gimp/plug-ins/common/blur-gauss.c

1663 lines
47 KiB
C

/* GIMP - The GNU Image Manipulation Program
* Copyright (C) 1995 Spencer Kimball and Peter Mattis
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "config.h"
#include <string.h>
#include <libgimp/gimp.h>
#include <libgimp/gimpui.h>
#include "libgimp/stdplugins-intl.h"
#define GAUSS_PROC "plug-in-gauss"
#define GAUSS_IIR_PROC "plug-in-gauss-iir"
#define GAUSS_IIR2_PROC "plug-in-gauss-iir2"
#define GAUSS_RLE_PROC "plug-in-gauss-rle"
#define GAUSS_RLE2_PROC "plug-in-gauss-rle2"
#define PLUG_IN_BINARY "blur-gauss"
typedef enum
{
BLUR_IIR,
BLUR_RLE
} BlurMethod;
typedef struct
{
gdouble horizontal;
gdouble vertical;
BlurMethod method;
} BlurValues;
/* Declare local functions.
*/
static void query (void);
static void run (const gchar *name,
gint nparams,
const GimpParam *param,
gint *nreturn_vals,
GimpParam **return_vals);
static void gauss (GimpDrawable *drawable,
gdouble horizontal,
gdouble vertical,
BlurMethod method,
GtkWidget *preview);
static void update_preview (GtkWidget *preview,
GtkWidget *size);
/*
* Gaussian blur interface
*/
static gboolean gauss_dialog (gint32 image_ID,
GimpDrawable *drawable);
/*
* Gaussian blur helper functions
*/
static void find_iir_constants (gdouble n_p[],
gdouble n_m[],
gdouble d_p[],
gdouble d_m[],
gdouble bd_p[],
gdouble bd_m[],
gdouble std_dev);
static void transfer_pixels (const gdouble *src1,
const gdouble *src2,
guchar *dest,
gint bytes,
gint width);
static void make_rle_curve (gdouble sigma,
gint **p_curve,
gint *p_length,
gint **p_sum,
gint *p_total);
static void free_rle_curve (gint *curve,
gint length,
gint *sum);
static inline gint run_length_encode (const guchar *src,
gint *repeat,
gint *dest,
gint bytes,
gint width,
gint border,
gboolean pack);
const GimpPlugInInfo PLUG_IN_INFO =
{
NULL, /* init_proc */
NULL, /* quit_proc */
query, /* query_proc */
run, /* run_proc */
};
static BlurValues bvals =
{
5.0, /* x radius */
5.0, /* y radius */
BLUR_RLE
};
MAIN ()
static void
query (void)
{
static const GimpParamDef args[] =
{
{ GIMP_PDB_INT32, "run-mode", "Interactive, non-interactive" },
{ GIMP_PDB_IMAGE, "image", "Input image" },
{ GIMP_PDB_DRAWABLE, "drawable", "Input drawable" },
{ GIMP_PDB_FLOAT, "horizontal", "Horizontal radius of gaussian blur (in pixels, > 0.0)" },
{ GIMP_PDB_FLOAT, "vertical", "Vertical radius of gaussian blur (in pixels, > 0.0)" },
{ GIMP_PDB_INT32, "method", "IIR (0) or RLE (1)" }
};
static const GimpParamDef args1[] =
{
{ GIMP_PDB_INT32, "run-mode", "Interactive, non-interactive" },
{ GIMP_PDB_IMAGE, "image", "Input image (unused)" },
{ GIMP_PDB_DRAWABLE, "drawable", "Input drawable" },
{ GIMP_PDB_FLOAT, "radius", "Radius of gaussian blur (in pixels, > 0.0)" },
{ GIMP_PDB_INT32, "horizontal", "Blur in horizontal direction" },
{ GIMP_PDB_INT32, "vertical", "Blur in vertical direction" }
};
static const GimpParamDef args2[] =
{
{ GIMP_PDB_INT32, "run-mode", "Interactive, non-interactive" },
{ GIMP_PDB_IMAGE, "image", "Input image" },
{ GIMP_PDB_DRAWABLE, "drawable", "Input drawable" },
{ GIMP_PDB_FLOAT, "horizontal", "Horizontal radius of gaussian blur (in pixels, > 0.0)" },
{ GIMP_PDB_FLOAT, "vertical", "Vertical radius of gaussian blur (in pixels, > 0.0)" }
};
gimp_install_procedure (GAUSS_PROC,
N_("Simplest, most commonly used way of blurring"),
"Applies a gaussian blur to the drawable, with "
"specified radius of affect. The standard deviation "
"of the normal distribution used to modify pixel "
"values is calculated based on the supplied radius. "
"Horizontal and vertical blurring can be "
"independently invoked by specifying only one to "
"run. The IIR gaussian blurring works best for "
"large radius values and for images which are not "
"computer-generated.",
"Spencer Kimball & Peter Mattis",
"Spencer Kimball & Peter Mattis",
"1995-1996",
N_("_Gaussian Blur..."),
"RGB*, GRAY*",
GIMP_PLUGIN,
G_N_ELEMENTS (args), 0,
args, NULL);
gimp_install_procedure (GAUSS_IIR_PROC,
N_("Apply a gaussian blur"),
"Applies a gaussian blur to the drawable, with "
"specified radius of affect. The standard deviation "
"of the normal distribution used to modify pixel "
"values is calculated based on the supplied radius. "
"Horizontal and vertical blurring can be "
"independently invoked by specifying only one to "
"run. The IIR gaussian blurring works best for "
"large radius values and for images which are not "
"computer-generated.",
"Spencer Kimball & Peter Mattis",
"Spencer Kimball & Peter Mattis",
"1995-1996",
NULL,
"RGB*, GRAY*",
GIMP_PLUGIN,
G_N_ELEMENTS (args1), 0,
args1, NULL);
gimp_install_procedure (GAUSS_IIR2_PROC,
N_("Apply a gaussian blur"),
"Applies a gaussian blur to the drawable, with "
"specified radius of affect. The standard deviation "
"of the normal distribution used to modify pixel "
"values is calculated based on the supplied radius. "
"This radius can be specified indepently on for the "
"horizontal and the vertical direction. The IIR "
"gaussian blurring works best for large radius "
"values and for images which are not "
"computer-generated.",
"Spencer Kimball, Peter Mattis & Sven Neumann",
"Spencer Kimball, Peter Mattis & Sven Neumann",
"1995-2000",
NULL,
"RGB*, GRAY*",
GIMP_PLUGIN,
G_N_ELEMENTS (args2), 0,
args2, NULL);
gimp_install_procedure (GAUSS_RLE_PROC,
N_("Apply a gaussian blur"),
"Applies a gaussian blur to the drawable, with "
"specified radius of affect. The standard deviation "
"of the normal distribution used to modify pixel "
"values is calculated based on the supplied radius. "
"Horizontal and vertical blurring can be "
"independently invoked by specifying only one to "
"run. The RLE gaussian blurring performs most "
"efficiently on computer-generated images or images "
"with large areas of constant intensity.",
"Spencer Kimball & Peter Mattis",
"Spencer Kimball & Peter Mattis",
"1995-1996",
NULL,
"RGB*, GRAY*",
GIMP_PLUGIN,
G_N_ELEMENTS (args1), 0,
args1, NULL);
gimp_install_procedure (GAUSS_RLE2_PROC,
N_("Apply a gaussian blur"),
"Applies a gaussian blur to the drawable, with "
"specified radius of affect. The standard deviation "
"of the normal distribution used to modify pixel "
"values is calculated based on the supplied radius. "
"This radius can be specified indepently on for the "
"horizontal and the vertical direction. The RLE "
"gaussian blurring performs most efficiently on "
"computer-generated images or images with large "
"areas of constant intensity.",
"Spencer Kimball, Peter Mattis & Sven Neumann",
"Spencer Kimball, Peter Mattis & Sven Neumann",
"1995-2000",
NULL,
"RGB*, GRAY*",
GIMP_PLUGIN,
G_N_ELEMENTS (args2), 0,
args2, NULL);
gimp_plugin_menu_register (GAUSS_PROC, "<Image>/Filters/Blur");
}
static void
run (const gchar *name,
gint nparams,
const GimpParam *param,
gint *nreturn_vals,
GimpParam **return_vals)
{
static GimpParam values[1];
gint32 image_ID;
GimpDrawable *drawable;
GimpRunMode run_mode;
GimpPDBStatusType status = GIMP_PDB_SUCCESS;
gdouble radius = 0.;
run_mode = param[0].data.d_int32;
INIT_I18N ();
*nreturn_vals = 1;
*return_vals = values;
values[0].type = GIMP_PDB_STATUS;
values[0].data.d_status = status;
/* Get the specified image and drawable */
image_ID = param[1].data.d_image;
drawable = gimp_drawable_get (param[2].data.d_drawable);
/* set the tile cache size so that the gaussian blur works well */
gimp_tile_cache_ntiles (2*
(MAX (drawable->width, drawable->height) /
gimp_tile_width () + 1));
if (strcmp (name, GAUSS_PROC) == 0)
{
switch (run_mode)
{
case GIMP_RUN_INTERACTIVE:
/* Possibly retrieve data */
gimp_get_data (GAUSS_PROC, &bvals);
/* First acquire information with a dialog */
if (! gauss_dialog (image_ID, drawable))
return;
break;
case GIMP_RUN_NONINTERACTIVE:
/* Make sure all the arguments are there! */
if (nparams != 6)
status = GIMP_PDB_CALLING_ERROR;
if (status == GIMP_PDB_SUCCESS)
{
bvals.horizontal = param[3].data.d_float;
bvals.vertical = param[4].data.d_float;
bvals.method = param[5].data.d_int32;
}
if (status == GIMP_PDB_SUCCESS &&
(bvals.horizontal <= 0.0 && bvals.vertical <= 0.0))
status = GIMP_PDB_CALLING_ERROR;
break;
case GIMP_RUN_WITH_LAST_VALS:
/* Possibly retrieve data */
gimp_get_data (GAUSS_PROC, &bvals);
break;
default:
break;
}
}
else if (strcmp (name, GAUSS_IIR_PROC) == 0)
{
if (nparams != 6)
status = GIMP_PDB_CALLING_ERROR;
if (status == GIMP_PDB_SUCCESS)
{
radius = param[3].data.d_float;
bvals.horizontal = (param[4].data.d_int32) ? radius : 0.;
bvals.vertical = (param[5].data.d_int32) ? radius : 0.;
bvals.method = BLUR_IIR;
}
if (radius <= 0.0)
status = GIMP_PDB_CALLING_ERROR;
if (run_mode == GIMP_RUN_INTERACTIVE)
{
if (! gauss_dialog (image_ID, drawable))
return;
}
}
else if (strcmp (name, GAUSS_IIR2_PROC) == 0)
{
if (nparams != 5)
status = GIMP_PDB_CALLING_ERROR;
if (status == GIMP_PDB_SUCCESS)
{
bvals.horizontal = param[3].data.d_float;
bvals.vertical = param[4].data.d_float;
bvals.method = BLUR_IIR;
}
if (bvals.horizontal <= 0.0 && bvals.vertical <= 0.0)
status = GIMP_PDB_CALLING_ERROR;
if (run_mode == GIMP_RUN_INTERACTIVE)
{
if (! gauss_dialog (image_ID, drawable))
return;
}
}
else if (strcmp (name, GAUSS_RLE_PROC) == 0)
{
if (nparams != 6)
status = GIMP_PDB_CALLING_ERROR;
if (status == GIMP_PDB_SUCCESS)
{
radius = param[3].data.d_float;
bvals.horizontal = (param[4].data.d_int32) ? radius : 0.;
bvals.vertical = (param[5].data.d_int32) ? radius : 0.;
bvals.method = BLUR_RLE;
}
if (radius <= 0.0)
status = GIMP_PDB_CALLING_ERROR;
if (run_mode == GIMP_RUN_INTERACTIVE)
{
if (! gauss_dialog (image_ID, drawable))
return;
}
}
else if (strcmp (name, GAUSS_RLE2_PROC) == 0)
{
if (nparams != 5)
status = GIMP_PDB_CALLING_ERROR;
if (status == GIMP_PDB_SUCCESS)
{
bvals.horizontal = param[3].data.d_float;
bvals.vertical = param[4].data.d_float;
bvals.method = BLUR_RLE;
}
if (bvals.horizontal <= 0.0 && bvals.vertical <= 0.0)
status = GIMP_PDB_CALLING_ERROR;
if (run_mode == GIMP_RUN_INTERACTIVE)
{
if (! gauss_dialog (image_ID, drawable))
return;
}
}
else
status = GIMP_PDB_CALLING_ERROR;
if (status == GIMP_PDB_SUCCESS)
{
/* Make sure that the drawable is gray or RGB color */
if (gimp_drawable_is_rgb (drawable->drawable_id) ||
gimp_drawable_is_gray (drawable->drawable_id))
{
gimp_progress_init (_("Gaussian Blur"));
/* run the gaussian blur */
gauss (drawable,
bvals.horizontal, bvals.vertical,
bvals.method,
NULL);
/* Store data */
if (run_mode == GIMP_RUN_INTERACTIVE)
gimp_set_data (GAUSS_PROC, &bvals, sizeof (BlurValues));
if (run_mode != GIMP_RUN_NONINTERACTIVE)
gimp_displays_flush ();
}
else
{
g_message (_("Cannot operate on indexed color images."));
status = GIMP_PDB_EXECUTION_ERROR;
}
gimp_drawable_detach (drawable);
}
values[0].data.d_status = status;
}
static gboolean
gauss_dialog (gint32 image_ID,
GimpDrawable *drawable)
{
GtkWidget *dialog;
GtkWidget *main_vbox;
GtkWidget *frame;
GtkWidget *size;
GtkWidget *hbox;
GtkWidget *button;
GtkWidget *preview;
GimpUnit unit;
gdouble xres;
gdouble yres;
gboolean run;
gimp_ui_init (PLUG_IN_BINARY, FALSE);
dialog = gimp_dialog_new (_("Gaussian Blur"), PLUG_IN_BINARY,
NULL, 0,
gimp_standard_help_func, GAUSS_PROC,
GTK_STOCK_CANCEL, GTK_RESPONSE_CANCEL,
GTK_STOCK_OK, GTK_RESPONSE_OK,
NULL);
gtk_dialog_set_alternative_button_order (GTK_DIALOG (dialog),
GTK_RESPONSE_OK,
GTK_RESPONSE_CANCEL,
-1);
gimp_window_set_transient (GTK_WINDOW (dialog));
main_vbox = gtk_vbox_new (FALSE, 12);
gtk_container_set_border_width (GTK_CONTAINER (main_vbox), 12);
gtk_container_add (GTK_CONTAINER (GTK_DIALOG (dialog)->vbox), main_vbox);
gtk_widget_show (main_vbox);
preview = gimp_drawable_preview_new (drawable, NULL);
gtk_box_pack_start (GTK_BOX (main_vbox), preview, TRUE, TRUE, 0);
gtk_widget_show (preview);
hbox = gtk_hbox_new (FALSE, 12);
gtk_box_pack_start (GTK_BOX (main_vbox), hbox, FALSE, FALSE, 0);
gtk_widget_show (hbox);
/* parameter settings */
frame = gimp_frame_new (_("Blur Radius"));
gtk_box_pack_start (GTK_BOX (hbox), frame, FALSE, FALSE, 0);
gtk_widget_show (frame);
/* Get the image resolution and unit */
gimp_image_get_resolution (image_ID, &xres, &yres);
unit = gimp_image_get_unit (image_ID);
size = gimp_coordinates_new (unit, "%a", TRUE, FALSE, -1,
GIMP_SIZE_ENTRY_UPDATE_SIZE,
(bvals.horizontal == bvals.vertical),
FALSE,
_("_Horizontal:"), bvals.horizontal, xres,
0, 8 * MAX (drawable->width, drawable->height),
0, 0,
_("_Vertical:"), bvals.vertical, yres,
0, 8 * MAX (drawable->width, drawable->height),
0, 0);
gtk_container_set_border_width (GTK_CONTAINER (size), 6);
gtk_container_add (GTK_CONTAINER (frame), size);
gtk_widget_show (size);
gimp_size_entry_set_pixel_digits (GIMP_SIZE_ENTRY (size), 1);
/* FIXME: Shouldn't need two signal connections here,
gimp_coordinates_new() seems to be severily broken. */
g_signal_connect_swapped (size, "value-changed",
G_CALLBACK (gimp_preview_invalidate),
preview);
g_signal_connect_swapped (size, "refval-changed",
G_CALLBACK (gimp_preview_invalidate),
preview);
g_signal_connect (preview, "invalidated",
G_CALLBACK (update_preview),
size);
frame = gimp_int_radio_group_new (TRUE, _("Blur Method"),
G_CALLBACK (gimp_radio_button_update),
&bvals.method, bvals.method,
_("_IIR"), BLUR_IIR, &button,
_("_RLE"), BLUR_RLE, NULL,
NULL);
g_signal_connect_swapped (button, "toggled",
G_CALLBACK (gimp_preview_invalidate),
preview);
gtk_box_pack_start (GTK_BOX (hbox), frame, FALSE, FALSE, 0);
gtk_widget_show (frame);
gtk_widget_show (dialog);
run = (gimp_dialog_run (GIMP_DIALOG (dialog)) == GTK_RESPONSE_OK);
if (run)
{
bvals.horizontal = gimp_size_entry_get_refval (GIMP_SIZE_ENTRY (size), 0);
bvals.vertical = gimp_size_entry_get_refval (GIMP_SIZE_ENTRY (size), 1);
}
gtk_widget_destroy (dialog);
return run;
}
static void
update_preview (GtkWidget *preview,
GtkWidget *size)
{
gauss (gimp_drawable_preview_get_drawable (GIMP_DRAWABLE_PREVIEW (preview)),
gimp_size_entry_get_refval (GIMP_SIZE_ENTRY (size), 0),
gimp_size_entry_get_refval (GIMP_SIZE_ENTRY (size), 1),
bvals.method,
preview);
}
/* Convert from separated to premultiplied alpha, on a single scan line. */
static void
multiply_alpha (guchar *buf,
gint width,
gint bytes)
{
gint i, j;
for (i = 0; i < width; i++, buf += bytes)
{
gdouble alpha = buf[bytes - 1] * (1.0 / 255.0);
for (j = 0; j < bytes - 1; j++)
buf[j] = ROUND (buf[j] * alpha);
}
}
/* Convert from premultiplied to separated alpha, on a single scan line. */
static void
separate_alpha (guchar *buf,
gint width,
gint bytes)
{
gint i, j;
for (i = 0; i < width; i++, buf += bytes)
{
guchar alpha = buf[bytes - 1];
switch (alpha)
{
case 0:
case 255:
break;
default:
{
gdouble recip_alpha = 255.0 / alpha;
for (j = 0; j < bytes - 1; j++)
{
gint new_val = ROUND (buf[j] * recip_alpha);
buf[j] = MIN (255, new_val);
}
}
break;
}
}
}
/*
* run_length_encode (src, rle, pix, dist, width, border, pack);
*
* Copy 'width' 8bit pixels from 'src' to 'pix' and extend both sides
* by 'border' pixels so 'pix[]' is filled from '-border' to 'width+border-1'.
*
* 'dist' is the distance between the pixels in 'src'.
*
* If 'pack' is TRUE, then 'rle' is filled with a run-length encoding
* of the pixels. In plain english, that means that rle[i] gives the
* number of times the same pixel is found pix[i], pix[i+1], ... A
* standalone pixel has a rle value of 1.
*
* The function returns the number of times 2 identical consecutive pixels
* were found.
*
* Note: The function must be inlined to insure that all tests on
* 'pack' are efficiently resolved by the compiler (they are in
* the critical loop). As a consequence, the function should
* only be called with known constant value for 'pack'. In the
* current implementation, 'pack' is always TRUE but it might be
* more efficient to have an 'adaptive' algorithm that switches
* to FALSE when the run-length is innefficient.
*/
static inline gint
run_length_encode (const guchar *src,
gint *rle,
gint *pix,
gint dist, /* distance between 2 src pixels */
gint width,
gint border,
gboolean pack)
{
gint last;
gint count = 0;
gint i = width;
gint same = 0;
src += dist * (width - 1);
if (pack)
rle += width + border - 1;
pix += width + border - 1;
last = *src;
count = 0;
/* the 'end' border */
for (i = 0; i < border; i++)
{
count++;
*pix-- = last;
if (pack)
*rle-- = count;
}
/* the real pixels */
for (i = 0; i < width; i++)
{
gint c = *src;
src -= dist;
if (pack && c==last)
{
count++;
*pix-- = last;
*rle-- = count;
same++;
}
else
{
count = 1;
last = c;
*pix-- = last;
if (pack)
*rle-- = count;
}
}
/* the start pixels */
for (i = 0; i < border; i++)
{
count++;
*pix-- = last;
if (pack)
*rle-- = count;
}
return same;
}
static void
do_encoded_lre (const gint *enc,
const gint *src,
guchar *dest,
gint width,
gint length,
gint dist,
const gint *curve,
gint ctotal,
const gint *csum)
{
gint col;
for (col = 0; col < width; col++, dest += dist)
{
const gint *rpt;
const gint *pix;
gint nb;
gint s1;
gint i;
gint val = ctotal / 2;
gint start = - length;
rpt = &enc[col + start];
pix = &src[col + start];
s1 = csum[start];
nb = rpt[0];
i = start + nb;
while (i <= length)
{
gint s2 = csum[i];
val += pix[0] * (s2-s1);
s1 = s2;
rpt = &rpt[nb];
pix = &pix[nb];
nb = rpt[0];
i += nb;
}
val += pix[0] * (csum[length] - s1);
val = val / ctotal;
*dest = MIN (val, 255);
}
}
static void
do_full_lre (const gint *src,
guchar *dest,
gint width,
gint length,
gint dist,
const gint *curve,
gint ctotal)
{
gint col;
for (col = 0; col < width; col++, dest += dist)
{
const gint *x1;
const gint *x2;
const gint *c = &curve[0];
gint i;
gint val = ctotal / 2;
x1 = x2 = &src[col];
/* The central point is a special case since it should only be
* processed ONCE
*/
val += x1[0] * c[0];
c += 1;
x1 += 1;
x2 -= 1;
i = length;
/* Processing multiple points in a single iteration should be
* faster but is not strictly required.
* Some precise benchmarking will be needed to figure out
* if this is really interesting.
*/
while (i >= 8)
{
val += (x1[0] + x2[-0]) * c[0];
val += (x1[1] + x2[-1]) * c[1];
val += (x1[2] + x2[-2]) * c[2];
val += (x1[3] + x2[-3]) * c[3];
val += (x1[4] + x2[-4]) * c[4];
val += (x1[5] + x2[-5]) * c[5];
val += (x1[6] + x2[-6]) * c[6];
val += (x1[7] + x2[-7]) * c[7];
c += 8;
x1 += 8;
x2 -= 8;
i -= 8;
}
while (i >= 4)
{
val += (x1[0] + x2[-0]) * c[0];
val += (x1[1] + x2[-1]) * c[1];
val += (x1[2] + x2[-2]) * c[2];
val += (x1[3] + x2[-3]) * c[3];
c += 4;
x1 += 4;
x2 -= 4;
i -= 4;
}
/* Only that final loop is strictly required */
while (i >= 1)
{
/* process the pixels at the distance i before and after the
* central point. They must have the same coefficient
*/
val += (x1[0] + x2[-0]) * c[0];
c += 1;
x1 += 1;
x2 -= 1;
i -= 1;
}
val = val / ctotal;
*dest = MIN (val, 255);
}
}
static void
gauss_iir (GimpDrawable *drawable,
gdouble horz,
gdouble vert,
BlurMethod method,
guchar *preview_buffer,
gint x1,
gint y1,
gint width,
gint height)
{
GimpPixelRgn src_rgn, dest_rgn;
gint bytes;
gint has_alpha;
guchar *dest;
guchar *src, *sp_p, *sp_m;
gdouble n_p[5], n_m[5];
gdouble d_p[5], d_m[5];
gdouble bd_p[5], bd_m[5];
gdouble *val_p = NULL;
gdouble *val_m = NULL;
gdouble *vp, *vm;
gint i, j;
gint row, col, b;
gint terms;
gdouble progress, max_progress;
gint initial_p[4];
gint initial_m[4];
gdouble std_dev;
gboolean direct;
gint progress_step;
direct = (preview_buffer == NULL);
bytes = drawable->bpp;
has_alpha = gimp_drawable_has_alpha (drawable->drawable_id);
val_p = g_new (gdouble, MAX (width, height) * bytes);
val_m = g_new (gdouble, MAX (width, height) * bytes);
src = g_new (guchar, MAX (width, height) * bytes);
dest = g_new (guchar, MAX (width, height) * bytes);
gimp_pixel_rgn_init (&src_rgn,
drawable, 0, 0, drawable->width, drawable->height,
FALSE, FALSE);
if (direct)
{
gimp_pixel_rgn_init (&dest_rgn,
drawable, 0, 0, drawable->width, drawable->height,
TRUE, TRUE);
}
progress = 0.0;
max_progress = (horz <= 0.0) ? 0 : width * height * horz;
max_progress += (vert <= 0.0) ? 0 : width * height * vert;
/* First the vertical pass */
if (vert > 0.0)
{
vert = fabs (vert) + 1.0;
std_dev = sqrt (-(vert * vert) / (2 * log (1.0 / 255.0)));
/* We do not want too many progress updates because they
* can slow down the processing significantly for very
* large images
*/
progress_step = width / 16;
if (progress_step < 5)
progress_step = 5;
/* derive the constants for calculating the gaussian
* from the std dev
*/
find_iir_constants (n_p, n_m, d_p, d_m, bd_p, bd_m, std_dev);
for (col = 0; col < width; col++)
{
memset (val_p, 0, height * bytes * sizeof (gdouble));
memset (val_m, 0, height * bytes * sizeof (gdouble));
gimp_pixel_rgn_get_col (&src_rgn, src, col + x1, y1, height);
if (has_alpha)
multiply_alpha (src, height, bytes);
sp_p = src;
sp_m = src + (height - 1) * bytes;
vp = val_p;
vm = val_m + (height - 1) * bytes;
/* Set up the first vals */
for (i = 0; i < bytes; i++)
{
initial_p[i] = sp_p[i];
initial_m[i] = sp_m[i];
}
for (row = 0; row < height; row++)
{
gdouble *vpptr, *vmptr;
terms = (row < 4) ? row : 4;
for (b = 0; b < bytes; b++)
{
vpptr = vp + b; vmptr = vm + b;
for (i = 0; i <= terms; i++)
{
*vpptr += n_p[i] * sp_p[(-i * bytes) + b] - d_p[i] * vp[(-i * bytes) + b];
*vmptr += n_m[i] * sp_m[(i * bytes) + b] - d_m[i] * vm[(i * bytes) + b];
}
for (j = i; j <= 4; j++)
{
*vpptr += (n_p[j] - bd_p[j]) * initial_p[b];
*vmptr += (n_m[j] - bd_m[j]) * initial_m[b];
}
}
sp_p += bytes;
sp_m -= bytes;
vp += bytes;
vm -= bytes;
}
transfer_pixels (val_p, val_m, dest, bytes, height);
if (has_alpha)
separate_alpha (dest, height, bytes);
if (direct)
{
gimp_pixel_rgn_set_col(&dest_rgn, dest, col + x1, y1, height);
progress += height * vert;
if ((col % progress_step) == 0)
gimp_progress_update (progress / max_progress);
}
else
{
for (row = 0; row < height; row++)
memcpy (preview_buffer + (row * width + col) * bytes,
dest + row * bytes,
bytes);
}
}
/* prepare for the horizontal pass */
gimp_pixel_rgn_init (&src_rgn,
drawable,
0, 0,
drawable->width, drawable->height,
FALSE, TRUE);
}
else if (!direct)
{
gimp_pixel_rgn_get_rect (&src_rgn,
preview_buffer,
x1, y1,
width, height);
}
/* Now the horizontal pass */
if (horz > 0.0)
{
/* We do not want too many progress updates because they
* can slow down the processing significantly for very
* large images
*/
progress_step = height / 16;
if (progress_step < 5)
progress_step = 5;
horz = fabs (horz) + 1.0;
if (horz != vert)
{
std_dev = sqrt (-(horz * horz) / (2 * log (1.0 / 255.0)));
/* derive the constants for calculating the gaussian
* from the std dev
*/
find_iir_constants (n_p, n_m, d_p, d_m, bd_p, bd_m, std_dev);
}
for (row = 0; row < height; row++)
{
memset (val_p, 0, width * bytes * sizeof (gdouble));
memset (val_m, 0, width * bytes * sizeof (gdouble));
if (direct)
{
gimp_pixel_rgn_get_row (&src_rgn, src, x1, row + y1, width);
}
else
{
memcpy (src,
preview_buffer + row * width * bytes,
width * bytes);
}
if (has_alpha)
multiply_alpha (src, width, bytes);
sp_p = src;
sp_m = src + (width - 1) * bytes;
vp = val_p;
vm = val_m + (width - 1) * bytes;
/* Set up the first vals */
for (i = 0; i < bytes; i++)
{
initial_p[i] = sp_p[i];
initial_m[i] = sp_m[i];
}
for (col = 0; col < width; col++)
{
gdouble *vpptr, *vmptr;
terms = (col < 4) ? col : 4;
for (b = 0; b < bytes; b++)
{
vpptr = vp + b; vmptr = vm + b;
for (i = 0; i <= terms; i++)
{
*vpptr += n_p[i] * sp_p[(-i * bytes) + b] -
d_p[i] * vp[(-i * bytes) + b];
*vmptr += n_m[i] * sp_m[(i * bytes) + b] -
d_m[i] * vm[(i * bytes) + b];
}
for (j = i; j <= 4; j++)
{
*vpptr += (n_p[j] - bd_p[j]) * initial_p[b];
*vmptr += (n_m[j] - bd_m[j]) * initial_m[b];
}
}
sp_p += bytes;
sp_m -= bytes;
vp += bytes;
vm -= bytes;
}
transfer_pixels (val_p, val_m, dest, bytes, width);
if (has_alpha)
separate_alpha (dest, width, bytes);
if (direct)
{
gimp_pixel_rgn_set_row (&dest_rgn, dest, x1, row + y1, width);
progress += width * horz;
if ((row % progress_step) == 0)
gimp_progress_update (progress / max_progress);
}
else
{
memcpy (preview_buffer + row * width * bytes,
dest,
width * bytes);
}
}
}
/* free up buffers */
g_free (val_p);
g_free (val_m);
g_free (src);
g_free (dest);
}
static void
gauss_rle (GimpDrawable *drawable,
gdouble horz,
gdouble vert,
BlurMethod method,
guchar *preview_buffer,
gint x1,
gint y1,
gint width,
gint height)
{
GimpPixelRgn src_rgn, dest_rgn;
gint bytes;
gboolean has_alpha;
guchar *dest;
guchar *src;
gint row, col, b;
gdouble progress, max_progress;
gdouble std_dev;
gint total = 1;
gint *curve = NULL;
gint *sum = NULL;
gint length;
gboolean direct;
gint progress_step;
direct = (preview_buffer == NULL);
bytes = drawable->bpp;
has_alpha = gimp_drawable_has_alpha (drawable->drawable_id);
src = g_new (guchar, MAX (width, height) * bytes);
dest = g_new (guchar, MAX (width, height) * bytes);
gimp_pixel_rgn_init (&src_rgn,
drawable, 0, 0, drawable->width, drawable->height,
FALSE, FALSE);
if (direct)
gimp_pixel_rgn_init (&dest_rgn,
drawable, 0, 0, drawable->width, drawable->height,
TRUE, TRUE);
progress = 0.0;
max_progress = (horz <= 0.0) ? 0 : width * height * horz;
max_progress += (vert <= 0.0) ? 0 : width * height * vert;
/* First the vertical pass */
if (vert > 0.0)
{
gint * rle = NULL;
gint * pix = NULL;
vert = fabs (vert) + 1.0;
std_dev = sqrt (-(vert * vert) / (2 * log (1.0 / 255.0)));
/* Insure that we do not have too many progress updates for
* images with a lot of rows or columns
*/
progress_step = width / 16;
if (progress_step < 5)
progress_step = 5;
make_rle_curve (std_dev, &curve, &length, &sum, &total);
rle = g_new (gint, height + 2 * length);
rle += length; /* rle[] extends from -length to height+length-1 */
pix = g_new (gint, height + 2 * length);
pix += length; /* pix[] extends from -length to height+length-1 */
for (col = 0; col < width; col++)
{
gimp_pixel_rgn_get_col (&src_rgn, src, col + x1, y1, height);
if (has_alpha)
multiply_alpha (src, height, bytes);
for (b = 0; b < bytes; b++)
{
gint same = run_length_encode (src + b, rle, pix, bytes,
height, length, TRUE);
if (same > (3 * height) / 4)
{
/* encoded_rle is only fastest if there are a lot of
* repeating pixels
*/
do_encoded_lre (rle, pix, dest + b, height, length, bytes,
curve, total, sum);
}
else
{
/* else a full but more simple algorithm is better */
do_full_lre (pix, dest + b, height, length, bytes,
curve, total);
}
}
if (has_alpha)
separate_alpha (dest, height, bytes);
if (direct)
{
gimp_pixel_rgn_set_col (&dest_rgn, dest, col + x1, y1, height);
progress += height * vert;
if ((col % progress_step) == 0)
gimp_progress_update (progress / max_progress);
}
else
{
for (row = 0; row < height; row++)
memcpy (preview_buffer + (row * width + col) * bytes,
dest + row * bytes,
bytes);
}
}
g_free (rle - length);
g_free (pix - length);
/* prepare for the horizontal pass */
gimp_pixel_rgn_init (&src_rgn,
drawable, 0, 0, drawable->width, drawable->height,
FALSE, TRUE);
}
else if (!direct)
{
gimp_pixel_rgn_get_rect (&src_rgn,
preview_buffer, x1, y1, width, height);
}
/* Now the horizontal pass */
if (horz > 0.0)
{
gint * rle = NULL;
gint * pix = NULL;
/* Insure that we do not have too many progress updates for
* images with a lot of rows or columns
*/
progress_step = height / 16;
if (progress_step < 5) {
progress_step = 5;
}
horz = fabs (horz) + 1.0;
/* euse the same curve if possible else recompute a new one */
if (horz != vert)
{
std_dev = sqrt (-(horz * horz) / (2 * log (1.0 / 255.0)));
if (curve != NULL) {
free_rle_curve(curve, length, sum);
}
make_rle_curve(std_dev, &curve, &length, &sum, &total);
}
rle = g_new (gint, width+2*length);
rle += length; /* so rle[] extends from -width to width+length-1 */
pix = g_new (gint, width+2*length);
pix += length; /* so pix[] extends from -width to width+length-1 */
for (row = 0; row < height; row++)
{
if (direct)
{
gimp_pixel_rgn_get_row (&src_rgn, src, x1, row + y1, width);
}
else
{
memcpy (src,
preview_buffer + row * width * bytes,
width * bytes);
}
if (has_alpha)
multiply_alpha (src, width, bytes);
for (b = 0; b < bytes; b++)
{
gint same = run_length_encode (src + b, rle, pix, bytes,
width, length, TRUE);
if (same > (3 * width) / 4)
{
/* encoded_rle is only fastest if there are a lot of
* repeating pixels
*/
do_encoded_lre (rle, pix, dest + b, width, length, bytes,
curve, total, sum);
}
else
{
/* else a full but more simple algorithm is better */
do_full_lre (pix, dest + b, width, length, bytes,
curve, total);
}
}
if (has_alpha)
separate_alpha (dest, width, bytes);
if (direct)
{
gimp_pixel_rgn_set_row (&dest_rgn, dest, x1, row + y1, width);
progress += width * horz;
if ((row % progress_step) == 0)
gimp_progress_update (progress / max_progress);
}
else
{
memcpy (preview_buffer + row * width * bytes,
dest,
width * bytes);
}
}
g_free (rle - length);
g_free (pix - length);
}
if (curve)
free_rle_curve (curve, length, sum);
g_free (src);
g_free (dest);
}
static void
gauss (GimpDrawable *drawable,
gdouble horz,
gdouble vert,
BlurMethod method,
GtkWidget *preview)
{
gint x1, y1, x2, y2;
gint width, height;
guchar *preview_buffer;
/*
* IIR goes wrong if the blur radius is less than 1, so we silently
* switch to RLE in this case. See bug #315953
*/
if (horz <= 1.0 || vert <= 1.0)
method = BLUR_RLE;
if (horz <= 0.0 && vert <= 0.0)
{
if (preview)
gimp_preview_draw (GIMP_PREVIEW (preview));
return;
}
if (preview)
{
gimp_preview_get_position (GIMP_PREVIEW (preview), &x1, &y1);
gimp_preview_get_size (GIMP_PREVIEW (preview), &width, &height);
if (width < 1 || height < 1)
return;
preview_buffer = g_new (guchar, width * height * drawable->bpp);
}
else
{
gimp_drawable_mask_bounds (drawable->drawable_id, &x1, &y1, &x2, &y2);
width = (x2 - x1);
height = (y2 - y1);
if (width < 1 || height < 1)
return;
preview_buffer = NULL;
}
if (method == BLUR_IIR)
gauss_iir (drawable,
horz, vert, method, preview_buffer, x1, y1, width, height);
else
gauss_rle (drawable,
horz, vert, method, preview_buffer, x1, y1, width, height);
if (preview)
{
gimp_preview_draw_buffer (GIMP_PREVIEW (preview),
preview_buffer, width * drawable->bpp);
g_free (preview_buffer);
}
else
{
/* merge the shadow, update the drawable */
gimp_drawable_flush (drawable);
gimp_drawable_merge_shadow (drawable->drawable_id, TRUE);
gimp_drawable_update (drawable->drawable_id, x1, y1, width, height);
}
}
static void
transfer_pixels (const gdouble *src1,
const gdouble *src2,
guchar *dest,
gint bytes,
gint width)
{
gint b;
gint bend = bytes * width;
gdouble sum;
for (b = 0; b < bend; b++)
{
sum = *src1++ + *src2++;
if (sum > 255)
sum = 255;
else if (sum < 0)
sum = 0;
*dest++ = (guchar) sum;
}
}
static void
find_iir_constants (gdouble *n_p,
gdouble *n_m,
gdouble *d_p,
gdouble *d_m,
gdouble *bd_p,
gdouble *bd_m,
gdouble std_dev)
{
/* The constants used in the implemenation of a casual sequence
* using a 4th order approximation of the gaussian operator
*/
const gdouble div = sqrt (2 * G_PI) * std_dev;
const gdouble x0 = -1.783 / std_dev;
const gdouble x1 = -1.723 / std_dev;
const gdouble x2 = 0.6318 / std_dev;
const gdouble x3 = 1.997 / std_dev;
const gdouble x4 = 1.6803 / div;
const gdouble x5 = 3.735 / div;
const gdouble x6 = -0.6803 / div;
const gdouble x7 = -0.2598 / div;
gint i;
n_p [0] = x4 + x6;
n_p [1] = (exp(x1)*(x7*sin(x3)-(x6+2*x4)*cos(x3)) +
exp(x0)*(x5*sin(x2) - (2*x6+x4)*cos (x2)));
n_p [2] = (2 * exp(x0+x1) *
((x4+x6)*cos(x3)*cos(x2) - x5*cos(x3)*sin(x2) -
x7*cos(x2)*sin(x3)) +
x6*exp(2*x0) + x4*exp(2*x1));
n_p [3] = (exp(x1+2*x0) * (x7*sin(x3) - x6*cos(x3)) +
exp(x0+2*x1) * (x5*sin(x2) - x4*cos(x2)));
n_p [4] = 0.0;
d_p [0] = 0.0;
d_p [1] = -2 * exp(x1) * cos(x3) - 2 * exp(x0) * cos (x2);
d_p [2] = 4 * cos(x3) * cos(x2) * exp(x0 + x1) + exp(2 * x1) + exp(2 * x0);
d_p [3] = -2 * cos(x2) * exp(x0 + 2*x1) - 2*cos(x3) * exp(x1 + 2*x0);
d_p [4] = exp(2*x0 + 2*x1);
for (i = 0; i <= 4; i++)
d_m[i] = d_p[i];
n_m[0] = 0.0;
for (i = 1; i <= 4; i++)
n_m[i] = n_p[i] - d_p[i] * n_p[0];
{
gdouble sum_n_p, sum_n_m, sum_d;
gdouble a, b;
sum_n_p = 0.0;
sum_n_m = 0.0;
sum_d = 0.0;
for (i = 0; i <= 4; i++)
{
sum_n_p += n_p[i];
sum_n_m += n_m[i];
sum_d += d_p[i];
}
a = sum_n_p / (1.0 + sum_d);
b = sum_n_m / (1.0 + sum_d);
for (i = 0; i <= 4; i++)
{
bd_p[i] = d_p[i] * a;
bd_m[i] = d_m[i] * b;
}
}
}
/*
* make_rle_curve(sigma, &curve, &length, &sum, &total)
*
*
* Fill the Gauss curve.
*
* g(r) = exp (- r^2 / (2 * sigma^2))
* r = sqrt (x^2 + y ^2)
*
* o length is filled with the length the curve (in both directions)
* o curve[-length .. length] is allocated and filled with the
* (scaled) gauss curve.
* o sum[-length .. length] is allocated and filled with the 'summed' curve.
* o total is filled with the sum of all elements in the curve (for
* normalization).
*
*
*
*/
static void
make_rle_curve (gdouble sigma,
gint **p_curve,
gint *p_length,
gint **p_sum,
gint *p_total)
{
const gdouble sigma2 = 2 * sigma * sigma;
const gdouble l = sqrt (-sigma2 * log (1.0 / 255.0));
gint temp;
gint i, n;
gint length;
gint *sum;
gint *curve;
n = ceil (l) * 2;
if ((n % 2) == 0)
n += 1;
curve = g_new (gint, n);
length = n / 2;
curve += length; /* 'center' the curve[] */
curve[0] = 255;
for (i = 1; i <= length; i++)
{
temp = (gint) (exp (- (i * i) / sigma2) * 255);
curve[-i] = temp;
curve[i] = temp;
}
sum = g_new (gint, 2 * length + 1);
sum[0] = 0;
for (i = 1; i <= length*2; i++)
{
sum[i] = curve[i-length-1] + sum[i-1];
}
sum += length; /* 'center' the sum[] */
*p_total = sum[length] - sum[-length];
*p_curve = curve;
*p_sum = sum;
*p_length = length;
}
/*
* Free a curve previously allocated with make_rle_curve
*/
static void
free_rle_curve (gint *curve,
gint length,
gint *sum)
{
g_free (sum - length);
g_free (curve - length);
}