Go to file
Alex Crichton b47c9690d2 bootstrap: Merge the libtest build step with libstd
Since its inception rustbuild has always worked in three stages: one for
libstd, one for libtest, and one for rustc. These three stages were
architected around crates.io dependencies, where rustc wants to depend
on crates.io crates but said crates don't explicitly depend on libstd,
requiring a sysroot assembly step in the middle. This same logic was
applied for libtest where libtest wants to depend on crates.io crates
(`getopts`) but `getopts` didn't say that it depended on std, so it
needed `std` built ahead of time.

Lots of time has passed since the inception of rustbuild, however,
and we've since gotten to the point where even `std` itself is depending
on crates.io crates (albeit with some wonky configuration). This
commit applies the same logic to the two dependencies that the `test`
crate pulls in from crates.io, `getopts` and `unicode-width`. Over the
many years since rustbuild's inception `unicode-width` was the only
dependency picked up by the `test` crate, so the extra configuration
necessary to get crates building in this crate graph is unlikely to be
too much of a burden on developers.

After this patch it means that there are now only two build phasese of
rustbuild, one for libstd and one for rustc. The libtest/libproc_macro
build phase is all lumped into one now with `std`.

This was originally motivated by rust-lang/cargo#7216 where Cargo was
having to deal with synthesizing dependency edges but this commit makes
them explicit in this repository.
2019-08-23 16:46:11 -07:00
src bootstrap: Merge the libtest build step with libstd 2019-08-23 16:46:11 -07:00
.gitattributes Allow git to merge `Cargo.lock` 2019-08-20 06:56:46 -07:00
.gitignore .gitignore: Explain why `/obj/` is ignored 2019-08-10 10:39:40 +02:00
.gitmodules Auto merge of #62592 - nikic:actually-update-llvm, r=alexcrichton 2019-07-16 23:05:06 +00:00
.mailmap Update .mailmap 2019-08-22 16:47:42 +02:00
CODE_OF_CONDUCT.md Make extern ref HTTPS 2019-01-07 09:52:32 -05:00
CONTRIBUTING.md Update cargo-vendor usage 2019-07-09 16:12:41 -07:00
COPYRIGHT Rebase to the llvm-project monorepo 2019-01-25 15:39:54 -08:00
Cargo.lock bootstrap: Merge the libtest build step with libstd 2019-08-23 16:46:11 -07:00
Cargo.toml bootstrap: Merge the libtest build step with libstd 2019-08-23 16:46:11 -07:00
LICENSE-APACHE Update license, add license boilerplate to most files. Remainder will follow. 2012-12-03 17:12:14 -08:00
LICENSE-MIT LICENSE-MIT: Remove inaccurate (misattributed) copyright notice 2017-07-26 16:51:58 -07:00
README.md Fix README MSVC URI 2019-07-31 16:39:38 +07:00
RELEASES.md Rollup merge of #63529 - andersk:release-notes-kleene, r=Centril 2019-08-14 04:18:55 +02:00
config.toml.example add git keyword to submodule option 2019-08-16 12:39:45 -04:00
configure rustbuild: Rewrite the configure script in Python 2017-08-27 18:53:30 -07:00
rustfmt.toml Add rustfmt toml 2019-05-03 21:45:37 +03:00
triagebot.toml Allow rustbot to add `F-*` + `requires-nightly`. 2019-07-28 10:29:38 +02:00
x.py Remove licenses 2018-12-25 21:08:33 -07:00

README.md

The Rust Programming Language

This is the main source code repository for Rust. It contains the compiler, standard library, and documentation.

Quick Start

Read "Installation" from The Book.

Installing from Source

Note: If you wish to contribute to the compiler, you should read this chapter of the rustc-guide instead of this section.

The Rust build system has a Python script called x.py to bootstrap building the compiler. More information about it may be found by running ./x.py --help or reading the rustc guide.

Building on *nix

  1. Make sure you have installed the dependencies:

    • g++ 4.7 or later or clang++ 3.x or later
    • python 2.7 (but not 3.x)
    • GNU make 3.81 or later
    • cmake 3.4.3 or later
    • curl
    • git
  2. Clone the source with git:

    $ git clone https://github.com/rust-lang/rust.git
    $ cd rust
    
  1. Configure the build settings:

    The Rust build system uses a file named config.toml in the root of the source tree to determine various configuration settings for the build. Copy the default config.toml.example to config.toml to get started.

    $ cp config.toml.example config.toml
    

    It is recommended that if you plan to use the Rust build system to create an installation (using ./x.py install) that you set the prefix value in the [install] section to a directory that you have write permissions.

  2. Build and install:

    $ ./x.py build && ./x.py install
    

    When complete, ./x.py install will place several programs into $PREFIX/bin: rustc, the Rust compiler, and rustdoc, the API-documentation tool. This install does not include Cargo, Rust's package manager. To build and install Cargo, you may run ./x.py install cargo or set the build.extended key in config.toml to true to build and install all tools.

Building on Windows

There are two prominent ABIs in use on Windows: the native (MSVC) ABI used by Visual Studio, and the GNU ABI used by the GCC toolchain. Which version of Rust you need depends largely on what C/C++ libraries you want to interoperate with: for interop with software produced by Visual Studio use the MSVC build of Rust; for interop with GNU software built using the MinGW/MSYS2 toolchain use the GNU build.

MinGW

MSYS2 can be used to easily build Rust on Windows:

  1. Grab the latest MSYS2 installer and go through the installer.

  2. Run mingw32_shell.bat or mingw64_shell.bat from wherever you installed MSYS2 (i.e. C:\msys64), depending on whether you want 32-bit or 64-bit Rust. (As of the latest version of MSYS2 you have to run msys2_shell.cmd -mingw32 or msys2_shell.cmd -mingw64 from the command line instead)

  3. From this terminal, install the required tools:

    # Update package mirrors (may be needed if you have a fresh install of MSYS2)
    $ pacman -Sy pacman-mirrors
    
    # Install build tools needed for Rust. If you're building a 32-bit compiler,
    # then replace "x86_64" below with "i686". If you've already got git, python,
    # or CMake installed and in PATH you can remove them from this list. Note
    # that it is important that you do **not** use the 'python2' and 'cmake'
    # packages from the 'msys2' subsystem. The build has historically been known
    # to fail with these packages.
    $ pacman -S git \
                make \
                diffutils \
                tar \
                mingw-w64-x86_64-python2 \
                mingw-w64-x86_64-cmake \
                mingw-w64-x86_64-gcc
    
  4. Navigate to Rust's source code (or clone it), then build it:

    $ ./x.py build && ./x.py install
    

MSVC

MSVC builds of Rust additionally require an installation of Visual Studio 2017 (or later) so rustc can use its linker. The simplest way is to get the Visual Studio, check the “C++ build tools” and “Windows 10 SDK” workload.

(If you're installing cmake yourself, be careful that “C++ CMake tools for Windows” doesn't get included under “Individual components”.)

With these dependencies installed, you can build the compiler in a cmd.exe shell with:

> python x.py build

Currently, building Rust only works with some known versions of Visual Studio. If you have a more recent version installed the build system doesn't understand then you may need to force rustbuild to use an older version. This can be done by manually calling the appropriate vcvars file before running the bootstrap.

> CALL "C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary\Build\vcvars64.bat"
> python x.py build

Specifying an ABI

Each specific ABI can also be used from either environment (for example, using the GNU ABI in PowerShell) by using an explicit build triple. The available Windows build triples are:

  • GNU ABI (using GCC)
    • i686-pc-windows-gnu
    • x86_64-pc-windows-gnu
  • The MSVC ABI
    • i686-pc-windows-msvc
    • x86_64-pc-windows-msvc

The build triple can be specified by either specifying --build=<triple> when invoking x.py commands, or by copying the config.toml file (as described in Installing From Source), and modifying the build option under the [build] section.

Configure and Make

While it's not the recommended build system, this project also provides a configure script and makefile (the latter of which just invokes x.py).

$ ./configure
$ make && sudo make install

When using the configure script, the generated config.mk file may override the config.toml file. To go back to the config.toml file, delete the generated config.mk file.

Building Documentation

If youd like to build the documentation, its almost the same:

$ ./x.py doc

The generated documentation will appear under doc in the build directory for the ABI used. I.e., if the ABI was x86_64-pc-windows-msvc, the directory will be build\x86_64-pc-windows-msvc\doc.

Notes

Since the Rust compiler is written in Rust, it must be built by a precompiled "snapshot" version of itself (made in an earlier stage of development). As such, source builds require a connection to the Internet, to fetch snapshots, and an OS that can execute the available snapshot binaries.

Snapshot binaries are currently built and tested on several platforms:

Platform / Architecture x86 x86_64
Windows (7, 8, 10, ...)
Linux (2.6.18 or later)
macOS (10.7 Lion or later)

You may find that other platforms work, but these are our officially supported build environments that are most likely to work.

There is more advice about hacking on Rust in CONTRIBUTING.md.

Getting Help

The Rust community congregates in a few places:

Contributing

To contribute to Rust, please see CONTRIBUTING.

Rust has an IRC culture and most real-time collaboration happens in a variety of channels on Mozilla's IRC network, irc.mozilla.org. The most popular channel is #rust, a venue for general discussion about Rust. And a good place to ask for help would be #rust-beginners.

The rustc guide might be a good place to start if you want to find out how various parts of the compiler work.

Also, you may find the rustdocs for the compiler itself useful.

License

Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.

See LICENSE-APACHE, LICENSE-MIT, and COPYRIGHT for details.

Trademark

The Rust programming language is an open source, community project governed by a core team. It is also sponsored by the Mozilla Foundation (“Mozilla”), which owns and protects the Rust and Cargo trademarks and logos (the “Rust Trademarks”).

If you want to use these names or brands, please read the media guide.

Third-party logos may be subject to third-party copyrights and trademarks. See Licenses for details.