Rollup merge of #118960 - tvallotton:local_waker, r=Mark-Simulacrum

Add LocalWaker and ContextBuilder types to core, and LocalWake trait to alloc.

Implementation for  #118959.
This commit is contained in:
Matthias Krüger 2024-02-05 11:07:26 +01:00 committed by GitHub
commit 80e8c7e125
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 534 additions and 42 deletions

View File

@ -135,6 +135,7 @@
#![feature(iter_next_chunk)]
#![feature(iter_repeat_n)]
#![feature(layout_for_ptr)]
#![feature(local_waker)]
#![feature(maybe_uninit_slice)]
#![feature(maybe_uninit_uninit_array)]
#![feature(maybe_uninit_uninit_array_transpose)]
@ -252,7 +253,7 @@ pub mod str;
pub mod string;
#[cfg(all(not(no_rc), not(no_sync), target_has_atomic = "ptr"))]
pub mod sync;
#[cfg(all(not(no_global_oom_handling), not(no_rc), not(no_sync), target_has_atomic = "ptr"))]
#[cfg(all(not(no_global_oom_handling), not(no_rc), not(no_sync)))]
pub mod task;
#[cfg(test)]
mod tests;

View File

@ -2,14 +2,19 @@
//! Types and Traits for working with asynchronous tasks.
//!
//! **Note**: This module is only available on platforms that support atomic
//! loads and stores of pointers. This may be detected at compile time using
//! **Note**: Some of the types in this module are only available
//! on platforms that support atomic loads and stores of pointers.
//! This may be detected at compile time using
//! `#[cfg(target_has_atomic = "ptr")]`.
use crate::rc::Rc;
use core::mem::ManuallyDrop;
use core::task::{RawWaker, RawWakerVTable, Waker};
use core::task::{LocalWaker, RawWaker, RawWakerVTable};
#[cfg(target_has_atomic = "ptr")]
use crate::sync::Arc;
#[cfg(target_has_atomic = "ptr")]
use core::task::Waker;
/// The implementation of waking a task on an executor.
///
@ -73,6 +78,7 @@ use crate::sync::Arc;
/// println!("Hi from inside a future!");
/// });
/// ```
#[cfg(target_has_atomic = "ptr")]
#[stable(feature = "wake_trait", since = "1.51.0")]
pub trait Wake {
/// Wake this task.
@ -91,7 +97,7 @@ pub trait Wake {
self.clone().wake();
}
}
#[cfg(target_has_atomic = "ptr")]
#[stable(feature = "wake_trait", since = "1.51.0")]
impl<W: Wake + Send + Sync + 'static> From<Arc<W>> for Waker {
/// Use a `Wake`-able type as a `Waker`.
@ -103,7 +109,7 @@ impl<W: Wake + Send + Sync + 'static> From<Arc<W>> for Waker {
unsafe { Waker::from_raw(raw_waker(waker)) }
}
}
#[cfg(target_has_atomic = "ptr")]
#[stable(feature = "wake_trait", since = "1.51.0")]
impl<W: Wake + Send + Sync + 'static> From<Arc<W>> for RawWaker {
/// Use a `Wake`-able type as a `RawWaker`.
@ -119,6 +125,7 @@ impl<W: Wake + Send + Sync + 'static> From<Arc<W>> for RawWaker {
// the safety of `From<Arc<W>> for Waker` does not depend on the correct
// trait dispatch - instead both impls call this function directly and
// explicitly.
#[cfg(target_has_atomic = "ptr")]
#[inline(always)]
fn raw_waker<W: Wake + Send + Sync + 'static>(waker: Arc<W>) -> RawWaker {
// Increment the reference count of the arc to clone it.
@ -152,3 +159,171 @@ fn raw_waker<W: Wake + Send + Sync + 'static>(waker: Arc<W>) -> RawWaker {
&RawWakerVTable::new(clone_waker::<W>, wake::<W>, wake_by_ref::<W>, drop_waker::<W>),
)
}
/// An analogous trait to `Wake` but used to construct a `LocalWaker`. This API
/// works in exactly the same way as `Wake`, except that it uses an `Rc` instead
/// of an `Arc`, and the result is a `LocalWaker` instead of a `Waker`.
///
/// The benefits of using `LocalWaker` over `Waker` are that it allows the local waker
/// to hold data that does not implement `Send` and `Sync`. Additionally, it saves calls
/// to `Arc::clone`, which requires atomic synchronization.
///
///
/// # Examples
///
/// This is a simplified example of a `spawn` and a `block_on` function. The `spawn` function
/// is used to push new tasks onto the run queue, while the block on function will remove them
/// and poll them. When a task is woken, it will put itself back on the run queue to be polled
/// by the executor.
///
/// **Note:** This example trades correctness for simplicity. A real world example would interleave
/// poll calls with calls to an io reactor to wait for events instead of spinning on a loop.
///
/// ```rust
/// #![feature(local_waker)]
/// #![feature(noop_waker)]
/// use std::task::{LocalWake, ContextBuilder, LocalWaker, Waker};
/// use std::future::Future;
/// use std::pin::Pin;
/// use std::rc::Rc;
/// use std::cell::RefCell;
/// use std::collections::VecDeque;
///
///
/// thread_local! {
/// // A queue containing all tasks ready to do progress
/// static RUN_QUEUE: RefCell<VecDeque<Rc<Task>>> = RefCell::default();
/// }
///
/// type BoxedFuture = Pin<Box<dyn Future<Output = ()>>>;
///
/// struct Task(RefCell<BoxedFuture>);
///
/// impl LocalWake for Task {
/// fn wake(self: Rc<Self>) {
/// RUN_QUEUE.with_borrow_mut(|queue| {
/// queue.push_back(self)
/// })
/// }
/// }
///
/// fn spawn<F>(future: F)
/// where
/// F: Future<Output=()> + 'static + Send + Sync
/// {
/// let task = RefCell::new(Box::pin(future));
/// RUN_QUEUE.with_borrow_mut(|queue| {
/// queue.push_back(Rc::new(Task(task)));
/// });
/// }
///
/// fn block_on<F>(future: F)
/// where
/// F: Future<Output=()> + 'static + Sync + Send
/// {
/// spawn(future);
/// loop {
/// let Some(task) = RUN_QUEUE.with_borrow_mut(|queue| queue.pop_front()) else {
/// // we exit, since there are no more tasks remaining on the queue
/// return;
/// };
///
/// // cast the Rc<Task> into a `LocalWaker`
/// let local_waker: LocalWaker = task.clone().into();
/// // Build the context using `ContextBuilder`
/// let mut cx = ContextBuilder::from_waker(Waker::noop())
/// .local_waker(&local_waker)
/// .build();
///
/// // Poll the task
/// let _ = task.0
/// .borrow_mut()
/// .as_mut()
/// .poll(&mut cx);
/// }
/// }
///
/// block_on(async {
/// println!("hello world");
/// });
/// ```
///
#[unstable(feature = "local_waker", issue = "118959")]
pub trait LocalWake {
/// Wake this task.
#[unstable(feature = "local_waker", issue = "118959")]
fn wake(self: Rc<Self>);
/// Wake this task without consuming the local waker.
///
/// If an executor supports a cheaper way to wake without consuming the
/// waker, it should override this method. By default, it clones the
/// [`Rc`] and calls [`wake`] on the clone.
///
/// [`wake`]: LocalWaker::wake
#[unstable(feature = "local_waker", issue = "118959")]
fn wake_by_ref(self: &Rc<Self>) {
self.clone().wake();
}
}
#[unstable(feature = "local_waker", issue = "118959")]
impl<W: LocalWake + 'static> From<Rc<W>> for LocalWaker {
/// Use a `Wake`-able type as a `LocalWaker`.
///
/// No heap allocations or atomic operations are used for this conversion.
fn from(waker: Rc<W>) -> LocalWaker {
// SAFETY: This is safe because raw_waker safely constructs
// a RawWaker from Rc<W>.
unsafe { LocalWaker::from_raw(local_raw_waker(waker)) }
}
}
#[allow(ineffective_unstable_trait_impl)]
#[unstable(feature = "local_waker", issue = "118959")]
impl<W: LocalWake + 'static> From<Rc<W>> for RawWaker {
/// Use a `Wake`-able type as a `RawWaker`.
///
/// No heap allocations or atomic operations are used for this conversion.
fn from(waker: Rc<W>) -> RawWaker {
local_raw_waker(waker)
}
}
// NB: This private function for constructing a RawWaker is used, rather than
// inlining this into the `From<Rc<W>> for RawWaker` impl, to ensure that
// the safety of `From<Rc<W>> for Waker` does not depend on the correct
// trait dispatch - instead both impls call this function directly and
// explicitly.
#[inline(always)]
fn local_raw_waker<W: LocalWake + 'static>(waker: Rc<W>) -> RawWaker {
// Increment the reference count of the Rc to clone it.
unsafe fn clone_waker<W: LocalWake + 'static>(waker: *const ()) -> RawWaker {
unsafe { Rc::increment_strong_count(waker as *const W) };
RawWaker::new(
waker as *const (),
&RawWakerVTable::new(clone_waker::<W>, wake::<W>, wake_by_ref::<W>, drop_waker::<W>),
)
}
// Wake by value, moving the Rc into the LocalWake::wake function
unsafe fn wake<W: LocalWake + 'static>(waker: *const ()) {
let waker = unsafe { Rc::from_raw(waker as *const W) };
<W as LocalWake>::wake(waker);
}
// Wake by reference, wrap the waker in ManuallyDrop to avoid dropping it
unsafe fn wake_by_ref<W: LocalWake + 'static>(waker: *const ()) {
let waker = unsafe { ManuallyDrop::new(Rc::from_raw(waker as *const W)) };
<W as LocalWake>::wake_by_ref(&waker);
}
// Decrement the reference count of the Rc on drop
unsafe fn drop_waker<W: LocalWake + 'static>(waker: *const ()) {
unsafe { Rc::decrement_strong_count(waker as *const W) };
}
RawWaker::new(
Rc::into_raw(waker) as *const (),
&RawWakerVTable::new(clone_waker::<W>, wake::<W>, wake_by_ref::<W>, drop_waker::<W>),
)
}

View File

@ -8,7 +8,7 @@ pub use self::poll::Poll;
mod wake;
#[stable(feature = "futures_api", since = "1.36.0")]
pub use self::wake::{Context, RawWaker, RawWakerVTable, Waker};
pub use self::wake::{Context, ContextBuilder, LocalWaker, RawWaker, RawWakerVTable, Waker};
mod ready;
#[stable(feature = "ready_macro", since = "1.64.0")]

View File

@ -1,11 +1,13 @@
#![stable(feature = "futures_api", since = "1.36.0")]
use crate::mem::transmute;
use crate::fmt;
use crate::marker::PhantomData;
use crate::ptr;
/// A `RawWaker` allows the implementor of a task executor to create a [`Waker`]
/// which provides customized wakeup behavior.
/// or a [`LocalWaker`] which provides customized wakeup behavior.
///
/// [vtable]: https://en.wikipedia.org/wiki/Virtual_method_table
///
@ -33,9 +35,18 @@ impl RawWaker {
/// The value of this pointer will get passed to all functions that are part
/// of the `vtable` as the first parameter.
///
/// It is important to consider that the `data` pointer must point to a
/// thread safe type such as an `[Arc]<T: Send + Sync>`
/// when used to construct a [`Waker`]. This restriction is lifted when
/// constructing a [`LocalWaker`], which allows using types that do not implement
/// <code>[Send] + [Sync]</code> like `[Rc]<T>`.
///
/// The `vtable` customizes the behavior of a `Waker` which gets created
/// from a `RawWaker`. For each operation on the `Waker`, the associated
/// function in the `vtable` of the underlying `RawWaker` will be called.
///
/// [`Arc`]: std::sync::Arc
/// [`Rc`]: std::rc::Rc
#[inline]
#[rustc_promotable]
#[stable(feature = "futures_api", since = "1.36.0")]
@ -60,6 +71,21 @@ impl RawWaker {
pub fn vtable(&self) -> &'static RawWakerVTable {
self.vtable
}
#[unstable(feature = "noop_waker", issue = "98286")]
const NOOP: RawWaker = {
const VTABLE: RawWakerVTable = RawWakerVTable::new(
// Cloning just returns a new no-op raw waker
|_| RawWaker::NOOP,
// `wake` does nothing
|_| {},
// `wake_by_ref` does nothing
|_| {},
// Dropping does nothing as we don't allocate anything
|_| {},
);
RawWaker::new(ptr::null(), &VTABLE)
};
}
/// A virtual function pointer table (vtable) that specifies the behavior
@ -73,11 +99,19 @@ impl RawWaker {
/// [`RawWaker`] implementation. Calling one of the contained functions using
/// any other `data` pointer will cause undefined behavior.
///
/// These functions must all be thread-safe (even though [`RawWaker`] is
/// <code>\![Send] + \![Sync]</code>)
/// because [`Waker`] is <code>[Send] + [Sync]</code>, and thus wakers may be moved to
/// arbitrary threads or invoked by `&` reference. For example, this means that if the
/// `clone` and `drop` functions manage a reference count, they must do so atomically.
/// # Thread safety
/// If the [`RawWaker`] will be used to construct a [`Waker`] then
/// these functions must all be thread-safe (even though [`RawWaker`] is
/// <code>\![Send] + \![Sync]</code>). This is because [`Waker`] is <code>[Send] + [Sync]</code>,
/// and it may be moved to arbitrary threads or invoked by `&` reference. For example,
/// this means that if the `clone` and `drop` functions manage a reference count,
/// they must do so atomically.
///
/// However, if the [`RawWaker`] will be used to construct a [`LocalWaker`] instead, then
/// these functions don't need to be thread safe. This means that <code>\![Send] + \![Sync]</code>
/// data can be stored in the data pointer, and reference counting does not need any atomic
/// synchronization. This is because [`LocalWaker`] is not thread safe itself, so it cannot
/// be sent across threads.
#[stable(feature = "futures_api", since = "1.36.0")]
#[derive(PartialEq, Copy, Clone, Debug)]
pub struct RawWakerVTable {
@ -117,16 +151,22 @@ impl RawWakerVTable {
/// Creates a new `RawWakerVTable` from the provided `clone`, `wake`,
/// `wake_by_ref`, and `drop` functions.
///
/// These functions must all be thread-safe (even though [`RawWaker`] is
/// <code>\![Send] + \![Sync]</code>)
/// because [`Waker`] is <code>[Send] + [Sync]</code>, and thus wakers may be moved to
/// arbitrary threads or invoked by `&` reference. For example, this means that if the
/// `clone` and `drop` functions manage a reference count, they must do so atomically.
/// If the [`RawWaker`] will be used to construct a [`Waker`] then
/// these functions must all be thread-safe (even though [`RawWaker`] is
/// <code>\![Send] + \![Sync]</code>). This is because [`Waker`] is <code>[Send] + [Sync]</code>,
/// and it may be moved to arbitrary threads or invoked by `&` reference. For example,
/// this means that if the `clone` and `drop` functions manage a reference count,
/// they must do so atomically.
///
/// However, if the [`RawWaker`] will be used to construct a [`LocalWaker`] instead, then
/// these functions don't need to be thread safe. This means that <code>\![Send] + \![Sync]</code>
/// data can be stored in the data pointer, and reference counting does not need any atomic
/// synchronization. This is because [`LocalWaker`] is not thread safe itself, so it cannot
/// be sent across threads.
/// # `clone`
///
/// This function will be called when the [`RawWaker`] gets cloned, e.g. when
/// the [`Waker`] in which the [`RawWaker`] is stored gets cloned.
/// the [`Waker`]/[`LocalWaker`] in which the [`RawWaker`] is stored gets cloned.
///
/// The implementation of this function must retain all resources that are
/// required for this additional instance of a [`RawWaker`] and associated
@ -152,7 +192,7 @@ impl RawWakerVTable {
///
/// # `drop`
///
/// This function gets called when a [`Waker`] gets dropped.
/// This function gets called when a [`Waker`]/[`LocalWaker`] gets dropped.
///
/// The implementation of this function must make sure to release any
/// resources that are associated with this instance of a [`RawWaker`] and
@ -178,6 +218,7 @@ impl RawWakerVTable {
#[lang = "Context"]
pub struct Context<'a> {
waker: &'a Waker,
local_waker: &'a LocalWaker,
// Ensure we future-proof against variance changes by forcing
// the lifetime to be invariant (argument-position lifetimes
// are contravariant while return-position lifetimes are
@ -195,17 +236,24 @@ impl<'a> Context<'a> {
#[must_use]
#[inline]
pub const fn from_waker(waker: &'a Waker) -> Self {
Context { waker, _marker: PhantomData, _marker2: PhantomData }
ContextBuilder::from_waker(waker).build()
}
/// Returns a reference to the [`Waker`] for the current task.
#[inline]
#[must_use]
#[stable(feature = "futures_api", since = "1.36.0")]
#[rustc_const_unstable(feature = "const_waker", issue = "102012")]
#[must_use]
#[inline]
pub const fn waker(&self) -> &'a Waker {
&self.waker
}
/// Returns a reference to the [`LocalWaker`] for the current task.
#[inline]
#[unstable(feature = "local_waker", issue = "118959")]
#[rustc_const_unstable(feature = "const_waker", issue = "102012")]
pub const fn local_waker(&self) -> &'a LocalWaker {
&self.local_waker
}
}
#[stable(feature = "futures_api", since = "1.36.0")]
@ -215,6 +263,72 @@ impl fmt::Debug for Context<'_> {
}
}
/// A Builder used to construct a `Context` instance
/// with support for `LocalWaker`.
///
/// # Examples
/// ```
/// #![feature(local_waker)]
/// #![feature(noop_waker)]
/// use std::task::{ContextBuilder, LocalWaker, Waker, Poll};
/// use std::future::Future;
///
/// let local_waker = LocalWaker::noop();
/// let waker = Waker::noop();
///
/// let mut cx = ContextBuilder::from_waker(&waker)
/// .local_waker(&local_waker)
/// .build();
///
/// let mut future = std::pin::pin!(async { 20 });
/// let poll = future.as_mut().poll(&mut cx);
/// assert_eq!(poll, Poll::Ready(20));
///
/// ```
#[unstable(feature = "local_waker", issue = "118959")]
#[derive(Debug)]
pub struct ContextBuilder<'a> {
waker: &'a Waker,
local_waker: &'a LocalWaker,
// Ensure we future-proof against variance changes by forcing
// the lifetime to be invariant (argument-position lifetimes
// are contravariant while return-position lifetimes are
// covariant).
_marker: PhantomData<fn(&'a ()) -> &'a ()>,
// Ensure `Context` is `!Send` and `!Sync` in order to allow
// for future `!Send` and / or `!Sync` fields.
_marker2: PhantomData<*mut ()>,
}
impl<'a> ContextBuilder<'a> {
/// Create a ContextBuilder from a Waker.
#[inline]
#[rustc_const_unstable(feature = "const_waker", issue = "102012")]
#[unstable(feature = "local_waker", issue = "118959")]
pub const fn from_waker(waker: &'a Waker) -> Self {
// SAFETY: LocalWaker is just Waker without thread safety
let local_waker = unsafe { transmute(waker) };
Self { waker: waker, local_waker, _marker: PhantomData, _marker2: PhantomData }
}
/// This method is used to set the value for the local waker on `Context`.
#[inline]
#[unstable(feature = "local_waker", issue = "118959")]
#[rustc_const_unstable(feature = "const_waker", issue = "102012")]
pub const fn local_waker(self, local_waker: &'a LocalWaker) -> Self {
Self { local_waker, ..self }
}
/// Builds the `Context`.
#[inline]
#[unstable(feature = "local_waker", issue = "118959")]
#[rustc_const_unstable(feature = "const_waker", issue = "102012")]
pub const fn build(self) -> Context<'a> {
let ContextBuilder { waker, local_waker, _marker, _marker2 } = self;
Context { waker, local_waker, _marker, _marker2 }
}
}
/// A `Waker` is a handle for waking up a task by notifying its executor that it
/// is ready to be run.
///
@ -354,25 +468,8 @@ impl Waker {
#[must_use]
#[unstable(feature = "noop_waker", issue = "98286")]
pub const fn noop() -> &'static Waker {
// Ideally all this data would be explicitly `static` because it is used by reference and
// only ever needs one copy. But `const fn`s (and `const` items) cannot refer to statics,
// even though their values can be promoted to static. (That might change; see #119618.)
// An alternative would be a `pub static NOOP: &Waker`, but associated static items are not
// currently allowed either, and making it non-associated would be unergonomic.
const VTABLE: RawWakerVTable = RawWakerVTable::new(
// Cloning just returns a new no-op raw waker
|_| RAW,
// `wake` does nothing
|_| {},
// `wake_by_ref` does nothing
|_| {},
// Dropping does nothing as we don't allocate anything
|_| {},
);
const RAW: RawWaker = RawWaker::new(ptr::null(), &VTABLE);
const WAKER_REF: &Waker = &Waker { waker: RAW };
WAKER_REF
const WAKER: &Waker = &Waker { waker: RawWaker::NOOP };
WAKER
}
/// Get a reference to the underlying [`RawWaker`].
@ -425,3 +522,222 @@ impl fmt::Debug for Waker {
.finish()
}
}
/// A `LocalWaker` is analogous to a [`Waker`], but it does not implement [`Send`] or [`Sync`].
///
/// This handle encapsulates a [`RawWaker`] instance, which defines the
/// executor-specific wakeup behavior.
///
/// Local wakers can be requested from a `Context` with the [`local_waker`] method.
///
/// The typical life of a `LocalWaker` is that it is constructed by an executor, wrapped in a
/// [`Context`] using [`ContextBuilder`], then passed to [`Future::poll()`]. Then, if the future chooses to return
/// [`Poll::Pending`], it must also store the waker somehow and call [`LocalWaker::wake()`] when
/// the future should be polled again.
///
/// Implements [`Clone`], but neither [`Send`] nor [`Sync`]; therefore, a local waker may
/// not be moved to other threads. In general, when deciding to use wakers or local wakers,
/// local wakers are preferable unless the waker needs to be sent across threads. This is because
/// wakers can incur in additional cost related to memory synchronization.
///
/// Note that it is preferable to use `local_waker.clone_from(&new_waker)` instead
/// of `*local_waker = new_waker.clone()`, as the former will avoid cloning the waker
/// unnecessarily if the two wakers [wake the same task](Self::will_wake).
///
/// # Examples
/// Usage of a local waker to implement a future analogous to `std::thread::yield_now()`.
/// ```
/// #![feature(local_waker)]
/// use std::future::{Future, poll_fn};
/// use std::task::Poll;
///
/// // a future that returns pending once.
/// fn yield_now() -> impl Future<Output=()> + Unpin {
/// let mut yielded = false;
/// poll_fn(move |cx| {
/// if !yielded {
/// yielded = true;
/// cx.local_waker().wake_by_ref();
/// return Poll::Pending;
/// }
/// return Poll::Ready(())
/// })
/// }
///
/// # async fn __() {
/// yield_now().await;
/// # }
/// ```
///
/// [`Future::poll()`]: core::future::Future::poll
/// [`Poll::Pending`]: core::task::Poll::Pending
/// [`local_waker`]: core::task::Context::local_waker
#[unstable(feature = "local_waker", issue = "118959")]
#[cfg_attr(not(doc), repr(transparent))] // work around https://github.com/rust-lang/rust/issues/66401
pub struct LocalWaker {
waker: RawWaker,
}
#[unstable(feature = "local_waker", issue = "118959")]
impl Unpin for LocalWaker {}
impl LocalWaker {
/// Wake up the task associated with this `LocalWaker`.
///
/// As long as the executor keeps running and the task is not finished, it is
/// guaranteed that each invocation of [`wake()`](Self::wake) (or
/// [`wake_by_ref()`](Self::wake_by_ref)) will be followed by at least one
/// [`poll()`] of the task to which this `LocalWaker` belongs. This makes
/// it possible to temporarily yield to other tasks while running potentially
/// unbounded processing loops.
///
/// Note that the above implies that multiple wake-ups may be coalesced into a
/// single [`poll()`] invocation by the runtime.
///
/// Also note that yielding to competing tasks is not guaranteed: it is the
/// executors choice which task to run and the executor may choose to run the
/// current task again.
///
/// [`poll()`]: crate::future::Future::poll
#[inline]
#[stable(feature = "futures_api", since = "1.36.0")]
pub fn wake(self) {
// The actual wakeup call is delegated through a virtual function call
// to the implementation which is defined by the executor.
let wake = self.waker.vtable.wake;
let data = self.waker.data;
// Don't call `drop` -- the waker will be consumed by `wake`.
crate::mem::forget(self);
// SAFETY: This is safe because `Waker::from_raw` is the only way
// to initialize `wake` and `data` requiring the user to acknowledge
// that the contract of `RawWaker` is upheld.
unsafe { (wake)(data) };
}
/// Wake up the task associated with this `LocalWaker` without consuming the `LocalWaker`.
///
/// This is similar to [`wake()`](Self::wake), but may be slightly less efficient in
/// the case where an owned `Waker` is available. This method should be preferred to
/// calling `waker.clone().wake()`.
#[inline]
#[stable(feature = "futures_api", since = "1.36.0")]
pub fn wake_by_ref(&self) {
// The actual wakeup call is delegated through a virtual function call
// to the implementation which is defined by the executor.
// SAFETY: see `wake`
unsafe { (self.waker.vtable.wake_by_ref)(self.waker.data) }
}
/// Returns `true` if this `LocalWaker` and another `LocalWaker` would awake the same task.
///
/// This function works on a best-effort basis, and may return false even
/// when the `Waker`s would awaken the same task. However, if this function
/// returns `true`, it is guaranteed that the `Waker`s will awaken the same task.
///
/// This function is primarily used for optimization purposes — for example,
/// this type's [`clone_from`](Self::clone_from) implementation uses it to
/// avoid cloning the waker when they would wake the same task anyway.
#[inline]
#[must_use]
#[stable(feature = "futures_api", since = "1.36.0")]
pub fn will_wake(&self, other: &LocalWaker) -> bool {
self.waker == other.waker
}
/// Creates a new `LocalWaker` from [`RawWaker`].
///
/// The behavior of the returned `LocalWaker` is undefined if the contract defined
/// in [`RawWaker`]'s and [`RawWakerVTable`]'s documentation is not upheld.
/// Therefore this method is unsafe.
#[inline]
#[must_use]
#[stable(feature = "futures_api", since = "1.36.0")]
#[rustc_const_unstable(feature = "const_waker", issue = "102012")]
pub const unsafe fn from_raw(waker: RawWaker) -> LocalWaker {
Self { waker }
}
/// Creates a new `LocalWaker` that does nothing when `wake` is called.
///
/// This is mostly useful for writing tests that need a [`Context`] to poll
/// some futures, but are not expecting those futures to wake the waker or
/// do not need to do anything specific if it happens.
///
/// # Examples
///
/// ```
/// #![feature(local_waker)]
/// #![feature(noop_waker)]
///
/// use std::future::Future;
/// use std::task::{ContextBuilder, LocalWaker, Waker, Poll};
///
/// let mut cx = ContextBuilder::from_waker(Waker::noop())
/// .local_waker(LocalWaker::noop())
/// .build();
///
/// let mut future = Box::pin(async { 10 });
/// assert_eq!(future.as_mut().poll(&mut cx), Poll::Ready(10));
/// ```
#[inline]
#[must_use]
#[unstable(feature = "noop_waker", issue = "98286")]
pub const fn noop() -> &'static LocalWaker {
const WAKER: &LocalWaker = &LocalWaker { waker: RawWaker::NOOP };
WAKER
}
/// Get a reference to the underlying [`RawWaker`].
#[inline]
#[must_use]
#[unstable(feature = "waker_getters", issue = "96992")]
pub fn as_raw(&self) -> &RawWaker {
&self.waker
}
}
#[unstable(feature = "local_waker", issue = "118959")]
impl Clone for LocalWaker {
#[inline]
fn clone(&self) -> Self {
LocalWaker {
// SAFETY: This is safe because `Waker::from_raw` is the only way
// to initialize `clone` and `data` requiring the user to acknowledge
// that the contract of [`RawWaker`] is upheld.
waker: unsafe { (self.waker.vtable.clone)(self.waker.data) },
}
}
#[inline]
fn clone_from(&mut self, source: &Self) {
if !self.will_wake(source) {
*self = source.clone();
}
}
}
#[unstable(feature = "local_waker", issue = "118959")]
impl AsRef<LocalWaker> for Waker {
fn as_ref(&self) -> &LocalWaker {
// SAFETY: LocalWaker is just Waker without thread safety
unsafe { transmute(self) }
}
}
#[stable(feature = "futures_api", since = "1.36.0")]
impl fmt::Debug for LocalWaker {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let vtable_ptr = self.waker.vtable as *const RawWakerVTable;
f.debug_struct("LocalWaker")
.field("data", &self.waker.data)
.field("vtable", &vtable_ptr)
.finish()
}
}
#[unstable(feature = "local_waker", issue = "118959")]
impl !Send for LocalWaker {}
#[unstable(feature = "local_waker", issue = "118959")]
impl !Sync for LocalWaker {}