mirror of https://github.com/GNOME/gimp.git
1121 lines
31 KiB
C
1121 lines
31 KiB
C
/* The GIMP -- an image manipulation program
|
|
* Copyright (C) 1995 Spencer Kimball and Peter Mattis
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <string.h>
|
|
|
|
#include <glib-object.h>
|
|
|
|
#include "libgimpmath/gimpmath.h"
|
|
|
|
#include "paint-funcs-types.h"
|
|
|
|
#include "base/pixel-region.h"
|
|
|
|
#include "scale-funcs.h"
|
|
|
|
|
|
static void scale_region_no_resample (PixelRegion *srcPR,
|
|
PixelRegion *destPR);
|
|
static void scale_region_lanczos (PixelRegion *srcPR,
|
|
PixelRegion *dstPR);
|
|
|
|
static void expand_line (gdouble *dest,
|
|
const gdouble *src,
|
|
gint bytes,
|
|
gint old_width,
|
|
gint width,
|
|
GimpInterpolationType interp);
|
|
static void shrink_line (gdouble *dest,
|
|
const gdouble *src,
|
|
gint bytes,
|
|
gint old_width,
|
|
gint width,
|
|
GimpInterpolationType interp);
|
|
|
|
|
|
/* Note: cubic function no longer clips result */
|
|
static inline gdouble
|
|
cubic (gdouble dx,
|
|
gint jm1,
|
|
gint j,
|
|
gint jp1,
|
|
gint jp2)
|
|
{
|
|
/* Catmull-Rom - not bad */
|
|
return (gdouble) ((( ( - jm1 + 3 * j - 3 * jp1 + jp2 ) * dx +
|
|
( 2 * jm1 - 5 * j + 4 * jp1 - jp2 ) ) * dx +
|
|
( - jm1 + jp1 ) ) * dx + (j + j) ) / 2.0;
|
|
}
|
|
|
|
|
|
/*
|
|
* non-interpolating scale_region. [adam]
|
|
*/
|
|
static void
|
|
scale_region_no_resample (PixelRegion *srcPR,
|
|
PixelRegion *destPR)
|
|
{
|
|
gint *x_src_offsets;
|
|
gint *y_src_offsets;
|
|
guchar *src;
|
|
guchar *dest;
|
|
gint width, height, orig_width, orig_height;
|
|
gint last_src_y;
|
|
gint row_bytes;
|
|
gint x, y, b;
|
|
gchar bytes;
|
|
|
|
orig_width = srcPR->w;
|
|
orig_height = srcPR->h;
|
|
|
|
width = destPR->w;
|
|
height = destPR->h;
|
|
|
|
bytes = srcPR->bytes;
|
|
|
|
/* the data pointers... */
|
|
x_src_offsets = g_new (gint, width * bytes);
|
|
y_src_offsets = g_new (gint, height);
|
|
src = g_new (guchar, orig_width * bytes);
|
|
dest = g_new (guchar, width * bytes);
|
|
|
|
/* pre-calc the scale tables */
|
|
for (b = 0; b < bytes; b++)
|
|
for (x = 0; x < width; x++)
|
|
x_src_offsets [b + x * bytes] =
|
|
b + bytes * ((x * orig_width + orig_width / 2) / width);
|
|
|
|
for (y = 0; y < height; y++)
|
|
y_src_offsets [y] = (y * orig_height + orig_height / 2) / height;
|
|
|
|
/* do the scaling */
|
|
row_bytes = width * bytes;
|
|
last_src_y = -1;
|
|
for (y = 0; y < height; y++)
|
|
{
|
|
/* if the source of this line was the same as the source
|
|
* of the last line, there's no point in re-rescaling.
|
|
*/
|
|
if (y_src_offsets[y] != last_src_y)
|
|
{
|
|
pixel_region_get_row (srcPR, 0, y_src_offsets[y], orig_width, src, 1);
|
|
for (x = 0; x < row_bytes ; x++)
|
|
{
|
|
dest[x] = src[x_src_offsets[x]];
|
|
}
|
|
last_src_y = y_src_offsets[y];
|
|
}
|
|
|
|
pixel_region_set_row (destPR, 0, y, width, dest);
|
|
}
|
|
|
|
g_free (x_src_offsets);
|
|
g_free (y_src_offsets);
|
|
g_free (src);
|
|
g_free (dest);
|
|
}
|
|
|
|
|
|
static void
|
|
get_premultiplied_double_row (PixelRegion *srcPR,
|
|
gint x,
|
|
gint y,
|
|
gint w,
|
|
gdouble *row,
|
|
guchar *tmp_src,
|
|
gint n)
|
|
{
|
|
gint b;
|
|
gint bytes = srcPR->bytes;
|
|
|
|
pixel_region_get_row (srcPR, x, y, w, tmp_src, n);
|
|
|
|
if (pixel_region_has_alpha (srcPR))
|
|
{
|
|
/* premultiply the alpha into the double array */
|
|
gdouble *irow = row;
|
|
gint alpha = bytes - 1;
|
|
gdouble mod_alpha;
|
|
|
|
for (x = 0; x < w; x++)
|
|
{
|
|
mod_alpha = tmp_src[alpha] / 255.0;
|
|
for (b = 0; b < alpha; b++)
|
|
irow[b] = mod_alpha * tmp_src[b];
|
|
irow[b] = tmp_src[alpha];
|
|
irow += bytes;
|
|
tmp_src += bytes;
|
|
}
|
|
}
|
|
else /* no alpha */
|
|
{
|
|
for (x = 0; x < w * bytes; x++)
|
|
row[x] = tmp_src[x];
|
|
}
|
|
|
|
/* set the off edge pixels to their nearest neighbor */
|
|
for (b = 0; b < 2 * bytes; b++)
|
|
row[b - 2 * bytes] = row[b % bytes];
|
|
for (b = 0; b < bytes * 2; b++)
|
|
row[b + w * bytes] = row[(w - 1) * bytes + b % bytes];
|
|
}
|
|
|
|
|
|
static void
|
|
expand_line (gdouble *dest,
|
|
const gdouble *src,
|
|
gint bytes,
|
|
gint old_width,
|
|
gint width,
|
|
GimpInterpolationType interp)
|
|
{
|
|
const gdouble *s;
|
|
gdouble ratio;
|
|
gint x, b;
|
|
gint src_col;
|
|
gdouble frac;
|
|
|
|
ratio = old_width / (gdouble) width;
|
|
|
|
/* we can overflow src's boundaries, so we expect our caller to have
|
|
allocated extra space for us to do so safely (see scale_region ()) */
|
|
|
|
/* this could be optimized much more by precalculating the coefficients for
|
|
each x */
|
|
switch(interp)
|
|
{
|
|
case GIMP_INTERPOLATION_CUBIC:
|
|
for (x = 0; x < width; x++)
|
|
{
|
|
src_col = ((int) (x * ratio + 2.0 - 0.5)) - 2;
|
|
/* +2, -2 is there because (int) rounds towards 0 and we need
|
|
to round down */
|
|
frac = (x * ratio - 0.5) - src_col;
|
|
s = &src[src_col * bytes];
|
|
for (b = 0; b < bytes; b++)
|
|
dest[b] = cubic (frac, s[b - bytes], s[b], s[b + bytes],
|
|
s[b + bytes * 2]);
|
|
dest += bytes;
|
|
}
|
|
|
|
break;
|
|
|
|
case GIMP_INTERPOLATION_LINEAR:
|
|
for (x = 0; x < width; x++)
|
|
{
|
|
src_col = ((int) (x * ratio + 2.0 - 0.5)) - 2;
|
|
/* +2, -2 is there because (int) rounds towards 0 and we need
|
|
to round down */
|
|
frac = (x * ratio - 0.5) - src_col;
|
|
s = &src[src_col * bytes];
|
|
for (b = 0; b < bytes; b++)
|
|
dest[b] = ((s[b + bytes] - s[b]) * frac + s[b]);
|
|
dest += bytes;
|
|
}
|
|
break;
|
|
|
|
case GIMP_INTERPOLATION_NONE:
|
|
g_assert_not_reached ();
|
|
break;
|
|
|
|
case GIMP_INTERPOLATION_LANCZOS:
|
|
g_assert_not_reached ();
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
shrink_line (gdouble *dest,
|
|
const gdouble *src,
|
|
gint bytes,
|
|
gint old_width,
|
|
gint width,
|
|
GimpInterpolationType interp)
|
|
{
|
|
const gdouble *srcp;
|
|
gdouble *destp;
|
|
gdouble accum[4];
|
|
gdouble slice;
|
|
const gdouble avg_ratio = (gdouble) width / old_width;
|
|
const gdouble inv_width = 1.0 / width;
|
|
gint slicepos; /* slice position relative to width */
|
|
gint x;
|
|
gint b;
|
|
|
|
#if 0
|
|
g_printerr ("shrink_line bytes=%d old_width=%d width=%d interp=%d "
|
|
"avg_ratio=%f\n",
|
|
bytes, old_width, width, interp, avg_ratio);
|
|
#endif
|
|
|
|
g_return_if_fail (bytes <= 4);
|
|
|
|
/* This algorithm calculates the weighted average of pixel data that
|
|
each output pixel must receive, taking into account that it always
|
|
scales down, i.e. there's always more than one input pixel per each
|
|
output pixel. */
|
|
|
|
srcp = src;
|
|
destp = dest;
|
|
|
|
slicepos = 0;
|
|
|
|
/* Initialize accum to the first pixel slice. As there is no partial
|
|
pixel at start, that value is 0. The source data is interleaved, so
|
|
we maintain BYTES accumulators at the same time to deal with that
|
|
many channels simultaneously. */
|
|
for (b = 0; b < bytes; b++)
|
|
accum[b] = 0.0;
|
|
|
|
for (x = 0; x < width; x++)
|
|
{
|
|
/* Accumulate whole pixels. */
|
|
do
|
|
{
|
|
for (b = 0; b < bytes; b++)
|
|
accum[b] += *srcp++;
|
|
|
|
slicepos += width;
|
|
}
|
|
while (slicepos < old_width);
|
|
slicepos -= old_width;
|
|
|
|
if (! (slicepos < width))
|
|
g_warning ("Assertion (slicepos < width) failed. Please report.");
|
|
|
|
if (slicepos == 0)
|
|
{
|
|
/* Simplest case: we have reached a whole pixel boundary. Store
|
|
the average value per channel and reset the accumulators for
|
|
the next round.
|
|
|
|
The main reason to treat this case separately is to avoid an
|
|
access to out-of-bounds memory for the first pixel. */
|
|
for (b = 0; b < bytes; b++)
|
|
{
|
|
*destp++ = accum[b] * avg_ratio;
|
|
accum[b] = 0.0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (b = 0; b < bytes; b++)
|
|
{
|
|
/* We have accumulated a whole pixel per channel where just a
|
|
slice of it was needed. Subtract now the previous pixel's
|
|
extra slice. */
|
|
slice = srcp[- bytes + b] * slicepos * inv_width;
|
|
*destp++ = (accum[b] - slice) * avg_ratio;
|
|
|
|
/* That slice is the initial value for the next round. */
|
|
accum[b] = slice;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Sanity check: srcp should point to the next-to-last position, and
|
|
slicepos should be zero. */
|
|
if (! (srcp - src == old_width * bytes && slicepos == 0))
|
|
g_warning ("Assertion (srcp - src == old_width * bytes && slicepos == 0)"
|
|
" failed. Please report.");
|
|
}
|
|
|
|
static inline void
|
|
rotate_pointers (guchar **p,
|
|
guint32 n)
|
|
{
|
|
guint32 i;
|
|
guchar *tmp;
|
|
|
|
tmp = p[0];
|
|
for (i = 0; i < n-1; i++)
|
|
{
|
|
p[i] = p[i+1];
|
|
}
|
|
p[i] = tmp;
|
|
}
|
|
|
|
static void
|
|
get_scaled_row (gdouble **src,
|
|
gint y,
|
|
gint new_width,
|
|
PixelRegion *srcPR,
|
|
gdouble *row,
|
|
guchar *src_tmp,
|
|
GimpInterpolationType interpolation_type)
|
|
{
|
|
/* get the necesary lines from the source image, scale them,
|
|
and put them into src[] */
|
|
|
|
rotate_pointers ((gpointer) src, 4);
|
|
|
|
if (y < 0)
|
|
y = 0;
|
|
|
|
if (y < srcPR->h)
|
|
{
|
|
get_premultiplied_double_row (srcPR, 0, y, srcPR->w, row, src_tmp, 1);
|
|
|
|
if (new_width > srcPR->w)
|
|
expand_line (src[3], row, srcPR->bytes,
|
|
srcPR->w, new_width, interpolation_type);
|
|
else if (srcPR->w > new_width)
|
|
shrink_line (src[3], row, srcPR->bytes,
|
|
srcPR->w, new_width, interpolation_type);
|
|
else /* no scailing needed */
|
|
memcpy (src[3], row, sizeof (gdouble) * new_width * srcPR->bytes);
|
|
}
|
|
else
|
|
{
|
|
memcpy (src[3], src[2], sizeof (gdouble) * new_width * srcPR->bytes);
|
|
}
|
|
}
|
|
|
|
void
|
|
scale_region (PixelRegion *srcPR,
|
|
PixelRegion *destPR,
|
|
GimpInterpolationType interpolation,
|
|
GimpProgressFunc progress_callback,
|
|
gpointer progress_data)
|
|
{
|
|
gdouble *src[4];
|
|
guchar *src_tmp;
|
|
guchar *dest;
|
|
gdouble *row, *accum;
|
|
gint bytes, b;
|
|
gint width, height;
|
|
gint orig_width, orig_height;
|
|
gdouble y_rat;
|
|
gint i;
|
|
gint old_y = -4;
|
|
gint new_y;
|
|
gint x, y;
|
|
|
|
if (interpolation == GIMP_INTERPOLATION_NONE)
|
|
{
|
|
scale_region_no_resample (srcPR, destPR);
|
|
return;
|
|
}
|
|
else if (interpolation == GIMP_INTERPOLATION_LANCZOS)
|
|
{
|
|
scale_region_lanczos (srcPR, destPR);
|
|
return;
|
|
}
|
|
|
|
orig_width = srcPR->w;
|
|
orig_height = srcPR->h;
|
|
|
|
width = destPR->w;
|
|
height = destPR->h;
|
|
|
|
#if 0
|
|
g_printerr ("scale_region: (%d x %d) -> (%d x %d)\n",
|
|
orig_width, orig_height, width, height);
|
|
#endif
|
|
|
|
/* find the ratios of old y to new y */
|
|
y_rat = (gdouble) orig_height / (gdouble) height;
|
|
|
|
bytes = destPR->bytes;
|
|
|
|
/* the data pointers... */
|
|
for (i = 0; i < 4; i++)
|
|
src[i] = g_new (gdouble, width * bytes);
|
|
|
|
dest = g_new (guchar, width * bytes);
|
|
|
|
src_tmp = g_new (guchar, orig_width * bytes);
|
|
|
|
/* offset the row pointer by 2*bytes so the range of the array
|
|
is [-2*bytes] to [(orig_width + 2)*bytes] */
|
|
row = g_new (gdouble, (orig_width + 2 * 2) * bytes);
|
|
row += bytes * 2;
|
|
|
|
accum = g_new (gdouble, width * bytes);
|
|
|
|
/* Scale the selected region */
|
|
|
|
for (y = 0; y < height; y++)
|
|
{
|
|
if (progress_callback && !(y & 0xf))
|
|
(* progress_callback) (0, height, y, progress_data);
|
|
|
|
if (height < orig_height)
|
|
{
|
|
gint max;
|
|
gdouble frac;
|
|
const gdouble inv_ratio = 1.0 / y_rat;
|
|
|
|
if (y == 0) /* load the first row if this is the first time through */
|
|
get_scaled_row (&src[0], 0, width, srcPR, row,
|
|
src_tmp,
|
|
interpolation);
|
|
new_y = (int) (y * y_rat);
|
|
frac = 1.0 - (y * y_rat - new_y);
|
|
for (x = 0; x < width * bytes; x++)
|
|
accum[x] = src[3][x] * frac;
|
|
|
|
max = (int) ((y + 1) * y_rat) - new_y - 1;
|
|
|
|
get_scaled_row (&src[0], ++new_y, width, srcPR, row,
|
|
src_tmp,
|
|
interpolation);
|
|
|
|
while (max > 0)
|
|
{
|
|
for (x = 0; x < width * bytes; x++)
|
|
accum[x] += src[3][x];
|
|
get_scaled_row (&src[0], ++new_y, width, srcPR, row,
|
|
src_tmp,
|
|
interpolation);
|
|
max--;
|
|
}
|
|
frac = (y + 1) * y_rat - ((int) ((y + 1) * y_rat));
|
|
for (x = 0; x < width * bytes; x++)
|
|
{
|
|
accum[x] += frac * src[3][x];
|
|
accum[x] *= inv_ratio;
|
|
}
|
|
}
|
|
else if (height > orig_height)
|
|
{
|
|
new_y = floor (y * y_rat - 0.5);
|
|
|
|
while (old_y <= new_y)
|
|
{
|
|
/* get the necesary lines from the source image, scale them,
|
|
and put them into src[] */
|
|
get_scaled_row (&src[0], old_y + 2, width, srcPR, row,
|
|
src_tmp,
|
|
interpolation);
|
|
old_y++;
|
|
}
|
|
|
|
switch (interpolation)
|
|
{
|
|
case GIMP_INTERPOLATION_CUBIC:
|
|
{
|
|
gdouble p0, p1, p2, p3;
|
|
gdouble dy = (y * y_rat - 0.5) - new_y;
|
|
|
|
p0 = cubic (dy, 1, 0, 0, 0);
|
|
p1 = cubic (dy, 0, 1, 0, 0);
|
|
p2 = cubic (dy, 0, 0, 1, 0);
|
|
p3 = cubic (dy, 0, 0, 0, 1);
|
|
for (x = 0; x < width * bytes; x++)
|
|
accum[x] = (p0 * src[0][x] + p1 * src[1][x] +
|
|
p2 * src[2][x] + p3 * src[3][x]);
|
|
}
|
|
|
|
break;
|
|
|
|
case GIMP_INTERPOLATION_LINEAR:
|
|
{
|
|
gdouble idy = (y * y_rat - 0.5) - new_y;
|
|
gdouble dy = 1.0 - idy;
|
|
|
|
for (x = 0; x < width * bytes; x++)
|
|
accum[x] = dy * src[1][x] + idy * src[2][x];
|
|
}
|
|
|
|
break;
|
|
|
|
case GIMP_INTERPOLATION_NONE:
|
|
g_assert_not_reached ();
|
|
break;
|
|
|
|
case GIMP_INTERPOLATION_LANCZOS:
|
|
g_assert_not_reached ();
|
|
break;
|
|
}
|
|
}
|
|
else /* height == orig_height */
|
|
{
|
|
get_scaled_row (&src[0], y, width, srcPR, row,
|
|
src_tmp,
|
|
interpolation);
|
|
memcpy (accum, src[3], sizeof (gdouble) * width * bytes);
|
|
}
|
|
|
|
if (pixel_region_has_alpha (srcPR))
|
|
{
|
|
/* unmultiply the alpha */
|
|
gdouble inv_alpha;
|
|
gdouble *p = accum;
|
|
gint alpha = bytes - 1;
|
|
gint result;
|
|
guchar *d = dest;
|
|
|
|
for (x = 0; x < width; x++)
|
|
{
|
|
if (p[alpha] > 0.001)
|
|
{
|
|
inv_alpha = 255.0 / p[alpha];
|
|
for (b = 0; b < alpha; b++)
|
|
{
|
|
result = RINT (inv_alpha * p[b]);
|
|
if (result < 0)
|
|
d[b] = 0;
|
|
else if (result > 255)
|
|
d[b] = 255;
|
|
else
|
|
d[b] = result;
|
|
}
|
|
result = RINT (p[alpha]);
|
|
if (result > 255)
|
|
d[alpha] = 255;
|
|
else
|
|
d[alpha] = result;
|
|
}
|
|
else /* alpha <= 0 */
|
|
for (b = 0; b <= alpha; b++)
|
|
d[b] = 0;
|
|
|
|
d += bytes;
|
|
p += bytes;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
gint w = width * bytes;
|
|
|
|
for (x = 0; x < w; x++)
|
|
{
|
|
if (accum[x] < 0.0)
|
|
dest[x] = 0;
|
|
else if (accum[x] > 255.0)
|
|
dest[x] = 255;
|
|
else
|
|
dest[x] = RINT (accum[x]);
|
|
}
|
|
}
|
|
pixel_region_set_row (destPR, 0, y, width, dest);
|
|
}
|
|
|
|
/* free up temporary arrays */
|
|
g_free (accum);
|
|
for (i = 0; i < 4; i++)
|
|
g_free (src[i]);
|
|
g_free (src_tmp);
|
|
g_free (dest);
|
|
|
|
row -= 2 * bytes;
|
|
g_free (row);
|
|
}
|
|
|
|
void
|
|
subsample_region (PixelRegion *srcPR,
|
|
PixelRegion *destPR,
|
|
gint subsample)
|
|
{
|
|
guchar *src, *s;
|
|
guchar *dest, *d;
|
|
gdouble *row, *r;
|
|
gint destwidth;
|
|
gint src_row, src_col;
|
|
gint bytes, b;
|
|
gint width, height;
|
|
gint orig_width, orig_height;
|
|
gdouble x_rat, y_rat;
|
|
gdouble x_cum, y_cum;
|
|
gdouble x_last, y_last;
|
|
gdouble * x_frac, y_frac, tot_frac;
|
|
gint i, j;
|
|
gint frac;
|
|
gint advance_dest;
|
|
|
|
orig_width = srcPR->w / subsample;
|
|
orig_height = srcPR->h / subsample;
|
|
width = destPR->w;
|
|
height = destPR->h;
|
|
|
|
#if 0
|
|
g_printerr ("subsample_region: (%d x %d) -> (%d x %d)\n",
|
|
orig_width, orig_height, width, height);
|
|
#endif
|
|
|
|
/* Some calculations... */
|
|
bytes = destPR->bytes;
|
|
destwidth = destPR->rowstride;
|
|
|
|
/* the data pointers... */
|
|
src = g_new (guchar, orig_width * bytes);
|
|
dest = destPR->data;
|
|
|
|
/* find the ratios of old x to new x and old y to new y */
|
|
x_rat = (gdouble) orig_width / (gdouble) width;
|
|
y_rat = (gdouble) orig_height / (gdouble) height;
|
|
|
|
/* allocate an array to help with the calculations */
|
|
row = g_new (gdouble, width * bytes);
|
|
x_frac = g_new (gdouble, width + orig_width);
|
|
|
|
/* initialize the pre-calculated pixel fraction array */
|
|
src_col = 0;
|
|
x_cum = (gdouble) src_col;
|
|
x_last = x_cum;
|
|
|
|
for (i = 0; i < width + orig_width; i++)
|
|
{
|
|
if (x_cum + x_rat <= (src_col + 1 + EPSILON))
|
|
{
|
|
x_cum += x_rat;
|
|
x_frac[i] = x_cum - x_last;
|
|
}
|
|
else
|
|
{
|
|
src_col ++;
|
|
x_frac[i] = src_col - x_last;
|
|
}
|
|
x_last += x_frac[i];
|
|
}
|
|
|
|
/* clear the "row" array */
|
|
memset (row, 0, sizeof (gdouble) * width * bytes);
|
|
|
|
/* counters... */
|
|
src_row = 0;
|
|
y_cum = (gdouble) src_row;
|
|
y_last = y_cum;
|
|
|
|
pixel_region_get_row (srcPR,
|
|
0, src_row * subsample, orig_width * subsample,
|
|
src, subsample);
|
|
|
|
/* Scale the selected region */
|
|
for (i = 0; i < height; )
|
|
{
|
|
src_col = 0;
|
|
x_cum = (gdouble) src_col;
|
|
|
|
/* determine the fraction of the src pixel we are using for y */
|
|
if (y_cum + y_rat <= (src_row + 1 + EPSILON))
|
|
{
|
|
y_cum += y_rat;
|
|
y_frac = y_cum - y_last;
|
|
advance_dest = TRUE;
|
|
}
|
|
else
|
|
{
|
|
src_row ++;
|
|
y_frac = src_row - y_last;
|
|
advance_dest = FALSE;
|
|
}
|
|
|
|
y_last += y_frac;
|
|
|
|
s = src;
|
|
r = row;
|
|
|
|
frac = 0;
|
|
j = width;
|
|
|
|
while (j)
|
|
{
|
|
tot_frac = x_frac[frac++] * y_frac;
|
|
|
|
for (b = 0; b < bytes; b++)
|
|
r[b] += s[b] * tot_frac;
|
|
|
|
/* increment the destination */
|
|
if (x_cum + x_rat <= (src_col + 1 + EPSILON))
|
|
{
|
|
r += bytes;
|
|
x_cum += x_rat;
|
|
j--;
|
|
}
|
|
|
|
/* increment the source */
|
|
else
|
|
{
|
|
s += bytes;
|
|
src_col++;
|
|
}
|
|
}
|
|
|
|
if (advance_dest)
|
|
{
|
|
tot_frac = 1.0 / (x_rat * y_rat);
|
|
|
|
/* copy "row" to "dest" */
|
|
d = dest;
|
|
r = row;
|
|
|
|
j = width;
|
|
while (j--)
|
|
{
|
|
b = bytes;
|
|
while (b--)
|
|
*d++ = (guchar) (*r++ * tot_frac + 0.5);
|
|
}
|
|
|
|
dest += destwidth;
|
|
|
|
/* clear the "row" array */
|
|
memset (row, 0, sizeof (gdouble) * destwidth);
|
|
|
|
i++;
|
|
}
|
|
else
|
|
{
|
|
pixel_region_get_row (srcPR,
|
|
0, src_row * subsample, orig_width * subsample,
|
|
src, subsample);
|
|
}
|
|
}
|
|
|
|
/* free up temporary arrays */
|
|
g_free (row);
|
|
g_free (x_frac);
|
|
g_free (src);
|
|
}
|
|
|
|
|
|
/* Lanczos */
|
|
static inline void
|
|
mirror_edge (guchar *row,
|
|
gint width,
|
|
gint bytes)
|
|
{
|
|
guchar *ptr;
|
|
gint i, k;
|
|
|
|
ptr = row - LANCZOS_WIDTH * bytes;
|
|
|
|
for (i = LANCZOS_WIDTH; i > 0; i--)
|
|
{
|
|
for (k = 0 ;k < bytes; k++, ptr++)
|
|
*ptr = row[i * bytes + k];
|
|
}
|
|
|
|
ptr = row + width * bytes;
|
|
|
|
for (i = 1; i <= LANCZOS_WIDTH; i++)
|
|
{
|
|
for (k = 0; k < bytes; k++, ptr++)
|
|
*ptr = ptr[-i * bytes];
|
|
}
|
|
}
|
|
|
|
static inline gdouble
|
|
sinc (gdouble x)
|
|
{
|
|
gdouble y = x * G_PI;
|
|
|
|
if (ABS (x) < EPSILON)
|
|
return 1.0;
|
|
|
|
return sin (y) / y;
|
|
}
|
|
|
|
static inline gdouble
|
|
lanczos_sum (guchar **src,
|
|
const gdouble *l,
|
|
gint row,
|
|
gint col,
|
|
gint bytes,
|
|
gint byte)
|
|
{
|
|
gdouble sum = 0;
|
|
gint k;
|
|
guchar *ptr;
|
|
|
|
/* LANCZOS_WIDTH = 2
|
|
l[*] = kernel coefficients
|
|
|
|
/ col =5
|
|
row = abc[defg]hij
|
|
| \ col + LANCZOS_WIDTH
|
|
\ _____col - LANCZOS_WIDTH +1
|
|
|
|
sum = d.l[0] +e.l[1] + f.l[2] + g.l[3]
|
|
*/
|
|
|
|
ptr = src[row] - LANCZOS_WIDTH * bytes;
|
|
|
|
for (k = 0 ; k < LANCZOS_WIDTH2 ; k++ )
|
|
sum += l[k] * ptr[(k + col) * bytes + byte];
|
|
|
|
return sum;
|
|
}
|
|
|
|
static inline gdouble
|
|
lanczos_sum_mul (guchar **src,
|
|
const gdouble *l,
|
|
gint row,
|
|
gint col,
|
|
gint bytes,
|
|
gint byte,
|
|
gint alpha)
|
|
{
|
|
gdouble sum = 0;
|
|
gint k;
|
|
guchar *ptr;
|
|
|
|
ptr = src[row] - LANCZOS_WIDTH * bytes;
|
|
|
|
for (k = 0 ; k < LANCZOS_WIDTH2; k++)
|
|
sum += l[k] * ptr[(k+col) * bytes + byte] * ptr[(k+col) * bytes + alpha];
|
|
|
|
return sum;
|
|
}
|
|
|
|
static gboolean
|
|
inv_lin_trans (const gdouble *t,
|
|
gdouble *it)
|
|
{
|
|
gdouble d; /* Determinant */
|
|
|
|
d = (t[0] * t[4]) - (t[1] * t[3]);
|
|
|
|
if (fabs(d) < EPSILON )
|
|
return FALSE;
|
|
|
|
it[0] = t[4] / d;
|
|
it[1] = -t[1] / d;
|
|
it[2] = (( t[1] * t[5]) - (t[2] * t[4])) / d;
|
|
it[3] = -t[3] / d;
|
|
it[4] = t[0] / d;
|
|
it[5] = (( t[2] * t[3]) - (t[0] * t[5])) / d;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static gdouble *
|
|
kernel_lanczos (void)
|
|
{
|
|
gdouble *kernel ;
|
|
gdouble x = 0.0;
|
|
gdouble dx = (gdouble) LANCZOS_WIDTH / (gdouble) (LANCZOS_SAMPLES - 1);
|
|
gint i;
|
|
|
|
kernel = g_new (gdouble, LANCZOS_SAMPLES);
|
|
|
|
for (i = 0; i < LANCZOS_SAMPLES; i++)
|
|
{
|
|
kernel[i] = ((ABS (x) < LANCZOS_WIDTH) ?
|
|
(sinc (x) * sinc (x / LANCZOS_WIDTH)) : 0.0);
|
|
x += dx;
|
|
}
|
|
|
|
return kernel;
|
|
}
|
|
|
|
static void
|
|
scale_region_lanczos (PixelRegion *srcPR,
|
|
PixelRegion *dstPR)
|
|
{
|
|
gdouble *kernel=NULL; /* Lanczos kernel */
|
|
gdouble lu[LANCZOS_WIDTH2], /* Lanczos sample value */
|
|
lv[LANCZOS_WIDTH2]; /* Lanczos sample value */
|
|
gint su, sv; /* Lanczos kernel position */
|
|
gdouble lusum, lvsum, weight; /* Lanczos weighting vars */
|
|
|
|
gint bytes, alpha, row; /* Image properties */
|
|
|
|
gint src_width, src_height; /* Source width height */
|
|
gint src_rowstride; /* Source rowstride (= dest) */
|
|
gint srcrow; /* counter for read src rows */
|
|
guchar *src_buf=NULL; /* Holds sliding window buffer */
|
|
guchar *src[LANCZOS_WIDTH2]; /* Array for sliding window pointers */
|
|
|
|
gint dst_width, dst_height; /* Destination width height */
|
|
gint dst_rowstride; /* Destination rowstride */
|
|
guchar *dst_buf=NULL; /* Pointers to image data */
|
|
|
|
gdouble du ,dv; /* Pos in source image (double) */
|
|
gint u, v; /* Pos in source image (integer part)*/
|
|
gint x, y; /* Position in destination image */
|
|
gint i, j, byte; /* loop vars to fill source window */
|
|
|
|
gdouble sx, sy; /* Scalefactor */
|
|
gdouble trans[6],itrans[6]; /* Scale transformations */
|
|
gdouble aval, arecip; /* Handle alpha values */
|
|
gdouble newval; /* New interpolated RGB value */
|
|
|
|
|
|
/* Initialize variables */
|
|
dst_width = dstPR->w;
|
|
dst_height = dstPR->h;
|
|
bytes = dstPR->bytes;
|
|
src_width = srcPR->w;
|
|
src_height = srcPR->h;
|
|
|
|
/* Pure scaling */
|
|
sx = (gdouble) dst_width / (gdouble) src_width;
|
|
sy = (gdouble) dst_height / (gdouble) src_height;
|
|
|
|
for ( i = 0 ; i < 6 ; i++ )
|
|
trans[i] = 0.0;
|
|
|
|
trans[0] = sx;
|
|
trans[4] = sy;
|
|
inv_lin_trans (trans, itrans);
|
|
|
|
/* Calculate kernel */
|
|
kernel = kernel_lanczos ();
|
|
|
|
/*
|
|
allocate buffer for width + 2 * LANCZOS_WIDTH
|
|
We need 2* LANCZOS_WIDTH lines for sliding window
|
|
buffer with edge mirror
|
|
*/
|
|
src_rowstride = (src_width + LANCZOS_WIDTH2) * bytes;
|
|
src_buf = g_new0 (guchar, LANCZOS_WIDTH2 * src_rowstride);
|
|
|
|
/*
|
|
fill src pointers with correct offset
|
|
offset is needed for pixel_region_get_row
|
|
*/
|
|
for (i = 0; i < LANCZOS_WIDTH2; i++)
|
|
src[i]=src_buf + i * src_rowstride + LANCZOS_WIDTH * bytes;
|
|
|
|
/* allocate buffer for 1 destination row */
|
|
dst_rowstride = dst_width * bytes;
|
|
dst_buf = g_new0 (guchar, dst_rowstride);
|
|
|
|
/* fill buffer with first lines */
|
|
for (i = 0; i < LANCZOS_WIDTH2; i++)
|
|
{
|
|
pixel_region_get_row (srcPR,
|
|
0, ABS (LANCZOS_WIDTH - i - 1),
|
|
src_width, src[i], 1);
|
|
mirror_edge (src[i], src_width, bytes);
|
|
}
|
|
|
|
for (srcrow = 0, y = 0; y < dst_height; y++)
|
|
{
|
|
pixel_region_get_row (dstPR, 0, y, dst_width, dst_buf, 1);
|
|
for (x = 0; x < dst_width; x++)
|
|
{
|
|
du = itrans[0] * (gdouble) x + itrans[1] * (gdouble) y + itrans[2];
|
|
dv = itrans[3] * (gdouble) x + itrans[4] * (gdouble) y + itrans[5];
|
|
u = (gint) du;
|
|
v = (gint) dv;
|
|
|
|
/* make sure we have enough data available */
|
|
if (srcrow != v )
|
|
{
|
|
if (v > srcrow)
|
|
{
|
|
for ( ; srcrow < v; )
|
|
{
|
|
srcrow++;
|
|
|
|
row = srcrow + LANCZOS_WIDTH;
|
|
if (row >= src_height)
|
|
row = src_height - (row - src_height + 1);
|
|
|
|
rotate_pointers (src, LANCZOS_WIDTH2);
|
|
pixel_region_get_row (srcPR,
|
|
0, row,
|
|
src_width, src[LANCZOS_WIDTH2-1],
|
|
1);
|
|
mirror_edge (src[LANCZOS_WIDTH2 - 1], src_width, bytes);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for ( ; srcrow > v; )
|
|
{
|
|
rotate_pointers (src, LANCZOS_WIDTH2);
|
|
pixel_region_get_row (srcPR,
|
|
0, --srcrow,
|
|
src_width, src[LANCZOS_WIDTH2-1],
|
|
1);
|
|
mirror_edge (src[LANCZOS_WIDTH2 - 1], src_width, bytes);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* get weight for fractional error */
|
|
su = (gint) ((du-u) * LANCZOS_SPP);
|
|
sv = (gint) ((dv-v) * LANCZOS_SPP);
|
|
|
|
for (lusum = lvsum = i = 0, j = LANCZOS_WIDTH - 1;
|
|
j >= -LANCZOS_WIDTH;
|
|
j--, i++)
|
|
{
|
|
lusum += lu[i] = kernel[ABS (j * LANCZOS_SPP + su)];
|
|
lvsum += lv[i] = kernel[ABS (j * LANCZOS_SPP + sv)];
|
|
}
|
|
|
|
weight = (lusum * lvsum);
|
|
|
|
if (pixel_region_has_alpha (srcPR))
|
|
{
|
|
alpha = bytes - 1;
|
|
|
|
for (aval = 0, row = 0; row < LANCZOS_WIDTH2; row++)
|
|
aval += lv[row] * lanczos_sum (src, lu, row, u, bytes, alpha);
|
|
|
|
/* calculate alpha of result */
|
|
aval /= weight;
|
|
|
|
if (aval <= 0.0)
|
|
{
|
|
arecip = 0.0;
|
|
dst_buf[x * bytes + alpha] = 0;
|
|
}
|
|
else if (aval > 255.0)
|
|
{
|
|
arecip = 1.0 / aval;
|
|
dst_buf[x * bytes + alpha] = 255;
|
|
}
|
|
else
|
|
{
|
|
arecip = 1.0 / aval;
|
|
dst_buf[x * bytes + alpha] = RINT (aval);
|
|
}
|
|
|
|
for (byte = 0; byte < alpha; byte++)
|
|
{
|
|
for (newval = 0, row = 0; row < LANCZOS_WIDTH2; row ++)
|
|
newval += lv[row] * lanczos_sum_mul (src, lu,
|
|
row, u, bytes,
|
|
byte, alpha);
|
|
|
|
newval *= arecip;
|
|
dst_buf[x * bytes + byte] = CLAMP (newval, 0, 255);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (byte = 0; byte < bytes; byte++)
|
|
{
|
|
for (newval = 0, row = 0 ; row < LANCZOS_WIDTH2 ; row++ )
|
|
newval += lv[row] * lanczos_sum (src, lu,
|
|
row, u, bytes, byte);
|
|
newval /= weight;
|
|
dst_buf[x * bytes + byte] = CLAMP ((gint) newval, 0, 255);
|
|
}
|
|
}
|
|
}
|
|
|
|
pixel_region_set_row (dstPR, 0, y , dst_width, dst_buf);
|
|
}
|
|
|
|
g_free (src_buf);
|
|
g_free (dst_buf);
|
|
g_free (kernel);
|
|
}
|
|
|