->d[6]);
muladd2(a->d[4], a->d[5]);
extract(l[9]);
muladd2(a->d[3], a->d[7]);
muladd2(a->d[4], a->d[6]);
muladd(a->d[5], a->d[5]);
extract(l[10]);
muladd2(a->d[4], a->d[7]);
muladd2(a->d[5], a->d[6]);
extract(l[11]);
muladd2(a->d[5], a->d[7]);
muladd(a->d[6], a->d[6]);
extract(l[12]);
muladd2(a->d[6], a->d[7]);
extract(l[13]);
muladd_fast(a->d[7], a->d[7]);
extract_fast(l[14]);
VERIFY_CHECK(c1 == 0);
l[15] = c0;
}
#undef sumadd
#undef sumadd_fast
#undef muladd
#undef muladd_fast
#undef muladd2
#undef extract
#undef extract_fast
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
uint32_t l[16];
secp256k1_scalar_mul_512(l, a, b);
secp256k1_scalar_reduce_512(r, l);
}
static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) {
int ret;
VERIFY_CHECK(n > 0);
VERIFY_CHECK(n < 16);
ret = r->d[0] & ((1 << n) - 1);
r->d[0] = (r->d[0] >> n) + (r->d[1] << (32 - n));
r->d[1] = (r->d[1] >> n) + (r->d[2] << (32 - n));
r->d[2] = (r->d[2] >> n) + (r->d[3] << (32 - n));
r->d[3] = (r->d[3] >> n) + (r->d[4] << (32 - n));
r->d[4] = (r->d[4] >> n) + (r->d[5] << (32 - n));
r->d[5] = (r->d[5] >> n) + (r->d[6] << (32 - n));
r->d[6] = (r->d[6] >> n) + (r->d[7] << (32 - n));
r->d[7] = (r->d[7] >> n);
return ret;
}
static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a) {
uint32_t l[16];
secp256k1_scalar_sqr_512(l, a);
secp256k1_scalar_reduce_512(r, l);
}
#ifdef USE_ENDOMORPHISM
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
r1->d[0] = a->d[0];
r1->d[1] = a->d[1];
r1->d[2] = a->d[2];
r1->d[3] = a->d[3];
r1->d[4] = 0;
r1->d[5] = 0;
r1->d[6] = 0;
r1->d[7] = 0;
r2->d[0] = a->d[4];
r2->d[1] = a->d[5];
r2->d[2] = a->d[6];
r2->d[3] = a->d[7];
r2->d[4] = 0;
r2->d[5] = 0;
r2->d[6] = 0;
r2->d[7] = 0;
}
#endif
SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) {
return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3]) | (a->d[4] ^ b->d[4]) | (a->d[5] ^ b->d[5]) | (a->d[6] ^ b->d[6]) | (a->d[7] ^ b->d[7])) == 0;
}
SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift) {
uint32_t l[16];
unsigned int shiftlimbs;
unsigned int shiftlow;
unsigned int shifthigh;
VERIFY_CHECK(shift >= 256);
secp256k1_scalar_mul_512(l, a, b);
shiftlimbs = shift >> 5;
shiftlow = shift & 0x1F;
shifthigh = 32 - shiftlow;
r->d[0] = shift < 512 ? (l[0 + shiftlimbs] >> shiftlow | (shift < 480 && shiftlow ? (l[1 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[1] = shift < 480 ? (l[1 + shiftlimbs] >> shiftlow | (shift < 448 && shiftlow ? (l[2 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[2] = shift < 448 ? (l[2 + shiftlimbs] >> shiftlow | (shift < 416 && shiftlow ? (l[3 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[3] = shift < 416 ? (l[3 + shiftlimbs] >> shiftlow | (shift < 384 && shiftlow ? (l[4 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[4] = shift < 384 ? (l[4 + shiftlimbs] >> shiftlow | (shift < 352 && shiftlow ? (l[5 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[5] = shift < 352 ? (l[5 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[6 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[6] = shift < 320 ? (l[6 + shiftlimbs] >> shiftlow | (shift < 288 && shiftlow ? (l[7 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[7] = shift < 288 ? (l[7 + shiftlimbs] >> shiftlow) : 0;
secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 5] >> ((shift - 1) & 0x1f)) & 1);
}
#endif /* SECP256K1_SCALAR_REPR_IMPL_H */

View File

@ -0,0 +1,320 @@
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_SCALAR_IMPL_H
#define SECP256K1_SCALAR_IMPL_H
#include "group.h"
#include "scalar.h"
#include "scalar_8x32_impl.h"
#ifndef USE_NUM_NONE
static void secp256k1_scalar_get_num(secp256k1_num *r, const secp256k1_scalar *a) {
unsigned char c[32];
secp256k1_scalar_get_b32(c, a);
secp256k1_num_set_bin(r, c, 32);
}
/** secp256k1 curve order, see secp256k1_ecdsa_const_order_as_fe in ecdsa_impl.h */
static void secp256k1_scalar_order_get_num(secp256k1_num *r) {
#if defined(EXHAUSTIVE_TEST_ORDER)
static const unsigned char order[32] = {
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,EXHAUSTIVE_TEST_ORDER
};
#else
static const unsigned char order[32] = {
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41
};
#endif
secp256k1_num_set_bin(r, order, 32);
}
#endif
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) {
#if defined(EXHAUSTIVE_TEST_ORDER)
int i;
*r = 0;
for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++)
if ((i * *x) % EXHAUSTIVE_TEST_ORDER == 1)
*r = i;
/* If this VERIFY_CHECK triggers we were given a noninvertible scalar (and thus
* have a composite group order; fix it in exhaustive_tests.c). */
VERIFY_CHECK(*r != 0);
}
#else
secp256k1_scalar *t;
int i;
/* First compute xN as x ^ (2^N - 1) for some values of N,
* and uM as x ^ M for some values of M. */
secp256k1_scalar x2, x3, x6, x8, x14, x28, x56, x112, x126;
secp256k1_scalar u2, u5, u9, u11, u13;
secp256k1_scalar_sqr(&u2, x);
secp256k1_scalar_mul(&x2, &u2, x);
secp256k1_scalar_mul(&u5, &u2, &x2);
secp256k1_scalar_mul(&x3, &u5, &u2);
secp256k1_scalar_mul(&u9, &x3, &u2);
secp256k1_scalar_mul(&u11, &u9, &u2);
secp256k1_scalar_mul(&u13, &u11, &u2);
secp256k1_scalar_sqr(&x6, &u13);
secp256k1_scalar_sqr(&x6, &x6);
secp256k1_scalar_mul(&x6, &x6, &u11);
secp256k1_scalar_sqr(&x8, &x6);
secp256k1_scalar_sqr(&x8, &x8);
secp256k1_scalar_mul(&x8, &x8, &x2);
secp256k1_scalar_sqr(&x14, &x8);
for (i = 0; i < 5; i++) {
secp256k1_scalar_sqr(&x14, &x14);
}
secp256k1_scalar_mul(&x14, &x14, &x6);
secp256k1_scalar_sqr(&x28, &x14);
for (i = 0; i < 13; i++) {
secp256k1_scalar_sqr(&x28, &x28);
}
secp256k1_scalar_mul(&x28, &x28, &x14);
secp256k1_scalar_sqr(&x56, &x28);
for (i = 0; i < 27; i++) {
secp256k1_scalar_sqr(&x56, &x56);
}
secp256k1_scalar_mul(&x56, &x56, &x28);
secp256k1_scalar_sqr(&x112, &x56);
for (i = 0; i < 55; i++) {
secp256k1_scalar_sqr(&x112, &x112);
}
secp256k1_scalar_mul(&x112, &x112, &x56);
secp256k1_scalar_sqr(&x126, &x112);
for (i = 0; i < 13; i++) {
secp256k1_scalar_sqr(&x126, &x126);
}
secp256k1_scalar_mul(&x126, &x126, &x14);
/* Then accumulate the final result (t starts at x126). */
t = &x126;
for (i = 0; i < 3; i++) {
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &u5); /* 101 */
for (i = 0; i < 4; i++) { /* 0 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &x3); /* 111 */
for (i = 0; i < 4; i++) { /* 0 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &u5); /* 101 */
for (i = 0; i < 5; i++) { /* 0 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &u11); /* 1011 */
for (i = 0; i < 4; i++) {
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &u11); /* 1011 */
for (i = 0; i < 4; i++) { /* 0 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &x3); /* 111 */
for (i = 0; i < 5; i++) { /* 00 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &x3); /* 111 */
for (i = 0; i < 6; i++) { /* 00 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &u13); /* 1101 */
for (i = 0; i < 4; i++) { /* 0 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &u5); /* 101 */
for (i = 0; i < 3; i++) {
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &x3); /* 111 */
for (i = 0; i < 5; i++) { /* 0 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &u9); /* 1001 */
for (i = 0; i < 6; i++) { /* 000 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &u5); /* 101 */
for (i = 0; i < 10; i++) { /* 0000000 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &x3); /* 111 */
for (i = 0; i < 4; i++) { /* 0 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &x3); /* 111 */
for (i = 0; i < 9; i++) { /* 0 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &x8); /* 11111111 */
for (i = 0; i < 5; i++) { /* 0 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &u9); /* 1001 */
for (i = 0; i < 6; i++) { /* 00 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &u11); /* 1011 */
for (i = 0; i < 4; i++) {
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &u13); /* 1101 */
for (i = 0; i < 5; i++) {
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &x2); /* 11 */
for (i = 0; i < 6; i++) { /* 00 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &u13); /* 1101 */
for (i = 0; i < 10; i++) { /* 000000 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &u13); /* 1101 */
for (i = 0; i < 4; i++) {
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &u9); /* 1001 */
for (i = 0; i < 6; i++) { /* 00000 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, x); /* 1 */
for (i = 0; i < 8; i++) { /* 00 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(r, t, &x6); /* 111111 */
}
SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) {
return !(a->d[0] & 1);
}
#endif
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) {
#if defined(USE_SCALAR_INV_BUILTIN)
secp256k1_scalar_inverse(r, x);
#elif defined(USE_SCALAR_INV_NUM)
unsigned char b[32];
secp256k1_num n, m;
secp256k1_scalar t = *x;
secp256k1_scalar_get_b32(b, &t);
secp256k1_num_set_bin(&n, b, 32);
secp256k1_scalar_order_get_num(&m);
secp256k1_num_mod_inverse(&n, &n, &m);
secp256k1_num_get_bin(b, 32, &n);
secp256k1_scalar_set_b32(r, b, NULL);
/* Verify that the inverse was computed correctly, without GMP code. */
secp256k1_scalar_mul(&t, &t, r);
CHECK(secp256k1_scalar_is_one(&t));
#else
#error "Please select scalar inverse implementation"
#endif
}
#ifdef USE_ENDOMORPHISM
#if defined(EXHAUSTIVE_TEST_ORDER)
/**
* Find k1 and k2 given k, such that k1 + k2 * lambda == k mod n; unlike in the
* full case we don't bother making k1 and k2 be small, we just want them to be
* nontrivial to get full test coverage for the exhaustive tests. We therefore
* (arbitrarily) set k2 = k + 5 and k1 = k - k2 * lambda.
*/
static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
*r2 = (*a + 5) % EXHAUSTIVE_TEST_ORDER;
*r1 = (*a + (EXHAUSTIVE_TEST_ORDER - *r2) * EXHAUSTIVE_TEST_LAMBDA) % EXHAUSTIVE_TEST_ORDER;
}
#else
/**
* The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where
* lambda is {0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0,0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a,
* 0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78,0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72}
*
* "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm
* (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1
* and k2 have a small size.
* It relies on constants a1, b1, a2, b2. These constants for the value of lambda above are:
*
* - a1 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
* - b1 = -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3}
* - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8}
* - b2 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
*
* The algorithm then computes c1 = round(b1 * k / n) and c2 = round(b2 * k / n), and gives
* k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and
* compute k1 as k - k2 * lambda, avoiding the need for constants a1 and a2.
*
* g1, g2 are precomputed constants used to replace division with a rounded multiplication
* when decomposing the scalar for an endomorphism-based point multiplication.
*
* The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve
* Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5.
*
* The derivation is described in the paper "Efficient Software Implementation of Public-Key
* Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez),
* Section 4.3 (here we use a somewhat higher-precision estimate):
* d = a1*b2 - b1*a2
* g1 = round((2^272)*b2/d)
* g2 = round((2^272)*b1/d)
*
* (Note that 'd' is also equal to the curve order here because [a1,b1] and [a2,b2] are found
* as outputs of the Extended Euclidean Algorithm on inputs 'order' and 'lambda').
*
* The function below splits a in r1 and r2, such that r1 + lambda * r2 == a (mod order).
*/
static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
secp256k1_scalar c1, c2;
static const secp256k1_scalar minus_lambda = SECP256K1_SCALAR_CONST(
0xAC9C52B3UL, 0x3FA3CF1FUL, 0x5AD9E3FDUL, 0x77ED9BA4UL,
0xA880B9FCUL, 0x8EC739C2UL, 0xE0CFC810UL, 0xB51283CFUL
);
static const secp256k1_scalar minus_b1 = SECP256K1_SCALAR_CONST(
0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL,
0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL
);
static const secp256k1_scalar minus_b2 = SECP256K1_SCALAR_CONST(
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL
);
static const secp256k1_scalar g1 = SECP256K1_SCALAR_CONST(
0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00003086UL,
0xD221A7D4UL, 0x6BCDE86CUL, 0x90E49284UL, 0xEB153DABUL
);
static const secp256k1_scalar g2 = SECP256K1_SCALAR_CONST(
0x00000000UL, 0x00000000UL, 0x00000000UL, 0x0000E443UL,
0x7ED6010EUL, 0x88286F54UL, 0x7FA90ABFUL, 0xE4C42212UL
);
VERIFY_CHECK(r1 != a);
VERIFY_CHECK(r2 != a);
/* these _var calls are constant time since the shift amount is constant */
secp256k1_scalar_mul_shift_var(&c1, a, &g1, 272);
secp256k1_scalar_mul_shift_var(&c2, a, &g2, 272);
secp256k1_scalar_mul(&c1, &c1, &minus_b1);
secp256k1_scalar_mul(&c2, &c2, &minus_b2);
secp256k1_scalar_add(r2, &c1, &c2);
secp256k1_scalar_mul(r1, r2, &minus_lambda);
secp256k1_scalar_add(r1, r1, a);
}
#endif
#endif
#endif /* SECP256K1_SCALAR_IMPL_H */

View File

@ -0,0 +1,39 @@
/**********************************************************************
* Copyright (c) 2017 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_SCRATCH_
#define _SECP256K1_SCRATCH_
#define SECP256K1_SCRATCH_MAX_FRAMES 5
/* The typedef is used internally; the struct name is used in the public API
* (where it is exposed as a different typedef) */
typedef struct secp256k1_scratch_space_struct {
void *data[SECP256K1_SCRATCH_MAX_FRAMES];
size_t offset[SECP256K1_SCRATCH_MAX_FRAMES];
size_t frame_size[SECP256K1_SCRATCH_MAX_FRAMES];
size_t frame;
size_t max_size;
const secp256k1_callback* error_callback;
} secp256k1_scratch;
static secp256k1_scratch* secp256k1_scratch_create(const secp256k1_callback* error_callback, size_t max_size);
static void secp256k1_scratch_destroy(secp256k1_scratch* scratch);
/** Attempts to allocate a new stack frame with `n` available bytes. Returns 1 on success, 0 on failure */
static int secp256k1_scratch_allocate_frame(secp256k1_scratch* scratch, size_t n, size_t objects);
/** Deallocates a stack frame */
static void secp256k1_scratch_deallocate_frame(secp256k1_scratch* scratch);
/** Returns the maximum allocation the scratch space will allow */
static size_t secp256k1_scratch_max_allocation(const secp256k1_scratch* scratch, size_t n_objects);
/** Returns a pointer into the most recently allocated frame, or NULL if there is insufficient available space */
static void *secp256k1_scratch_alloc(secp256k1_scratch* scratch, size_t n);
#endif

View File

@ -0,0 +1,86 @@
/**********************************************************************
* Copyright (c) 2017 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_SCRATCH_IMPL_H_
#define _SECP256K1_SCRATCH_IMPL_H_
#include "scratch.h"
/* Using 16 bytes alignment because common architectures never have alignment
* requirements above 8 for any of the types we care about. In addition we
* leave some room because currently we don't care about a few bytes.
* TODO: Determine this at configure time. */
#define ALIGNMENT 16
static secp256k1_scratch* secp256k1_scratch_create(const secp256k1_callback* error_callback, size_t max_size) {
secp256k1_scratch* ret = (secp256k1_scratch*)checked_malloc(error_callback, sizeof(*ret));
if (ret != NULL) {
memset(ret, 0, sizeof(*ret));
ret->max_size = max_size;
ret->error_callback = error_callback;
}
return ret;
}
static void secp256k1_scratch_destroy(secp256k1_scratch* scratch) {
if (scratch != NULL) {
VERIFY_CHECK(scratch->frame == 0);
free(scratch);
}
}
static size_t secp256k1_scratch_max_allocation(const secp256k1_scratch* scratch, size_t objects) {
size_t i = 0;
size_t allocated = 0;
for (i = 0; i < scratch->frame; i++) {
allocated += scratch->frame_size[i];
}
if (scratch->max_size - allocated <= objects * ALIGNMENT) {
return 0;
}
return scratch->max_size - allocated - objects * ALIGNMENT;
}
static int secp256k1_scratch_allocate_frame(secp256k1_scratch* scratch, size_t n, size_t objects) {
VERIFY_CHECK(scratch->frame < SECP256K1_SCRATCH_MAX_FRAMES);
if (n <= secp256k1_scratch_max_allocation(scratch, objects)) {
n += objects * ALIGNMENT;
scratch->data[scratch->frame] = checked_malloc(scratch->error_callback, n);
if (scratch->data[scratch->frame] == NULL) {
return 0;
}
scratch->frame_size[scratch->frame] = n;
scratch->offset[scratch->frame] = 0;
scratch->frame++;
return 1;
} else {
return 0;
}
}
static void secp256k1_scratch_deallocate_frame(secp256k1_scratch* scratch) {
VERIFY_CHECK(scratch->frame > 0);
scratch->frame -= 1;
free(scratch->data[scratch->frame]);
}
static void *secp256k1_scratch_alloc(secp256k1_scratch* scratch, size_t size) {
void *ret;
size_t frame = scratch->frame - 1;
size = ((size + ALIGNMENT - 1) / ALIGNMENT) * ALIGNMENT;
if (scratch->frame == 0 || size + scratch->offset[frame] > scratch->frame_size[frame]) {
return NULL;
}
ret = (void *) ((unsigned char *) scratch->data[frame] + scratch->offset[frame]);
memset(ret, 0, size);
scratch->offset[frame] += size;
return ret;
}
#endif

View File

@ -0,0 +1,592 @@
/**********************************************************************
* Copyright (c) 2013-2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include "secp256k1.h"
#include "util.h"
#include "num_impl.h"
#include "field_impl.h"
#include "scalar_impl.h"
#include "group_impl.h"
#include "ecmult_impl.h"
#include "ecmult_const_impl.h"
#include "ecmult_gen_impl.h"
#include "ecdsa_impl.h"
#include "eckey_impl.h"
#include "hash_impl.h"
#include "scratch_impl.h"
#define ARG_CHECK(cond) do { \
if (EXPECT(!(cond), 0)) { \
secp256k1_callback_call(&ctx->illegal_callback, #cond); \
return 0; \
} \
} while(0)
static void default_illegal_callback_fn(const char* str, void* data) {
(void)data;
fprintf(stderr, "[libsecp256k1] illegal argument: %s\n", str);
abort();
}
static const secp256k1_callback default_illegal_callback = {
default_illegal_callback_fn,
NULL
};
static void default_error_callback_fn(const char* str, void* data) {
(void)data;
fprintf(stderr, "[libsecp256k1] internal consistency check failed: %s\n", str);
abort();
}
static const secp256k1_callback default_error_callback = {
default_error_callback_fn,
NULL
};
struct secp256k1_context_struct {
secp256k1_ecmult_context ecmult_ctx;
secp256k1_ecmult_gen_context ecmult_gen_ctx;
secp256k1_callback illegal_callback;
secp256k1_callback error_callback;
};
secp256k1_context* secp256k1_context_create(unsigned int flags) {
secp256k1_context* ret = (secp256k1_context*)checked_malloc(&default_error_callback, sizeof(secp256k1_context));
ret->illegal_callback = default_illegal_callback;
ret->error_callback = default_error_callback;
if (EXPECT((flags & SECP256K1_FLAGS_TYPE_MASK) != SECP256K1_FLAGS_TYPE_CONTEXT, 0)) {
secp256k1_callback_call(&ret->illegal_callback,
"Invalid flags");
free(ret);
return NULL;
}
secp256k1_ecmult_context_init(&ret->ecmult_ctx);
secp256k1_ecmult_gen_context_init(&ret->ecmult_gen_ctx);
if (flags & SECP256K1_FLAGS_BIT_CONTEXT_SIGN) {
secp256k1_ecmult_gen_context_build(&ret->ecmult_gen_ctx, &ret->error_callback);
}
if (flags & SECP256K1_FLAGS_BIT_CONTEXT_VERIFY) {
secp256k1_ecmult_context_build(&ret->ecmult_ctx, &ret->error_callback);
}
return ret;
}
secp256k1_context* secp256k1_context_clone(const secp256k1_context* ctx) {
secp256k1_context* ret = (secp256k1_context*)checked_malloc(&ctx->error_callback, sizeof(secp256k1_context));
ret->illegal_callback = ctx->illegal_callback;
ret->error_callback = ctx->error_callback;
secp256k1_ecmult_context_clone(&ret->ecmult_ctx, &ctx->ecmult_ctx, &ctx->error_callback);
secp256k1_ecmult_gen_context_clone(&ret->ecmult_gen_ctx, &ctx->ecmult_gen_ctx, &ctx->error_callback);
return ret;
}
void secp256k1_context_destroy(secp256k1_context* ctx) {
if (ctx != NULL) {
secp256k1_ecmult_context_clear(&ctx->ecmult_ctx);
secp256k1_ecmult_gen_context_clear(&ctx->ecmult_gen_ctx);
free(ctx);
}
}
void secp256k1_context_set_illegal_callback(secp256k1_context* ctx, void (*fun)(const char* message, void* data), const void* data) {
if (fun == NULL) {
fun = default_illegal_callback_fn;
}
ctx->illegal_callback.fn = fun;
ctx->illegal_callback.data = data;
}
void secp256k1_context_set_error_callback(secp256k1_context* ctx, void (*fun)(const char* message, void* data), const void* data) {
if (fun == NULL) {
fun = default_error_callback_fn;
}
ctx->error_callback.fn = fun;
ctx->error_callback.data = data;
}
secp256k1_scratch_space* secp256k1_scratch_space_create(const secp256k1_context* ctx, size_t max_size) {
VERIFY_CHECK(ctx != NULL);
return secp256k1_scratch_create(&ctx->error_callback, max_size);
}
void secp256k1_scratch_space_destroy(secp256k1_scratch_space* scratch) {
secp256k1_scratch_destroy(scratch);
}
static int secp256k1_pubkey_load(const secp256k1_context* ctx, secp256k1_ge* ge, const secp256k1_pubkey* pubkey) {
if (sizeof(secp256k1_ge_storage) == 64) {
/* When the secp256k1_ge_storage type is exactly 64 byte, use its
* representation inside secp256k1_pubkey, as conversion is very fast.
* Note that secp256k1_pubkey_save must use the same representation. */
secp256k1_ge_storage s;
memcpy(&s, &pubkey->data[0], sizeof(s));
secp256k1_ge_from_storage(ge, &s);
} else {
/* Otherwise, fall back to 32-byte big endian for X and Y. */
secp256k1_fe x, y;
secp256k1_fe_set_b32(&x, pubkey->data);
secp256k1_fe_set_b32(&y, pubkey->data + 32);
secp256k1_ge_set_xy(ge, &x, &y);
}
ARG_CHECK(!secp256k1_fe_is_zero(&ge->x));
return 1;
}
static void secp256k1_pubkey_save(secp256k1_pubkey* pubkey, secp256k1_ge* ge) {
if (sizeof(secp256k1_ge_storage) == 64) {
secp256k1_ge_storage s;
secp256k1_ge_to_storage(&s, ge);
memcpy(&pubkey->data[0], &s, sizeof(s));
} else {
VERIFY_CHECK(!secp256k1_ge_is_infinity(ge));
secp256k1_fe_normalize_var(&ge->x);
secp256k1_fe_normalize_var(&ge->y);
secp256k1_fe_get_b32(pubkey->data, &ge->x);
secp256k1_fe_get_b32(pubkey->data + 32, &ge->y);
}
}
int secp256k1_ec_pubkey_parse(const secp256k1_context* ctx, secp256k1_pubkey* pubkey, const unsigned char *input, size_t inputlen) {
secp256k1_ge Q;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(pubkey != NULL);
memset(pubkey, 0, sizeof(*pubkey));
ARG_CHECK(input != NULL);
if (!secp256k1_eckey_pubkey_parse(&Q, input, inputlen)) {
return 0;
}
secp256k1_pubkey_save(pubkey, &Q);
secp256k1_ge_clear(&Q);
return 1;
}
int secp256k1_ec_pubkey_serialize(const secp256k1_context* ctx, unsigned char *output, size_t *outputlen, const secp256k1_pubkey* pubkey, unsigned int flags) {
secp256k1_ge Q;
size_t len;
int ret = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(outputlen != NULL);
ARG_CHECK(*outputlen >= ((flags & SECP256K1_FLAGS_BIT_COMPRESSION) ? 33 : 65));
len = *outputlen;
*outputlen = 0;
ARG_CHECK(output != NULL);
memset(output, 0, len);
ARG_CHECK(pubkey != NULL);
ARG_CHECK((flags & SECP256K1_FLAGS_TYPE_MASK) == SECP256K1_FLAGS_TYPE_COMPRESSION);
if (secp256k1_pubkey_load(ctx, &Q, pubkey)) {
ret = secp256k1_eckey_pubkey_serialize(&Q, output, &len, flags & SECP256K1_FLAGS_BIT_COMPRESSION);
if (ret) {
*outputlen = len;
}
}
return ret;
}
static void secp256k1_ecdsa_signature_load(const secp256k1_context* ctx, secp256k1_scalar* r, secp256k1_scalar* s, const secp256k1_ecdsa_signature* sig) {
(void)ctx;
if (sizeof(secp256k1_scalar) == 32) {
/* When the secp256k1_scalar type is exactly 32 byte, use its
* representation inside secp256k1_ecdsa_signature, as conversion is very fast.
* Note that secp256k1_ecdsa_signature_save must use the same representation. */
memcpy(r, &sig->data[0], 32);
memcpy(s, &sig->data[32], 32);
} else {
secp256k1_scalar_set_b32(r, &sig->data[0], NULL);
secp256k1_scalar_set_b32(s, &sig->data[32], NULL);
}
}
static void secp256k1_ecdsa_signature_save(secp256k1_ecdsa_signature* sig, const secp256k1_scalar* r, const secp256k1_scalar* s) {
if (sizeof(secp256k1_scalar) == 32) {
memcpy(&sig->data[0], r, 32);
memcpy(&sig->data[32], s, 32);
} else {
secp256k1_scalar_get_b32(&sig->data[0], r);
secp256k1_scalar_get_b32(&sig->data[32], s);
}
}
int secp256k1_ecdsa_signature_parse_der(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input, size_t inputlen) {
secp256k1_scalar r, s;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(sig != NULL);
ARG_CHECK(input != NULL);
if (secp256k1_ecdsa_sig_parse(&r, &s, input, inputlen)) {
secp256k1_ecdsa_signature_save(sig, &r, &s);
return 1;
} else {
memset(sig, 0, sizeof(*sig));
return 0;
}
}
int secp256k1_ecdsa_signature_parse_compact(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input64) {
secp256k1_scalar r, s;
int ret = 1;
int overflow = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(sig != NULL);
ARG_CHECK(input64 != NULL);
secp256k1_scalar_set_b32(&r, &input64[0], &overflow);
ret &= !overflow;
secp256k1_scalar_set_b32(&s, &input64[32], &overflow);
ret &= !overflow;
if (ret) {
secp256k1_ecdsa_signature_save(sig, &r, &s);
} else {
memset(sig, 0, sizeof(*sig));
}
return ret;
}
int secp256k1_ecdsa_signature_serialize_der(const secp256k1_context* ctx, unsigned char *output, size_t *outputlen, const secp256k1_ecdsa_signature* sig) {
secp256k1_scalar r, s;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(output != NULL);
ARG_CHECK(outputlen != NULL);
ARG_CHECK(sig != NULL);
secp256k1_ecdsa_signature_load(ctx, &r, &s, sig);
return secp256k1_ecdsa_sig_serialize(output, outputlen, &r, &s);
}
int secp256k1_ecdsa_signature_serialize_compact(const secp256k1_context* ctx, unsigned char *output64, const secp256k1_ecdsa_signature* sig) {
secp256k1_scalar r, s;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(output64 != NULL);
ARG_CHECK(sig != NULL);
secp256k1_ecdsa_signature_load(ctx, &r, &s, sig);
secp256k1_scalar_get_b32(&output64[0], &r);
secp256k1_scalar_get_b32(&output64[32], &s);
return 1;
}
int secp256k1_ecdsa_signature_normalize(const secp256k1_context* ctx, secp256k1_ecdsa_signature *sigout, const secp256k1_ecdsa_signature *sigin) {
secp256k1_scalar r, s;
int ret = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(sigin != NULL);
secp256k1_ecdsa_signature_load(ctx, &r, &s, sigin);
ret = secp256k1_scalar_is_high(&s);
if (sigout != NULL) {
if (ret) {
secp256k1_scalar_negate(&s, &s);
}
secp256k1_ecdsa_signature_save(sigout, &r, &s);
}
return ret;
}
int secp256k1_ecdsa_verify(const secp256k1_context* ctx, const secp256k1_ecdsa_signature *sig, const unsigned char *msg32, const secp256k1_pubkey *pubkey) {
secp256k1_ge q;
secp256k1_scalar r, s;
secp256k1_scalar m;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
ARG_CHECK(msg32 != NULL);
ARG_CHECK(sig != NULL);
ARG_CHECK(pubkey != NULL);
secp256k1_scalar_set_b32(&m, msg32, NULL);
secp256k1_ecdsa_signature_load(ctx, &r, &s, sig);
return (!secp256k1_scalar_is_high(&s) &&
secp256k1_pubkey_load(ctx, &q, pubkey) &&
secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &r, &s, &q, &m));
}
static SECP256K1_INLINE void buffer_append(unsigned char *buf, unsigned int *offset, const void *data, unsigned int len) {
memcpy(buf + *offset, data, len);
*offset += len;
}
static int nonce_function_rfc6979(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) {
unsigned char keydata[112];
unsigned int offset = 0;
secp256k1_rfc6979_hmac_sha256 rng;
unsigned int i;
/* We feed a byte array to the PRNG as input, consisting of:
* - the private key (32 bytes) and message (32 bytes), see RFC 6979 3.2d.
* - optionally 32 extra bytes of data, see RFC 6979 3.6 Additional Data.
* - optionally 16 extra bytes with the algorithm name.
* Because the arguments have distinct fixed lengths it is not possible for
* different argument mixtures to emulate each other and result in the same
* nonces.
*/
buffer_append(keydata, &offset, key32, 32);
buffer_append(keydata, &offset, msg32, 32);
if (data != NULL) {
buffer_append(keydata, &offset, data, 32);
}
if (algo16 != NULL) {
buffer_append(keydata, &offset, algo16, 16);
}
secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, offset);
memset(keydata, 0, sizeof(keydata));
for (i = 0; i <= counter; i++) {
secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
}
secp256k1_rfc6979_hmac_sha256_finalize(&rng);
return 1;
}
const secp256k1_nonce_function secp256k1_nonce_function_rfc6979 = nonce_function_rfc6979;
const secp256k1_nonce_function secp256k1_nonce_function_default = nonce_function_rfc6979;
int secp256k1_ecdsa_sign(const secp256k1_context* ctx, secp256k1_ecdsa_signature *signature, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void* noncedata) {
secp256k1_scalar r, s;
secp256k1_scalar sec, non, msg;
int ret = 0;
int overflow = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
ARG_CHECK(msg32 != NULL);
ARG_CHECK(signature != NULL);
ARG_CHECK(seckey != NULL);
if (noncefp == NULL) {
noncefp = secp256k1_nonce_function_default;
}
secp256k1_scalar_set_b32(&sec, seckey, &overflow);
/* Fail if the secret key is invalid. */
if (!overflow && !secp256k1_scalar_is_zero(&sec)) {
unsigned char nonce32[32];
unsigned int count = 0;
secp256k1_scalar_set_b32(&msg, msg32, NULL);
while (1) {
ret = noncefp(nonce32, msg32, seckey, NULL, (void*)noncedata, count);
if (!ret) {
break;
}
secp256k1_scalar_set_b32(&non, nonce32, &overflow);
if (!overflow && !secp256k1_scalar_is_zero(&non)) {
if (secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, &r, &s, &sec, &msg, &non, NULL)) {
break;
}
}
count++;
}
memset(nonce32, 0, 32);
secp256k1_scalar_clear(&msg);
secp256k1_scalar_clear(&non);
secp256k1_scalar_clear(&sec);
}
if (ret) {
secp256k1_ecdsa_signature_save(signature, &r, &s);
} else {
memset(signature, 0, sizeof(*signature));
}
return ret;
}
int secp256k1_ec_seckey_verify(const secp256k1_context* ctx, const unsigned char *seckey) {
secp256k1_scalar sec;
int ret;
int overflow;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(seckey != NULL);
secp256k1_scalar_set_b32(&sec, seckey, &overflow);
ret = !overflow && !secp256k1_scalar_is_zero(&sec);
secp256k1_scalar_clear(&sec);
return ret;
}
int secp256k1_ec_pubkey_create(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *seckey) {
secp256k1_gej pj;
secp256k1_ge p;
secp256k1_scalar sec;
int overflow;
int ret = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(pubkey != NULL);
memset(pubkey, 0, sizeof(*pubkey));
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
ARG_CHECK(seckey != NULL);
secp256k1_scalar_set_b32(&sec, seckey, &overflow);
ret = (!overflow) & (!secp256k1_scalar_is_zero(&sec));
if (ret) {
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pj, &sec);
secp256k1_ge_set_gej(&p, &pj);
secp256k1_pubkey_save(pubkey, &p);
}
secp256k1_scalar_clear(&sec);
return ret;
}
int secp256k1_ec_privkey_negate(const secp256k1_context* ctx, unsigned char *seckey) {
secp256k1_scalar sec;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(seckey != NULL);
secp256k1_scalar_set_b32(&sec, seckey, NULL);
secp256k1_scalar_negate(&sec, &sec);
secp256k1_scalar_get_b32(seckey, &sec);
return 1;
}
int secp256k1_ec_pubkey_negate(const secp256k1_context* ctx, secp256k1_pubkey *pubkey) {
int ret = 0;
secp256k1_ge p;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(pubkey != NULL);
ret = secp256k1_pubkey_load(ctx, &p, pubkey);
memset(pubkey, 0, sizeof(*pubkey));
if (ret) {
secp256k1_ge_neg(&p, &p);
secp256k1_pubkey_save(pubkey, &p);
}
return ret;
}
int secp256k1_ec_privkey_tweak_add(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) {
secp256k1_scalar term;
secp256k1_scalar sec;
int ret = 0;
int overflow = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(seckey != NULL);
ARG_CHECK(tweak != NULL);
secp256k1_scalar_set_b32(&term, tweak, &overflow);
secp256k1_scalar_set_b32(&sec, seckey, NULL);
ret = !overflow && secp256k1_eckey_privkey_tweak_add(&sec, &term);
memset(seckey, 0, 32);
if (ret) {
secp256k1_scalar_get_b32(seckey, &sec);
}
secp256k1_scalar_clear(&sec);
secp256k1_scalar_clear(&term);
return ret;
}
int secp256k1_ec_pubkey_tweak_add(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *tweak) {
secp256k1_ge p;
secp256k1_scalar term;
int ret = 0;
int overflow = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
ARG_CHECK(pubkey != NULL);
ARG_CHECK(tweak != NULL);
secp256k1_scalar_set_b32(&term, tweak, &overflow);
ret = !overflow && secp256k1_pubkey_load(ctx, &p, pubkey);
memset(pubkey, 0, sizeof(*pubkey));
if (ret) {
if (secp256k1_eckey_pubkey_tweak_add(&ctx->ecmult_ctx, &p, &term)) {
secp256k1_pubkey_save(pubkey, &p);
} else {
ret = 0;
}
}
return ret;
}
int secp256k1_ec_privkey_tweak_mul(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) {
secp256k1_scalar factor;
secp256k1_scalar sec;
int ret = 0;
int overflow = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(seckey != NULL);
ARG_CHECK(tweak != NULL);
secp256k1_scalar_set_b32(&factor, tweak, &overflow);
secp256k1_scalar_set_b32(&sec, seckey, NULL);
ret = !overflow && secp256k1_eckey_privkey_tweak_mul(&sec, &factor);
memset(seckey, 0, 32);
if (ret) {
secp256k1_scalar_get_b32(seckey, &sec);
}
secp256k1_scalar_clear(&sec);
secp256k1_scalar_clear(&factor);
return ret;
}
int secp256k1_ec_pubkey_tweak_mul(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *tweak) {
secp256k1_ge p;
secp256k1_scalar factor;
int ret = 0;
int overflow = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
ARG_CHECK(pubkey != NULL);
ARG_CHECK(tweak != NULL);
secp256k1_scalar_set_b32(&factor, tweak, &overflow);
ret = !overflow && secp256k1_pubkey_load(ctx, &p, pubkey);
memset(pubkey, 0, sizeof(*pubkey));
if (ret) {
if (secp256k1_eckey_pubkey_tweak_mul(&ctx->ecmult_ctx, &p, &factor)) {
secp256k1_pubkey_save(pubkey, &p);
} else {
ret = 0;
}
}
return ret;
}
int secp256k1_context_randomize(secp256k1_context* ctx, const unsigned char *seed32) {
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, seed32);
return 1;
}
int secp256k1_ec_pubkey_combine(const secp256k1_context* ctx, secp256k1_pubkey *pubnonce, const secp256k1_pubkey * const *pubnonces, size_t n) {
size_t i;
secp256k1_gej Qj;
secp256k1_ge Q;
ARG_CHECK(pubnonce != NULL);
memset(pubnonce, 0, sizeof(*pubnonce));
ARG_CHECK(n >= 1);
ARG_CHECK(pubnonces != NULL);
secp256k1_gej_set_infinity(&Qj);
for (i = 0; i < n; i++) {
secp256k1_pubkey_load(ctx, &Q, pubnonces[i]);
secp256k1_gej_add_ge(&Qj, &Qj, &Q);
}
if (secp256k1_gej_is_infinity(&Qj)) {
return 0;
}
secp256k1_ge_set_gej(&Q, &Qj);
secp256k1_pubkey_save(pubnonce, &Q);
return 1;
}
#include "modules/ecdh/main_impl.h"
#include "modules/recovery/main_impl.h"

View File

@ -0,0 +1,121 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_UTIL_H
#define SECP256K1_UTIL_H
#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
typedef struct {
void (*fn)(const char *text, void* data);
const void* data;
} secp256k1_callback;
static SECP256K1_INLINE void secp256k1_callback_call(const secp256k1_callback * const cb, const char * const text) {
cb->fn(text, (void*)cb->data);
}
#ifdef DETERMINISTIC
#define TEST_FAILURE(msg) do { \
fprintf(stderr, "%s\n", msg); \
abort(); \
} while(0);
#else
#define TEST_FAILURE(msg) do { \
fprintf(stderr, "%s:%d: %s\n", __FILE__, __LINE__, msg); \
abort(); \
} while(0)
#endif
#ifdef HAVE_BUILTIN_EXPECT
#define EXPECT(x,c) __builtin_expect((x),(c))
#else
#define EXPECT(x,c) (x)
#endif
#ifdef DETERMINISTIC
#define CHECK(cond) do { \
if (EXPECT(!(cond), 0)) { \
TEST_FAILURE("test condition failed"); \
} \
} while(0)
#else
#define CHECK(cond) do { \
if (EXPECT(!(cond), 0)) { \
TEST_FAILURE("test condition failed: " #cond); \
} \
} while(0)
#endif
/* Like assert(), but when VERIFY is defined, and side-effect safe. */
#if defined(COVERAGE)
#define VERIFY_CHECK(check)
#define VERIFY_SETUP(stmt)
#elif defined(VERIFY)
#define VERIFY_CHECK CHECK
#define VERIFY_SETUP(stmt) do { stmt; } while(0)
#else
#define VERIFY_CHECK(cond) do { (void)(cond); } while(0)
#define VERIFY_SETUP(stmt)
#endif
static SECP256K1_INLINE void *checked_malloc(const secp256k1_callback* cb, size_t size) {
void *ret = malloc(size);
if (ret == NULL) {
secp256k1_callback_call(cb, "Out of memory");
}
return ret;
}
static SECP256K1_INLINE void *checked_realloc(const secp256k1_callback* cb, void *ptr, size_t size) {
void *ret = realloc(ptr, size);
if (ret == NULL) {
secp256k1_callback_call(cb, "Out of memory");
}
return ret;
}
/* Macro for restrict, when available and not in a VERIFY build. */
#if defined(SECP256K1_BUILD) && defined(VERIFY)
# define SECP256K1_RESTRICT
#else
# if (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L) )
# if SECP256K1_GNUC_PREREQ(3,0)
# define SECP256K1_RESTRICT __restrict__
# elif (defined(_MSC_VER) && _MSC_VER >= 1400)
# define SECP256K1_RESTRICT __restrict
# else
# define SECP256K1_RESTRICT
# endif
# else
# define SECP256K1_RESTRICT restrict
# endif
#endif
#if defined(_WIN32)
# define I64FORMAT "I64d"
# define I64uFORMAT "I64u"
#else
# define I64FORMAT "lld"
# define I64uFORMAT "llu"
#endif
#if defined(HAVE___INT128)
# if defined(__GNUC__)
# define SECP256K1_GNUC_EXT __extension__
# else
# define SECP256K1_GNUC_EXT
# endif
SECP256K1_GNUC_EXT typedef unsigned __int128 uint128_t;
#endif
#endif /* SECP256K1_UTIL_H */