gimp/plug-ins/hot.c

653 lines
19 KiB
C

/*
* file: hot/hot.c
*
* $Id$
*/
/*
* hot.c - Scan an image for pixels with RGB values that will give
* "unsafe" values of chrominance signal or composite signal
* amplitude when encoded into an NTSC or PAL colour signal.
* (This happens for certain high-intensity high-saturation colours
* that are rare in real scenes, but can easily be present
* in synthetic images.)
*
* Such pixels can be flagged so the user may then choose other
* colours. Or, the offending pixels can be made "safe"
* in a manner that preserves hue.
*
* There are two reasonable ways to make a pixel "safe":
* We can reduce its intensity (luminance) while leaving
* hue and saturation the same. Or, we can reduce saturation
* while leaving hue and luminance the same. A #define selects
* which strategy to use.
*
* Note to the user: You must add your own read_pixel() and write_pixel()
* routines. You may have to modify pix_decode() and pix_encode().
* MAXPIX, WID, and HGT are likely to need modification.
*/
/*
* Originally written as "ikNTSC.c" by Alan Wm Paeth,
* University of Waterloo, August, 1985
* Updated by Dave Martindale, Imax Systems Corp., December 1990
*/
/*
* Compile time options:
*
*
* CHROMA_LIM is the limit (in IRE units) of the overall
* chrominance amplitude; it should be 50 or perhaps
* very slightly higher.
*
* COMPOS_LIM is the maximum amplitude (in IRE units) allowed for
* the composite signal. A value of 100 is the maximum
* monochrome white, and is always safe. 120 is the absolute
* limit for NTSC broadcasting, since the transmitter's carrier
* goes to zero with 120 IRE input signal. Generally, 110
* is a good compromise - it allows somewhat brighter colours
* than 100, while staying safely away from the hard limit.
*/
/*
* run-time options:
*
* Define either NTSC or PAL as 1 to select the colour system.
* Define the other one as zero, or leave it undefined.
*
* Define FLAG_HOT as 1 if you want "hot" pixels set to black
* to identify them. Otherwise they will be made safe.
*
* Define REDUCE_SAT as 1 if you want hot pixels to be repaired by
* reducing their saturation. By default, luminance is reduced.
*
*/
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <libgimp/gimp.h>
#include <gtk/gtk.h>
#include "megawidget.h"
struct Grgb {
guint8 red;
guint8 green;
guint8 blue;
};
struct GRegion {
gint32 x;
gint32 y;
gint32 width;
gint32 height;
};
struct piArgs {
gint32 image;
gint32 drawable;
gint32 mode;
gint32 action;
gint32 new_layerp;
};
typedef enum {
act_lredux = 0,
act_sredux = 1,
act_flag = 2,
} hotAction;
typedef enum {
mode_ntsc = 0,
mode_pal = 1,
} hotModes;
#define CHROMA_LIM 50.0 /* chroma amplitude limit */
#define COMPOS_LIM 110.0 /* max IRE amplitude */
/*
* RGB to YIQ encoding matrix.
*/
struct {
double pedestal;
double gamma;
double code[3][3];
} mode[2] = {
{
7.5,
2.2,
{
{ 0.2989, 0.5866, 0.1144 },
{ 0.5959, -0.2741, -0.3218 },
{ 0.2113, -0.5227, 0.3113 }
}
},
{
0.0,
2.8,
{
{ 0.2989, 0.5866, 0.1144 },
{ -0.1473, -0.2891, 0.4364 },
{ 0.6149, -0.5145, -0.1004 }
}
}
};
#define SCALE 8192 /* scale factor: do floats with int math */
#define MAXPIX 255 /* white value */
int tab[3][3][MAXPIX+1]; /* multiply lookup table */
double chroma_lim; /* chroma limit */
double compos_lim; /* composite amplitude limit */
long ichroma_lim2; /* chroma limit squared (scaled integer) */
int icompos_lim; /* composite amplitude limit (scaled integer) */
static void query(void);
static void run(char *name, int nparam, GParam *param,
int *nretvals, GParam **retvals);
gint pluginCore(struct piArgs *argp);
gint pluginCoreIA(struct piArgs *argp);
static gint hotp(register guint8 r, register guint8 g, register guint8 b);
static void build_tab(int m);
/*
* gc: apply the gamma correction specified for this video standard.
* inv_gc: inverse function of gc.
*
* These are generally just a call to pow(), but be careful!
* Future standards may use more complex functions.
* (e.g. SMPTE 240M's "electro-optic transfer characteristic").
*/
#define gc(x,m) pow(x, 1.0 / mode[m].gamma)
#define inv_gc(x,m) pow(x, mode[m].gamma)
/*
* pix_decode: decode an integer pixel value into a floating-point
* intensity in the range [0, 1].
*
* pix_encode: encode a floating-point intensity into an integer
* pixel value.
*
* The code given here assumes simple linear encoding; you must change
* these routines if you use a different pixel encoding technique.
*/
#define pix_decode(v) ((double)v / (double)MAXPIX)
#define pix_encode(v) ((int)(v * (double)MAXPIX + 0.5))
GPlugInInfo PLUG_IN_INFO = {
NULL, /* init */
NULL, /* quit */
query, /* query */
run, /* run */
};
MAIN()
static void
query(void){
static GParamDef args[] = {
{ PARAM_INT32, "run_mode", "Interactive, non-interactive" },
{ PARAM_IMAGE, "image", "The Image" },
{ PARAM_DRAWABLE, "drawable", "The Drawable" },
{ PARAM_INT32, "mode", "Mode -- NTSC/PAL" },
{ PARAM_INT32, "action", "The action to perform" },
{ PARAM_INT32, "new_layerp", "Create a new layer iff True" },
};
static int nargs = 3;
static GParamDef *rets = NULL;
static int nrets = 0;
gimp_install_procedure("plug_in_hot",
"Look for hot NTSC or PAL pixels ",
"hot scans an image for pixels that will give "
"unsave values of chrominance or composite "
"signale amplitude when encoded into an NTSC "
"or PAL signal. Three actions can be performed on these ``hot'' "
"pixels. (0) reduce luminance, (1) reduce saturation, or (2) Blacken.",
"Eric L. Hernes, Alan Wm Paeth",
"Eric L. Hernes",
"1997",
"<Image>/Filters/Image/Hot",
"RGB",
PROC_PLUG_IN,
nargs, nrets,
args, rets);
}
static void
run(char *name, int nparam, GParam *param,
int *nretvals, GParam **retvals){
static GParam rvals[1];
struct piArgs args;
*nretvals = 1;
*retvals = rvals;
bzero(&args, sizeof(struct piArgs));
args.mode=-1;
gimp_get_data("plug_in_hot", &args);
rvals[0].type = PARAM_STATUS;
rvals[0].data.d_status = STATUS_SUCCESS;
switch (param[0].data.d_int32) {
case RUN_INTERACTIVE:
/* XXX: add code here for interactive running */
args.image = param[1].data.d_image;
args.drawable = param[2].data.d_drawable;
if(args.mode == -1) {
args.mode = mode_ntsc;
args.action = act_lredux;
args.new_layerp = 1;
}
if (pluginCoreIA(&args)==-1) {
rvals[0].data.d_status = STATUS_EXECUTION_ERROR;
}
gimp_set_data("plug_in_hot", &args, sizeof(struct piArgs));
break;
case RUN_NONINTERACTIVE:
/* XXX: add code here for non-interactive running */
if (nparam != 3) {
rvals[0].data.d_status = STATUS_CALLING_ERROR;
break;
}
args.image = param[1].data.d_image;
args.drawable = param[2].data.d_drawable;
args.mode = param[3].data.d_drawable;
args.action = param[4].data.d_drawable;
if (pluginCore(&args)==-1) {
rvals[0].data.d_status = STATUS_EXECUTION_ERROR;
break;
}
break;
case RUN_WITH_LAST_VALS:
/* XXX: add code here for last-values running */
if (pluginCore(&args)==-1) {
rvals[0].data.d_status = STATUS_EXECUTION_ERROR;
}
break;
}
}
gint
pluginCore(struct piArgs *argp) {
GDrawable *drw, *ndrw=NULL;
GPixelRgn srcPr, dstPr;
gint retval = 0;
gint nl=0;
gint y, x, i;
gint Y, I, Q;
guint width, height, Bpp;
gint prog_interval;
guchar *src, *s, *dst, *d;
guchar r, prev_r=0, new_r=0;
guchar g, prev_g=0, new_g=0;
guchar b, prev_b=0, new_b=0;
gdouble fy, fc, t, scale;
gdouble pr, pg, pb;
gdouble py;
drw = gimp_drawable_get(argp->drawable);
width = drw->width;
height = drw->height;
Bpp = drw->bpp;
if(argp->new_layerp) {
char name[40];
char *mode_names[] = {
"ntsc",
"pal",
};
char *action_names[] = {
"lum redux",
"sat redux",
"flag",
};
sprintf(name, "hot mask (%s, %s)", mode_names[argp->mode],
action_names[argp->action]);
nl=gimp_layer_new(argp->image, name, width, height,
RGBA_IMAGE, (gdouble)100, NORMAL_MODE);
ndrw = gimp_drawable_get(nl);
gimp_drawable_fill(nl, TRANS_IMAGE_FILL);
gimp_image_add_layer(argp->image, nl, 0);
}
src = (guchar*)malloc(width*height*Bpp);
dst = (guchar*)malloc(width*height*4);
gimp_pixel_rgn_init (&srcPr, drw, 0, 0, width, height, FALSE, FALSE);
if (argp->new_layerp) {
gimp_pixel_rgn_init (&dstPr, ndrw, 0, 0, width, height, FALSE, FALSE);
} else {
gimp_pixel_rgn_init (&dstPr, drw, 0, 0, width, height, TRUE, TRUE);
}
gimp_pixel_rgn_get_rect(&srcPr, src, 0, 0, width, height);
s=src;
d=dst;
build_tab(argp->mode);
gimp_progress_init("Hot");
prog_interval=height/10;
for(y=0;y<height;y++) {
if (y % prog_interval == 0) gimp_progress_update((double)y/(double)height);
for(x=0;x<width;x++) {
if (hotp(r=*(s+0),g=*(s+1),b=*(s+2))) {
if (argp->action == act_flag) {
for(i=0;i<3;i++)
*d++=0;
s+=3;
if (Bpp==4) *d++=*s++; else if (argp->new_layerp) *d++=255;
} else {
/*
* Optimization: cache the last-computed hot pixel.
*/
if (r == prev_r && g == prev_g && b == prev_b) {
*d++ = new_r;
*d++ = new_g;
*d++ = new_b;
s+=3;
if (Bpp==4) *d++=*s++; else if (argp->new_layerp) *d++=255;
} else {
Y = tab[0][0][r] + tab[0][1][g] + tab[0][2][b];
I = tab[1][0][r] + tab[1][1][g] + tab[1][2][b];
Q = tab[2][0][r] + tab[2][1][g] + tab[2][2][b];
prev_r = r;
prev_g = g;
prev_b = b;
/*
* Get Y and chroma amplitudes in floating point.
*
* If your C library doesn't have hypot(), just use
* hypot(a,b) = sqrt(a*a, b*b);
*
* Then extract linear (un-gamma-corrected)
* floating-point pixel RGB values.
*/
fy = (double)Y / (double)SCALE;
fc = hypot((double)I / (double)SCALE,
(double)Q / (double)SCALE);
pr = (double)pix_decode(r);
pg = (double)pix_decode(g);
pb = (double)pix_decode(b);
/*
* Reducing overall pixel intensity by scaling R,
* G, and B reduces Y, I, and Q by the same factor.
* This changes luminance but not saturation, since
* saturation is determined by the chroma/luminance
* ratio.
*
* On the other hand, by linearly interpolating
* between the original pixel value and a grey
* pixel with the same luminance (R=G=B=Y), we
* change saturation without affecting luminance.
*/
if(argp->action == act_lredux) {
/*
* Calculate a scale factor that will bring the pixel
* within both chroma and composite limits, if we scale
* luminance and chroma simultaneously.
*
* The calculated chrominance reduction applies
* to the gamma-corrected RGB values that are
* the input to the RGB-to-YIQ operation.
* Multiplying the original un-gamma-corrected
* pixel values by the scaling factor raised to
* the "gamma" power is equivalent, and avoids
* calling gc() and inv_gc() three times each. */
scale = chroma_lim / fc;
t = compos_lim / (fy + fc);
if (t < scale)
scale = t;
scale = pow(scale, mode[argp->mode].gamma);
r = (guint8)pix_encode(scale * pr);
g = (guint8)pix_encode(scale * pg);
b = (guint8)pix_encode(scale * pb);
} else { /* act_sredux hopefully */
/*
* Calculate a scale factor that will bring the
* pixel within both chroma and composite
* limits, if we scale chroma while leaving
* luminance unchanged.
*
* We have to interpolate gamma-corrected RGB
* values, so we must convert from linear to
* gamma-corrected before interpolation and then
* back to linear afterwards.
*/
scale = chroma_lim / fc;
t = (compos_lim - fy) / fc;
if (t < scale)
scale = t;
pr = gc(pr,argp->mode);
pg = gc(pg,argp->mode);
pb = gc(pb,argp->mode);
py = pr * mode[argp->mode].code[0][0] + pg *
mode[argp->mode].code[0][1] + pb *
mode[argp->mode].code[0][2];
r = pix_encode(inv_gc(py + scale * (pr - py), argp->mode));
g = pix_encode(inv_gc(py + scale * (pg - py), argp->mode));
b = pix_encode(inv_gc(py + scale * (pb - py), argp->mode));
}
*d++ = new_r = r;
*d++ = new_g = g;
*d++ = new_b = b;
s+=3;
if (Bpp==4) *d++=*s++; else if (argp->new_layerp) *d++=255;
}
}
} else {
if (!argp->new_layerp) {
for(i=0;i<Bpp;i++)
*d++=*s++;
} else {
s+=Bpp;
d+=4;
}
}
}
}
gimp_pixel_rgn_set_rect(&dstPr, dst, 0, 0, width, height);
free(src);
free(dst);
if(argp->new_layerp) {
gimp_drawable_flush(ndrw);
gimp_drawable_update(nl, 0, 0, width, height);
} else {
gimp_drawable_flush(drw);
gimp_drawable_merge_shadow (drw->id, TRUE);
gimp_drawable_update(drw->id, 0, 0, width, height);
}
gimp_displays_flush();
return retval;
}
gint
pluginCoreIA(struct piArgs *argp) {
GtkWidget *dlg;
GtkWidget *hbox;
GtkWidget *vbox;
gint runp;
struct mwRadioGroup modes[] = {
{ "NTSC", 1 },
{ "PAL", 0 },
{ NULL, 0 }
};
struct mwRadioGroup actions[] = {
{ "Reduce Luminance", 0 },
{ "Reduce Saturation", 0 },
{ "Blacken (flag)", 0 },
{ NULL, 0}
};
actions[argp->action].var = 1;
dlg = mw_app_new("plug_in_hot", "Hot", &runp);
hbox = gtk_hbox_new(FALSE, 5);
gtk_box_pack_start(GTK_BOX(GTK_DIALOG(dlg)->vbox), hbox, TRUE, TRUE, 0);
gtk_widget_show(hbox);
vbox = gtk_vbox_new(FALSE, 5);
gtk_box_pack_start(GTK_BOX(hbox), vbox, TRUE, TRUE, 0);
gtk_widget_show(vbox);
mw_toggle_button_new(vbox, NULL, "Create New Layer", &argp->new_layerp);
mw_radio_group_new(vbox, "Mode", modes);
mw_radio_group_new(hbox, "Action", actions);
gtk_widget_show(dlg);
gtk_main();
gdk_flush();
argp->mode = mw_radio_result(modes);
argp->action = mw_radio_result(actions);
if (runp) {
return pluginCore(argp);
} else {
return -1;
}
}
/*
* build_tab: Build multiply lookup table.
*
* For each possible pixel value, decode value into floating-point
* intensity. Then do gamma correction required by the video
* standard. Scale the result by our fixed-point scale factor.
* Then calculate 9 lookup table entries for this pixel value.
*
* We also calculate floating-point and scaled integer versions
* of our limits here. This prevents evaluating expressions every pixel
* when the compiler is too stupid to evaluate constant-valued
* floating-point expressions at compile time.
*
* For convenience, the limits are #defined using IRE units.
* We must convert them here into the units in which YIQ
* are measured. The conversion from IRE to internal units
* depends on the pedestal level in use, since as Y goes from
* 0 to 1, the signal goes from the pedestal level to 100 IRE.
* Chroma is always scaled to remain consistent with Y.
*/
void
build_tab(int m) {
register double f;
register int pv;
for (pv = 0; pv <= MAXPIX; pv++) {
f = (double)SCALE * (double)gc((double)pix_decode(pv),m);
tab[0][0][pv] = (int)(f * mode[m].code[0][0] + 0.5);
tab[0][1][pv] = (int)(f * mode[m].code[0][1] + 0.5);
tab[0][2][pv] = (int)(f * mode[m].code[0][2] + 0.5);
tab[1][0][pv] = (int)(f * mode[m].code[1][0] + 0.5);
tab[1][1][pv] = (int)(f * mode[m].code[1][1] + 0.5);
tab[1][2][pv] = (int)(f * mode[m].code[1][2] + 0.5);
tab[2][0][pv] = (int)(f * mode[m].code[2][0] + 0.5);
tab[2][1][pv] = (int)(f * mode[m].code[2][1] + 0.5);
tab[2][2][pv] = (int)(f * mode[m].code[2][2] + 0.5);
}
chroma_lim = (double)CHROMA_LIM / (100.0 - mode[m].pedestal);
compos_lim = ((double)COMPOS_LIM - mode[m].pedestal) /
(100.0 - mode[m].pedestal);
ichroma_lim2 = (int)(chroma_lim * SCALE + 0.5);
ichroma_lim2 *= ichroma_lim2;
icompos_lim = (int)(compos_lim * SCALE + 0.5);
}
int
hotp(register guint8 r, register guint8 g, register guint8 b) {
register int y, i, q;
register long y2, c2;
/* fprintf(stderr, "\tr: %d, g: %d, b: %d\n", r, g, b);*/
/*
* Pixel decoding, gamma correction, and matrix multiplication
* all done by lookup table.
*
* "i" and "q" are the two chrominance components;
* they are I and Q for NTSC.
* For PAL, "i" is U (scaled B-Y) and "q" is V (scaled R-Y).
* Since we only care about the length of the chroma vector,
* not its angle, we don't care which is which.
*/
y = tab[0][0][r] + tab[0][1][g] + tab[0][2][b];
i = tab[1][0][r] + tab[1][1][g] + tab[1][2][b];
q = tab[2][0][r] + tab[2][1][g] + tab[2][2][b];
/*
* Check to see if the chrominance vector is too long or the
* composite waveform amplitude is too large.
*
* Chrominance is too large if
*
* sqrt(i^2, q^2) > chroma_lim.
*
* The composite signal amplitude is too large if
*
* y + sqrt(i^2, q^2) > compos_lim.
*
* We avoid doing the sqrt by checking
*
* i^2 + q^2 > chroma_lim^2
* and
* y + sqrt(i^2 + q^2) > compos_lim
* sqrt(i^2 + q^2) > compos_lim - y
* i^2 + q^2 > (compos_lim - y)^2
*
*/
c2 = (long)i * i + (long)q * q;
y2 = (long)icompos_lim - y;
y2 *= y2;
/* fprintf(stderr, "hotp: c2: %d; ichroma_lim2: %d; y2: %d; ",
c2, ichroma_lim2, y2);*/
if (c2 <= ichroma_lim2 && c2 <= y2) { /* no problems */
/* fprintf(stderr, "nope\n");*/
return 0;
}
/* fprintf(stderr, "yup\n");*/
return 1;
}
/*
* Local Variables:
* mode: C
* End:
*/
/* end of file: hot/hot.c */