mirror of https://github.com/rust-lang/rust.git
enable fuzzing of `SearchGraph`
fully move it into `rustc_type_ir` and make it independent of `Interner`.
This commit is contained in:
parent
f56b2074c6
commit
15f770b143
|
@ -8,10 +8,6 @@ use crate::ty::{
|
|||
self, FallibleTypeFolder, TyCtxt, TypeFoldable, TypeFolder, TypeVisitable, TypeVisitor,
|
||||
};
|
||||
|
||||
mod cache;
|
||||
|
||||
pub use cache::EvaluationCache;
|
||||
|
||||
pub type Goal<'tcx, P> = ir::solve::Goal<TyCtxt<'tcx>, P>;
|
||||
pub type QueryInput<'tcx, P> = ir::solve::QueryInput<TyCtxt<'tcx>, P>;
|
||||
pub type QueryResult<'tcx> = ir::solve::QueryResult<TyCtxt<'tcx>>;
|
||||
|
|
|
@ -1,121 +0,0 @@
|
|||
use super::{inspect, CanonicalInput, QueryResult};
|
||||
use crate::ty::TyCtxt;
|
||||
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
|
||||
use rustc_data_structures::sync::Lock;
|
||||
use rustc_query_system::cache::WithDepNode;
|
||||
use rustc_query_system::dep_graph::DepNodeIndex;
|
||||
use rustc_session::Limit;
|
||||
use rustc_type_ir::solve::CacheData;
|
||||
|
||||
/// The trait solver cache used by `-Znext-solver`.
|
||||
///
|
||||
/// FIXME(@lcnr): link to some official documentation of how
|
||||
/// this works.
|
||||
#[derive(Default)]
|
||||
pub struct EvaluationCache<'tcx> {
|
||||
map: Lock<FxHashMap<CanonicalInput<'tcx>, CacheEntry<'tcx>>>,
|
||||
}
|
||||
|
||||
impl<'tcx> rustc_type_ir::inherent::EvaluationCache<TyCtxt<'tcx>> for &'tcx EvaluationCache<'tcx> {
|
||||
/// Insert a final result into the global cache.
|
||||
fn insert(
|
||||
&self,
|
||||
tcx: TyCtxt<'tcx>,
|
||||
key: CanonicalInput<'tcx>,
|
||||
proof_tree: Option<&'tcx inspect::CanonicalGoalEvaluationStep<TyCtxt<'tcx>>>,
|
||||
additional_depth: usize,
|
||||
encountered_overflow: bool,
|
||||
cycle_participants: FxHashSet<CanonicalInput<'tcx>>,
|
||||
dep_node: DepNodeIndex,
|
||||
result: QueryResult<'tcx>,
|
||||
) {
|
||||
let mut map = self.map.borrow_mut();
|
||||
let entry = map.entry(key).or_default();
|
||||
let data = WithDepNode::new(dep_node, QueryData { result, proof_tree });
|
||||
entry.cycle_participants.extend(cycle_participants);
|
||||
if encountered_overflow {
|
||||
entry.with_overflow.insert(additional_depth, data);
|
||||
} else {
|
||||
entry.success = Some(Success { data, additional_depth });
|
||||
}
|
||||
|
||||
if cfg!(debug_assertions) {
|
||||
drop(map);
|
||||
let expected = CacheData { result, proof_tree, additional_depth, encountered_overflow };
|
||||
let actual = self.get(tcx, key, [], additional_depth);
|
||||
if !actual.as_ref().is_some_and(|actual| expected == *actual) {
|
||||
bug!("failed to lookup inserted element for {key:?}: {expected:?} != {actual:?}");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Try to fetch a cached result, checking the recursion limit
|
||||
/// and handling root goals of coinductive cycles.
|
||||
///
|
||||
/// If this returns `Some` the cache result can be used.
|
||||
fn get(
|
||||
&self,
|
||||
tcx: TyCtxt<'tcx>,
|
||||
key: CanonicalInput<'tcx>,
|
||||
stack_entries: impl IntoIterator<Item = CanonicalInput<'tcx>>,
|
||||
available_depth: usize,
|
||||
) -> Option<CacheData<TyCtxt<'tcx>>> {
|
||||
let map = self.map.borrow();
|
||||
let entry = map.get(&key)?;
|
||||
|
||||
for stack_entry in stack_entries {
|
||||
if entry.cycle_participants.contains(&stack_entry) {
|
||||
return None;
|
||||
}
|
||||
}
|
||||
|
||||
if let Some(ref success) = entry.success {
|
||||
if Limit(available_depth).value_within_limit(success.additional_depth) {
|
||||
let QueryData { result, proof_tree } = success.data.get(tcx);
|
||||
return Some(CacheData {
|
||||
result,
|
||||
proof_tree,
|
||||
additional_depth: success.additional_depth,
|
||||
encountered_overflow: false,
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
entry.with_overflow.get(&available_depth).map(|e| {
|
||||
let QueryData { result, proof_tree } = e.get(tcx);
|
||||
CacheData {
|
||||
result,
|
||||
proof_tree,
|
||||
additional_depth: available_depth,
|
||||
encountered_overflow: true,
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
struct Success<'tcx> {
|
||||
data: WithDepNode<QueryData<'tcx>>,
|
||||
additional_depth: usize,
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy)]
|
||||
pub struct QueryData<'tcx> {
|
||||
pub result: QueryResult<'tcx>,
|
||||
pub proof_tree: Option<&'tcx inspect::CanonicalGoalEvaluationStep<TyCtxt<'tcx>>>,
|
||||
}
|
||||
|
||||
/// The cache entry for a goal `CanonicalInput`.
|
||||
///
|
||||
/// This contains results whose computation never hit the
|
||||
/// recursion limit in `success`, and all results which hit
|
||||
/// the recursion limit in `with_overflow`.
|
||||
#[derive(Default)]
|
||||
struct CacheEntry<'tcx> {
|
||||
success: Option<Success<'tcx>>,
|
||||
/// We have to be careful when caching roots of cycles.
|
||||
///
|
||||
/// See the doc comment of `StackEntry::cycle_participants` for more
|
||||
/// details.
|
||||
cycle_participants: FxHashSet<CanonicalInput<'tcx>>,
|
||||
with_overflow: FxHashMap<usize, WithDepNode<QueryData<'tcx>>>,
|
||||
}
|
|
@ -59,6 +59,7 @@ use rustc_hir::lang_items::LangItem;
|
|||
use rustc_hir::{HirId, Node, TraitCandidate};
|
||||
use rustc_index::IndexVec;
|
||||
use rustc_macros::{HashStable, TyDecodable, TyEncodable};
|
||||
use rustc_query_system::cache::WithDepNode;
|
||||
use rustc_query_system::dep_graph::DepNodeIndex;
|
||||
use rustc_query_system::ich::StableHashingContext;
|
||||
use rustc_serialize::opaque::{FileEncodeResult, FileEncoder};
|
||||
|
@ -75,7 +76,7 @@ use rustc_type_ir::fold::TypeFoldable;
|
|||
use rustc_type_ir::lang_items::TraitSolverLangItem;
|
||||
use rustc_type_ir::solve::SolverMode;
|
||||
use rustc_type_ir::TyKind::*;
|
||||
use rustc_type_ir::{CollectAndApply, Interner, TypeFlags, WithCachedTypeInfo};
|
||||
use rustc_type_ir::{search_graph, CollectAndApply, Interner, TypeFlags, WithCachedTypeInfo};
|
||||
use tracing::{debug, instrument};
|
||||
|
||||
use std::assert_matches::assert_matches;
|
||||
|
@ -164,12 +165,26 @@ impl<'tcx> Interner for TyCtxt<'tcx> {
|
|||
type Clause = Clause<'tcx>;
|
||||
type Clauses = ty::Clauses<'tcx>;
|
||||
|
||||
type EvaluationCache = &'tcx solve::EvaluationCache<'tcx>;
|
||||
type Tracked<T: fmt::Debug + Clone> = WithDepNode<T>;
|
||||
fn mk_tracked<T: fmt::Debug + Clone>(
|
||||
self,
|
||||
data: T,
|
||||
dep_node: DepNodeIndex,
|
||||
) -> Self::Tracked<T> {
|
||||
WithDepNode::new(dep_node, data)
|
||||
}
|
||||
fn get_tracked<T: fmt::Debug + Clone>(self, tracked: &Self::Tracked<T>) -> T {
|
||||
tracked.get(self)
|
||||
}
|
||||
|
||||
fn evaluation_cache(self, mode: SolverMode) -> &'tcx solve::EvaluationCache<'tcx> {
|
||||
fn with_global_cache<R>(
|
||||
self,
|
||||
mode: SolverMode,
|
||||
f: impl FnOnce(&mut search_graph::GlobalCache<Self>) -> R,
|
||||
) -> R {
|
||||
match mode {
|
||||
SolverMode::Normal => &self.new_solver_evaluation_cache,
|
||||
SolverMode::Coherence => &self.new_solver_coherence_evaluation_cache,
|
||||
SolverMode::Normal => f(&mut *self.new_solver_evaluation_cache.lock()),
|
||||
SolverMode::Coherence => f(&mut *self.new_solver_coherence_evaluation_cache.lock()),
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1283,8 +1298,8 @@ pub struct GlobalCtxt<'tcx> {
|
|||
pub evaluation_cache: traits::EvaluationCache<'tcx>,
|
||||
|
||||
/// Caches the results of goal evaluation in the new solver.
|
||||
pub new_solver_evaluation_cache: solve::EvaluationCache<'tcx>,
|
||||
pub new_solver_coherence_evaluation_cache: solve::EvaluationCache<'tcx>,
|
||||
pub new_solver_evaluation_cache: Lock<search_graph::GlobalCache<TyCtxt<'tcx>>>,
|
||||
pub new_solver_coherence_evaluation_cache: Lock<search_graph::GlobalCache<TyCtxt<'tcx>>>,
|
||||
|
||||
pub canonical_param_env_cache: CanonicalParamEnvCache<'tcx>,
|
||||
|
||||
|
|
|
@ -16,9 +16,9 @@ use crate::delegate::SolverDelegate;
|
|||
use crate::solve::inspect::{self, ProofTreeBuilder};
|
||||
use crate::solve::search_graph::SearchGraph;
|
||||
use crate::solve::{
|
||||
search_graph, CanonicalInput, CanonicalResponse, Certainty, Goal, GoalEvaluationKind,
|
||||
GoalSource, MaybeCause, NestedNormalizationGoals, NoSolution, PredefinedOpaquesData,
|
||||
QueryResult, SolverMode, FIXPOINT_STEP_LIMIT,
|
||||
CanonicalInput, CanonicalResponse, Certainty, Goal, GoalEvaluationKind, GoalSource, MaybeCause,
|
||||
NestedNormalizationGoals, NoSolution, PredefinedOpaquesData, QueryResult, SolverMode,
|
||||
FIXPOINT_STEP_LIMIT,
|
||||
};
|
||||
|
||||
pub(super) mod canonical;
|
||||
|
@ -72,7 +72,7 @@ where
|
|||
/// new placeholders to the caller.
|
||||
pub(super) max_input_universe: ty::UniverseIndex,
|
||||
|
||||
pub(super) search_graph: &'a mut SearchGraph<I>,
|
||||
pub(super) search_graph: &'a mut SearchGraph<D>,
|
||||
|
||||
nested_goals: NestedGoals<I>,
|
||||
|
||||
|
@ -200,7 +200,7 @@ where
|
|||
generate_proof_tree: GenerateProofTree,
|
||||
f: impl FnOnce(&mut EvalCtxt<'_, D>) -> R,
|
||||
) -> (R, Option<inspect::GoalEvaluation<I>>) {
|
||||
let mut search_graph = search_graph::SearchGraph::new(delegate.solver_mode());
|
||||
let mut search_graph = SearchGraph::new(delegate.solver_mode());
|
||||
|
||||
let mut ecx = EvalCtxt {
|
||||
delegate,
|
||||
|
@ -241,7 +241,7 @@ where
|
|||
/// and registering opaques from the canonicalized input.
|
||||
fn enter_canonical<R>(
|
||||
cx: I,
|
||||
search_graph: &'a mut search_graph::SearchGraph<I>,
|
||||
search_graph: &'a mut SearchGraph<D>,
|
||||
canonical_input: CanonicalInput<I>,
|
||||
canonical_goal_evaluation: &mut ProofTreeBuilder<D>,
|
||||
f: impl FnOnce(&mut EvalCtxt<'_, D>, Goal<I, I::Predicate>) -> R,
|
||||
|
@ -296,7 +296,7 @@ where
|
|||
#[instrument(level = "debug", skip(cx, search_graph, goal_evaluation), ret)]
|
||||
fn evaluate_canonical_goal(
|
||||
cx: I,
|
||||
search_graph: &'a mut search_graph::SearchGraph<I>,
|
||||
search_graph: &'a mut SearchGraph<D>,
|
||||
canonical_input: CanonicalInput<I>,
|
||||
goal_evaluation: &mut ProofTreeBuilder<D>,
|
||||
) -> QueryResult<I> {
|
||||
|
|
|
@ -8,7 +8,7 @@ use std::marker::PhantomData;
|
|||
use std::mem;
|
||||
|
||||
use rustc_type_ir::inherent::*;
|
||||
use rustc_type_ir::{self as ty, Interner};
|
||||
use rustc_type_ir::{self as ty, search_graph, Interner};
|
||||
|
||||
use crate::delegate::SolverDelegate;
|
||||
use crate::solve::eval_ctxt::canonical;
|
||||
|
@ -38,7 +38,7 @@ use crate::solve::{
|
|||
/// trees. At the end of trait solving `ProofTreeBuilder::finalize`
|
||||
/// is called to recursively convert the whole structure to a
|
||||
/// finished proof tree.
|
||||
pub(in crate::solve) struct ProofTreeBuilder<D, I = <D as SolverDelegate>::Interner>
|
||||
pub(crate) struct ProofTreeBuilder<D, I = <D as SolverDelegate>::Interner>
|
||||
where
|
||||
D: SolverDelegate<Interner = I>,
|
||||
I: Interner,
|
||||
|
@ -321,23 +321,6 @@ impl<D: SolverDelegate<Interner = I>, I: Interner> ProofTreeBuilder<D> {
|
|||
})
|
||||
}
|
||||
|
||||
pub fn finalize_canonical_goal_evaluation(
|
||||
&mut self,
|
||||
cx: I,
|
||||
) -> Option<I::CanonicalGoalEvaluationStepRef> {
|
||||
self.as_mut().map(|this| match this {
|
||||
DebugSolver::CanonicalGoalEvaluation(evaluation) => {
|
||||
let final_revision = mem::take(&mut evaluation.final_revision).unwrap();
|
||||
let final_revision =
|
||||
cx.intern_canonical_goal_evaluation_step(final_revision.finalize());
|
||||
let kind = WipCanonicalGoalEvaluationKind::Interned { final_revision };
|
||||
assert_eq!(evaluation.kind.replace(kind), None);
|
||||
final_revision
|
||||
}
|
||||
_ => unreachable!(),
|
||||
})
|
||||
}
|
||||
|
||||
pub fn canonical_goal_evaluation(&mut self, canonical_goal_evaluation: ProofTreeBuilder<D>) {
|
||||
if let Some(this) = self.as_mut() {
|
||||
match (this, *canonical_goal_evaluation.state.unwrap()) {
|
||||
|
@ -571,3 +554,51 @@ impl<D: SolverDelegate<Interner = I>, I: Interner> ProofTreeBuilder<D> {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<D, I> search_graph::ProofTreeBuilder<I> for ProofTreeBuilder<D>
|
||||
where
|
||||
D: SolverDelegate<Interner = I>,
|
||||
I: Interner,
|
||||
{
|
||||
fn try_apply_proof_tree(
|
||||
&mut self,
|
||||
proof_tree: Option<I::CanonicalGoalEvaluationStepRef>,
|
||||
) -> bool {
|
||||
if !self.is_noop() {
|
||||
if let Some(final_revision) = proof_tree {
|
||||
let kind = WipCanonicalGoalEvaluationKind::Interned { final_revision };
|
||||
self.canonical_goal_evaluation_kind(kind);
|
||||
true
|
||||
} else {
|
||||
false
|
||||
}
|
||||
} else {
|
||||
true
|
||||
}
|
||||
}
|
||||
|
||||
fn on_provisional_cache_hit(&mut self) {
|
||||
self.canonical_goal_evaluation_kind(WipCanonicalGoalEvaluationKind::ProvisionalCacheHit);
|
||||
}
|
||||
|
||||
fn on_cycle_in_stack(&mut self) {
|
||||
self.canonical_goal_evaluation_kind(WipCanonicalGoalEvaluationKind::CycleInStack);
|
||||
}
|
||||
|
||||
fn finalize_canonical_goal_evaluation(
|
||||
&mut self,
|
||||
tcx: I,
|
||||
) -> Option<I::CanonicalGoalEvaluationStepRef> {
|
||||
self.as_mut().map(|this| match this {
|
||||
DebugSolver::CanonicalGoalEvaluation(evaluation) => {
|
||||
let final_revision = mem::take(&mut evaluation.final_revision).unwrap();
|
||||
let final_revision =
|
||||
tcx.intern_canonical_goal_evaluation_step(final_revision.finalize());
|
||||
let kind = WipCanonicalGoalEvaluationKind::Interned { final_revision };
|
||||
assert_eq!(evaluation.kind.replace(kind), None);
|
||||
final_revision
|
||||
}
|
||||
_ => unreachable!(),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,599 +1,90 @@
|
|||
use std::mem;
|
||||
use std::marker::PhantomData;
|
||||
|
||||
use rustc_index::{Idx, IndexVec};
|
||||
use rustc_type_ir::data_structures::{HashMap, HashSet};
|
||||
use rustc_type_ir::inherent::*;
|
||||
use rustc_type_ir::search_graph::{self, CycleKind, UsageKind};
|
||||
use rustc_type_ir::solve::{CanonicalInput, Certainty, QueryResult};
|
||||
use rustc_type_ir::Interner;
|
||||
use tracing::debug;
|
||||
|
||||
use super::inspect::{self, ProofTreeBuilder};
|
||||
use super::FIXPOINT_STEP_LIMIT;
|
||||
use crate::delegate::SolverDelegate;
|
||||
use crate::solve::inspect::{self, ProofTreeBuilder};
|
||||
use crate::solve::{
|
||||
CacheData, CanonicalInput, Certainty, QueryResult, SolverMode, FIXPOINT_STEP_LIMIT,
|
||||
};
|
||||
|
||||
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
|
||||
pub struct SolverLimit(usize);
|
||||
|
||||
rustc_index::newtype_index! {
|
||||
#[orderable]
|
||||
#[gate_rustc_only]
|
||||
pub struct StackDepth {}
|
||||
/// This type is never constructed. We only use it to implement `search_graph::Delegate`
|
||||
/// for all types which impl `SolverDelegate` and doing it directly fails in coherence.
|
||||
pub(super) struct SearchGraphDelegate<D: SolverDelegate> {
|
||||
_marker: PhantomData<D>,
|
||||
}
|
||||
pub(super) type SearchGraph<D> = search_graph::SearchGraph<SearchGraphDelegate<D>>;
|
||||
impl<D, I> search_graph::Delegate for SearchGraphDelegate<D>
|
||||
where
|
||||
D: SolverDelegate<Interner = I>,
|
||||
I: Interner,
|
||||
{
|
||||
type Cx = D::Interner;
|
||||
|
||||
bitflags::bitflags! {
|
||||
/// Whether and how this goal has been used as the root of a
|
||||
/// cycle. We track the kind of cycle as we're otherwise forced
|
||||
/// to always rerun at least once.
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||||
struct HasBeenUsed: u8 {
|
||||
const INDUCTIVE_CYCLE = 1 << 0;
|
||||
const COINDUCTIVE_CYCLE = 1 << 1;
|
||||
}
|
||||
}
|
||||
const FIXPOINT_STEP_LIMIT: usize = FIXPOINT_STEP_LIMIT;
|
||||
|
||||
#[derive(derivative::Derivative)]
|
||||
#[derivative(Debug(bound = ""))]
|
||||
struct StackEntry<I: Interner> {
|
||||
input: CanonicalInput<I>,
|
||||
type ProofTreeBuilder = ProofTreeBuilder<D>;
|
||||
|
||||
available_depth: SolverLimit,
|
||||
|
||||
/// The maximum depth reached by this stack entry, only up-to date
|
||||
/// for the top of the stack and lazily updated for the rest.
|
||||
reached_depth: StackDepth,
|
||||
|
||||
/// Whether this entry is a non-root cycle participant.
|
||||
///
|
||||
/// We must not move the result of non-root cycle participants to the
|
||||
/// global cache. We store the highest stack depth of a head of a cycle
|
||||
/// this goal is involved in. This necessary to soundly cache its
|
||||
/// provisional result.
|
||||
non_root_cycle_participant: Option<StackDepth>,
|
||||
|
||||
encountered_overflow: bool,
|
||||
|
||||
has_been_used: HasBeenUsed,
|
||||
|
||||
/// We put only the root goal of a coinductive cycle into the global cache.
|
||||
///
|
||||
/// If we were to use that result when later trying to prove another cycle
|
||||
/// participant, we can end up with unstable query results.
|
||||
///
|
||||
/// See tests/ui/next-solver/coinduction/incompleteness-unstable-result.rs for
|
||||
/// an example of where this is needed.
|
||||
///
|
||||
/// There can be multiple roots on the same stack, so we need to track
|
||||
/// cycle participants per root:
|
||||
/// ```plain
|
||||
/// A :- B
|
||||
/// B :- A, C
|
||||
/// C :- D
|
||||
/// D :- C
|
||||
/// ```
|
||||
nested_goals: HashSet<CanonicalInput<I>>,
|
||||
/// Starts out as `None` and gets set when rerunning this
|
||||
/// goal in case we encounter a cycle.
|
||||
provisional_result: Option<QueryResult<I>>,
|
||||
}
|
||||
|
||||
/// The provisional result for a goal which is not on the stack.
|
||||
#[derive(Debug)]
|
||||
struct DetachedEntry<I: Interner> {
|
||||
/// The head of the smallest non-trivial cycle involving this entry.
|
||||
///
|
||||
/// Given the following rules, when proving `A` the head for
|
||||
/// the provisional entry of `C` would be `B`.
|
||||
/// ```plain
|
||||
/// A :- B
|
||||
/// B :- C
|
||||
/// C :- A + B + C
|
||||
/// ```
|
||||
head: StackDepth,
|
||||
result: QueryResult<I>,
|
||||
}
|
||||
|
||||
/// Stores the stack depth of a currently evaluated goal *and* already
|
||||
/// computed results for goals which depend on other goals still on the stack.
|
||||
///
|
||||
/// The provisional result may depend on whether the stack above it is inductive
|
||||
/// or coinductive. Because of this, we store separate provisional results for
|
||||
/// each case. If an provisional entry is not applicable, it may be the case
|
||||
/// that we already have provisional result while computing a goal. In this case
|
||||
/// we prefer the provisional result to potentially avoid fixpoint iterations.
|
||||
/// See tests/ui/traits/next-solver/cycles/mixed-cycles-2.rs for an example.
|
||||
///
|
||||
/// The provisional cache can theoretically result in changes to the observable behavior,
|
||||
/// see tests/ui/traits/next-solver/cycles/provisional-cache-impacts-behavior.rs.
|
||||
#[derive(derivative::Derivative)]
|
||||
#[derivative(Default(bound = ""))]
|
||||
struct ProvisionalCacheEntry<I: Interner> {
|
||||
stack_depth: Option<StackDepth>,
|
||||
with_inductive_stack: Option<DetachedEntry<I>>,
|
||||
with_coinductive_stack: Option<DetachedEntry<I>>,
|
||||
}
|
||||
|
||||
impl<I: Interner> ProvisionalCacheEntry<I> {
|
||||
fn is_empty(&self) -> bool {
|
||||
self.stack_depth.is_none()
|
||||
&& self.with_inductive_stack.is_none()
|
||||
&& self.with_coinductive_stack.is_none()
|
||||
}
|
||||
}
|
||||
|
||||
pub(super) struct SearchGraph<I: Interner> {
|
||||
mode: SolverMode,
|
||||
/// The stack of goals currently being computed.
|
||||
///
|
||||
/// An element is *deeper* in the stack if its index is *lower*.
|
||||
stack: IndexVec<StackDepth, StackEntry<I>>,
|
||||
provisional_cache: HashMap<CanonicalInput<I>, ProvisionalCacheEntry<I>>,
|
||||
}
|
||||
|
||||
impl<I: Interner> SearchGraph<I> {
|
||||
pub(super) fn new(mode: SolverMode) -> SearchGraph<I> {
|
||||
Self { mode, stack: Default::default(), provisional_cache: Default::default() }
|
||||
fn recursion_limit(cx: I) -> usize {
|
||||
cx.recursion_limit()
|
||||
}
|
||||
|
||||
pub(super) fn solver_mode(&self) -> SolverMode {
|
||||
self.mode
|
||||
}
|
||||
|
||||
fn update_parent_goal(&mut self, reached_depth: StackDepth, encountered_overflow: bool) {
|
||||
if let Some(parent) = self.stack.raw.last_mut() {
|
||||
parent.reached_depth = parent.reached_depth.max(reached_depth);
|
||||
parent.encountered_overflow |= encountered_overflow;
|
||||
fn initial_provisional_result(
|
||||
cx: I,
|
||||
kind: CycleKind,
|
||||
input: CanonicalInput<I>,
|
||||
) -> QueryResult<I> {
|
||||
match kind {
|
||||
CycleKind::Coinductive => response_no_constraints(cx, input, Certainty::Yes),
|
||||
CycleKind::Inductive => response_no_constraints(cx, input, Certainty::overflow(false)),
|
||||
}
|
||||
}
|
||||
|
||||
pub(super) fn is_empty(&self) -> bool {
|
||||
self.stack.is_empty()
|
||||
}
|
||||
|
||||
/// Returns the remaining depth allowed for nested goals.
|
||||
///
|
||||
/// This is generally simply one less than the current depth.
|
||||
/// However, if we encountered overflow, we significantly reduce
|
||||
/// the remaining depth of all nested goals to prevent hangs
|
||||
/// in case there is exponential blowup.
|
||||
fn allowed_depth_for_nested(
|
||||
fn reached_fixpoint(
|
||||
cx: I,
|
||||
stack: &IndexVec<StackDepth, StackEntry<I>>,
|
||||
) -> Option<SolverLimit> {
|
||||
if let Some(last) = stack.raw.last() {
|
||||
if last.available_depth.0 == 0 {
|
||||
return None;
|
||||
}
|
||||
|
||||
Some(if last.encountered_overflow {
|
||||
SolverLimit(last.available_depth.0 / 4)
|
||||
} else {
|
||||
SolverLimit(last.available_depth.0 - 1)
|
||||
})
|
||||
} else {
|
||||
Some(SolverLimit(cx.recursion_limit()))
|
||||
}
|
||||
}
|
||||
|
||||
fn stack_coinductive_from(
|
||||
cx: I,
|
||||
stack: &IndexVec<StackDepth, StackEntry<I>>,
|
||||
head: StackDepth,
|
||||
kind: UsageKind,
|
||||
input: CanonicalInput<I>,
|
||||
provisional_result: Option<QueryResult<I>>,
|
||||
result: QueryResult<I>,
|
||||
) -> bool {
|
||||
stack.raw[head.index()..]
|
||||
.iter()
|
||||
.all(|entry| entry.input.value.goal.predicate.is_coinductive(cx))
|
||||
}
|
||||
|
||||
// When encountering a solver cycle, the result of the current goal
|
||||
// depends on goals lower on the stack.
|
||||
//
|
||||
// We have to therefore be careful when caching goals. Only the final result
|
||||
// of the cycle root, i.e. the lowest goal on the stack involved in this cycle,
|
||||
// is moved to the global cache while all others are stored in a provisional cache.
|
||||
//
|
||||
// We update both the head of this cycle to rerun its evaluation until
|
||||
// we reach a fixpoint and all other cycle participants to make sure that
|
||||
// their result does not get moved to the global cache.
|
||||
fn tag_cycle_participants(
|
||||
stack: &mut IndexVec<StackDepth, StackEntry<I>>,
|
||||
usage_kind: HasBeenUsed,
|
||||
head: StackDepth,
|
||||
) {
|
||||
stack[head].has_been_used |= usage_kind;
|
||||
debug_assert!(!stack[head].has_been_used.is_empty());
|
||||
|
||||
// The current root of these cycles. Note that this may not be the final
|
||||
// root in case a later goal depends on a goal higher up the stack.
|
||||
let mut current_root = head;
|
||||
while let Some(parent) = stack[current_root].non_root_cycle_participant {
|
||||
current_root = parent;
|
||||
debug_assert!(!stack[current_root].has_been_used.is_empty());
|
||||
}
|
||||
|
||||
let (stack, cycle_participants) = stack.raw.split_at_mut(head.index() + 1);
|
||||
let current_cycle_root = &mut stack[current_root.as_usize()];
|
||||
for entry in cycle_participants {
|
||||
entry.non_root_cycle_participant = entry.non_root_cycle_participant.max(Some(head));
|
||||
current_cycle_root.nested_goals.insert(entry.input);
|
||||
current_cycle_root.nested_goals.extend(mem::take(&mut entry.nested_goals));
|
||||
}
|
||||
}
|
||||
|
||||
fn clear_dependent_provisional_results(
|
||||
provisional_cache: &mut HashMap<CanonicalInput<I>, ProvisionalCacheEntry<I>>,
|
||||
head: StackDepth,
|
||||
) {
|
||||
#[allow(rustc::potential_query_instability)]
|
||||
provisional_cache.retain(|_, entry| {
|
||||
if entry.with_coinductive_stack.as_ref().is_some_and(|p| p.head == head) {
|
||||
entry.with_coinductive_stack.take();
|
||||
}
|
||||
if entry.with_inductive_stack.as_ref().is_some_and(|p| p.head == head) {
|
||||
entry.with_inductive_stack.take();
|
||||
}
|
||||
!entry.is_empty()
|
||||
});
|
||||
}
|
||||
|
||||
/// The trait solver behavior is different for coherence
|
||||
/// so we use a separate cache. Alternatively we could use
|
||||
/// a single cache and share it between coherence and ordinary
|
||||
/// trait solving.
|
||||
pub(super) fn global_cache(&self, cx: I) -> I::EvaluationCache {
|
||||
cx.evaluation_cache(self.mode)
|
||||
}
|
||||
|
||||
/// Probably the most involved method of the whole solver.
|
||||
///
|
||||
/// Given some goal which is proven via the `prove_goal` closure, this
|
||||
/// handles caching, overflow, and coinductive cycles.
|
||||
pub(super) fn with_new_goal<D: SolverDelegate<Interner = I>>(
|
||||
&mut self,
|
||||
cx: I,
|
||||
input: CanonicalInput<I>,
|
||||
inspect: &mut ProofTreeBuilder<D>,
|
||||
mut prove_goal: impl FnMut(&mut Self, &mut ProofTreeBuilder<D>) -> QueryResult<I>,
|
||||
) -> QueryResult<I> {
|
||||
self.check_invariants();
|
||||
// Check for overflow.
|
||||
let Some(available_depth) = Self::allowed_depth_for_nested(cx, &self.stack) else {
|
||||
if let Some(last) = self.stack.raw.last_mut() {
|
||||
last.encountered_overflow = true;
|
||||
}
|
||||
|
||||
inspect
|
||||
.canonical_goal_evaluation_kind(inspect::WipCanonicalGoalEvaluationKind::Overflow);
|
||||
return Self::response_no_constraints(cx, input, Certainty::overflow(true));
|
||||
};
|
||||
|
||||
if let Some(result) = self.lookup_global_cache(cx, input, available_depth, inspect) {
|
||||
debug!("global cache hit");
|
||||
return result;
|
||||
}
|
||||
|
||||
// Check whether the goal is in the provisional cache.
|
||||
// The provisional result may rely on the path to its cycle roots,
|
||||
// so we have to check the path of the current goal matches that of
|
||||
// the cache entry.
|
||||
let cache_entry = self.provisional_cache.entry(input).or_default();
|
||||
if let Some(entry) = cache_entry
|
||||
.with_coinductive_stack
|
||||
.as_ref()
|
||||
.filter(|p| Self::stack_coinductive_from(cx, &self.stack, p.head))
|
||||
.or_else(|| {
|
||||
cache_entry
|
||||
.with_inductive_stack
|
||||
.as_ref()
|
||||
.filter(|p| !Self::stack_coinductive_from(cx, &self.stack, p.head))
|
||||
})
|
||||
{
|
||||
debug!("provisional cache hit");
|
||||
// We have a nested goal which is already in the provisional cache, use
|
||||
// its result. We do not provide any usage kind as that should have been
|
||||
// already set correctly while computing the cache entry.
|
||||
inspect.canonical_goal_evaluation_kind(
|
||||
inspect::WipCanonicalGoalEvaluationKind::ProvisionalCacheHit,
|
||||
);
|
||||
Self::tag_cycle_participants(&mut self.stack, HasBeenUsed::empty(), entry.head);
|
||||
return entry.result;
|
||||
} else if let Some(stack_depth) = cache_entry.stack_depth {
|
||||
debug!("encountered cycle with depth {stack_depth:?}");
|
||||
// We have a nested goal which directly relies on a goal deeper in the stack.
|
||||
//
|
||||
// We start by tagging all cycle participants, as that's necessary for caching.
|
||||
//
|
||||
// Finally we can return either the provisional response or the initial response
|
||||
// in case we're in the first fixpoint iteration for this goal.
|
||||
inspect.canonical_goal_evaluation_kind(
|
||||
inspect::WipCanonicalGoalEvaluationKind::CycleInStack,
|
||||
);
|
||||
let is_coinductive_cycle = Self::stack_coinductive_from(cx, &self.stack, stack_depth);
|
||||
let usage_kind = if is_coinductive_cycle {
|
||||
HasBeenUsed::COINDUCTIVE_CYCLE
|
||||
} else {
|
||||
HasBeenUsed::INDUCTIVE_CYCLE
|
||||
};
|
||||
Self::tag_cycle_participants(&mut self.stack, usage_kind, stack_depth);
|
||||
|
||||
// Return the provisional result or, if we're in the first iteration,
|
||||
// start with no constraints.
|
||||
return if let Some(result) = self.stack[stack_depth].provisional_result {
|
||||
result
|
||||
} else if is_coinductive_cycle {
|
||||
Self::response_no_constraints(cx, input, Certainty::Yes)
|
||||
} else {
|
||||
Self::response_no_constraints(cx, input, Certainty::overflow(false))
|
||||
};
|
||||
} else {
|
||||
// No entry, we push this goal on the stack and try to prove it.
|
||||
let depth = self.stack.next_index();
|
||||
let entry = StackEntry {
|
||||
input,
|
||||
available_depth,
|
||||
reached_depth: depth,
|
||||
non_root_cycle_participant: None,
|
||||
encountered_overflow: false,
|
||||
has_been_used: HasBeenUsed::empty(),
|
||||
nested_goals: Default::default(),
|
||||
provisional_result: None,
|
||||
};
|
||||
assert_eq!(self.stack.push(entry), depth);
|
||||
cache_entry.stack_depth = Some(depth);
|
||||
}
|
||||
|
||||
// This is for global caching, so we properly track query dependencies.
|
||||
// Everything that affects the `result` should be performed within this
|
||||
// `with_anon_task` closure. If computing this goal depends on something
|
||||
// not tracked by the cache key and from outside of this anon task, it
|
||||
// must not be added to the global cache. Notably, this is the case for
|
||||
// trait solver cycles participants.
|
||||
let ((final_entry, result), dep_node) = cx.with_cached_task(|| {
|
||||
for _ in 0..FIXPOINT_STEP_LIMIT {
|
||||
match self.fixpoint_step_in_task(cx, input, inspect, &mut prove_goal) {
|
||||
StepResult::Done(final_entry, result) => return (final_entry, result),
|
||||
StepResult::HasChanged => debug!("fixpoint changed provisional results"),
|
||||
}
|
||||
}
|
||||
|
||||
debug!("canonical cycle overflow");
|
||||
let current_entry = self.stack.pop().unwrap();
|
||||
debug_assert!(current_entry.has_been_used.is_empty());
|
||||
let result = Self::response_no_constraints(cx, input, Certainty::overflow(false));
|
||||
(current_entry, result)
|
||||
});
|
||||
|
||||
let proof_tree = inspect.finalize_canonical_goal_evaluation(cx);
|
||||
|
||||
self.update_parent_goal(final_entry.reached_depth, final_entry.encountered_overflow);
|
||||
|
||||
// We're now done with this goal. In case this goal is involved in a larger cycle
|
||||
// do not remove it from the provisional cache and update its provisional result.
|
||||
// We only add the root of cycles to the global cache.
|
||||
if let Some(head) = final_entry.non_root_cycle_participant {
|
||||
let coinductive_stack = Self::stack_coinductive_from(cx, &self.stack, head);
|
||||
|
||||
let entry = self.provisional_cache.get_mut(&input).unwrap();
|
||||
entry.stack_depth = None;
|
||||
if coinductive_stack {
|
||||
entry.with_coinductive_stack = Some(DetachedEntry { head, result });
|
||||
} else {
|
||||
entry.with_inductive_stack = Some(DetachedEntry { head, result });
|
||||
}
|
||||
} else {
|
||||
self.provisional_cache.remove(&input);
|
||||
let reached_depth = final_entry.reached_depth.as_usize() - self.stack.len();
|
||||
// When encountering a cycle, both inductive and coinductive, we only
|
||||
// move the root into the global cache. We also store all other cycle
|
||||
// participants involved.
|
||||
//
|
||||
// We must not use the global cache entry of a root goal if a cycle
|
||||
// participant is on the stack. This is necessary to prevent unstable
|
||||
// results. See the comment of `StackEntry::nested_goals` for
|
||||
// more details.
|
||||
self.global_cache(cx).insert(
|
||||
cx,
|
||||
input,
|
||||
proof_tree,
|
||||
reached_depth,
|
||||
final_entry.encountered_overflow,
|
||||
final_entry.nested_goals,
|
||||
dep_node,
|
||||
result,
|
||||
)
|
||||
}
|
||||
|
||||
self.check_invariants();
|
||||
|
||||
result
|
||||
}
|
||||
|
||||
/// Try to fetch a previously computed result from the global cache,
|
||||
/// making sure to only do so if it would match the result of reevaluating
|
||||
/// this goal.
|
||||
fn lookup_global_cache<D: SolverDelegate<Interner = I>>(
|
||||
&mut self,
|
||||
cx: I,
|
||||
input: CanonicalInput<I>,
|
||||
available_depth: SolverLimit,
|
||||
inspect: &mut ProofTreeBuilder<D>,
|
||||
) -> Option<QueryResult<I>> {
|
||||
let CacheData { result, proof_tree, additional_depth, encountered_overflow } = self
|
||||
.global_cache(cx)
|
||||
// FIXME: Awkward `Limit -> usize -> Limit`.
|
||||
.get(cx, input, self.stack.iter().map(|e| e.input), available_depth.0)?;
|
||||
|
||||
// If we're building a proof tree and the current cache entry does not
|
||||
// contain a proof tree, we do not use the entry but instead recompute
|
||||
// the goal. We simply overwrite the existing entry once we're done,
|
||||
// caching the proof tree.
|
||||
if !inspect.is_noop() {
|
||||
if let Some(final_revision) = proof_tree {
|
||||
let kind = inspect::WipCanonicalGoalEvaluationKind::Interned { final_revision };
|
||||
inspect.canonical_goal_evaluation_kind(kind);
|
||||
} else {
|
||||
return None;
|
||||
}
|
||||
}
|
||||
|
||||
// Adjust the parent goal as if we actually computed this goal.
|
||||
let reached_depth = self.stack.next_index().plus(additional_depth);
|
||||
self.update_parent_goal(reached_depth, encountered_overflow);
|
||||
|
||||
Some(result)
|
||||
}
|
||||
}
|
||||
|
||||
enum StepResult<I: Interner> {
|
||||
Done(StackEntry<I>, QueryResult<I>),
|
||||
HasChanged,
|
||||
}
|
||||
|
||||
impl<I: Interner> SearchGraph<I> {
|
||||
/// When we encounter a coinductive cycle, we have to fetch the
|
||||
/// result of that cycle while we are still computing it. Because
|
||||
/// of this we continuously recompute the cycle until the result
|
||||
/// of the previous iteration is equal to the final result, at which
|
||||
/// point we are done.
|
||||
fn fixpoint_step_in_task<D, F>(
|
||||
&mut self,
|
||||
cx: I,
|
||||
input: CanonicalInput<I>,
|
||||
inspect: &mut ProofTreeBuilder<D>,
|
||||
prove_goal: &mut F,
|
||||
) -> StepResult<I>
|
||||
where
|
||||
D: SolverDelegate<Interner = I>,
|
||||
F: FnMut(&mut Self, &mut ProofTreeBuilder<D>) -> QueryResult<I>,
|
||||
{
|
||||
let result = prove_goal(self, inspect);
|
||||
let stack_entry = self.stack.pop().unwrap();
|
||||
debug_assert_eq!(stack_entry.input, input);
|
||||
|
||||
// If the current goal is not the root of a cycle, we are done.
|
||||
if stack_entry.has_been_used.is_empty() {
|
||||
return StepResult::Done(stack_entry, result);
|
||||
}
|
||||
|
||||
// If it is a cycle head, we have to keep trying to prove it until
|
||||
// we reach a fixpoint. We need to do so for all cycle heads,
|
||||
// not only for the root.
|
||||
//
|
||||
// See tests/ui/traits/next-solver/cycles/fixpoint-rerun-all-cycle-heads.rs
|
||||
// for an example.
|
||||
|
||||
// Start by clearing all provisional cache entries which depend on this
|
||||
// the current goal.
|
||||
Self::clear_dependent_provisional_results(
|
||||
&mut self.provisional_cache,
|
||||
self.stack.next_index(),
|
||||
);
|
||||
|
||||
// Check whether we reached a fixpoint, either because the final result
|
||||
// is equal to the provisional result of the previous iteration, or because
|
||||
// this was only the root of either coinductive or inductive cycles, and the
|
||||
// final result is equal to the initial response for that case.
|
||||
let reached_fixpoint = if let Some(r) = stack_entry.provisional_result {
|
||||
if let Some(r) = provisional_result {
|
||||
r == result
|
||||
} else if stack_entry.has_been_used == HasBeenUsed::COINDUCTIVE_CYCLE {
|
||||
Self::response_no_constraints(cx, input, Certainty::Yes) == result
|
||||
} else if stack_entry.has_been_used == HasBeenUsed::INDUCTIVE_CYCLE {
|
||||
Self::response_no_constraints(cx, input, Certainty::overflow(false)) == result
|
||||
} else {
|
||||
false
|
||||
};
|
||||
|
||||
// If we did not reach a fixpoint, update the provisional result and reevaluate.
|
||||
if reached_fixpoint {
|
||||
StepResult::Done(stack_entry, result)
|
||||
} else {
|
||||
let depth = self.stack.push(StackEntry {
|
||||
has_been_used: HasBeenUsed::empty(),
|
||||
provisional_result: Some(result),
|
||||
..stack_entry
|
||||
});
|
||||
debug_assert_eq!(self.provisional_cache[&input].stack_depth, Some(depth));
|
||||
StepResult::HasChanged
|
||||
match kind {
|
||||
UsageKind::Single(CycleKind::Coinductive) => {
|
||||
response_no_constraints(cx, input, Certainty::Yes) == result
|
||||
}
|
||||
UsageKind::Single(CycleKind::Inductive) => {
|
||||
response_no_constraints(cx, input, Certainty::overflow(false)) == result
|
||||
}
|
||||
UsageKind::Mixed => false,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn response_no_constraints(
|
||||
fn on_stack_overflow(
|
||||
cx: I,
|
||||
goal: CanonicalInput<I>,
|
||||
certainty: Certainty,
|
||||
inspect: &mut ProofTreeBuilder<D>,
|
||||
input: CanonicalInput<I>,
|
||||
) -> QueryResult<I> {
|
||||
Ok(super::response_no_constraints_raw(cx, goal.max_universe, goal.variables, certainty))
|
||||
inspect.canonical_goal_evaluation_kind(inspect::WipCanonicalGoalEvaluationKind::Overflow);
|
||||
response_no_constraints(cx, input, Certainty::overflow(true))
|
||||
}
|
||||
|
||||
#[allow(rustc::potential_query_instability)]
|
||||
fn check_invariants(&self) {
|
||||
if !cfg!(debug_assertions) {
|
||||
return;
|
||||
}
|
||||
fn on_fixpoint_overflow(cx: I, input: CanonicalInput<I>) -> QueryResult<I> {
|
||||
response_no_constraints(cx, input, Certainty::overflow(false))
|
||||
}
|
||||
|
||||
let SearchGraph { mode: _, stack, provisional_cache } = self;
|
||||
if stack.is_empty() {
|
||||
assert!(provisional_cache.is_empty());
|
||||
}
|
||||
|
||||
for (depth, entry) in stack.iter_enumerated() {
|
||||
let StackEntry {
|
||||
input,
|
||||
available_depth: _,
|
||||
reached_depth: _,
|
||||
non_root_cycle_participant,
|
||||
encountered_overflow: _,
|
||||
has_been_used,
|
||||
ref nested_goals,
|
||||
provisional_result,
|
||||
} = *entry;
|
||||
let cache_entry = provisional_cache.get(&entry.input).unwrap();
|
||||
assert_eq!(cache_entry.stack_depth, Some(depth));
|
||||
if let Some(head) = non_root_cycle_participant {
|
||||
assert!(head < depth);
|
||||
assert!(nested_goals.is_empty());
|
||||
assert_ne!(stack[head].has_been_used, HasBeenUsed::empty());
|
||||
|
||||
let mut current_root = head;
|
||||
while let Some(parent) = stack[current_root].non_root_cycle_participant {
|
||||
current_root = parent;
|
||||
}
|
||||
assert!(stack[current_root].nested_goals.contains(&input));
|
||||
}
|
||||
|
||||
if !nested_goals.is_empty() {
|
||||
assert!(provisional_result.is_some() || !has_been_used.is_empty());
|
||||
for entry in stack.iter().take(depth.as_usize()) {
|
||||
assert_eq!(nested_goals.get(&entry.input), None);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (&input, entry) in &self.provisional_cache {
|
||||
let ProvisionalCacheEntry { stack_depth, with_coinductive_stack, with_inductive_stack } =
|
||||
entry;
|
||||
assert!(
|
||||
stack_depth.is_some()
|
||||
|| with_coinductive_stack.is_some()
|
||||
|| with_inductive_stack.is_some()
|
||||
);
|
||||
|
||||
if let &Some(stack_depth) = stack_depth {
|
||||
assert_eq!(stack[stack_depth].input, input);
|
||||
}
|
||||
|
||||
let check_detached = |detached_entry: &DetachedEntry<I>| {
|
||||
let DetachedEntry { head, result: _ } = *detached_entry;
|
||||
assert_ne!(stack[head].has_been_used, HasBeenUsed::empty());
|
||||
};
|
||||
|
||||
if let Some(with_coinductive_stack) = with_coinductive_stack {
|
||||
check_detached(with_coinductive_stack);
|
||||
}
|
||||
|
||||
if let Some(with_inductive_stack) = with_inductive_stack {
|
||||
check_detached(with_inductive_stack);
|
||||
}
|
||||
}
|
||||
fn step_is_coinductive(cx: I, input: CanonicalInput<I>) -> bool {
|
||||
input.value.goal.predicate.is_coinductive(cx)
|
||||
}
|
||||
}
|
||||
|
||||
fn response_no_constraints<I: Interner>(
|
||||
cx: I,
|
||||
goal: CanonicalInput<I>,
|
||||
certainty: Certainty,
|
||||
) -> QueryResult<I> {
|
||||
Ok(super::response_no_constraints_raw(cx, goal.max_universe, goal.variables, certainty))
|
||||
}
|
||||
|
|
|
@ -40,7 +40,7 @@ impl<Key: Eq + Hash, Value: Clone> Cache<Key, Value> {
|
|||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Eq, PartialEq)]
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
pub struct WithDepNode<T> {
|
||||
dep_node: DepNodeIndex,
|
||||
cached_value: T,
|
||||
|
|
|
@ -8,11 +8,10 @@ use std::hash::Hash;
|
|||
|
||||
use rustc_ast_ir::Mutability;
|
||||
|
||||
use crate::data_structures::HashSet;
|
||||
use crate::elaborate::Elaboratable;
|
||||
use crate::fold::{TypeFoldable, TypeSuperFoldable};
|
||||
use crate::relate::Relate;
|
||||
use crate::solve::{CacheData, CanonicalInput, QueryResult, Reveal};
|
||||
use crate::solve::Reveal;
|
||||
use crate::visit::{Flags, TypeSuperVisitable, TypeVisitable};
|
||||
use crate::{self as ty, CollectAndApply, Interner, UpcastFrom};
|
||||
|
||||
|
@ -539,33 +538,6 @@ pub trait Features<I: Interner>: Copy {
|
|||
fn associated_const_equality(self) -> bool;
|
||||
}
|
||||
|
||||
pub trait EvaluationCache<I: Interner> {
|
||||
/// Insert a final result into the global cache.
|
||||
fn insert(
|
||||
&self,
|
||||
tcx: I,
|
||||
key: CanonicalInput<I>,
|
||||
proof_tree: Option<I::CanonicalGoalEvaluationStepRef>,
|
||||
additional_depth: usize,
|
||||
encountered_overflow: bool,
|
||||
cycle_participants: HashSet<CanonicalInput<I>>,
|
||||
dep_node: I::DepNodeIndex,
|
||||
result: QueryResult<I>,
|
||||
);
|
||||
|
||||
/// Try to fetch a cached result, checking the recursion limit
|
||||
/// and handling root goals of coinductive cycles.
|
||||
///
|
||||
/// If this returns `Some` the cache result can be used.
|
||||
fn get(
|
||||
&self,
|
||||
tcx: I,
|
||||
key: CanonicalInput<I>,
|
||||
stack_entries: impl IntoIterator<Item = CanonicalInput<I>>,
|
||||
available_depth: usize,
|
||||
) -> Option<CacheData<I>>;
|
||||
}
|
||||
|
||||
pub trait DefId<I: Interner>: Copy + Debug + Hash + Eq + TypeFoldable<I> {
|
||||
fn is_local(self) -> bool;
|
||||
|
||||
|
|
|
@ -10,8 +10,11 @@ use crate::inherent::*;
|
|||
use crate::ir_print::IrPrint;
|
||||
use crate::lang_items::TraitSolverLangItem;
|
||||
use crate::relate::Relate;
|
||||
use crate::search_graph;
|
||||
use crate::solve::inspect::CanonicalGoalEvaluationStep;
|
||||
use crate::solve::{ExternalConstraintsData, PredefinedOpaquesData, SolverMode};
|
||||
use crate::solve::{
|
||||
CanonicalInput, ExternalConstraintsData, PredefinedOpaquesData, QueryResult, SolverMode,
|
||||
};
|
||||
use crate::visit::{Flags, TypeSuperVisitable, TypeVisitable};
|
||||
use crate::{self as ty};
|
||||
|
||||
|
@ -86,6 +89,13 @@ pub trait Interner:
|
|||
) -> Self::ExternalConstraints;
|
||||
|
||||
type DepNodeIndex;
|
||||
type Tracked<T: Debug + Clone>: Debug;
|
||||
fn mk_tracked<T: Debug + Clone>(
|
||||
self,
|
||||
data: T,
|
||||
dep_node: Self::DepNodeIndex,
|
||||
) -> Self::Tracked<T>;
|
||||
fn get_tracked<T: Debug + Clone>(self, tracked: &Self::Tracked<T>) -> T;
|
||||
fn with_cached_task<T>(self, task: impl FnOnce() -> T) -> (T, Self::DepNodeIndex);
|
||||
|
||||
// Kinds of tys
|
||||
|
@ -125,8 +135,11 @@ pub trait Interner:
|
|||
type Clause: Clause<Self>;
|
||||
type Clauses: Copy + Debug + Hash + Eq + TypeSuperVisitable<Self> + Flags;
|
||||
|
||||
type EvaluationCache: EvaluationCache<Self>;
|
||||
fn evaluation_cache(self, mode: SolverMode) -> Self::EvaluationCache;
|
||||
fn with_global_cache<R>(
|
||||
self,
|
||||
mode: SolverMode,
|
||||
f: impl FnOnce(&mut search_graph::GlobalCache<Self>) -> R,
|
||||
) -> R;
|
||||
|
||||
fn expand_abstract_consts<T: TypeFoldable<Self>>(self, t: T) -> T;
|
||||
|
||||
|
@ -373,3 +386,32 @@ impl<T, R, E> CollectAndApply<T, R> for Result<T, E> {
|
|||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl<I: Interner> search_graph::Cx for I {
|
||||
type ProofTree = Option<I::CanonicalGoalEvaluationStepRef>;
|
||||
type Input = CanonicalInput<I>;
|
||||
type Result = QueryResult<I>;
|
||||
|
||||
type DepNodeIndex = I::DepNodeIndex;
|
||||
type Tracked<T: Debug + Clone> = I::Tracked<T>;
|
||||
fn mk_tracked<T: Debug + Clone>(
|
||||
self,
|
||||
data: T,
|
||||
dep_node_index: I::DepNodeIndex,
|
||||
) -> I::Tracked<T> {
|
||||
I::mk_tracked(self, data, dep_node_index)
|
||||
}
|
||||
fn get_tracked<T: Debug + Clone>(self, tracked: &I::Tracked<T>) -> T {
|
||||
I::get_tracked(self, tracked)
|
||||
}
|
||||
fn with_cached_task<T>(self, task: impl FnOnce() -> T) -> (T, I::DepNodeIndex) {
|
||||
I::with_cached_task(self, task)
|
||||
}
|
||||
fn with_global_cache<R>(
|
||||
self,
|
||||
mode: SolverMode,
|
||||
f: impl FnOnce(&mut search_graph::GlobalCache<Self>) -> R,
|
||||
) -> R {
|
||||
I::with_global_cache(self, mode, f)
|
||||
}
|
||||
}
|
||||
|
|
|
@ -30,6 +30,7 @@ pub mod lang_items;
|
|||
pub mod lift;
|
||||
pub mod outlives;
|
||||
pub mod relate;
|
||||
pub mod search_graph;
|
||||
pub mod solve;
|
||||
|
||||
// These modules are not `pub` since they are glob-imported.
|
||||
|
|
|
@ -0,0 +1,118 @@
|
|||
use rustc_index::IndexVec;
|
||||
|
||||
use super::{AvailableDepth, Cx, StackDepth, StackEntry};
|
||||
use crate::data_structures::{HashMap, HashSet};
|
||||
|
||||
#[derive(derivative::Derivative)]
|
||||
#[derivative(Debug(bound = ""), Clone(bound = ""), Copy(bound = ""))]
|
||||
struct QueryData<X: Cx> {
|
||||
result: X::Result,
|
||||
proof_tree: X::ProofTree,
|
||||
}
|
||||
|
||||
struct Success<X: Cx> {
|
||||
data: X::Tracked<QueryData<X>>,
|
||||
additional_depth: usize,
|
||||
}
|
||||
|
||||
/// The cache entry for a given input.
|
||||
///
|
||||
/// This contains results whose computation never hit the
|
||||
/// recursion limit in `success`, and all results which hit
|
||||
/// the recursion limit in `with_overflow`.
|
||||
#[derive(derivative::Derivative)]
|
||||
#[derivative(Default(bound = ""))]
|
||||
struct CacheEntry<X: Cx> {
|
||||
success: Option<Success<X>>,
|
||||
/// We have to be careful when caching roots of cycles.
|
||||
///
|
||||
/// See the doc comment of `StackEntry::cycle_participants` for more
|
||||
/// details.
|
||||
nested_goals: HashSet<X::Input>,
|
||||
with_overflow: HashMap<usize, X::Tracked<QueryData<X>>>,
|
||||
}
|
||||
|
||||
#[derive(derivative::Derivative)]
|
||||
#[derivative(Debug(bound = ""))]
|
||||
pub(super) struct CacheData<'a, X: Cx> {
|
||||
pub(super) result: X::Result,
|
||||
pub(super) proof_tree: X::ProofTree,
|
||||
pub(super) additional_depth: usize,
|
||||
pub(super) encountered_overflow: bool,
|
||||
// FIXME: This is currently unused, but impacts the design
|
||||
// by requiring a closure for `Cx::with_global_cache`.
|
||||
pub(super) nested_goals: &'a HashSet<X::Input>,
|
||||
}
|
||||
|
||||
#[derive(derivative::Derivative)]
|
||||
#[derivative(Default(bound = ""))]
|
||||
pub struct GlobalCache<X: Cx> {
|
||||
map: HashMap<X::Input, CacheEntry<X>>,
|
||||
}
|
||||
|
||||
impl<X: Cx> GlobalCache<X> {
|
||||
/// Insert a final result into the global cache.
|
||||
pub(super) fn insert(
|
||||
&mut self,
|
||||
cx: X,
|
||||
input: X::Input,
|
||||
|
||||
result: X::Result,
|
||||
proof_tree: X::ProofTree,
|
||||
dep_node: X::DepNodeIndex,
|
||||
|
||||
additional_depth: usize,
|
||||
encountered_overflow: bool,
|
||||
nested_goals: &HashSet<X::Input>,
|
||||
) {
|
||||
let data = cx.mk_tracked(QueryData { result, proof_tree }, dep_node);
|
||||
let entry = self.map.entry(input).or_default();
|
||||
entry.nested_goals.extend(nested_goals);
|
||||
if encountered_overflow {
|
||||
entry.with_overflow.insert(additional_depth, data);
|
||||
} else {
|
||||
entry.success = Some(Success { data, additional_depth });
|
||||
}
|
||||
}
|
||||
|
||||
/// Try to fetch a cached result, checking the recursion limit
|
||||
/// and handling root goals of coinductive cycles.
|
||||
///
|
||||
/// If this returns `Some` the cache result can be used.
|
||||
pub(super) fn get<'a>(
|
||||
&'a self,
|
||||
cx: X,
|
||||
input: X::Input,
|
||||
stack: &IndexVec<StackDepth, StackEntry<X>>,
|
||||
available_depth: AvailableDepth,
|
||||
) -> Option<CacheData<'a, X>> {
|
||||
let entry = self.map.get(&input)?;
|
||||
if stack.iter().any(|e| entry.nested_goals.contains(&e.input)) {
|
||||
return None;
|
||||
}
|
||||
|
||||
if let Some(ref success) = entry.success {
|
||||
if available_depth.cache_entry_is_applicable(success.additional_depth) {
|
||||
let QueryData { result, proof_tree } = cx.get_tracked(&success.data);
|
||||
return Some(CacheData {
|
||||
result,
|
||||
proof_tree,
|
||||
additional_depth: success.additional_depth,
|
||||
encountered_overflow: false,
|
||||
nested_goals: &entry.nested_goals,
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
entry.with_overflow.get(&available_depth.0).map(|e| {
|
||||
let QueryData { result, proof_tree } = cx.get_tracked(e);
|
||||
CacheData {
|
||||
result,
|
||||
proof_tree,
|
||||
additional_depth: available_depth.0,
|
||||
encountered_overflow: true,
|
||||
nested_goals: &entry.nested_goals,
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
|
@ -0,0 +1,605 @@
|
|||
use std::fmt::Debug;
|
||||
use std::hash::Hash;
|
||||
use std::marker::PhantomData;
|
||||
use std::mem;
|
||||
|
||||
use rustc_index::{Idx, IndexVec};
|
||||
use tracing::debug;
|
||||
|
||||
use crate::data_structures::{HashMap, HashSet};
|
||||
use crate::solve::SolverMode;
|
||||
|
||||
mod global_cache;
|
||||
use global_cache::CacheData;
|
||||
pub use global_cache::GlobalCache;
|
||||
mod validate;
|
||||
|
||||
/// The search graph does not simply use `Interner` directly
|
||||
/// to enable its fuzzing without having to stub the rest of
|
||||
/// the interner. We don't make this a super trait of `Interner`
|
||||
/// as users of the shared type library shouldn't have to care
|
||||
/// about `Input` and `Result` as they are implementation details
|
||||
/// of the search graph.
|
||||
pub trait Cx: Copy {
|
||||
type ProofTree: Debug + Copy;
|
||||
type Input: Debug + Eq + Hash + Copy;
|
||||
type Result: Debug + Eq + Hash + Copy;
|
||||
|
||||
type DepNodeIndex;
|
||||
type Tracked<T: Debug + Clone>: Debug;
|
||||
fn mk_tracked<T: Debug + Clone>(
|
||||
self,
|
||||
data: T,
|
||||
dep_node_index: Self::DepNodeIndex,
|
||||
) -> Self::Tracked<T>;
|
||||
fn get_tracked<T: Debug + Clone>(self, tracked: &Self::Tracked<T>) -> T;
|
||||
fn with_cached_task<T>(self, task: impl FnOnce() -> T) -> (T, Self::DepNodeIndex);
|
||||
|
||||
fn with_global_cache<R>(
|
||||
self,
|
||||
mode: SolverMode,
|
||||
f: impl FnOnce(&mut GlobalCache<Self>) -> R,
|
||||
) -> R;
|
||||
}
|
||||
|
||||
pub trait ProofTreeBuilder<X: Cx> {
|
||||
fn try_apply_proof_tree(&mut self, proof_tree: X::ProofTree) -> bool;
|
||||
fn on_provisional_cache_hit(&mut self);
|
||||
fn on_cycle_in_stack(&mut self);
|
||||
fn finalize_canonical_goal_evaluation(&mut self, cx: X) -> X::ProofTree;
|
||||
}
|
||||
|
||||
pub trait Delegate {
|
||||
type Cx: Cx;
|
||||
const FIXPOINT_STEP_LIMIT: usize;
|
||||
type ProofTreeBuilder: ProofTreeBuilder<Self::Cx>;
|
||||
|
||||
fn recursion_limit(cx: Self::Cx) -> usize;
|
||||
|
||||
fn initial_provisional_result(
|
||||
cx: Self::Cx,
|
||||
kind: CycleKind,
|
||||
input: <Self::Cx as Cx>::Input,
|
||||
) -> <Self::Cx as Cx>::Result;
|
||||
fn reached_fixpoint(
|
||||
cx: Self::Cx,
|
||||
kind: UsageKind,
|
||||
input: <Self::Cx as Cx>::Input,
|
||||
provisional_result: Option<<Self::Cx as Cx>::Result>,
|
||||
result: <Self::Cx as Cx>::Result,
|
||||
) -> bool;
|
||||
fn on_stack_overflow(
|
||||
cx: Self::Cx,
|
||||
inspect: &mut Self::ProofTreeBuilder,
|
||||
input: <Self::Cx as Cx>::Input,
|
||||
) -> <Self::Cx as Cx>::Result;
|
||||
fn on_fixpoint_overflow(
|
||||
cx: Self::Cx,
|
||||
input: <Self::Cx as Cx>::Input,
|
||||
) -> <Self::Cx as Cx>::Result;
|
||||
|
||||
fn step_is_coinductive(cx: Self::Cx, input: <Self::Cx as Cx>::Input) -> bool;
|
||||
}
|
||||
|
||||
/// In the initial iteration of a cycle, we do not yet have a provisional
|
||||
/// result. In the case we return an initial provisional result depending
|
||||
/// on the kind of cycle.
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||||
pub enum CycleKind {
|
||||
Coinductive,
|
||||
Inductive,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||||
pub enum UsageKind {
|
||||
Single(CycleKind),
|
||||
Mixed,
|
||||
}
|
||||
impl UsageKind {
|
||||
fn merge(self, other: Self) -> Self {
|
||||
match (self, other) {
|
||||
(UsageKind::Single(lhs), UsageKind::Single(rhs)) => {
|
||||
if lhs == rhs {
|
||||
UsageKind::Single(lhs)
|
||||
} else {
|
||||
UsageKind::Mixed
|
||||
}
|
||||
}
|
||||
(UsageKind::Mixed, UsageKind::Mixed)
|
||||
| (UsageKind::Mixed, UsageKind::Single(_))
|
||||
| (UsageKind::Single(_), UsageKind::Mixed) => UsageKind::Mixed,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
struct AvailableDepth(usize);
|
||||
impl AvailableDepth {
|
||||
/// Returns the remaining depth allowed for nested goals.
|
||||
///
|
||||
/// This is generally simply one less than the current depth.
|
||||
/// However, if we encountered overflow, we significantly reduce
|
||||
/// the remaining depth of all nested goals to prevent hangs
|
||||
/// in case there is exponential blowup.
|
||||
fn allowed_depth_for_nested<D: Delegate>(
|
||||
cx: D::Cx,
|
||||
stack: &IndexVec<StackDepth, StackEntry<D::Cx>>,
|
||||
) -> Option<AvailableDepth> {
|
||||
if let Some(last) = stack.raw.last() {
|
||||
if last.available_depth.0 == 0 {
|
||||
return None;
|
||||
}
|
||||
|
||||
Some(if last.encountered_overflow {
|
||||
AvailableDepth(last.available_depth.0 / 2)
|
||||
} else {
|
||||
AvailableDepth(last.available_depth.0 - 1)
|
||||
})
|
||||
} else {
|
||||
Some(AvailableDepth(D::recursion_limit(cx)))
|
||||
}
|
||||
}
|
||||
|
||||
/// Whether we're allowed to use a global cache entry which required
|
||||
/// the given depth.
|
||||
fn cache_entry_is_applicable(self, additional_depth: usize) -> bool {
|
||||
self.0 >= additional_depth
|
||||
}
|
||||
}
|
||||
|
||||
rustc_index::newtype_index! {
|
||||
#[orderable]
|
||||
#[gate_rustc_only]
|
||||
pub struct StackDepth {}
|
||||
}
|
||||
|
||||
#[derive(derivative::Derivative)]
|
||||
#[derivative(Debug(bound = ""))]
|
||||
struct StackEntry<X: Cx> {
|
||||
input: X::Input,
|
||||
|
||||
available_depth: AvailableDepth,
|
||||
|
||||
/// The maximum depth reached by this stack entry, only up-to date
|
||||
/// for the top of the stack and lazily updated for the rest.
|
||||
reached_depth: StackDepth,
|
||||
|
||||
/// Whether this entry is a non-root cycle participant.
|
||||
///
|
||||
/// We must not move the result of non-root cycle participants to the
|
||||
/// global cache. We store the highest stack depth of a head of a cycle
|
||||
/// this goal is involved in. This necessary to soundly cache its
|
||||
/// provisional result.
|
||||
non_root_cycle_participant: Option<StackDepth>,
|
||||
|
||||
encountered_overflow: bool,
|
||||
|
||||
has_been_used: Option<UsageKind>,
|
||||
|
||||
/// We put only the root goal of a coinductive cycle into the global cache.
|
||||
///
|
||||
/// If we were to use that result when later trying to prove another cycle
|
||||
/// participant, we can end up with unstable query results.
|
||||
///
|
||||
/// See tests/ui/next-solver/coinduction/incompleteness-unstable-result.rs for
|
||||
/// an example of where this is needed.
|
||||
///
|
||||
/// There can be multiple roots on the same stack, so we need to track
|
||||
/// cycle participants per root:
|
||||
/// ```plain
|
||||
/// A :- B
|
||||
/// B :- A, C
|
||||
/// C :- D
|
||||
/// D :- C
|
||||
/// ```
|
||||
nested_goals: HashSet<X::Input>,
|
||||
/// Starts out as `None` and gets set when rerunning this
|
||||
/// goal in case we encounter a cycle.
|
||||
provisional_result: Option<X::Result>,
|
||||
}
|
||||
|
||||
/// The provisional result for a goal which is not on the stack.
|
||||
#[derive(Debug)]
|
||||
struct DetachedEntry<X: Cx> {
|
||||
/// The head of the smallest non-trivial cycle involving this entry.
|
||||
///
|
||||
/// Given the following rules, when proving `A` the head for
|
||||
/// the provisional entry of `C` would be `B`.
|
||||
/// ```plain
|
||||
/// A :- B
|
||||
/// B :- C
|
||||
/// C :- A + B + C
|
||||
/// ```
|
||||
head: StackDepth,
|
||||
result: X::Result,
|
||||
}
|
||||
|
||||
/// Stores the stack depth of a currently evaluated goal *and* already
|
||||
/// computed results for goals which depend on other goals still on the stack.
|
||||
///
|
||||
/// The provisional result may depend on whether the stack above it is inductive
|
||||
/// or coinductive. Because of this, we store separate provisional results for
|
||||
/// each case. If an provisional entry is not applicable, it may be the case
|
||||
/// that we already have provisional result while computing a goal. In this case
|
||||
/// we prefer the provisional result to potentially avoid fixpoint iterations.
|
||||
/// See tests/ui/traits/next-solver/cycles/mixed-cycles-2.rs for an example.
|
||||
///
|
||||
/// The provisional cache can theoretically result in changes to the observable behavior,
|
||||
/// see tests/ui/traits/next-solver/cycles/provisional-cache-impacts-behavior.rs.
|
||||
#[derive(derivative::Derivative)]
|
||||
#[derivative(Default(bound = ""))]
|
||||
struct ProvisionalCacheEntry<X: Cx> {
|
||||
stack_depth: Option<StackDepth>,
|
||||
with_inductive_stack: Option<DetachedEntry<X>>,
|
||||
with_coinductive_stack: Option<DetachedEntry<X>>,
|
||||
}
|
||||
|
||||
impl<X: Cx> ProvisionalCacheEntry<X> {
|
||||
fn is_empty(&self) -> bool {
|
||||
self.stack_depth.is_none()
|
||||
&& self.with_inductive_stack.is_none()
|
||||
&& self.with_coinductive_stack.is_none()
|
||||
}
|
||||
}
|
||||
|
||||
pub struct SearchGraph<D: Delegate<Cx = X>, X: Cx = <D as Delegate>::Cx> {
|
||||
mode: SolverMode,
|
||||
/// The stack of goals currently being computed.
|
||||
///
|
||||
/// An element is *deeper* in the stack if its index is *lower*.
|
||||
stack: IndexVec<StackDepth, StackEntry<X>>,
|
||||
provisional_cache: HashMap<X::Input, ProvisionalCacheEntry<X>>,
|
||||
|
||||
_marker: PhantomData<D>,
|
||||
}
|
||||
|
||||
impl<D: Delegate<Cx = X>, X: Cx> SearchGraph<D> {
|
||||
pub fn new(mode: SolverMode) -> SearchGraph<D> {
|
||||
Self {
|
||||
mode,
|
||||
stack: Default::default(),
|
||||
provisional_cache: Default::default(),
|
||||
_marker: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn solver_mode(&self) -> SolverMode {
|
||||
self.mode
|
||||
}
|
||||
|
||||
fn update_parent_goal(&mut self, reached_depth: StackDepth, encountered_overflow: bool) {
|
||||
if let Some(parent) = self.stack.raw.last_mut() {
|
||||
parent.reached_depth = parent.reached_depth.max(reached_depth);
|
||||
parent.encountered_overflow |= encountered_overflow;
|
||||
}
|
||||
}
|
||||
|
||||
pub fn is_empty(&self) -> bool {
|
||||
self.stack.is_empty()
|
||||
}
|
||||
|
||||
fn stack_coinductive_from(
|
||||
cx: X,
|
||||
stack: &IndexVec<StackDepth, StackEntry<X>>,
|
||||
head: StackDepth,
|
||||
) -> bool {
|
||||
stack.raw[head.index()..].iter().all(|entry| D::step_is_coinductive(cx, entry.input))
|
||||
}
|
||||
|
||||
// When encountering a solver cycle, the result of the current goal
|
||||
// depends on goals lower on the stack.
|
||||
//
|
||||
// We have to therefore be careful when caching goals. Only the final result
|
||||
// of the cycle root, i.e. the lowest goal on the stack involved in this cycle,
|
||||
// is moved to the global cache while all others are stored in a provisional cache.
|
||||
//
|
||||
// We update both the head of this cycle to rerun its evaluation until
|
||||
// we reach a fixpoint and all other cycle participants to make sure that
|
||||
// their result does not get moved to the global cache.
|
||||
fn tag_cycle_participants(
|
||||
stack: &mut IndexVec<StackDepth, StackEntry<X>>,
|
||||
usage_kind: Option<UsageKind>,
|
||||
head: StackDepth,
|
||||
) {
|
||||
if let Some(usage_kind) = usage_kind {
|
||||
stack[head].has_been_used =
|
||||
Some(stack[head].has_been_used.map_or(usage_kind, |prev| prev.merge(usage_kind)));
|
||||
}
|
||||
debug_assert!(stack[head].has_been_used.is_some());
|
||||
|
||||
// The current root of these cycles. Note that this may not be the final
|
||||
// root in case a later goal depends on a goal higher up the stack.
|
||||
let mut current_root = head;
|
||||
while let Some(parent) = stack[current_root].non_root_cycle_participant {
|
||||
current_root = parent;
|
||||
debug_assert!(stack[current_root].has_been_used.is_some());
|
||||
}
|
||||
|
||||
let (stack, cycle_participants) = stack.raw.split_at_mut(head.index() + 1);
|
||||
let current_cycle_root = &mut stack[current_root.as_usize()];
|
||||
for entry in cycle_participants {
|
||||
entry.non_root_cycle_participant = entry.non_root_cycle_participant.max(Some(head));
|
||||
current_cycle_root.nested_goals.insert(entry.input);
|
||||
current_cycle_root.nested_goals.extend(mem::take(&mut entry.nested_goals));
|
||||
}
|
||||
}
|
||||
|
||||
fn clear_dependent_provisional_results(
|
||||
provisional_cache: &mut HashMap<X::Input, ProvisionalCacheEntry<X>>,
|
||||
head: StackDepth,
|
||||
) {
|
||||
#[allow(rustc::potential_query_instability)]
|
||||
provisional_cache.retain(|_, entry| {
|
||||
if entry.with_coinductive_stack.as_ref().is_some_and(|p| p.head == head) {
|
||||
entry.with_coinductive_stack.take();
|
||||
}
|
||||
if entry.with_inductive_stack.as_ref().is_some_and(|p| p.head == head) {
|
||||
entry.with_inductive_stack.take();
|
||||
}
|
||||
!entry.is_empty()
|
||||
});
|
||||
}
|
||||
|
||||
/// Probably the most involved method of the whole solver.
|
||||
///
|
||||
/// Given some goal which is proven via the `prove_goal` closure, this
|
||||
/// handles caching, overflow, and coinductive cycles.
|
||||
pub fn with_new_goal(
|
||||
&mut self,
|
||||
cx: X,
|
||||
input: X::Input,
|
||||
inspect: &mut D::ProofTreeBuilder,
|
||||
mut prove_goal: impl FnMut(&mut Self, &mut D::ProofTreeBuilder) -> X::Result,
|
||||
) -> X::Result {
|
||||
self.check_invariants();
|
||||
// Check for overflow.
|
||||
let Some(available_depth) = AvailableDepth::allowed_depth_for_nested::<D>(cx, &self.stack)
|
||||
else {
|
||||
if let Some(last) = self.stack.raw.last_mut() {
|
||||
last.encountered_overflow = true;
|
||||
}
|
||||
|
||||
debug!("encountered stack overflow");
|
||||
return D::on_stack_overflow(cx, inspect, input);
|
||||
};
|
||||
|
||||
if let Some(result) = self.lookup_global_cache(cx, input, available_depth, inspect) {
|
||||
return result;
|
||||
}
|
||||
|
||||
// Check whether the goal is in the provisional cache.
|
||||
// The provisional result may rely on the path to its cycle roots,
|
||||
// so we have to check the path of the current goal matches that of
|
||||
// the cache entry.
|
||||
let cache_entry = self.provisional_cache.entry(input).or_default();
|
||||
if let Some(entry) = cache_entry
|
||||
.with_coinductive_stack
|
||||
.as_ref()
|
||||
.filter(|p| Self::stack_coinductive_from(cx, &self.stack, p.head))
|
||||
.or_else(|| {
|
||||
cache_entry
|
||||
.with_inductive_stack
|
||||
.as_ref()
|
||||
.filter(|p| !Self::stack_coinductive_from(cx, &self.stack, p.head))
|
||||
})
|
||||
{
|
||||
debug!("provisional cache hit");
|
||||
// We have a nested goal which is already in the provisional cache, use
|
||||
// its result. We do not provide any usage kind as that should have been
|
||||
// already set correctly while computing the cache entry.
|
||||
inspect.on_provisional_cache_hit();
|
||||
Self::tag_cycle_participants(&mut self.stack, None, entry.head);
|
||||
return entry.result;
|
||||
} else if let Some(stack_depth) = cache_entry.stack_depth {
|
||||
debug!("encountered cycle with depth {stack_depth:?}");
|
||||
// We have a nested goal which directly relies on a goal deeper in the stack.
|
||||
//
|
||||
// We start by tagging all cycle participants, as that's necessary for caching.
|
||||
//
|
||||
// Finally we can return either the provisional response or the initial response
|
||||
// in case we're in the first fixpoint iteration for this goal.
|
||||
inspect.on_cycle_in_stack();
|
||||
|
||||
let is_coinductive_cycle = Self::stack_coinductive_from(cx, &self.stack, stack_depth);
|
||||
let cycle_kind =
|
||||
if is_coinductive_cycle { CycleKind::Coinductive } else { CycleKind::Inductive };
|
||||
Self::tag_cycle_participants(
|
||||
&mut self.stack,
|
||||
Some(UsageKind::Single(cycle_kind)),
|
||||
stack_depth,
|
||||
);
|
||||
|
||||
// Return the provisional result or, if we're in the first iteration,
|
||||
// start with no constraints.
|
||||
return if let Some(result) = self.stack[stack_depth].provisional_result {
|
||||
result
|
||||
} else {
|
||||
D::initial_provisional_result(cx, cycle_kind, input)
|
||||
};
|
||||
} else {
|
||||
// No entry, we push this goal on the stack and try to prove it.
|
||||
let depth = self.stack.next_index();
|
||||
let entry = StackEntry {
|
||||
input,
|
||||
available_depth,
|
||||
reached_depth: depth,
|
||||
non_root_cycle_participant: None,
|
||||
encountered_overflow: false,
|
||||
has_been_used: None,
|
||||
nested_goals: Default::default(),
|
||||
provisional_result: None,
|
||||
};
|
||||
assert_eq!(self.stack.push(entry), depth);
|
||||
cache_entry.stack_depth = Some(depth);
|
||||
};
|
||||
|
||||
// This is for global caching, so we properly track query dependencies.
|
||||
// Everything that affects the `result` should be performed within this
|
||||
// `with_anon_task` closure. If computing this goal depends on something
|
||||
// not tracked by the cache key and from outside of this anon task, it
|
||||
// must not be added to the global cache. Notably, this is the case for
|
||||
// trait solver cycles participants.
|
||||
let ((final_entry, result), dep_node) = cx.with_cached_task(|| {
|
||||
for _ in 0..D::FIXPOINT_STEP_LIMIT {
|
||||
match self.fixpoint_step_in_task(cx, input, inspect, &mut prove_goal) {
|
||||
StepResult::Done(final_entry, result) => return (final_entry, result),
|
||||
StepResult::HasChanged => debug!("fixpoint changed provisional results"),
|
||||
}
|
||||
}
|
||||
|
||||
debug!("canonical cycle overflow");
|
||||
let current_entry = self.stack.pop().unwrap();
|
||||
debug_assert!(current_entry.has_been_used.is_none());
|
||||
let result = D::on_fixpoint_overflow(cx, input);
|
||||
(current_entry, result)
|
||||
});
|
||||
|
||||
let proof_tree = inspect.finalize_canonical_goal_evaluation(cx);
|
||||
|
||||
self.update_parent_goal(final_entry.reached_depth, final_entry.encountered_overflow);
|
||||
|
||||
// We're now done with this goal. In case this goal is involved in a larger cycle
|
||||
// do not remove it from the provisional cache and update its provisional result.
|
||||
// We only add the root of cycles to the global cache.
|
||||
if let Some(head) = final_entry.non_root_cycle_participant {
|
||||
let coinductive_stack = Self::stack_coinductive_from(cx, &self.stack, head);
|
||||
|
||||
let entry = self.provisional_cache.get_mut(&input).unwrap();
|
||||
entry.stack_depth = None;
|
||||
if coinductive_stack {
|
||||
entry.with_coinductive_stack = Some(DetachedEntry { head, result });
|
||||
} else {
|
||||
entry.with_inductive_stack = Some(DetachedEntry { head, result });
|
||||
}
|
||||
} else {
|
||||
// When encountering a cycle, both inductive and coinductive, we only
|
||||
// move the root into the global cache. We also store all other cycle
|
||||
// participants involved.
|
||||
//
|
||||
// We must not use the global cache entry of a root goal if a cycle
|
||||
// participant is on the stack. This is necessary to prevent unstable
|
||||
// results. See the comment of `StackEntry::nested_goals` for
|
||||
// more details.
|
||||
self.provisional_cache.remove(&input);
|
||||
let additional_depth = final_entry.reached_depth.as_usize() - self.stack.len();
|
||||
cx.with_global_cache(self.mode, |cache| {
|
||||
cache.insert(
|
||||
cx,
|
||||
input,
|
||||
result,
|
||||
proof_tree,
|
||||
dep_node,
|
||||
additional_depth,
|
||||
final_entry.encountered_overflow,
|
||||
&final_entry.nested_goals,
|
||||
)
|
||||
})
|
||||
}
|
||||
|
||||
self.check_invariants();
|
||||
|
||||
result
|
||||
}
|
||||
|
||||
/// Try to fetch a previously computed result from the global cache,
|
||||
/// making sure to only do so if it would match the result of reevaluating
|
||||
/// this goal.
|
||||
fn lookup_global_cache(
|
||||
&mut self,
|
||||
cx: X,
|
||||
input: X::Input,
|
||||
available_depth: AvailableDepth,
|
||||
inspect: &mut D::ProofTreeBuilder,
|
||||
) -> Option<X::Result> {
|
||||
cx.with_global_cache(self.mode, |cache| {
|
||||
let CacheData {
|
||||
result,
|
||||
proof_tree,
|
||||
additional_depth,
|
||||
encountered_overflow,
|
||||
nested_goals: _, // FIXME: consider nested goals here.
|
||||
} = cache.get(cx, input, &self.stack, available_depth)?;
|
||||
|
||||
// If we're building a proof tree and the current cache entry does not
|
||||
// contain a proof tree, we do not use the entry but instead recompute
|
||||
// the goal. We simply overwrite the existing entry once we're done,
|
||||
// caching the proof tree.
|
||||
if !inspect.try_apply_proof_tree(proof_tree) {
|
||||
return None;
|
||||
}
|
||||
|
||||
// Update the reached depth of the current goal to make sure
|
||||
// its state is the same regardless of whether we've used the
|
||||
// global cache or not.
|
||||
let reached_depth = self.stack.next_index().plus(additional_depth);
|
||||
self.update_parent_goal(reached_depth, encountered_overflow);
|
||||
|
||||
debug!("global cache hit");
|
||||
Some(result)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
enum StepResult<X: Cx> {
|
||||
Done(StackEntry<X>, X::Result),
|
||||
HasChanged,
|
||||
}
|
||||
|
||||
impl<D: Delegate<Cx = X>, X: Cx> SearchGraph<D> {
|
||||
/// When we encounter a coinductive cycle, we have to fetch the
|
||||
/// result of that cycle while we are still computing it. Because
|
||||
/// of this we continuously recompute the cycle until the result
|
||||
/// of the previous iteration is equal to the final result, at which
|
||||
/// point we are done.
|
||||
fn fixpoint_step_in_task<F>(
|
||||
&mut self,
|
||||
cx: X,
|
||||
input: X::Input,
|
||||
inspect: &mut D::ProofTreeBuilder,
|
||||
prove_goal: &mut F,
|
||||
) -> StepResult<X>
|
||||
where
|
||||
F: FnMut(&mut Self, &mut D::ProofTreeBuilder) -> X::Result,
|
||||
{
|
||||
let result = prove_goal(self, inspect);
|
||||
let stack_entry = self.stack.pop().unwrap();
|
||||
debug_assert_eq!(stack_entry.input, input);
|
||||
|
||||
// If the current goal is not the root of a cycle, we are done.
|
||||
let Some(usage_kind) = stack_entry.has_been_used else {
|
||||
return StepResult::Done(stack_entry, result);
|
||||
};
|
||||
|
||||
// If it is a cycle head, we have to keep trying to prove it until
|
||||
// we reach a fixpoint. We need to do so for all cycle heads,
|
||||
// not only for the root.
|
||||
//
|
||||
// See tests/ui/traits/next-solver/cycles/fixpoint-rerun-all-cycle-heads.rs
|
||||
// for an example.
|
||||
|
||||
// Start by clearing all provisional cache entries which depend on this
|
||||
// the current goal.
|
||||
Self::clear_dependent_provisional_results(
|
||||
&mut self.provisional_cache,
|
||||
self.stack.next_index(),
|
||||
);
|
||||
|
||||
// Check whether we reached a fixpoint, either because the final result
|
||||
// is equal to the provisional result of the previous iteration, or because
|
||||
// this was only the root of either coinductive or inductive cycles, and the
|
||||
// final result is equal to the initial response for that case.
|
||||
//
|
||||
// If we did not reach a fixpoint, update the provisional result and reevaluate.
|
||||
if D::reached_fixpoint(cx, usage_kind, input, stack_entry.provisional_result, result) {
|
||||
StepResult::Done(stack_entry, result)
|
||||
} else {
|
||||
let depth = self.stack.push(StackEntry {
|
||||
has_been_used: None,
|
||||
provisional_result: Some(result),
|
||||
..stack_entry
|
||||
});
|
||||
debug_assert_eq!(self.provisional_cache[&input].stack_depth, Some(depth));
|
||||
StepResult::HasChanged
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,75 @@
|
|||
use super::*;
|
||||
|
||||
impl<D: Delegate<Cx = X>, X: Cx> SearchGraph<D> {
|
||||
#[allow(rustc::potential_query_instability)]
|
||||
pub(super) fn check_invariants(&self) {
|
||||
if !cfg!(debug_assertions) {
|
||||
return;
|
||||
}
|
||||
|
||||
let SearchGraph { mode: _, stack, provisional_cache, _marker } = self;
|
||||
if stack.is_empty() {
|
||||
assert!(provisional_cache.is_empty());
|
||||
}
|
||||
|
||||
for (depth, entry) in stack.iter_enumerated() {
|
||||
let StackEntry {
|
||||
input,
|
||||
available_depth: _,
|
||||
reached_depth: _,
|
||||
non_root_cycle_participant,
|
||||
encountered_overflow: _,
|
||||
has_been_used,
|
||||
ref nested_goals,
|
||||
provisional_result,
|
||||
} = *entry;
|
||||
let cache_entry = provisional_cache.get(&entry.input).unwrap();
|
||||
assert_eq!(cache_entry.stack_depth, Some(depth));
|
||||
if let Some(head) = non_root_cycle_participant {
|
||||
assert!(head < depth);
|
||||
assert!(nested_goals.is_empty());
|
||||
assert_ne!(stack[head].has_been_used, None);
|
||||
|
||||
let mut current_root = head;
|
||||
while let Some(parent) = stack[current_root].non_root_cycle_participant {
|
||||
current_root = parent;
|
||||
}
|
||||
assert!(stack[current_root].nested_goals.contains(&input));
|
||||
}
|
||||
|
||||
if !nested_goals.is_empty() {
|
||||
assert!(provisional_result.is_some() || has_been_used.is_some());
|
||||
for entry in stack.iter().take(depth.as_usize()) {
|
||||
assert_eq!(nested_goals.get(&entry.input), None);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (&input, entry) in &self.provisional_cache {
|
||||
let ProvisionalCacheEntry { stack_depth, with_coinductive_stack, with_inductive_stack } =
|
||||
entry;
|
||||
assert!(
|
||||
stack_depth.is_some()
|
||||
|| with_coinductive_stack.is_some()
|
||||
|| with_inductive_stack.is_some()
|
||||
);
|
||||
|
||||
if let &Some(stack_depth) = stack_depth {
|
||||
assert_eq!(stack[stack_depth].input, input);
|
||||
}
|
||||
|
||||
let check_detached = |detached_entry: &DetachedEntry<X>| {
|
||||
let DetachedEntry { head, result: _ } = *detached_entry;
|
||||
assert_ne!(stack[head].has_been_used, None);
|
||||
};
|
||||
|
||||
if let Some(with_coinductive_stack) = with_coinductive_stack {
|
||||
check_detached(with_coinductive_stack);
|
||||
}
|
||||
|
||||
if let Some(with_inductive_stack) = with_inductive_stack {
|
||||
check_detached(with_inductive_stack);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue