radare2/test/unit/test_intervaltree.c

343 lines
9.5 KiB
C

#include <stdio.h>
#include <r_util.h>
#include "minunit.h"
bool check_invariants(RIntervalNode *node) {
if (!node) {
return true;
}
ut64 max = node->end;
int i;
for (i = 0; i < 2; i++) {
if (!node->node.child[i]) {
continue;
}
RIntervalNode *child = container_of (node->node.child[i], RIntervalNode, node);
if (child->max_end > max) {
max = child->max_end;
}
if (!check_invariants (child)) {
return false;
}
if (i == 0) {
mu_assert ("left <= this", child->start <= node->start);
} else {
mu_assert ("right >= this", child->start >= node->start);
}
}
mu_assert_eq_fmt (node->max_end, max, "max_end invariant", "0x%"PFMT64x);
return true;
}
bool test_r_interval_tree_insert_at() {
RIntervalTree tree;
r_interval_tree_init (&tree, NULL);
r_interval_tree_insert (&tree, 1, 10, NULL);
r_interval_tree_insert (&tree, 4, 20, NULL);
r_interval_tree_insert (&tree, 5, 123, NULL);
r_interval_tree_insert (&tree, 6, 54, NULL);
r_interval_tree_insert (&tree, 4, 5, NULL);
r_interval_tree_insert (&tree, 3, 9, (void *)0x1337);
r_interval_tree_insert (&tree, 4, 11, NULL);
r_interval_tree_insert (&tree, 1, 42, NULL);
if (!check_invariants (tree.root)) {
return false;
}
RIntervalNode *node = r_interval_tree_node_at (&tree, 3);
mu_assert_notnull (node, "at not null");
mu_assert_ptreq (node->data, (void *)0x1337, "at node data");
mu_assert_eq_fmt (node->start, (ut64)3, "at node start", "0x%"PFMT64x);
mu_assert_eq_fmt (node->end, (ut64)9, "at node end", "0x%"PFMT64x);
void *direct = r_interval_tree_at (&tree, 3);
mu_assert_ptreq (direct, (void *)0x1337, "at data");
r_interval_tree_fini (&tree);
mu_end;
}
#define N 1000
#define SAMPLES 1000
#define MAXVAL 0x10000
typedef struct {
ut64 start;
ut64 end;
// Tree algorithm that is being tested increases, cheap linear reference decreases
// if in the end all counters are exactly 0, the test passes
int counter;
int freed;
} TestEntry;
static void random_entries(TestEntry entries[N]) {
size_t i;
for(i = 0; i < N; i++) {
entries[i].start = rand () % MAXVAL;
entries[i].end = entries[i].start + rand () % MAXVAL;
entries[i].counter = 0;
entries[i].freed = 0;
}
}
static bool probe_cb(RIntervalNode *node, void *user) {
TestEntry *entry = node->data;
entry->counter++;
if (entry->start != node->start || entry->end != node->end) {
entry->counter = -99999; // something went terribly wrong
}
return true;
}
static void free_cb(void *data) {
TestEntry *entry = data;
entry->freed++;
}
bool test_r_interval_tree_in(bool end_inclusive, bool intervals) {
RIntervalTree tree;
r_interval_tree_init (&tree, NULL);
TestEntry entries[N];
random_entries (entries);
size_t i;
for (i = 0; i < N; i++) {
r_interval_tree_insert (&tree, entries[i].start, entries[i].end, entries + i);
}
if (!check_invariants (tree.root)) {
return false;
}
for (i = 0; i < SAMPLES; i++) {
ut64 start = rand () % (2 * MAXVAL);
ut64 end = start + (intervals ? rand () % (2*MAXVAL) : 0);
if (intervals) {
r_interval_tree_all_intersect (&tree, start, end, end_inclusive, probe_cb, NULL);
} else {
r_interval_tree_all_in (&tree, start, end_inclusive, probe_cb, NULL);
}
size_t j;
for (j = 0; j < N; j++) {
TestEntry *entry = entries + j;
if (intervals
? ( (end_inclusive ? end < entry->start : end <= entry->start)
|| (end_inclusive ? start > entry->end : start >= entry->end))
: ( start < entry->start
|| (end_inclusive ? start > entry->end : start >= entry->end))) {
continue;
}
entries[j].counter--;
}
for (j = 0; j < N; j++) {
if (entries[j].counter) {
printf ("[%"PFMT64u"; %"PFMT64u"%c intersect ", entries[j].start, entries[j].end, end_inclusive ? ']' : '[');
if (intervals) {
printf ("[%"PFMT64u"; %"PFMT64u"%c ", start, end, end_inclusive ? ']' : '[');
} else {
printf ("%"PFMT64u, start);
}
printf (" => %d\n", entries[j].counter);
}
mu_assert_eq (entries[j].counter, 0, "counter 0 after reference check");
}
}
r_interval_tree_fini (&tree);
return true;
}
#define TEST_IN(name, end_inclusive, intervals) bool name() { if(!test_r_interval_tree_in (end_inclusive, intervals)) return false; mu_end; }
TEST_IN (test_r_interval_tree_in_end_exclusive_point, false, false)
TEST_IN (test_r_interval_tree_in_end_inclusive_point, true, false)
TEST_IN (test_r_interval_tree_in_end_exclusive_interval, false, true)
TEST_IN (test_r_interval_tree_in_end_inclusive_interval, true, true)
bool test_r_interval_tree_all_at() {
RIntervalTree tree;
r_interval_tree_init (&tree, NULL);
TestEntry entries[N];
random_entries (entries);
size_t i;
for (i = 0; i < N; i++) {
r_interval_tree_insert (&tree, entries[i].start, entries[i].end, entries + i);
}
if (!check_invariants (tree.root)) {
return false;
}
for (i = 0; i < SAMPLES; i++) {
ut64 start;
if (i % 2 == 0) {
start = entries[rand () % N].start;
} else {
start = rand () % MAXVAL;
}
r_interval_tree_all_at (&tree, start, probe_cb, NULL);
size_t j;
for (j = 0; j < N; j++) {
if (entries[j].start == start) {
entries[j].counter--;
}
mu_assert_eq (entries[j].counter, 0, "counter 0 after reference check");
}
}
r_interval_tree_fini (&tree);
mu_end;
}
bool test_r_interval_tree_node_at_data() {
RIntervalTree tree;
r_interval_tree_init (&tree, NULL);
TestEntry entries[N];
random_entries (entries);
size_t i;
for (i = 0; i < N; i++) {
r_interval_tree_insert (&tree, entries[i].start, entries[i].end, entries + i);
}
if (!check_invariants (tree.root)) {
return false;
}
for (i = 0; i < N; i++) {
TestEntry *entry = entries + i;
RIntervalNode *node = r_interval_tree_node_at_data (&tree, entry->start, entry);
mu_assert_notnull (node, "node not null");
mu_assert_ptreq (node->data, entry, "node at data contains correct data");
}
r_interval_tree_fini (&tree);
mu_end;
}
bool test_r_interval_tree_delete() {
RIntervalTree tree;
r_interval_tree_init (&tree, free_cb);
TestEntry entries[N];
random_entries (entries);
RPVector contained_entries;
r_pvector_init (&contained_entries, NULL);
size_t i;
for (i = 0; i < N; i++) {
r_interval_tree_insert (&tree, entries[i].start, entries[i].end, entries + i);
r_pvector_push (&contained_entries, entries + i);
}
if (!check_invariants (tree.root)) {
return false;
}
while (!r_pvector_empty (&contained_entries)) {
TestEntry *entry = r_pvector_remove_at (&contained_entries, rand () % r_pvector_len (&contained_entries));
RIntervalNode *node = r_interval_tree_node_at_data (&tree, entry->start, entry);
mu_assert_notnull (node, "node not null");
mu_assert_eq (entry->freed, 0, "entry not freed before delete");
bool s = r_interval_tree_delete (&tree, node, true);
mu_assert ("delete success", s);
mu_assert_eq (entry->freed, 1, "entry not freed after delete");
RIntervalTreeIter it;
r_interval_tree_foreach (&tree, it, entry) {
entry->counter++;
}
void **pit;
r_pvector_foreach (&contained_entries, pit) {
entry = *pit;
entry->counter--;
}
for (i = 0; i < N; i++) {
mu_assert_eq (entries[i].counter, 0, "contents after delete");
}
}
mu_assert_null (tree.root, "root null after deleting all entries");
r_interval_tree_fini (&tree);
r_pvector_clear (&contained_entries);
mu_end;
}
bool test_r_interval_tree_resize(bool end_only) {
RIntervalTree tree;
r_interval_tree_init (&tree, free_cb);
TestEntry entries[N];
random_entries (entries);
size_t i;
for (i = 0; i < N; i++) {
r_interval_tree_insert (&tree, entries[i].start, entries[i].end, entries + i);
}
if (!check_invariants (tree.root)) {
return false;
}
for (i = 0; i < SAMPLES; i++) {
TestEntry *entry = entries + (rand () % N);
RIntervalNode *node = r_interval_tree_node_at_data (&tree, entry->start, entry);
if (!end_only) {
entry->start = rand () % MAXVAL;
}
entry->end = entry->start + rand () % MAXVAL;
mu_assert_notnull (node, "node not null");
bool s = r_interval_tree_resize (&tree, node, entry->start, entry->end);
mu_assert ("resize success", s);
if (!check_invariants (tree.root)) {
return false;
}
RBIter it;
RIntervalNode *intervalnode;
r_rbtree_foreach (&tree.root->node, it, intervalnode, RIntervalNode, node) {
entry = (TestEntry *)intervalnode->data;
entry->counter++;
mu_assert_eq_fmt (intervalnode->start, entry->start, "correct start", "%"PFMT64u);
mu_assert_eq_fmt (intervalnode->end, entry->end, "correct end", "%"PFMT64u);
}
size_t j;
for (j = 0; j < N; j++) {
entries[j].counter--;
mu_assert_eq (entries[j].counter, 0, "counter 0 after reference check");
}
}
r_interval_tree_fini (&tree);
mu_end;
}
bool test_r_interval_tree_resize_start_and_end() {
return test_r_interval_tree_resize (false);
}
bool test_r_interval_tree_resize_end_only() {
return test_r_interval_tree_resize (true);
}
int all_tests() {
mu_run_test (test_r_interval_tree_insert_at);
mu_run_test (test_r_interval_tree_in_end_exclusive_point);
mu_run_test (test_r_interval_tree_in_end_inclusive_point);
mu_run_test (test_r_interval_tree_in_end_exclusive_interval);
mu_run_test (test_r_interval_tree_in_end_inclusive_interval);
mu_run_test (test_r_interval_tree_all_at);
mu_run_test (test_r_interval_tree_node_at_data);
mu_run_test (test_r_interval_tree_delete);
mu_run_test (test_r_interval_tree_resize_start_and_end);
mu_run_test (test_r_interval_tree_resize_end_only);
return tests_passed != tests_run;
}
int main(int argc, char **argv) {
struct timeval tv;
gettimeofday (&tv, NULL);
unsigned int seed = argc > 1 ? strtoul (argv[1], NULL, 0) : tv.tv_sec + tv.tv_usec;
printf("seed for test_intervaltree: %u\n", seed);
srand (seed);
return all_tests ();
}