Supertraits of `BuilderMethods` are all called `XyzBuilderMethods`.
Supertraits of `CodegenMethods` are all called `XyzMethods`. This commit
changes the latter to `XyzCodegenMethods`, for consistency.
It's a trait that aggregates five other traits. But consider the places
that use it.
- `BuilderMethods`: requires three of the five traits.
- `CodegenMethods`: requires zero(!) of the five traits.
- `BaseTypeMethods`: requires two of the five traits.
- `LayoutTypeMethods`: requires three of the five traits.
- `TypeMembershipMethods`: requires one of the five traits.
This commit just removes it, which makes everything simpler.
It has `Backend` and `Deref` boudns, plus an associated type
`CodegenCx`, and it has a single use. This commit "inlines" it into
`BuilderMethods`, which makes the complicated backend trait situation a
little simpler.
It only needs `Self::Value` and `Self::Type`, so it can be a subtrait of
`BackendTypes`. That is a smaller and simpler trait than `HasCodegen`
(which includes `BackendTypes` and a lot more).
linker: Allow MSVC to use import libraries following the Meson/MinGW convention
Hi all,
This PR implements support for `MsvcLinker` to use import libraries following Meson and the MinGW toolchain's naming convention. Meson [follows the `libfoo.dll.a` naming convention](https://mesonbuild.com/FAQ.html#why-does-building-my-project-with-msvc-output-static-libraries-called-libfooa) to disambiguate between static and import libraries.
This support already existed for static libraries (see #100101), but not for dynamic libraries. The latter case was added by duplicating the logic in `native_libs::find_native_static_library`, but a separate case was added in `link_dylib_by_name` for the Windows CRT libraries which must be handled by the linker itself.
See for prerequisites #129366, #126094, and #128370.
All feedback is appreciated!
Fixes#122455
cc `@sdroege` `@nirbheek`
simd_shuffle: require index argument to be a vector
Remove some codegen hacks by forcing the SIMD shuffle `index` argument to be a vector, which means (thanks to https://github.com/rust-lang/rust/pull/128537) that it will automatically be passed as an immediate in LLVM. The only special-casing we still have is for the extra sanity-checks we add that ensure that the indices are all in-bounds. (And the GCC backend needs to do a bunch of work since the Rust intrinsic is modeled after what LLVM expects, which seems to be quite different from what GCC expects.)
Fixes https://github.com/rust-lang/rust/issues/128738, see that issue for more context.
Don't leave debug locations for constants sitting on the builder indefinitely
Because constants are currently emitted *before* the prologue, leaving the debug location on the IRBuilder spills onto other instructions in the prologue and messes up both line numbers as well as the point LLVM chooses to be the prologue end.
Example LLVM IR (irrelevant IR elided):
Before:
```
define internal { i64, i64 } `@_ZN3tmp3Foo18var_return_opt_try17he02116165b0fc08cE(ptr` align 8 %self) !dbg !347 { start:
%self.dbg.spill = alloca [8 x i8], align 8
%_0 = alloca [16 x i8], align 8
%residual.dbg.spill = alloca [0 x i8], align 1
#dbg_declare(ptr %residual.dbg.spill, !353, !DIExpression(), !357)
store ptr %self, ptr %self.dbg.spill, align 8, !dbg !357
#dbg_declare(ptr %self.dbg.spill, !350, !DIExpression(), !358)
```
After:
```
define internal { i64, i64 } `@_ZN3tmp3Foo18var_return_opt_try17h00b17d08874ddd90E(ptr` align 8 %self) !dbg !347 { start:
%self.dbg.spill = alloca [8 x i8], align 8
%_0 = alloca [16 x i8], align 8
%residual.dbg.spill = alloca [0 x i8], align 1
#dbg_declare(ptr %residual.dbg.spill, !353, !DIExpression(), !357)
store ptr %self, ptr %self.dbg.spill, align 8
#dbg_declare(ptr %self.dbg.spill, !350, !DIExpression(), !358)
```
Note in particular how !357 from %residual.dbg.spill's dbg_declare no longer falls through onto the store to %self.dbg.spill. This fixes argument values at entry when the constant is a ZST (e.g. `<Option as Try>::Residual`). This fixes#130003 (but note that it does *not* fix issues with argument values and non-ZST constants, which emit their own stores that have debug info on them, like #128945).
r? `@michaelwoerister`
Simplify some nested `if` statements
Applies some but not all instances of `clippy::collapsible_if`. Some ended up looking worse afterwards, though, so I left those out. Also applies instances of `clippy::collapsible_else_if`
Review with whitespace disabled please.
Apple: Refactor deployment target version parsing
Refactor deployment target parsing to make it easier to do https://github.com/rust-lang/rust/pull/129342 (I wanted to make sure of all the places that `std::env::var` is called).
Specifically, my goal was to minimize the amount of target-specific configuration, so to that end I renamed the `opts` function that generates the `TargetOptions` to `base`, and made it return the LLVM target and `target_arch` too. In the future, I would like to move even more out of the target files and into `spec::apple`, as it makes it easier for me to maintain.
For example, this fixed a bug in `aarch64-apple-watchos`, which wasn't passing the deployment target as part of the LLVM triple. This (probably) fixes https://github.com/rust-lang/rust/issues/123582 and fixes https://github.com/rust-lang/rust/issues/107630.
We also now parse the patch version of deployment targets, allowing the user to specify e.g. `MACOSX_DEPLOYMENT_TARGET=10.12.6`.
Finally, this fixes the LLVM target name for visionOS, it should be `*-apple-xros` and not `*-apple-visionos`.
Since I have changed all the Apple targets here, I smoke-tested my changes by running the following:
```console
# Build each target
./x build library --target="aarch64-apple-darwin,aarch64-apple-ios,aarch64-apple-ios-macabi,aarch64-apple-ios-sim,aarch64-apple-tvos,aarch64-apple-tvos-sim,aarch64-apple-visionos,aarch64-apple-visionos-sim,aarch64-apple-watchos,aarch64-apple-watchos-sim,arm64_32-apple-watchos,arm64e-apple-ios,armv7k-apple-watchos,armv7s-apple-ios,i386-apple-ios,x86_64-apple-darwin,x86_64-apple-ios,x86_64-apple-ios-macabi,x86_64-apple-tvos,x86_64-apple-watchos-sim,x86_64h-apple-darwin"
# Test that we can still at least link basic projects
cargo new foobar && cd foobar && cargo +stage1 build --target=aarch64-apple-darwin --target=aarch64-apple-ios --target=aarch64-apple-ios-macabi --target=aarch64-apple-ios-sim --target=aarch64-apple-tvos --target=aarch64-apple-tvos-sim --target=aarch64-apple-visionos --target=aarch64-apple-visionos-sim --target=aarch64-apple-watchos --target=aarch64-apple-watchos-sim --target=arm64_32-apple-watchos --target=armv7s-apple-ios --target=i386-apple-ios --target=x86_64-apple-darwin --target=x86_64-apple-ios --target=x86_64-apple-ios-macabi --target=x86_64-apple-tvos --target=x86_64-apple-watchos-sim --target=x86_64h-apple-darwin
```
I couldn't build for the `arm64e-apple-darwin` target, the `armv7k-apple-watchos` and `arm64e-apple-ios` targets failed to link, and I know that the `i686-apple-darwin` target requires a bit of setup, but all of this is as it was before this PR.
r? thomcc
CC `@BlackHoleFox`
I would recommend using `rollup=never` when merging this, in case we need to bisect this later.
Because constants are currently emitted *before* the prologue, leaving the
debug location on the IRBuilder spills onto other instructions in the prologue
and messes up both line numbers as well as the point LLVM chooses to be the
prologue end.
Example LLVM IR (irrelevant IR elided):
Before:
define internal { i64, i64 } @_ZN3tmp3Foo18var_return_opt_try17he02116165b0fc08cE(ptr align 8 %self) !dbg !347 {
start:
%self.dbg.spill = alloca [8 x i8], align 8
%_0 = alloca [16 x i8], align 8
%residual.dbg.spill = alloca [0 x i8], align 1
#dbg_declare(ptr %residual.dbg.spill, !353, !DIExpression(), !357)
store ptr %self, ptr %self.dbg.spill, align 8, !dbg !357
#dbg_declare(ptr %self.dbg.spill, !350, !DIExpression(), !358)
After:
define internal { i64, i64 } @_ZN3tmp3Foo18var_return_opt_try17h00b17d08874ddd90E(ptr align 8 %self) !dbg !347 {
start:
%self.dbg.spill = alloca [8 x i8], align 8
%_0 = alloca [16 x i8], align 8
%residual.dbg.spill = alloca [0 x i8], align 1
#dbg_declare(ptr %residual.dbg.spill, !353, !DIExpression(), !357)
store ptr %self, ptr %self.dbg.spill, align 8
#dbg_declare(ptr %self.dbg.spill, !350, !DIExpression(), !358)
Note in particular how !357 from %residual.dbg.spill's dbg_declare no longer
falls through onto the store to %self.dbg.spill. This fixes argument values
at entry when the constant is a ZST (e.g. <Option as Try>::Residual). This
fixes#130003 (but note that it does *not* fix issues with argument values and
non-ZST constants, which emit their own stores that have debug info on them,
like #128945).
- Merge minimum OS version list into one function (makes it easier to
see the logic in it).
- Parse patch deployment target versions.
- Consistently specify deployment target in LLVM target (previously
omitted on `aarch64-apple-watchos`).
Update the `wasm-component-ld` binary dependency
This keeps it up-to-date by moving from 0.5.6 to 0.5.7. While here I've additionally updated some other wasm-related dependencies in the workspace to keep them up-to-date and try to avoid duplicate versions as well.
linker: Synchronize native library search in rustc and linker
Also search for static libraries with alternative naming (`libname.a`) on MSVC when producing executables or dynamic libraries, and not just rlibs.
This unblocks https://github.com/rust-lang/rust/pull/123436.
try-job: x86_64-msvc
This keeps it up-to-date by moving from 0.5.6 to 0.5.7. While here I've
additionally updated some other wasm-related dependencies in the
workspace to keep them up-to-date and try to avoid duplicate versions as
well.
rustc: Simplify getting sysroot library directory
It was very non-obvious that `sess.target_tlib_path`, `make_target_lib_path(...)`, and `sess.target_filesearch(...).search_paths()` result in the same sysroot library directory paths.
They are however, indeed the same, because `sess.target_tlib_path` is initialized to `make_target_lib_path(...)` on `Session` creation, and they are used interchangeably.
There are still some redundant calls to `make_target_lib_path` and other inconsistent ways to obtain sysroot directories, but fixing that requires some behavior changes, while this PR is a pure refactoring.
Some places in the compiler even disagree on the number of sysroots - 1 (explicit `--sysroot` *or* default sysroot), 2 (explicit `--sysroot` *and* default sysroot), or an unclear number of `sysroot_candidates` every of which is considered.
The logic currently using `sess.target_tlib_path` or equivalents assumes one sysroot.
Add `#[warn(unreachable_pub)]` to a bunch of compiler crates
By default `unreachable_pub` identifies things that need not be `pub` and tells you to make them `pub(crate)`. But sometimes those things don't need any kind of visibility. So they way I did these was to remove the visibility entirely for each thing the lint identifies, and then add `pub(crate)` back in everywhere the compiler said it was necessary. (Or occasionally `pub(super)` when context suggested that was appropriate.) Tedious, but results in more `pub` removal.
There are plenty more crates to do but this seems like enough for a first PR.
r? `@compiler-errors`
Allow rust staticlib to work with MSVC's /WHOLEARCHIVE
This fixes#129020 by renaming the `__NULL_IMPORT_DESCRIPTOR` to prevent conflicts.
try-job: dist-i686-msvc
Switch to using the v2 resolver in most workspaces
Pinning the resolver to v1 was done in 5abff3753a ("Explicit set workspace.resolver ...") in order to suppress warnings. Since there is no specific reason not to use the new resolver and since it fixes issues, change to `resolver = "2"` everywhere except library.
With the new resolver, a few dependencies get brought in twice with
different licenses. For example, all dependencies from `wasm-tools`
gained Apache-2.0 and MIT options, and with the v2 resolver we were
using one version from before and one version from after this change.
This made tidy's license check difficult.
Update some minimum versions to remove duplicate dependencies and smooth
out license checking.
Rework MIR inlining debuginfo so function parameters show up in debuggers.
Line numbers of multiply-inlined functions were fixed in #114643 by using a single DISubprogram. That, however, triggered assertions because parameters weren't deduplicated. The "solution" to that in #115417 was to insert a DILexicalScope below the DISubprogram and parent all of the parameters to that scope. That fixed the assertion, but debuggers (including gdb and lldb) don't recognize variables that are not parented to the subprogram itself as parameters, even if they are emitted with DW_TAG_formal_parameter.
Consider the program:
```rust
use std::env;
#[inline(always)]
fn square(n: i32) -> i32 {
n * n
}
#[inline(never)]
fn square_no_inline(n: i32) -> i32 {
n * n
}
fn main() {
let x = square(env::vars().count() as i32);
let y = square_no_inline(env::vars().count() as i32);
println!("{x} == {y}");
}
```
When making a release build with debug=2 and rustc 1.82.0-nightly (8b3870784 2024-08-07)
```
(gdb) r
Starting program: /ephemeral/tmp/target/release/tmp [Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
Breakpoint 1, tmp::square () at src/main.rs:5
5 n * n
(gdb) info args
No arguments.
(gdb) info locals
n = 31
(gdb) c
Continuing.
Breakpoint 2, tmp::square_no_inline (n=31) at src/main.rs:10
10 n * n
(gdb) info args
n = 31
(gdb) info locals
No locals.
```
This issue is particularly annoying because it removes arguments from stack traces.
The DWARF for the inlined function looks like this:
```
< 2><0x00002132 GOFF=0x00002132> DW_TAG_subprogram
DW_AT_linkage_name _ZN3tmp6square17hc507052ff3d2a488E
DW_AT_name square
DW_AT_decl_file 0x0000000f /ephemeral/tmp/src/main.rs
DW_AT_decl_line 0x00000004
DW_AT_type 0x00001a56<.debug_info+0x00001a56>
DW_AT_inline DW_INL_inlined
< 3><0x00002142 GOFF=0x00002142> DW_TAG_lexical_block
< 4><0x00002143 GOFF=0x00002143> DW_TAG_formal_parameter
DW_AT_name n
DW_AT_decl_file 0x0000000f /ephemeral/tmp/src/main.rs
DW_AT_decl_line 0x00000004
DW_AT_type 0x00001a56<.debug_info+0x00001a56>
< 4><0x0000214e GOFF=0x0000214e> DW_TAG_null
< 3><0x0000214f GOFF=0x0000214f> DW_TAG_null
```
That DW_TAG_lexical_block inhibits every debugger I've tested from recognizing 'n' as a parameter.
This patch removes the additional lexical scope. Parameters can be easily deduplicated by a tuple of their scope and the argument index, at the trivial cost of taking a Hash + Eq bound on DIScope.
Use the `enum2$` Natvis visualiser for repr128 C-style enums
Use the preexisting `enum2$` Natvis visualiser to allow PDB debuggers to display fieldless `#[repr(u128)]]`/`#[repr(i128)]]` enums correctly.
Tracking issue: #56071
try-job: x86_64-msvc
Shrink `TyKind::FnPtr`.
By splitting the `FnSig` within `TyKind::FnPtr` into `FnSigTys` and `FnHeader`, which can be packed more efficiently. This reduces the size of the hot `TyKind` type from 32 bytes to 24 bytes on 64-bit platforms. This reduces peak memory usage by a few percent on some benchmarks. It also reduces cache misses and page faults similarly, though this doesn't translate to clear cycles or wall-time improvements on CI.
r? `@compiler-errors`
Line numbers of multiply-inlined functions were fixed in #114643 by using a
single DISubprogram. That, however, triggered assertions because parameters
weren't deduplicated. The "solution" to that in #115417 was to insert a
DILexicalScope below the DISubprogram and parent all of the parameters to that
scope. That fixed the assertion, but debuggers (including gdb and lldb) don't
recognize variables that are not parented to the subprogram itself as parameters,
even if they are emitted with DW_TAG_formal_parameter.
Consider the program:
use std::env;
fn square(n: i32) -> i32 {
n * n
}
fn square_no_inline(n: i32) -> i32 {
n * n
}
fn main() {
let x = square(env::vars().count() as i32);
let y = square_no_inline(env::vars().count() as i32);
println!("{x} == {y}");
}
When making a release build with debug=2 and rustc 1.82.0-nightly (8b3870784 2024-08-07)
(gdb) r
Starting program: /ephemeral/tmp/target/release/tmp
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
Breakpoint 1, tmp::square () at src/main.rs:5
5 n * n
(gdb) info args
No arguments.
(gdb) info locals
n = 31
(gdb) c
Continuing.
Breakpoint 2, tmp::square_no_inline (n=31) at src/main.rs:10
10 n * n
(gdb) info args
n = 31
(gdb) info locals
No locals.
This issue is particularly annoying because it removes arguments from stack traces.
The DWARF for the inlined function looks like this:
< 2><0x00002132 GOFF=0x00002132> DW_TAG_subprogram
DW_AT_linkage_name _ZN3tmp6square17hc507052ff3d2a488E
DW_AT_name square
DW_AT_decl_file 0x0000000f /ephemeral/tmp/src/main.rs
DW_AT_decl_line 0x00000004
DW_AT_type 0x00001a56<.debug_info+0x00001a56>
DW_AT_inline DW_INL_inlined
< 3><0x00002142 GOFF=0x00002142> DW_TAG_lexical_block
< 4><0x00002143 GOFF=0x00002143> DW_TAG_formal_parameter
DW_AT_name n
DW_AT_decl_file 0x0000000f /ephemeral/tmp/src/main.rs
DW_AT_decl_line 0x00000004
DW_AT_type 0x00001a56<.debug_info+0x00001a56>
< 4><0x0000214e GOFF=0x0000214e> DW_TAG_null
< 3><0x0000214f GOFF=0x0000214f> DW_TAG_null
That DW_TAG_lexical_block inhibits every debugger I've tested from recognizing
'n' as a parameter.
This patch removes the additional lexical scope. Parameters can be easily
deduplicated by a tuple of their scope and the argument index, at the trivial
cost of taking a Hash + Eq bound on DIScope.
const vector passed through to codegen
This allows constant vectors using a repr(simd) type to be propagated
through to the backend by reusing the functionality used to do a similar
thing for the simd_shuffle intrinsic
#118209
r? RalfJung
By splitting the `FnSig` within `TyKind::FnPtr` into `FnSigTys` and
`FnHeader`, which can be packed more efficiently. This reduces the size
of the hot `TyKind` type from 32 bytes to 24 bytes on 64-bit platforms.
This reduces peak memory usage by a few percent on some benchmarks. It
also reduces cache misses and page faults similarly, though this doesn't
translate to clear cycles or wall-time improvements on CI.
rustc_codegen_ssa: Set architecture for object crate for 32-bit SPARC
The `object` crate was recently updated to recognize the 32-bit SPARC ELF targets `EM_SPARC` and `EM_SPARC32PLUS`, so the proper architecture for 32-bit SPARC can now be set in `rustc_codegen_ssa`.
r? nagisa
Make create_dll_import_lib easier to implement
This will make it easier to implement raw-dylib support in cg_clif and cg_gcc. This PR doesn't yet include an create_dll_import_lib implementation for cg_clif as I need to correctly implement dllimport in cg_clif first before raw-dylib can work at all with cg_clif.
Required for https://github.com/rust-lang/rustc_codegen_cranelift/issues/1345
Version 0.3.1 has added support for writing import libraries. Version
0.3.2 fixed creating archives containing members of import libraries.
Version 0.3.3 fixed building on big-endian systems.
The object crate was recently updated to recognize the 32-bit SPARC
ELF targets EM_SPARC and EM_SPARC32PLUS, so the proper architecture
for 32-bit SPARC can now be set in rustc_codegen_ssa.
Add `Debug` impls to API types in `rustc_codegen_ssa`
Some types used in `rustc_codegen_ssa`'s interface traits are missing `Debug` impls. Though I did not smear `#[derive(Debug)]` all over the crate (some structs are quite large).
linker: Pass fewer search directories to the linker
- The logic for passing `-L` directories to the linker is consolidated in a single function, so the search priorities are immediately clear.
- Only `-Lnative=`, `-Lframework=` `-Lall=` directories are passed to linker, but not `-Lcrate=` and others. That's because only native libraries are looked up by name by linker, all Rust crates are passed using full paths, and their directories should not interfere with linker search paths.
- The main sysroot library directory shouldn't generally be passed because it shouldn't contain native libraries, except for one case which is now marked with a FIXME.
- This also helps with https://github.com/rust-lang/rust/pull/123436, in which we need to walk the same list of directories manually.
The next step is to migrate `find_native_static_library` to exactly the same set and order of search directories (which may be a bit annoying for the `iOSSupport` directories https://github.com/rust-lang/rust/pull/121430#issuecomment-2256372341).
Create COFF archives for non-LLVM backends
`ar_archive_writer` now supports creating COFF archives, so enable them for the non-LLVM backends when requested.
r? ``@bjorn3``
When an archive fails to build, print the path
Currently the output on failure is as follows:
Compiling block-buffer v0.10.4
Compiling crypto-common v0.1.6
Compiling digest v0.10.7
Compiling sha2 v0.10.8
Compiling xz2 v0.1.7
error: failed to build archive: No such file or directory
error: could not compile `bootstrap` (lib) due to 1 previous error
Change this to print which file is being constructed, to give some hint about what is going on.
error: failed to build archive at `path/to/output`: No such file or directory
deps: dedup object, wasmparser, wasm-encoder
* dedups one `object`, additional dupe will be removed, with next `thorin-dwp` update
* `wasmparser` pinned to minor versions, so full merge isn't possible
* same with `wasm-encoder`
Turned off some features for `wasmparser` (see features https://github.com/bytecodealliance/wasm-tools/blob/v1.208.1/crates/wasmparser/Cargo.toml) in `run-make-support`, looks working?
compiler: Never debug_assert in codegen
In the name of Turing and his Hoarey heralds, assert our truths before creating a monster!
The `rustc_codegen_llvm` and `rustc_codegen_ssa` crates are fairly critical for rustc's correctness. Small mistakes here can easily result in undefined behavior, since a "small mistake" can mean something like "link and execute the wrong code". We should probably run any and all asserts in these modules unconditionally on whether this is a "debug build", and damn the costs in performance.
...Especially because the costs in performance seem to be *nothing*. It is not clear how much correctness we gain here, but I'll take free correctness improvements.
rustc_target: add known safe s390x target features
This pull request adds known safe target features for s390x (aka IBM Z systems).
Currently, these features are unstable since stabilizing the target features requires submitting proposals.
The `vector` feature was added in IBM Z13 (`arch11`), and this is a SIMD feature for the newer IBM Z systems.
The `backchain` attribute is the IBM Z way of adding frame pointers like unwinding capabilities (the "frame-pointer" switch on IBM Z and IBM POWER platforms will add _emulated_ frame pointers to the binary, which profilers can't use for unwinding the stack).
Both attributes can be applied at the LLVM module or function levels. However, the `backchain` attribute has to be enabled for all the functions in the call stack to get a successful unwind process.
Add a hook for `should_codegen_locally`
This PR lifts the module-local function `should_codegen_locally` to `TyCtxt` as a hook.
In addition to monomorphization, this function is used for checking the dependency of `compiler_builtins` on other libraries. Moving this function to the hooks also makes overriding it possible for the tools that use the rustc interface.
Clean up a few minor refs in `format!` macro, as it has a performance cost. Apparently the compiler is unable to inline `format!("{}", &variable)`, and does a run-time double-reference instead (format macro already does one level referencing). Inlining format args prevents accidental `&` misuse.
Sync ar_archive_writer to LLVM 18.1.3
From LLVM 15.0.0-rc3. This adds support for COFF archives containing Arm64EC object files and has various fixes for AIX big archive files.
Currently the output on failure is as follows:
Compiling block-buffer v0.10.4
Compiling crypto-common v0.1.6
Compiling digest v0.10.7
Compiling sha2 v0.10.8
Compiling xz2 v0.1.7
error: failed to build archive: No such file or directory
error: could not compile `bootstrap` (lib) due to 1 previous error
Print which file is being constructed to give some hint about what is
going on.
use "bootstrap" instead of "rustbuild" in comments and docs
Let's stick with the single name "bootstrap" to refer to the bootstrap project to avoid confusion. This should make it clearer, especially for new contributors.
linker: Link dylib crates by path
Linkers seem to support linking dynamic libraries by path.
Not sure why the previous scheme with splitting the path into a directory (passed with `-L`) and a name (passed with `-l`) was used (upd: likely due to https://github.com/rust-lang/rust/pull/126094#issuecomment-2155063414).
When we split a library path `some/dir/libfoo.so` into `-L some/dir` and `-l foo` we add `some/dir` to search directories for *all* libraries looked up by the linker, not just `foo`, and `foo` is also looked up in *all* search directories not just `some/dir`.
Technically we may find some unintended libraries this way.
Therefore linking dylibs via a full path is both simpler and more reliable.
It also makes the set of search directories more easily reproducible when we need to lookup some native library manually (like in https://github.com/rust-lang/rust/pull/123436).
Re-implement a type-size based limit
r? lcnr
This PR reintroduces the type length limit added in #37789, which was accidentally made practically useless by the caching changes to `Ty::walk` in #72412, which caused the `walk` function to no longer walk over identical elements.
Hitting this length limit is not fatal unless we are in codegen -- so it shouldn't affect passes like the mir inliner which creates potentially very large types (which we observed, for example, when the new trait solver compiles `itertools` in `--release` mode).
This also increases the type length limit from `1048576 == 2 ** 20` to `2 ** 24`, which covers all of the code that can be reached with craterbot-check. Individual crates can increase the length limit further if desired.
Perf regression is mild and I think we should accept it -- reinstating this limit is important for the new trait solver and to make sure we don't accidentally hit more type-size related regressions in the future.
Fixes#125460
Fix `FnMut::call_mut`/`Fn::call` shim for async closures that capture references
I adjusted async closures to be able to implement `Fn` and `FnMut` *even if* they capture references, as long as those references did not need to borrow data from the closure captures themselves. See #125259.
However, when I did this, I didn't actually relax an assertion in the `build_construct_coroutine_by_move_shim` shim code, which builds the `Fn`/`FnMut`/`FnOnce` implementations for async closures. Therefore, if we actually tried to *call* `FnMut`/`Fn` on async closures, it would ICE.
This PR adjusts this assertion to ensure that we only capture immutable references in closures if they implement `Fn`/`FnMut`. It also adds a bunch of tests and makes more of the async-closure tests into `build-pass` since we often care about these tests actually generating the right closure shims and stuff. I think it might be excessive to *always* use build-pass here, but 🤷 it's not that big of a deal.
Fixes#127019Fixes#127012
r? oli-obk
patchable-function-entry: Add unstable compiler flag and attribute
Tracking issue: #123115
Add the -Z patchable-function-entry compiler flag and the #[patchable_function_entry(prefix_nops = m, entry_nops = n)] attribute.
Rebased and adjusted the canditate implementation to match changes in the RFC.
coverage: Make `#[coverage(..)]` apply recursively to nested functions
This PR makes the (currently-unstable) `#[coverage(off)]` and `#[coverage(on)]` attributes apply recursively to all nested functions/closures, instead of just the function they are directly attached to.
Those attributes can now also be applied to modules and to impl/impl-trait blocks, where they have no direct effect, but will be inherited by all enclosed functions/closures/methods that don't override the inherited value.
---
Fixes#126625.