mirror of https://github.com/GNOME/gimp.git
745 lines
27 KiB
C
745 lines
27 KiB
C
/* GIMP - The GNU Image Manipulation Program
|
|
* Copyright (C) 1995 Spencer Kimball and Peter Mattis
|
|
*
|
|
* gimpbrush-transform.c
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <glib-object.h>
|
|
|
|
#include "core-types.h"
|
|
|
|
#include "libgimpmath/gimpmath.h"
|
|
|
|
#include "gimpbrush.h"
|
|
#include "gimpbrush-transform.h"
|
|
|
|
#include "base/temp-buf.h"
|
|
#include "base/pixel-region.h"
|
|
|
|
#include "paint-funcs/paint-funcs.h"
|
|
|
|
/* local function prototypes */
|
|
|
|
static void gimp_brush_transform_matrix (TempBuf *brush,
|
|
gdouble scale_x,
|
|
gdouble scale_y,
|
|
gdouble angle,
|
|
GimpMatrix3 *matrix);
|
|
static void gimp_brush_transform_bounding_box (TempBuf *brush,
|
|
const GimpMatrix3 *matrix,
|
|
gint *x,
|
|
gint *y,
|
|
gint *width,
|
|
gint *height);
|
|
|
|
static gdouble gimp_brush_transform_array_sum (gfloat *arr,
|
|
gint len);
|
|
static void gimp_brush_transform_fill_blur_kernel (gfloat *arr,
|
|
gint len);
|
|
static gint gimp_brush_transform_blur_kernel_size (gint height,
|
|
gint width,
|
|
gdouble hardness);
|
|
#define MAX_BLUR_KERNEL 15
|
|
/* public functions */
|
|
|
|
void
|
|
gimp_brush_real_transform_size (GimpBrush *brush,
|
|
gdouble scale,
|
|
gdouble aspect_ratio,
|
|
gdouble angle,
|
|
gint *width,
|
|
gint *height)
|
|
{
|
|
GimpMatrix3 matrix;
|
|
gint x, y;
|
|
|
|
if (aspect_ratio < 1.0)
|
|
gimp_brush_transform_matrix (brush->mask,
|
|
scale * aspect_ratio, scale, angle, &matrix);
|
|
else
|
|
gimp_brush_transform_matrix (brush->mask,
|
|
scale, scale / aspect_ratio, angle, &matrix);
|
|
|
|
gimp_brush_transform_bounding_box (brush->mask, &matrix, &x, &y, width, height);
|
|
}
|
|
|
|
/*
|
|
* Transforms the brush mask with bilinear interpolation.
|
|
*
|
|
* Rather than calculating the inverse transform for each point in the
|
|
* transformed image, this algorithm uses the inverse transformed
|
|
* corner points of the destination image to work out the starting
|
|
* position in the source image and the U and V deltas in the source
|
|
* image space. It then uses a scan-line approach, looping through
|
|
* rows and colummns in the transformed (destination) image while
|
|
* walking along the corresponding rows and columns (named U and V) in
|
|
* the source image.
|
|
*
|
|
* The horizontal in destination space (transform result) is reverse
|
|
* transformed into source image space to get U. The vertical in
|
|
* destination space (transform result) is reverse transformed into
|
|
* source image space to get V.
|
|
*
|
|
* The strength of this particular algorithm is that calculation work
|
|
* should depend more upon the final transformed brush size rather
|
|
* than the input brush size.
|
|
*
|
|
* There are no floating point calculations in the inner loop for speed.
|
|
*
|
|
* Some variables end with the suffix _i to indicate they have been
|
|
* premultiplied by int_multiple
|
|
*/
|
|
TempBuf *
|
|
gimp_brush_real_transform_mask (GimpBrush *brush,
|
|
gdouble scale,
|
|
gdouble aspect_ratio,
|
|
gdouble angle,
|
|
gdouble hardness)
|
|
{
|
|
TempBuf *result;
|
|
TempBuf *source;
|
|
guchar *dest;
|
|
const guchar *src;
|
|
GimpMatrix3 matrix;
|
|
gint src_width;
|
|
gint src_height;
|
|
gint src_width_minus_one;
|
|
gint src_height_minus_one;
|
|
gint dest_width;
|
|
gint dest_height;
|
|
gint x, y;
|
|
gdouble blx, brx, tlx, trx;
|
|
gdouble bly, bry, tly, try;
|
|
gdouble src_tl_to_tr_delta_x;
|
|
gdouble src_tl_to_tr_delta_y;
|
|
gdouble src_tl_to_bl_delta_x;
|
|
gdouble src_tl_to_bl_delta_y;
|
|
gint src_walk_ux_i;
|
|
gint src_walk_uy_i;
|
|
gint src_walk_vx_i;
|
|
gint src_walk_vy_i;
|
|
gint src_space_cur_pos_x;
|
|
gint src_space_cur_pos_y;
|
|
gint src_space_cur_pos_x_i;
|
|
gint src_space_cur_pos_y_i;
|
|
gint src_space_row_start_x_i;
|
|
gint src_space_row_start_y_i;
|
|
const guchar *src_walker;
|
|
const guchar *pixel_next;
|
|
const guchar *pixel_below;
|
|
const guchar *pixel_below_next;
|
|
gint opposite_x, distance_from_true_x;
|
|
gint opposite_y, distance_from_true_y;
|
|
|
|
/*
|
|
* tl, tr etc are used because it is easier to visualize top left,
|
|
* top right etc corners of the forward transformed source image
|
|
* rectangle.
|
|
*/
|
|
const gint fraction_bits = 12;
|
|
const gint int_multiple = pow (2, fraction_bits);
|
|
|
|
/* In inner loop's bilinear calculation, two numbers that were each
|
|
* previously multiplied by int_multiple are multiplied together.
|
|
* To get back the right result, the multiplication result must be
|
|
* divided *twice* by 2^fraction_bits, equivalent to bit shift right
|
|
* by 2 * fraction_bits
|
|
*/
|
|
const gint recovery_bits = 2 * fraction_bits;
|
|
|
|
/*
|
|
* example: suppose fraction_bits = 9
|
|
* a 9-bit mask looks like this: 0001 1111 1111
|
|
* and is given by: 2^fraction_bits - 1
|
|
* demonstration:
|
|
* 2^0 = 0000 0000 0001
|
|
* 2^1 = 0000 0000 0010
|
|
* :
|
|
* 2^8 = 0001 0000 0000
|
|
* 2^9 = 0010 0000 0000
|
|
* 2^9 - 1 = 0001 1111 1111
|
|
*/
|
|
const guint fraction_bitmask = pow(2, fraction_bits) - 1 ;
|
|
|
|
source = temp_buf_copy (brush->mask, NULL);
|
|
|
|
if (aspect_ratio < 1.0)
|
|
gimp_brush_transform_matrix (source,
|
|
scale * aspect_ratio, scale, angle, &matrix);
|
|
else
|
|
gimp_brush_transform_matrix (source,
|
|
scale, scale / aspect_ratio, angle, &matrix);
|
|
|
|
if (gimp_matrix3_is_identity (&matrix))
|
|
return temp_buf_copy (source, NULL);
|
|
|
|
src_width = source->width;
|
|
src_height = source->height;
|
|
src_width_minus_one = src_width - 1;
|
|
src_height_minus_one = src_height - 1;
|
|
|
|
gimp_brush_transform_bounding_box (source, &matrix,
|
|
&x, &y, &dest_width, &dest_height);
|
|
gimp_matrix3_translate (&matrix, -x, -y);
|
|
gimp_matrix3_invert (&matrix);
|
|
|
|
result = temp_buf_new (dest_width, dest_height, 1, 0, 0, NULL);
|
|
|
|
dest = temp_buf_get_data (result);
|
|
src = temp_buf_get_data (source);
|
|
|
|
/* prevent disappearance of 1x1 pixel brush at some rotations when
|
|
scaling < 1 */
|
|
/*
|
|
if (src_width == 1 && src_height == 1 && scale_x < 1 && scale_y < 1 )
|
|
{
|
|
*dest = src[0];
|
|
return result;
|
|
}*/
|
|
|
|
gimp_matrix3_transform_point (&matrix, 0, 0, &tlx, &tly);
|
|
gimp_matrix3_transform_point (&matrix, dest_width, 0, &trx, &try);
|
|
gimp_matrix3_transform_point (&matrix, 0, dest_height, &blx, &bly);
|
|
gimp_matrix3_transform_point (&matrix, dest_width, dest_height, &brx, &bry);
|
|
|
|
|
|
/* in image space, calc U (what was horizontal originally)
|
|
* note: double precision
|
|
*/
|
|
src_tl_to_tr_delta_x = trx - tlx;
|
|
src_tl_to_tr_delta_y = try - tly;
|
|
|
|
/* in image space, calc V (what was vertical originally)
|
|
* note: double precision
|
|
*/
|
|
src_tl_to_bl_delta_x = blx - tlx;
|
|
src_tl_to_bl_delta_y = bly - tly;
|
|
|
|
/* speed optimized, note conversion to int precision */
|
|
src_walk_ux_i = (gint) ((src_tl_to_tr_delta_x / dest_width)* int_multiple);
|
|
src_walk_uy_i = (gint) ((src_tl_to_tr_delta_y / dest_width)* int_multiple);
|
|
src_walk_vx_i = (gint) ((src_tl_to_bl_delta_x / dest_height)* int_multiple);
|
|
src_walk_vy_i = (gint) ((src_tl_to_bl_delta_y / dest_height)* int_multiple);
|
|
|
|
/* initialize current position in source space to the start position (tl)
|
|
* speed optimized, note conversion to int precision
|
|
*/
|
|
src_space_cur_pos_x_i = (gint) (tlx* int_multiple);
|
|
src_space_cur_pos_y_i = (gint) (tly* int_multiple);
|
|
src_space_cur_pos_x = (gint) (src_space_cur_pos_x_i >> fraction_bits);
|
|
src_space_cur_pos_y = (gint) (src_space_cur_pos_y_i >> fraction_bits);
|
|
src_space_row_start_x_i = (gint) (tlx* int_multiple);
|
|
src_space_row_start_y_i = (gint) (tly* int_multiple);
|
|
|
|
|
|
for (y = 0; y < dest_height; y++)
|
|
{
|
|
for (x = 0; x < dest_width; x++)
|
|
{
|
|
if (src_space_cur_pos_x > src_width_minus_one ||
|
|
src_space_cur_pos_x < 0 ||
|
|
src_space_cur_pos_y > src_height_minus_one ||
|
|
src_space_cur_pos_y < 0)
|
|
/* no corresponding pixel in source space */
|
|
{
|
|
*dest = 0;
|
|
}
|
|
else /* reverse transformed point hits source pixel */
|
|
{
|
|
src_walker = src
|
|
+ src_space_cur_pos_y * src_width
|
|
+ src_space_cur_pos_x;
|
|
|
|
/* bottom right corner
|
|
* no pixel below, reuse current pixel instead
|
|
* no next pixel to the right so reuse current pixel instead
|
|
*/
|
|
if (src_space_cur_pos_y == src_height_minus_one &&
|
|
src_space_cur_pos_x == src_width_minus_one )
|
|
{
|
|
pixel_next = src_walker;
|
|
pixel_below = src_walker;
|
|
pixel_below_next = src_walker;
|
|
}
|
|
|
|
/* bottom edge pixel row, except rightmost corner
|
|
* no pixel below, reuse current pixel instead */
|
|
else if (src_space_cur_pos_y == src_height_minus_one)
|
|
{
|
|
pixel_next = src_walker + 1;
|
|
pixel_below = src_walker;
|
|
pixel_below_next = src_walker + 1;
|
|
}
|
|
|
|
/* right edge pixel column, except bottom corner
|
|
* no next pixel to the right so reuse current pixel instead */
|
|
else if (src_space_cur_pos_x == src_width_minus_one)
|
|
{
|
|
pixel_next = src_walker;
|
|
pixel_below = src_walker + src_width;
|
|
pixel_below_next = pixel_below;
|
|
}
|
|
|
|
/* neither on bottom edge nor on right edge */
|
|
else
|
|
{
|
|
pixel_next = src_walker + 1;
|
|
pixel_below = src_walker + src_width;
|
|
pixel_below_next = pixel_below + 1;
|
|
}
|
|
|
|
distance_from_true_x = src_space_cur_pos_x_i & fraction_bitmask;
|
|
distance_from_true_y = src_space_cur_pos_y_i & fraction_bitmask;
|
|
opposite_x = int_multiple - distance_from_true_x;
|
|
opposite_y = int_multiple - distance_from_true_y;
|
|
|
|
*dest = ((src_walker[0] * opposite_x +
|
|
pixel_next[0] * distance_from_true_x) * opposite_y +
|
|
(pixel_below[0] * opposite_x +
|
|
pixel_below_next[0] *distance_from_true_x) * distance_from_true_y
|
|
) >> recovery_bits;
|
|
}
|
|
|
|
src_space_cur_pos_x_i+=src_walk_ux_i;
|
|
src_space_cur_pos_y_i+=src_walk_uy_i;
|
|
|
|
src_space_cur_pos_x = src_space_cur_pos_x_i >> fraction_bits;
|
|
src_space_cur_pos_y = src_space_cur_pos_y_i >> fraction_bits;
|
|
|
|
dest ++;
|
|
} /* end for x */
|
|
|
|
src_space_row_start_x_i +=src_walk_vx_i;
|
|
src_space_row_start_y_i +=src_walk_vy_i;
|
|
src_space_cur_pos_x_i = src_space_row_start_x_i;
|
|
src_space_cur_pos_y_i = src_space_row_start_y_i;
|
|
|
|
src_space_cur_pos_x = src_space_cur_pos_x_i >> fraction_bits;
|
|
src_space_cur_pos_y = src_space_cur_pos_y_i >> fraction_bits;
|
|
|
|
} /* end for y */
|
|
if (hardness < 1.0)
|
|
{
|
|
TempBuf *blur_src;
|
|
PixelRegion srcPR;
|
|
PixelRegion destPR;
|
|
gint kernel_size = gimp_brush_transform_blur_kernel_size ( result->height,
|
|
result->width,
|
|
hardness);
|
|
gint kernel_len = kernel_size * kernel_size;
|
|
gfloat blur_kernel [kernel_len];
|
|
|
|
gimp_brush_transform_fill_blur_kernel ( blur_kernel, kernel_len);
|
|
|
|
blur_src = temp_buf_copy (result, NULL);
|
|
|
|
pixel_region_init_temp_buf (&srcPR, blur_src, blur_src->x, blur_src->y, blur_src->width, blur_src->height);
|
|
pixel_region_init_temp_buf (&destPR, result, result->x, result->y, result->width, result->height);
|
|
|
|
convolve_region (&srcPR, &destPR, blur_kernel, kernel_size,
|
|
gimp_brush_transform_array_sum(blur_kernel, kernel_len),
|
|
GIMP_NORMAL_CONVOL, FALSE);
|
|
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*
|
|
* Transforms the brush pixmap with bilinear interpolation.
|
|
*
|
|
* The algorithm used is exactly the same as for the brush mask
|
|
* (gimp_brush_real_transform_mask) except it accounts for 3 color channels
|
|
* instead of 1 greyscale channel.
|
|
*
|
|
* Rather than calculating the inverse transform for each point in the
|
|
* transformed image, this algorithm uses the inverse transformed
|
|
* corner points of the destination image to work out the starting
|
|
* position in the source image and the U and V deltas in the source
|
|
* image space. It then uses a scan-line approach, looping through
|
|
* rows and colummns in the transformed (destination) image while
|
|
* walking along the corresponding rows and columns (named U and V) in
|
|
* the source image.
|
|
*
|
|
* The horizontal in destination space (transform result) is reverse
|
|
* transformed into source image space to get U. The vertical in
|
|
* destination space (transform result) is reverse transformed into
|
|
* source image space to get V.
|
|
*
|
|
* The strength of this particular algorithm is that calculation work
|
|
* should depend more upon the final transformed brush size rather
|
|
* than the input brush size.
|
|
*
|
|
* There are no floating point calculations in the inner loop for speed.
|
|
*
|
|
* Some variables end with the suffix _i to indicate they have been
|
|
* premultiplied by int_multiple
|
|
*/
|
|
TempBuf *
|
|
gimp_brush_real_transform_pixmap (GimpBrush *brush,
|
|
gdouble scale,
|
|
gdouble aspect_ratio,
|
|
gdouble angle,
|
|
gdouble hardness)
|
|
{
|
|
TempBuf *result;
|
|
TempBuf *source;
|
|
guchar *dest;
|
|
const guchar *src;
|
|
GimpMatrix3 matrix;
|
|
gint src_width;
|
|
gint src_height;
|
|
gint src_width_minus_one;
|
|
gint src_height_minus_one;
|
|
gint dest_width;
|
|
gint dest_height;
|
|
gint x, y;
|
|
gdouble blx, brx, tlx, trx;
|
|
gdouble bly, bry, tly, try;
|
|
gdouble src_tl_to_tr_delta_x;
|
|
gdouble src_tl_to_tr_delta_y;
|
|
gdouble src_tl_to_bl_delta_x;
|
|
gdouble src_tl_to_bl_delta_y;
|
|
gint src_walk_ux_i;
|
|
gint src_walk_uy_i;
|
|
gint src_walk_vx_i;
|
|
gint src_walk_vy_i;
|
|
gint src_space_cur_pos_x;
|
|
gint src_space_cur_pos_y;
|
|
gint src_space_cur_pos_x_i;
|
|
gint src_space_cur_pos_y_i;
|
|
gint src_space_row_start_x_i;
|
|
gint src_space_row_start_y_i;
|
|
const guchar *src_walker;
|
|
const guchar *pixel_next;
|
|
const guchar *pixel_below;
|
|
const guchar *pixel_below_next;
|
|
gint opposite_x, distance_from_true_x;
|
|
gint opposite_y, distance_from_true_y;
|
|
|
|
/*
|
|
* tl, tr etc are used because it is easier to visualize top left,
|
|
* top right etc corners of the forward transformed source image
|
|
* rectangle.
|
|
*/
|
|
const gint fraction_bits = 12;
|
|
const gint int_multiple = pow(2,fraction_bits);
|
|
|
|
/* In inner loop's bilinear calculation, two numbers that were each
|
|
* previously multiplied by int_multiple are multiplied together.
|
|
* To get back the right result, the multiplication result must be
|
|
* divided *twice* by 2^fraction_bits, equivalent to bit shift right
|
|
* by 2 * fraction_bits
|
|
*/
|
|
const gint recovery_bits = 2 * fraction_bits;
|
|
|
|
/*
|
|
* example: suppose fraction_bits = 9
|
|
* a 9-bit mask looks like this: 0001 1111 1111
|
|
* and is given by: 2^fraction_bits - 1
|
|
* demonstration:
|
|
* 2^0 = 0000 0000 0001
|
|
* 2^1 = 0000 0000 0010
|
|
* :
|
|
* 2^8 = 0001 0000 0000
|
|
* 2^9 = 0010 0000 0000
|
|
* 2^9 - 1 = 0001 1111 1111
|
|
*/
|
|
const guint fraction_bitmask = pow(2, fraction_bits)- 1 ;
|
|
|
|
source = brush->pixmap;
|
|
|
|
if (aspect_ratio < 1.0)
|
|
gimp_brush_transform_matrix (source,
|
|
scale * aspect_ratio, scale, angle, &matrix);
|
|
else
|
|
gimp_brush_transform_matrix (source,
|
|
scale, scale / aspect_ratio, angle, &matrix);
|
|
|
|
if (gimp_matrix3_is_identity (&matrix))
|
|
return temp_buf_copy (source, NULL);
|
|
|
|
src_width = source->width;
|
|
src_height = source->height;
|
|
src_width_minus_one = src_width - 1;
|
|
src_height_minus_one = src_height - 1;
|
|
|
|
gimp_brush_transform_bounding_box (source, &matrix,
|
|
&x, &y, &dest_width, &dest_height);
|
|
gimp_matrix3_translate (&matrix, -x, -y);
|
|
gimp_matrix3_invert (&matrix);
|
|
|
|
result = temp_buf_new (dest_width, dest_height, 3, 0, 0, NULL);
|
|
|
|
dest = temp_buf_get_data (result);
|
|
src = temp_buf_get_data (source);
|
|
|
|
gimp_matrix3_transform_point (&matrix, 0, 0, &tlx, &tly);
|
|
gimp_matrix3_transform_point (&matrix, dest_width, 0, &trx, &try);
|
|
gimp_matrix3_transform_point (&matrix, 0, dest_height, &blx, &bly);
|
|
gimp_matrix3_transform_point (&matrix, dest_width, dest_height, &brx, &bry);
|
|
|
|
|
|
/* in image space, calc U (what was horizontal originally)
|
|
* note: double precision
|
|
*/
|
|
src_tl_to_tr_delta_x = trx - tlx;
|
|
src_tl_to_tr_delta_y = try - tly;
|
|
|
|
/* in image space, calc V (what was vertical originally)
|
|
* note: double precision
|
|
*/
|
|
src_tl_to_bl_delta_x = blx - tlx;
|
|
src_tl_to_bl_delta_y = bly - tly;
|
|
|
|
/* speed optimized, note conversion to int precision */
|
|
src_walk_ux_i = (gint) ((src_tl_to_tr_delta_x / dest_width)* int_multiple);
|
|
src_walk_uy_i = (gint) ((src_tl_to_tr_delta_y / dest_width)* int_multiple);
|
|
src_walk_vx_i = (gint) ((src_tl_to_bl_delta_x / dest_height)* int_multiple);
|
|
src_walk_vy_i = (gint) ((src_tl_to_bl_delta_y / dest_height)* int_multiple);
|
|
|
|
/* initialize current position in source space to the start position (tl)
|
|
* speed optimized, note conversion to int precision
|
|
*/
|
|
src_space_cur_pos_x_i = (gint) (tlx* int_multiple);
|
|
src_space_cur_pos_y_i = (gint) (tly* int_multiple);
|
|
src_space_cur_pos_x = (gint) (src_space_cur_pos_x_i >> fraction_bits);
|
|
src_space_cur_pos_y = (gint) (src_space_cur_pos_y_i >> fraction_bits);
|
|
src_space_row_start_x_i = (gint) (tlx* int_multiple);
|
|
src_space_row_start_y_i = (gint) (tly* int_multiple);
|
|
|
|
|
|
for (y = 0; y < dest_height; y++)
|
|
{
|
|
for (x = 0; x < dest_width; x++)
|
|
{
|
|
if (src_space_cur_pos_x > src_width_minus_one ||
|
|
src_space_cur_pos_x < 0 ||
|
|
src_space_cur_pos_y > src_height_minus_one ||
|
|
src_space_cur_pos_y < 0)
|
|
/* no corresponding pixel in source space */
|
|
{
|
|
dest[0] = 0;
|
|
dest[1] = 0;
|
|
dest[2] = 0;
|
|
}
|
|
else /* reverse transformed point hits source pixel */
|
|
{
|
|
src_walker = src
|
|
+ 3 * (
|
|
src_space_cur_pos_y * src_width
|
|
+ src_space_cur_pos_x);
|
|
|
|
/* bottom right corner
|
|
* no pixel below, reuse current pixel instead
|
|
* no next pixel to the right so reuse current pixel instead
|
|
*/
|
|
if (src_space_cur_pos_y == src_height_minus_one &&
|
|
src_space_cur_pos_x == src_width_minus_one )
|
|
{
|
|
pixel_next = src_walker;
|
|
pixel_below = src_walker;
|
|
pixel_below_next = src_walker;
|
|
}
|
|
|
|
/* bottom edge pixel row, except rightmost corner
|
|
* no pixel below, reuse current pixel instead */
|
|
else if (src_space_cur_pos_y == src_height_minus_one)
|
|
{
|
|
pixel_next = src_walker + 3;
|
|
pixel_below = src_walker;
|
|
pixel_below_next = src_walker + 3;
|
|
}
|
|
|
|
/* right edge pixel column, except bottom corner
|
|
* no next pixel to the right so reuse current pixel instead */
|
|
else if (src_space_cur_pos_x == src_width_minus_one)
|
|
{
|
|
pixel_next = src_walker;
|
|
pixel_below = src_walker + src_width * 3;
|
|
pixel_below_next = pixel_below;
|
|
}
|
|
|
|
/* neither on bottom edge nor on right edge */
|
|
else
|
|
{
|
|
pixel_next = src_walker + 3;
|
|
pixel_below = src_walker + src_width * 3;
|
|
pixel_below_next = pixel_below + 3;
|
|
}
|
|
|
|
distance_from_true_x = src_space_cur_pos_x_i & fraction_bitmask;
|
|
distance_from_true_y = src_space_cur_pos_y_i & fraction_bitmask;
|
|
opposite_x = int_multiple - distance_from_true_x;
|
|
opposite_y = int_multiple - distance_from_true_y;
|
|
|
|
dest[0] = ((src_walker[0] * opposite_x +
|
|
pixel_next[0] * distance_from_true_x) * opposite_y +
|
|
(pixel_below[0] * opposite_x +
|
|
pixel_below_next[0] *distance_from_true_x) * distance_from_true_y
|
|
) >> recovery_bits;
|
|
|
|
dest[1] = ((src_walker[1] * opposite_x +
|
|
pixel_next[1] * distance_from_true_x) * opposite_y +
|
|
(pixel_below[1] * opposite_x +
|
|
pixel_below_next[1] *distance_from_true_x) * distance_from_true_y
|
|
) >> recovery_bits;
|
|
|
|
dest[2] = ((src_walker[2] * opposite_x +
|
|
pixel_next[2] * distance_from_true_x) * opposite_y +
|
|
(pixel_below[2] * opposite_x +
|
|
pixel_below_next[2] *distance_from_true_x) * distance_from_true_y
|
|
) >> recovery_bits;
|
|
}
|
|
|
|
src_space_cur_pos_x_i += src_walk_ux_i;
|
|
src_space_cur_pos_y_i += src_walk_uy_i;
|
|
|
|
src_space_cur_pos_x = src_space_cur_pos_x_i >> fraction_bits;
|
|
src_space_cur_pos_y = src_space_cur_pos_y_i >> fraction_bits;
|
|
|
|
dest += 3;
|
|
} /* end for x */
|
|
|
|
src_space_row_start_x_i +=src_walk_vx_i;
|
|
src_space_row_start_y_i +=src_walk_vy_i;
|
|
src_space_cur_pos_x_i = src_space_row_start_x_i;
|
|
src_space_cur_pos_y_i = src_space_row_start_y_i;
|
|
|
|
src_space_cur_pos_x = src_space_cur_pos_x_i >> fraction_bits;
|
|
src_space_cur_pos_y = src_space_cur_pos_y_i >> fraction_bits;
|
|
} /* end for y */
|
|
|
|
if (hardness < 1.0)
|
|
{
|
|
TempBuf *blur_src;
|
|
PixelRegion srcPR;
|
|
PixelRegion destPR;
|
|
gint kernel_size = gimp_brush_transform_blur_kernel_size ( result->height,
|
|
result->width,
|
|
hardness);
|
|
gint kernel_len = kernel_size * kernel_size;
|
|
gfloat blur_kernel [kernel_len];
|
|
|
|
gimp_brush_transform_fill_blur_kernel ( blur_kernel, kernel_len);
|
|
|
|
blur_src = temp_buf_copy (result, NULL);
|
|
|
|
pixel_region_init_temp_buf (&srcPR, blur_src, blur_src->x, blur_src->y, blur_src->width, blur_src->height);
|
|
pixel_region_init_temp_buf (&destPR, result, result->x, result->y, result->width, result->height);
|
|
|
|
convolve_region (&srcPR, &destPR, blur_kernel, kernel_size,
|
|
gimp_brush_transform_array_sum(blur_kernel, kernel_len),
|
|
GIMP_NORMAL_CONVOL, FALSE);
|
|
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* private functions */
|
|
|
|
static void
|
|
gimp_brush_transform_matrix (TempBuf *brush,
|
|
gdouble scale_x,
|
|
gdouble scale_y,
|
|
gdouble angle,
|
|
GimpMatrix3 *matrix)
|
|
{
|
|
const gdouble center_x = brush->width / 2;
|
|
const gdouble center_y = brush->height / 2;
|
|
|
|
gimp_matrix3_identity (matrix);
|
|
gimp_matrix3_translate (matrix, - center_x, - center_y);
|
|
gimp_matrix3_rotate (matrix, -2 * G_PI * angle);
|
|
gimp_matrix3_translate (matrix, center_x, center_y);
|
|
gimp_matrix3_scale (matrix, scale_x, scale_y);
|
|
}
|
|
|
|
static void
|
|
gimp_brush_transform_bounding_box (TempBuf *brush,
|
|
const GimpMatrix3 *matrix,
|
|
gint *x,
|
|
gint *y,
|
|
gint *width,
|
|
gint *height)
|
|
{
|
|
const gdouble w = brush->width;
|
|
const gdouble h = brush->height;
|
|
gdouble x1, x2, x3, x4;
|
|
gdouble y1, y2, y3, y4;
|
|
|
|
gimp_matrix3_transform_point (matrix, 0, 0, &x1, &y1);
|
|
gimp_matrix3_transform_point (matrix, w, 0, &x2, &y2);
|
|
gimp_matrix3_transform_point (matrix, 0, h, &x3, &y3);
|
|
gimp_matrix3_transform_point (matrix, w, h, &x4, &y4);
|
|
|
|
*x = floor (MIN (MIN (x1, x2), MIN (x3, x4)));
|
|
*y = floor (MIN (MIN (y1, y2), MIN (y3, y4)));
|
|
|
|
*width = (gint) (ceil (MAX (MAX (x1, x2), MAX (x3, x4))) - *x);
|
|
*height = (gint) (ceil (MAX (MAX (y1, y2), MAX (y3, y4))) - *y);
|
|
|
|
/* Transform size can not be less than 1 px */
|
|
*width = MAX(1, *width);
|
|
*height = MAX(1, *height);
|
|
}
|
|
|
|
static gdouble
|
|
gimp_brush_transform_array_sum (gfloat *arr, gint len)
|
|
{
|
|
int i;
|
|
gfloat total = 0;
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
total += arr [i];
|
|
}
|
|
return total;
|
|
}
|
|
|
|
static void
|
|
gimp_brush_transform_fill_blur_kernel (gfloat *arr, gint len)
|
|
{
|
|
int i;
|
|
gint half_point = ((gint) len / 2) + 1;
|
|
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
if (i < half_point)
|
|
arr [i] = half_point - i;
|
|
else arr [i] = i - half_point;
|
|
}
|
|
}
|
|
|
|
static gint
|
|
gimp_brush_transform_blur_kernel_size (gint height,
|
|
gint width,
|
|
gdouble hardness)
|
|
{
|
|
|
|
gint kernel_size = MIN (MAX_BLUR_KERNEL, MIN(width, height)) *
|
|
((MIN (width, height) * (1.0 - hardness)) / MIN (width, height));
|
|
|
|
/*Kernel size must be odd*/
|
|
if ( kernel_size % 2 == 0) kernel_size++;
|
|
|
|
return kernel_size;
|
|
}
|