gimp/app/transform_core.c

1305 lines
34 KiB
C

/* The GIMP -- an image manipulation program
* Copyright (C) 1995 Spencer Kimball and Peter Mattis
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <stdlib.h>
#include <math.h>
#include "appenv.h"
#include "drawable.h"
#include "errors.h"
#include "floating_sel.h"
#include "general.h"
#include "gdisplay.h"
#include "gimage_mask.h"
#include "gimprc.h"
#include "info_dialog.h"
#include "interface.h"
#include "layers_dialog.h"
#include "palette.h"
#include "transform_core.h"
#include "transform_tool.h"
#include "temp_buf.h"
#include "tools.h"
#include "undo.h"
#include "layer_pvt.h"
#include "drawable_pvt.h"
#include "tile_manager_pvt.h"
#define SQR(x) ((x) * (x))
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif /* M_PI */
/* variables */
static TranInfo old_trans_info;
InfoDialog * transform_info = NULL;
/* forward function declarations */
static int transform_core_bounds (Tool *, void *);
static void * transform_core_recalc (Tool *, void *);
static double cubic (double, int, int, int, int);
#define BILINEAR(jk,j1k,jk1,j1k1,dx,dy) \
((1-dy) * ((1-dx)*jk + dx*j1k) + \
dy * ((1-dx)*jk1 + dx*j1k1))
#define REF_TILE(i,x,y) \
tile[i] = tile_manager_get_tile (float_tiles, x, y, 0); \
tile_ref (tile[i]); \
src[i] = tile[i]->data + tile[i]->bpp * (tile[i]->ewidth * ((y) % TILE_HEIGHT) + ((x) % TILE_WIDTH));
void
transform_core_button_press (tool, bevent, gdisp_ptr)
Tool *tool;
GdkEventButton *bevent;
gpointer gdisp_ptr;
{
TransformCore * transform_core;
GDisplay * gdisp;
Layer * layer;
int dist;
int closest_dist;
int x, y;
int i;
int off_x, off_y;
gdisp = (GDisplay *) gdisp_ptr;
transform_core = (TransformCore *) tool->private;
/* Save the current transformation info */
for (i = 0; i < TRAN_INFO_SIZE; i++)
old_trans_info [i] = transform_core->trans_info [i];
/* if we have already displayed the bounding box and handles,
* check to make sure that the display which currently owns the
* tool is the one which just received the button pressed event
*/
if ((transform_core->function >= CREATING) && (gdisp_ptr == tool->gdisp_ptr) &&
transform_core->interactive)
{
x = bevent->x;
y = bevent->y;
closest_dist = SQR (x - transform_core->sx1) + SQR (y - transform_core->sy1);
transform_core->function = HANDLE_1;
dist = SQR (x - transform_core->sx2) + SQR (y - transform_core->sy2);
if (dist < closest_dist)
{
closest_dist = dist;
transform_core->function = HANDLE_2;
}
dist = SQR (x - transform_core->sx3) + SQR (y - transform_core->sy3);
if (dist < closest_dist)
{
closest_dist = dist;
transform_core->function = HANDLE_3;
}
dist = SQR (x - transform_core->sx4) + SQR (y - transform_core->sy4);
if (dist < closest_dist)
{
closest_dist = dist;
transform_core->function = HANDLE_4;
}
/* Save the current pointer position */
gdisplay_untransform_coords (gdisp, bevent->x, bevent->y,
&transform_core->startx,
&transform_core->starty, TRUE, 0);
transform_core->lastx = transform_core->startx;
transform_core->lasty = transform_core->starty;
gdk_pointer_grab (gdisp->canvas->window, FALSE,
GDK_POINTER_MOTION_HINT_MASK | GDK_BUTTON1_MOTION_MASK | GDK_BUTTON_RELEASE_MASK,
NULL, NULL, bevent->time);
tool->state = ACTIVE;
return;
}
/* if the cursor is clicked inside the current selection, show the
* bounding box and handles...
*/
gdisplay_untransform_coords (gdisp, bevent->x, bevent->y, &x, &y, FALSE, FALSE);
if ((layer = gimage_get_active_layer (gdisp->gimage)))
{
drawable_offsets (GIMP_DRAWABLE(layer), &off_x, &off_y);
if (x >= off_x && y >= off_y &&
x < (off_x + drawable_width (GIMP_DRAWABLE(layer))) &&
y < (off_y + drawable_height (GIMP_DRAWABLE(layer))))
if (gimage_mask_is_empty (gdisp->gimage) ||
gimage_mask_value (gdisp->gimage, x, y))
{
if (layer->mask != NULL && GIMP_DRAWABLE(layer->mask))
{
message_box ("Transformations do not work on\nlayers that contain layer masks.", NULL, NULL);
tool->state = INACTIVE;
return;
}
/* If the tool is already active, clear the current state and reset */
if (tool->state == ACTIVE)
transform_core_reset (tool, gdisp_ptr);
/* Set the pointer to the gdisplay that owns this tool */
tool->gdisp_ptr = gdisp_ptr;
tool->state = ACTIVE;
/* Grab the pointer if we're in non-interactive mode */
if (!transform_core->interactive)
gdk_pointer_grab (gdisp->canvas->window, FALSE,
(GDK_POINTER_MOTION_HINT_MASK |
GDK_BUTTON1_MOTION_MASK |
GDK_BUTTON_RELEASE_MASK),
NULL, NULL, bevent->time);
/* Find the transform bounds for some tools (like scale, perspective)
* that actually need the bounds for initializing
*/
transform_core_bounds (tool, gdisp_ptr);
/* Initialize the transform tool */
(* transform_core->trans_func) (tool, gdisp_ptr, INIT);
/* Recalculate the transform tool */
transform_core_recalc (tool, gdisp_ptr);
/* start drawing the bounding box and handles... */
draw_core_start (transform_core->core, gdisp->canvas->window, tool);
/* recall this function to find which handle we're dragging */
if (transform_core->interactive)
transform_core_button_press (tool, bevent, gdisp_ptr);
}
}
}
void
transform_core_button_release (tool, bevent, gdisp_ptr)
Tool *tool;
GdkEventButton *bevent;
gpointer gdisp_ptr;
{
GDisplay *gdisp;
TransformCore *transform_core;
TileManager *new_tiles;
TransformUndo *tu;
int first_transform;
int new_layer;
int i, x, y;
gdisp = (GDisplay *) gdisp_ptr;
transform_core = (TransformCore *) tool->private;
/* if we are creating, there is nothing to be done...exit */
if (transform_core->function == CREATING && transform_core->interactive)
return;
/* release of the pointer grab */
gdk_pointer_ungrab (bevent->time);
gdk_flush ();
/* if the 3rd button isn't pressed, transform the selected mask */
if (! (bevent->state & GDK_BUTTON3_MASK))
{
/* Start a transform undo group */
undo_push_group_start (gdisp->gimage, TRANSFORM_CORE_UNDO);
/* If original is NULL, then this is the first transformation */
first_transform = (transform_core->original) ? FALSE : TRUE;
/* If we're in interactive mode, and haven't yet done any
* transformations, we need to copy the current selection to
* the transform tool's private selection pointer, so that the
* original source can be repeatedly modified.
*/
if (first_transform)
transform_core->original = transform_core_cut (gdisp->gimage,
gimage_active_drawable (gdisp->gimage),
&new_layer);
else
new_layer = FALSE;
/* Send the request for the transformation to the tool...
*/
new_tiles = (* transform_core->trans_func) (tool, gdisp_ptr, FINISH);
if (new_tiles)
{
/* paste the new transformed image to the gimage...also implement
* undo...
*/
transform_core_paste (gdisp->gimage, gimage_active_drawable (gdisp->gimage),
new_tiles, new_layer);
/* create and initialize the transform_undo structure */
tu = (TransformUndo *) g_malloc (sizeof (TransformUndo));
tu->tool_ID = tool->ID;
tu->tool_type = tool->type;
for (i = 0; i < TRAN_INFO_SIZE; i++)
tu->trans_info[i] = old_trans_info[i];
tu->first = first_transform;
tu->original = NULL;
undo_push_transform (gdisp->gimage, (void *) tu);
}
/* push the undo group end */
undo_push_group_end (gdisp->gimage);
/* Flush the gdisplays */
if (gdisp->disp_xoffset || gdisp->disp_yoffset)
{
gdk_window_get_size (gdisp->canvas->window, &x, &y);
if (gdisp->disp_yoffset)
{
gdisplay_expose_area (gdisp, 0, 0, gdisp->disp_width,
gdisp->disp_yoffset);
gdisplay_expose_area (gdisp, 0, gdisp->disp_yoffset + y,
gdisp->disp_width, gdisp->disp_height);
}
if (gdisp->disp_xoffset)
{
gdisplay_expose_area (gdisp, 0, 0, gdisp->disp_xoffset,
gdisp->disp_height);
gdisplay_expose_area (gdisp, gdisp->disp_xoffset + x, 0,
gdisp->disp_width, gdisp->disp_height);
}
}
gdisplays_flush ();
}
else
{
/* stop the current tool drawing process */
draw_core_pause (transform_core->core, tool);
/* Restore the previous transformation info */
for (i = 0; i < TRAN_INFO_SIZE; i++)
transform_core->trans_info [i] = old_trans_info [i];
/* recalculate the tool's transformation matrix */
transform_core_recalc (tool, gdisp_ptr);
/* resume drawing the current tool */
draw_core_resume (transform_core->core, tool);
}
/* if this tool is non-interactive, make it inactive after use */
if (!transform_core->interactive)
tool->state = INACTIVE;
}
void
transform_core_motion (tool, mevent, gdisp_ptr)
Tool *tool;
GdkEventMotion *mevent;
gpointer gdisp_ptr;
{
GDisplay *gdisp;
TransformCore *transform_core;
gdisp = (GDisplay *) gdisp_ptr;
transform_core = (TransformCore *) tool->private;
/* if we are creating or this tool is non-interactive, there is
* nothing to be done so exit.
*/
if (transform_core->function == CREATING || !transform_core->interactive)
return;
/* stop the current tool drawing process */
draw_core_pause (transform_core->core, tool);
gdisplay_untransform_coords (gdisp, mevent->x, mevent->y, &transform_core->curx,
&transform_core->cury, TRUE, 0);
transform_core->state = mevent->state;
/* recalculate the tool's transformation matrix */
(* transform_core->trans_func) (tool, gdisp_ptr, MOTION);
transform_core->lastx = transform_core->curx;
transform_core->lasty = transform_core->cury;
/* resume drawing the current tool */
draw_core_resume (transform_core->core, tool);
}
void
transform_core_cursor_update (tool, mevent, gdisp_ptr)
Tool *tool;
GdkEventMotion *mevent;
gpointer gdisp_ptr;
{
GDisplay *gdisp;
TransformCore *transform_core;
Layer *layer;
int use_transform_cursor = FALSE;
GdkCursorType ctype = GDK_TOP_LEFT_ARROW;
int x, y;
gdisp = (GDisplay *) gdisp_ptr;
transform_core = (TransformCore *) tool->private;
gdisplay_untransform_coords (gdisp, mevent->x, mevent->y, &x, &y, FALSE, FALSE);
if ((layer = gimage_get_active_layer (gdisp->gimage)))
if (x >= GIMP_DRAWABLE(layer)->offset_x && y >= GIMP_DRAWABLE(layer)->offset_y &&
x < (GIMP_DRAWABLE(layer)->offset_x + GIMP_DRAWABLE(layer)->width) &&
y < (GIMP_DRAWABLE(layer)->offset_y + GIMP_DRAWABLE(layer)->height))
{
if (gimage_mask_is_empty (gdisp->gimage) ||
gimage_mask_value (gdisp->gimage, x, y))
use_transform_cursor = TRUE;
}
if (use_transform_cursor)
/* ctype based on transform tool type */
switch (tool->type)
{
case ROTATE: ctype = GDK_EXCHANGE; break;
case SCALE: ctype = GDK_SIZING; break;
case SHEAR: ctype = GDK_TCROSS; break;
case PERSPECTIVE: ctype = GDK_TCROSS; break;
case FLIP_HORZ: ctype = GDK_SB_H_DOUBLE_ARROW; break;
case FLIP_VERT: ctype = GDK_SB_V_DOUBLE_ARROW; break;
default: break;
}
gdisplay_install_tool_cursor (gdisp, ctype);
}
void
transform_core_control (tool, action, gdisp_ptr)
Tool *tool;
int action;
gpointer gdisp_ptr;
{
TransformCore * transform_core;
transform_core = (TransformCore *) tool->private;
switch (action)
{
case PAUSE :
draw_core_pause (transform_core->core, tool);
break;
case RESUME :
if (transform_core_recalc (tool, gdisp_ptr))
draw_core_resume (transform_core->core, tool);
else
{
info_dialog_popdown (transform_info);
tool->state = INACTIVE;
}
break;
case HALT :
transform_core_reset (tool, gdisp_ptr);
break;
}
}
void
transform_core_no_draw (tool)
Tool * tool;
{
return;
}
void
transform_core_draw (tool)
Tool * tool;
{
int x1, y1, x2, y2, x3, y3, x4, y4;
TransformCore * transform_core;
GDisplay * gdisp;
int srw, srh;
gdisp = tool->gdisp_ptr;
transform_core = (TransformCore *) tool->private;
gdisplay_transform_coords (gdisp, transform_core->tx1, transform_core->ty1,
&transform_core->sx1, &transform_core->sy1, 0);
gdisplay_transform_coords (gdisp, transform_core->tx2, transform_core->ty2,
&transform_core->sx2, &transform_core->sy2, 0);
gdisplay_transform_coords (gdisp, transform_core->tx3, transform_core->ty3,
&transform_core->sx3, &transform_core->sy3, 0);
gdisplay_transform_coords (gdisp, transform_core->tx4, transform_core->ty4,
&transform_core->sx4, &transform_core->sy4, 0);
x1 = transform_core->sx1; y1 = transform_core->sy1;
x2 = transform_core->sx2; y2 = transform_core->sy2;
x3 = transform_core->sx3; y3 = transform_core->sy3;
x4 = transform_core->sx4; y4 = transform_core->sy4;
/* find the handles' width and height */
srw = 10;
srh = 10;
/* draw the bounding box */
gdk_draw_line (transform_core->core->win, transform_core->core->gc,
x1, y1, x2, y2);
gdk_draw_line (transform_core->core->win, transform_core->core->gc,
x2, y2, x4, y4);
gdk_draw_line (transform_core->core->win, transform_core->core->gc,
x3, y3, x4, y4);
gdk_draw_line (transform_core->core->win, transform_core->core->gc,
x3, y3, x1, y1);
/* draw the tool handles */
gdk_draw_rectangle (transform_core->core->win, transform_core->core->gc, 0,
x1 - (srw >> 1), y1 - (srh >> 1), srw, srh);
gdk_draw_rectangle (transform_core->core->win, transform_core->core->gc, 0,
x2 - (srw >> 1), y2 - (srh >> 1), srw, srh);
gdk_draw_rectangle (transform_core->core->win, transform_core->core->gc, 0,
x3 - (srw >> 1), y3 - (srh >> 1), srw, srh);
gdk_draw_rectangle (transform_core->core->win, transform_core->core->gc, 0,
x4 - (srw >> 1), y4 - (srh >> 1), srw, srh);
}
Tool *
transform_core_new (type, interactive)
int type;
int interactive;
{
Tool * tool;
TransformCore * private;
int i;
tool = (Tool *) g_malloc (sizeof (Tool));
private = (TransformCore *) g_malloc (sizeof (TransformCore));
private->interactive = interactive;
if (interactive)
private->core = draw_core_new (transform_core_draw);
else
private->core = draw_core_new (transform_core_no_draw);
private->function = CREATING;
private->original = NULL;
for (i = 0; i < TRAN_INFO_SIZE; i++)
private->trans_info[i] = 0;
tool->type = type;
tool->state = INACTIVE;
tool->scroll_lock = 1; /* Do not allow scrolling */
tool->auto_snap_to = TRUE;
tool->gdisp_ptr = NULL;
tool->private = (void *) private;
tool->button_press_func = transform_core_button_press;
tool->button_release_func = transform_core_button_release;
tool->motion_func = transform_core_motion;
tool->arrow_keys_func = standard_arrow_keys_func;
tool->cursor_update_func = transform_core_cursor_update;
tool->control_func = transform_core_control;
return tool;
}
void
transform_core_free (tool)
Tool *tool;
{
TransformCore * transform_core;
transform_core = (TransformCore *) tool->private;
/* Make sure the selection core is not visible */
if (tool->state == ACTIVE)
draw_core_stop (transform_core->core, tool);
/* Free the selection core */
draw_core_free (transform_core->core);
/* Free up the original selection if it exists */
if (transform_core->original)
tile_manager_destroy (transform_core->original);
/* If there is an information dialog, free it up */
if (transform_info)
info_dialog_free (transform_info);
transform_info = NULL;
/* Finally, free the transform tool itself */
g_free (transform_core);
}
void
transform_bounding_box (tool)
Tool * tool;
{
TransformCore * transform_core;
transform_core = (TransformCore *) tool->private;
transform_point (transform_core->transform,
transform_core->x1, transform_core->y1,
&transform_core->tx1, &transform_core->ty1);
transform_point (transform_core->transform,
transform_core->x2, transform_core->y1,
&transform_core->tx2, &transform_core->ty2);
transform_point (transform_core->transform,
transform_core->x1, transform_core->y2,
&transform_core->tx3, &transform_core->ty3);
transform_point (transform_core->transform,
transform_core->x2, transform_core->y2,
&transform_core->tx4, &transform_core->ty4);
}
void
transform_point (m, x, y, nx, ny)
Matrix m;
double x, y;
double *nx, *ny;
{
double xx, yy, ww;
xx = m[0][0] * x + m[0][1] * y + m[0][2];
yy = m[1][0] * x + m[1][1] * y + m[1][2];
ww = m[2][0] * x + m[2][1] * y + m[2][2];
if (!ww)
ww = 1.0;
*nx = xx / ww;
*ny = yy / ww;
}
void
mult_matrix (m1, m2)
Matrix m1, m2;
{
Matrix result;
int i, j, k;
for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)
{
result [i][j] = 0.0;
for (k = 0; k < 3; k++)
result [i][j] += m1 [i][k] * m2[k][j];
}
/* copy the result into matrix 2 */
for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)
m2 [i][j] = result [i][j];
}
void
identity_matrix (m)
Matrix m;
{
int i, j;
for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)
m[i][j] = (i == j) ? 1 : 0;
}
void
translate_matrix (m, x, y)
Matrix m;
double x, y;
{
Matrix trans;
identity_matrix (trans);
trans[0][2] = x;
trans[1][2] = y;
mult_matrix (trans, m);
}
void
scale_matrix (m, x, y)
Matrix m;
double x, y;
{
Matrix scale;
identity_matrix (scale);
scale[0][0] = x;
scale[1][1] = y;
mult_matrix (scale, m);
}
void
rotate_matrix (m, theta)
Matrix m;
double theta;
{
Matrix rotate;
double cos_theta, sin_theta;
cos_theta = cos (theta);
sin_theta = sin (theta);
identity_matrix (rotate);
rotate[0][0] = cos_theta;
rotate[0][1] = -sin_theta;
rotate[1][0] = sin_theta;
rotate[1][1] = cos_theta;
mult_matrix (rotate, m);
}
void
xshear_matrix (m, shear)
Matrix m;
double shear;
{
Matrix shear_m;
identity_matrix (shear_m);
shear_m[0][1] = shear;
mult_matrix (shear_m, m);
}
void
yshear_matrix (m, shear)
Matrix m;
double shear;
{
Matrix shear_m;
identity_matrix (shear_m);
shear_m[1][0] = shear;
mult_matrix (shear_m, m);
}
/* find the determinate for a 3x3 matrix */
static double
determinate (Matrix m)
{
int i;
double det = 0;
for (i = 0; i < 3; i ++)
{
det += m[0][i] * m[1][(i+1)%3] * m[2][(i+2)%3];
det -= m[2][i] * m[1][(i+1)%3] * m[0][(i+2)%3];
}
return det;
}
/* find the cofactor matrix of a matrix */
static void
cofactor (Matrix m, Matrix m_cof)
{
int i, j;
int x1, y1;
int x2, y2;
x1 = y1 = x2 = y2 = 0;
for (i = 0; i < 3; i++)
{
switch (i)
{
case 0 : y1 = 1; y2 = 2; break;
case 1 : y1 = 0; y2 = 2; break;
case 2 : y1 = 0; y2 = 1; break;
}
for (j = 0; j < 3; j++)
{
switch (j)
{
case 0 : x1 = 1; x2 = 2; break;
case 1 : x1 = 0; x2 = 2; break;
case 2 : x1 = 0; x2 = 1; break;
}
m_cof[i][j] = (m[x1][y1] * m[x2][y2] - m[x1][y2] * m[x2][y1]) *
(((i+j) % 2) ? -1 : 1);
}
}
}
/* find the inverse of a 3x3 matrix */
static void
invert (Matrix m, Matrix m_inv)
{
double det = determinate (m);
int i, j;
if (det == 0.0)
return;
/* Find the cofactor matrix of m, store it in m_inv */
cofactor (m, m_inv);
/* divide by the determinate */
for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)
m_inv[i][j] = m_inv[i][j] / det;
}
void
transform_core_reset(tool, gdisp_ptr)
Tool * tool;
void * gdisp_ptr;
{
TransformCore * transform_core;
GDisplay * gdisp;
transform_core = (TransformCore *) tool->private;
gdisp = (GDisplay *) gdisp_ptr;
if (transform_core->original)
tile_manager_destroy (transform_core->original);
transform_core->original = NULL;
/* inactivate the tool */
transform_core->function = CREATING;
draw_core_stop (transform_core->core, tool);
info_dialog_popdown (transform_info);
tool->state = INACTIVE;
}
static int
transform_core_bounds (tool, gdisp_ptr)
Tool *tool;
void *gdisp_ptr;
{
GDisplay * gdisp;
TransformCore * transform_core;
TileManager * tiles;
GimpDrawable *drawable;
int offset_x, offset_y;
gdisp = (GDisplay *) gdisp_ptr;
transform_core = (TransformCore *) tool->private;
tiles = transform_core->original;
drawable = gimage_active_drawable (gdisp->gimage);
/* find the boundaries */
if (tiles)
{
transform_core->x1 = tiles->x;
transform_core->y1 = tiles->y;
transform_core->x2 = tiles->x + tiles->levels[0].width;
transform_core->y2 = tiles->y + tiles->levels[0].height;
}
else
{
drawable_offsets (drawable, &offset_x, &offset_y);
drawable_mask_bounds (drawable,
&transform_core->x1, &transform_core->y1,
&transform_core->x2, &transform_core->y2);
transform_core->x1 += offset_x;
transform_core->y1 += offset_y;
transform_core->x2 += offset_x;
transform_core->y2 += offset_y;
}
return TRUE;
}
static void *
transform_core_recalc (tool, gdisp_ptr)
Tool * tool;
void * gdisp_ptr;
{
TransformCore * transform_core;
transform_core = (TransformCore *) tool->private;
transform_core_bounds (tool, gdisp_ptr);
return (* transform_core->trans_func) (tool, gdisp_ptr, RECALC);
}
/* Actually carry out a transformation */
TileManager *
transform_core_do (gimage, drawable, float_tiles, interpolation, matrix)
GImage *gimage;
GimpDrawable *drawable;
TileManager *float_tiles;
int interpolation;
Matrix matrix;
{
PixelRegion destPR;
TileManager *tiles;
Matrix m;
int itx, ity;
int tx1, ty1, tx2, ty2;
int width, height;
int alpha;
int bytes, b;
int x, y;
int sx, sy;
int plus_x, plus_y;
int plus2_x, plus2_y;
int minus_x, minus_y;
int x1, y1, x2, y2;
double dx1, dy1, dx2, dy2, dx3, dy3, dx4, dy4;
double xinc, yinc, winc;
double tx, ty, tw;
double ttx = 0.0, tty = 0.0;
double dx = 0.0, dy = 0.0;
unsigned char * dest, * d;
unsigned char * src[16];
double src_a[16][MAX_CHANNELS];
Tile *tile[16];
int a[16];
unsigned char bg_col[MAX_CHANNELS];
int i;
double a_val, a_mult, a_recip;
int newval;
alpha = 0;
/* Get the background color */
gimage_get_background (gimage, drawable, bg_col);
switch (drawable_type (drawable))
{
case RGB_GIMAGE: case RGBA_GIMAGE:
bg_col[ALPHA_PIX] = TRANSPARENT_OPACITY;
alpha = 3;
break;
case GRAY_GIMAGE: case GRAYA_GIMAGE:
bg_col[ALPHA_G_PIX] = TRANSPARENT_OPACITY;
alpha = 1;
break;
case INDEXED_GIMAGE: case INDEXEDA_GIMAGE:
bg_col[ALPHA_I_PIX] = TRANSPARENT_OPACITY;
alpha = 1;
/* If the gimage is indexed color, ignore smoothing value */
interpolation = 0;
break;
}
/* Find the inverse of the transformation matrix */
invert (matrix, m);
x1 = float_tiles->x;
y1 = float_tiles->y;
x2 = x1 + float_tiles->levels[0].width;
y2 = y1 + float_tiles->levels[0].height;
transform_point (matrix, x1, y1, &dx1, &dy1);
transform_point (matrix, x2, y1, &dx2, &dy2);
transform_point (matrix, x1, y2, &dx3, &dy3);
transform_point (matrix, x2, y2, &dx4, &dy4);
/* Find the bounding coordinates */
tx1 = MINIMUM (dx1, dx2);
tx1 = MINIMUM (tx1, dx3);
tx1 = MINIMUM (tx1, dx4);
ty1 = MINIMUM (dy1, dy2);
ty1 = MINIMUM (ty1, dy3);
ty1 = MINIMUM (ty1, dy4);
tx2 = MAXIMUM (dx1, dx2);
tx2 = MAXIMUM (tx2, dx3);
tx2 = MAXIMUM (tx2, dx4);
ty2 = MAXIMUM (dy1, dy2);
ty2 = MAXIMUM (ty2, dy3);
ty2 = MAXIMUM (ty2, dy4);
/* Get the new temporary buffer for the transformed result */
tiles = tile_manager_new ((tx2 - tx1), (ty2 - ty1), float_tiles->levels[0].bpp);
pixel_region_init (&destPR, tiles, 0, 0, (tx2 - tx1), (ty2 - ty1), TRUE);
tiles->x = tx1;
tiles->y = ty1;
width = tiles->levels[0].width;
height = tiles->levels[0].height;
bytes = tiles->levels[0].bpp;
dest = (unsigned char *) g_malloc (width * bytes);
xinc = m[0][0];
yinc = m[1][0];
winc = m[2][0];
for (y = ty1; y < ty2; y++)
{
/* When we calculate the inverse transformation, we should transform
* the center of each destination pixel...
*/
tx = xinc * (tx1 + 0.5) + m[0][1] * (y + 0.5) + m[0][2];
ty = yinc * (tx1 + 0.5) + m[1][1] * (y + 0.5) + m[1][2];
tw = winc * (tx1 + 0.5) + m[2][1] * (y + 0.5) + m[2][2];
d = dest;
for (x = tx1; x < tx2; x++)
{
/* normalize homogeneous coords */
if (tw == 0.0)
warning ("homogeneous coordinate = 0...\n");
else if (tw != 1.0)
{
ttx = tx / tw;
tty = ty / tw;
}
else
{
ttx = tx;
tty = ty;
}
/* tx & ty are the coordinates of the point in the original
* selection's floating buffer. Make sure they're within bounds
*/
if (ttx < 0)
itx = (int) (ttx - 0.999999);
else
itx = (int) ttx;
if (tty < 0)
ity = (int) (tty - 0.999999);
else
ity = (int) tty;
/* if interpolation is on, get the fractional error */
if (interpolation)
{
dx = ttx - itx;
dy = tty - ity;
}
if (itx >= x1 && itx < x2 && ity >= y1 && ity < y2)
{
/* x, y coordinates into source tiles */
sx = itx - x1;
sy = ity - y1;
/* Set the destination pixels */
if (interpolation)
{
plus_x = (itx < (x2 - 1)) ? 1 : 0;
plus_y = (ity < (y2 - 1)) ? 1 : 0;
if (cubic_interpolation)
{
minus_x = (itx > x1) ? -1 : 0;
plus2_x = ((itx + 1) < (x2 - 1)) ? 2 : plus_x;
minus_y = (ity > y1) ? -1 : 0;
plus2_y = ((ity + 1) < (y2 - 1)) ? 2 : plus_y;
REF_TILE (0, sx + minus_x, sy + minus_y);
REF_TILE (1, sx, sy + minus_y);
REF_TILE (2, sx + plus_x, sy + minus_y);
REF_TILE (3, sx + plus2_x, sy + minus_y);
REF_TILE (4, sx + minus_x, sy);
REF_TILE (5, sx, sy);
REF_TILE (6, sx + plus_x, sy);
REF_TILE (7, sx + plus2_x, sy);
REF_TILE (8, sx + minus_x, sy + plus_y);
REF_TILE (9, sx, sy + plus_y);
REF_TILE (10, sx + plus_x, sy + plus_y);
REF_TILE (11, sx + plus2_x, sy + plus_y);
REF_TILE (12, sx + minus_x, sy + plus2_y);
REF_TILE (13, sx, sy + plus2_y);
REF_TILE (14, sx + plus_x, sy + plus2_y);
REF_TILE (15, sx + plus2_x, sy + plus2_y);
a[0] = (minus_y * minus_x) ? src[0][alpha] : 0;
a[1] = (minus_y) ? src[1][alpha] : 0;
a[2] = (minus_y * plus_x) ? src[2][alpha] : 0;
a[3] = (minus_y * plus2_x) ? src[3][alpha] : 0;
a[4] = (minus_x) ? src[4][alpha] : 0;
a[5] = src[5][alpha];
a[6] = (plus_x) ? src[6][alpha] : 0;
a[7] = (plus2_x) ? src[7][alpha] : 0;
a[8] = (plus_y * minus_x) ? src[8][alpha] : 0;
a[9] = (plus_y) ? src[9][alpha] : 0;
a[10] = (plus_y * plus_x) ? src[10][alpha] : 0;
a[11] = (plus_y * plus2_x) ? src[11][alpha] : 0;
a[12] = (plus2_y * minus_x) ? src[12][alpha] : 0;
a[13] = (plus2_y) ? src[13][alpha] : 0;
a[14] = (plus2_y * plus_x) ? src[14][alpha] : 0;
a[15] = (plus2_y * plus2_x) ? src[15][alpha] : 0;
a_val = cubic (dy,
cubic (dx, a[0], a[1], a[2], a[3]),
cubic (dx, a[4], a[5], a[6], a[7]),
cubic (dx, a[8], a[9], a[10], a[11]),
cubic (dx, a[12], a[13], a[14], a[15]));
if (a_val != 0)
a_recip = 255.0 / a_val;
else
a_recip = 0.0;
/* premultiply the alpha */
for (i = 0; i < 16; i++)
{
a_mult = a[i] * (1.0 / 255.0);
for (b = 0; b < alpha; b++)
src_a[i][b] = src[i][b] * a_mult;
}
for (b = 0; b < alpha; b++)
{
newval =
a_recip *
cubic (dy,
cubic (dx, src_a[0][b], src_a[1][b], src_a[2][b], src_a[3][b]),
cubic (dx, src_a[4][b], src_a[5][b], src_a[6][b], src_a[7][b]),
cubic (dx, src_a[8][b], src_a[9][b], src_a[10][b], src_a[11][b]),
cubic (dx, src_a[12][b], src_a[13][b], src_a[14][b], src_a[15][b]));
if ((newval & 0x100) == 0)
*d++ = newval;
else if (newval < 0)
*d++ = 0;
else
*d++ = 255;
}
*d++ = a_val;
for (b = 0; b < 16; b++)
tile_unref (tile[b], FALSE);
}
else /* linear */
{
REF_TILE (0, sx, sy);
REF_TILE (1, sx + plus_x, sy);
REF_TILE (2, sx, sy + plus_y);
REF_TILE (3, sx + plus_x, sy + plus_y);
/* Need special treatment for the alpha channel */
if (plus_x == 0 && plus_y == 0)
{
a[0] = src[0][alpha];
a[1] = a[2] = a[3] = 0;
}
else if (plus_x == 0)
{
a[0] = src[0][alpha];
a[2] = src[2][alpha];
a[1] = a[3] = 0;
}
else if (plus_y == 0)
{
a[0] = src[0][alpha];
a[1] = src[1][alpha];
a[2] = a[3] = 0;
}
else
{
a[0] = src[0][alpha];
a[1] = src[1][alpha];
a[2] = src[2][alpha];
a[3] = src[3][alpha];
}
/* The alpha channel */
a_val = BILINEAR (a[0], a[1], a[2], a[3], dx, dy);
if (a_val != 0)
a_recip = 255.0 / a_val;
else
a_recip = 0.0;
/* premultiply the alpha */
for (i = 0; i < 4; i++)
{
a_mult = a[i] * (1.0 / 255.0);
for (b = 0; b < alpha; b++)
src_a[i][b] = src[i][b] * a_mult;
}
for (b = 0; b < alpha; b++)
*d++ = a_recip * BILINEAR (src_a[0][b], src_a[1][b], src_a[2][b], src_a[3][b], dx, dy);
*d++ = a_val;
for (b = 0; b < 4; b++)
tile_unref (tile[b], FALSE);
}
}
else /* no interpolation */
{
REF_TILE (0, sx, sy);
for (b = 0; b < bytes; b++)
*d++ = src[0][b];
tile_unref (tile[0], FALSE);
}
}
else
{
/* increment the destination pointers */
for (b = 0; b < bytes; b++)
*d++ = bg_col[b];
}
/* increment the transformed coordinates */
tx += xinc;
ty += yinc;
tw += winc;
}
/* set the pixel region row */
pixel_region_set_row (&destPR, 0, (y - ty1), width, dest);
}
g_free (dest);
return tiles;
}
TileManager *
transform_core_cut (gimage, drawable, new_layer)
GImage *gimage;
GimpDrawable *drawable;
int *new_layer;
{
TileManager *tiles;
/* extract the selected mask if there is a selection */
if (! gimage_mask_is_empty (gimage))
{
tiles = gimage_mask_extract (gimage, drawable, TRUE, TRUE);
*new_layer = TRUE;
}
/* otherwise, just copy the layer */
else
{
tiles = gimage_mask_extract (gimage, drawable, FALSE, TRUE);
*new_layer = FALSE;
}
return tiles;
}
/* Paste a transform to the gdisplay */
Layer *
transform_core_paste (gimage, drawable, tiles, new_layer)
GImage *gimage;
GimpDrawable *drawable;
TileManager *tiles;
int new_layer;
{
Layer * layer;
Layer * floating_layer;
if (new_layer)
{
layer = layer_from_tiles (gimage, drawable, tiles, "Transformation", OPAQUE_OPACITY, NORMAL_MODE);
GIMP_DRAWABLE(layer)->offset_x = tiles->x;
GIMP_DRAWABLE(layer)->offset_y = tiles->y;
/* Start a group undo */
undo_push_group_start (gimage, EDIT_PASTE_UNDO);
floating_sel_attach (layer, drawable);
/* End the group undo */
undo_push_group_end (gimage);
/* Free the tiles */
tile_manager_destroy (tiles);
active_tool_layer = layer;
return layer;
}
else
{
if ((layer = drawable_layer ( (drawable))) == NULL)
return NULL;
layer_add_alpha (layer);
floating_layer = gimage_floating_sel (gimage);
if (floating_layer)
floating_sel_relax (floating_layer, TRUE);
gdisplays_update_area (gimage->ID,
GIMP_DRAWABLE(layer)->offset_x, GIMP_DRAWABLE(layer)->offset_y,
GIMP_DRAWABLE(layer)->width, GIMP_DRAWABLE(layer)->height);
/* Push an undo */
undo_push_layer_mod (gimage, layer);
/* set the current layer's data */
GIMP_DRAWABLE(layer)->tiles = tiles;
/* Fill in the new layer's attributes */
GIMP_DRAWABLE(layer)->width = tiles->levels[0].width;
GIMP_DRAWABLE(layer)->height = tiles->levels[0].height;
GIMP_DRAWABLE(layer)->bytes = tiles->levels[0].bpp;
GIMP_DRAWABLE(layer)->offset_x = tiles->x;
GIMP_DRAWABLE(layer)->offset_y = tiles->y;
if (floating_layer)
floating_sel_rigor (floating_layer, TRUE);
drawable_update (GIMP_DRAWABLE(layer), 0, 0, GIMP_DRAWABLE(layer)->width, GIMP_DRAWABLE(layer)->height);
return layer;
}
}
static double
cubic (dx, jm1, j, jp1, jp2)
double dx;
int jm1, j, jp1, jp2;
{
double dx1, dx2, dx3;
double h1, h2, h3, h4;
double result;
/* constraint parameter = -1 */
dx1 = fabs (dx);
dx2 = dx1 * dx1;
dx3 = dx2 * dx1;
h1 = dx3 - 2 * dx2 + 1;
result = h1 * j;
dx1 = fabs (dx - 1.0);
dx2 = dx1 * dx1;
dx3 = dx2 * dx1;
h2 = dx3 - 2 * dx2 + 1;
result += h2 * jp1;
dx1 = fabs (dx - 2.0);
dx2 = dx1 * dx1;
dx3 = dx2 * dx1;
h3 = -dx3 + 5 * dx2 - 8 * dx1 + 4;
result += h3 * jp2;
dx1 = fabs (dx + 1.0);
dx2 = dx1 * dx1;
dx3 = dx2 * dx1;
h4 = -dx3 + 5 * dx2 - 8 * dx1 + 4;
result += h4 * jm1;
if (result < 0.0)
result = 0.0;
if (result > 255.0)
result = 255.0;
return result;
}