gimp/app/paint_funcs.c

5949 lines
129 KiB
C

/* The GIMP -- an image manipulation program
* Copyright (C) 1995 Spencer Kimball and Peter Mattis
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "config.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "appenv.h"
#include "gimprc.h"
#include "paint_funcs.h"
#include "boundary.h"
#include "tile_manager.h"
#include "tile_manager_pvt.h" /* For copy-on-write */
#include "tile_pvt.h" /* For accessing the tiles directly */
#include "tile.h" /* ick. */
#include "libgimp/gimpintl.h"
#include "libgimp/gimpmath.h"
#include "libgimp/gimpcolorspace.h"
#define STD_BUF_SIZE 1021
#define MAXDIFF 195076
#define HASH_TABLE_SIZE 1021
#define RANDOM_TABLE_SIZE 4096
#define RANDOM_SEED 314159265
#define EPSILON 0.0001
#define INT_MULT(a,b,t) ((t) = (a) * (b) + 0x80, ((((t) >> 8) + (t)) >> 8))
/* This version of INT_MULT3 is very fast, but suffers from some
slight roundoff errors. It returns the correct result 99.987
percent of the time */
#define INT_MULT3(a,b,c,t) ((t) = (a) * (b) * (c)+ 0x7F5B, \
((((t) >> 7) + (t)) >> 16))
/*
This version of INT_MULT3 always gives the correct result, but runs at
approximatly one third the speed. */
/* #define INT_MULT3(a,b,c,t) (((a) * (b) * (c)+ 32512) / 65025.0)
*/
#define INT_BLEND(a,b,alpha,tmp) (INT_MULT((a)-(b), alpha, tmp) + (b))
typedef enum
{
MinifyX_MinifyY,
MinifyX_MagnifyY,
MagnifyX_MinifyY,
MagnifyX_MagnifyY
} ScaleType;
/* Layer modes information */
typedef struct _LayerMode LayerMode;
struct _LayerMode
{
int affect_alpha; /* does the layer mode affect the alpha channel */
int increase_opacity; /* layer mode can increase opacity */
int decrease_opacity; /* layer mode can decrease opacity */
char *name; /* layer mode specification */
};
LayerMode layer_modes[] = /* This must obviously be in the same
* order as the corresponding values
* in the LayerModeEffects enumeration.
*/
{
{ 1, 1, 0, N_("Normal") },
{ 1, 1, 0, N_("Dissolve") },
{ 1, 1, 0, N_("Behind") },
{ 0, 0, 0, N_("Multiply (Burn)") },
{ 0, 0, 0, N_("Screen") },
{ 0, 0, 0, N_("Overlay") },
{ 0, 0, 0, N_("Difference") },
{ 0, 0, 0, N_("Addition") },
{ 0, 0, 0, N_("Subtraction") },
{ 0, 0, 0, N_("Darken Only") },
{ 0, 0, 0, N_("Lighten Only") },
{ 0, 0, 0, N_("Hue") },
{ 0, 0, 0, N_("Saturation") },
{ 0, 0, 0, N_("Color") },
{ 0, 0, 0, N_("Value") },
{ 0, 0, 0, N_("Divide (Dodge)") },
{ 1, 0, 1, N_("Erase") },
{ 1, 1, 1, N_("Replace") },
{ 1, 0, 1, N_("Anti Erase") }
};
/* ColorHash structure */
typedef struct _ColorHash ColorHash;
struct _ColorHash
{
int pixel; /* R << 16 | G << 8 | B */
int index; /* colormap index */
GimpImage* gimage;
};
static ColorHash color_hash_table [HASH_TABLE_SIZE];
static int random_table [RANDOM_TABLE_SIZE];
static int color_hash_misses;
static int color_hash_hits;
static unsigned char * tmp_buffer; /* temporary buffer available upon request */
static int tmp_buffer_size;
static unsigned char no_mask = OPAQUE_OPACITY;
static int add_lut[256][256];
/*******************************/
/* Local function prototypes */
static int * make_curve (double, int *);
static void run_length_encode (unsigned char *, int *, int, int);
static double cubic (double, int, int, int, int);
static void apply_layer_mode_replace (unsigned char *, unsigned char *,
unsigned char *, unsigned char *,
int, int, int,
int, int, int, int *);
static void rotate_pointers (void **p, guint32 n);
void
update_tile_rowhints (Tile *tile,
int ymin,
int ymax)
{
int bpp, ewidth;
int x,y;
guchar* ptr;
guchar alpha;
TileRowHint thishint;
#ifdef HINTS_SANITY
g_assert(tile!=NULL);
#endif
tile_sanitize_rowhints (tile);
bpp = tile_bpp (tile);
ewidth = tile->ewidth;
if (bpp == 1 || bpp == 3)
{
for (y=ymin; y<=ymax; y++)
tile_set_rowhint (tile, y, TILEROWHINT_OPAQUE);
return;
}
if (bpp == 4)
{
#ifdef HINTS_SANITY
g_assert(tile!=NULL);
#endif
ptr = tile_data_pointer (tile, 0, ymin);
#ifdef HINTS_SANITY
g_assert(ptr!=NULL);
#endif
for (y = ymin; y <= ymax; y++)
{
thishint = tile_get_rowhint (tile, y);
#ifdef HINTS_SANITY
if (thishint==TILEROWHINT_BROKEN)
g_error("BROKEN y=%d",y);
if (thishint==TILEROWHINT_OUTOFRANGE)
g_error("OOR y=%d",y);
if (thishint==TILEROWHINT_UNDEFINED)
g_error("UNDEFINED y=%d - bpp=%d ew=%d eh=%d",
y,bpp,ewidth,eheight);
#endif
#ifdef HINTS_SANITY
if (thishint == TILEROWHINT_TRANSPARENT ||
thishint == TILEROWHINT_MIXED ||
thishint == TILEROWHINT_OPAQUE)
{
goto next_row4;
}
if (thishint != TILEROWHINT_UNKNOWN)
{
g_error("MEGABOGUS y=%d - bpp=%d ew=%d eh=%d",
y,bpp,ewidth,eheight);
}
#endif
if (thishint == TILEROWHINT_UNKNOWN)
{
alpha = ptr[3];
/* row is all-opaque or all-transparent? */
if (alpha == 0 || alpha == 255)
{
if (ewidth > 1)
{
for (x = 1; x < ewidth; x++)
{
if (ptr[x*4 + 3] != alpha)
{
tile_set_rowhint (tile, y, TILEROWHINT_MIXED);
goto next_row4;
}
}
}
tile_set_rowhint (tile, y,
(alpha == 0) ?
TILEROWHINT_TRANSPARENT :
TILEROWHINT_OPAQUE);
}
else
{
tile_set_rowhint (tile, y, TILEROWHINT_MIXED);
}
}
next_row4:
ptr += 4 * ewidth;
}
return;
}
if (bpp == 2)
{
#ifdef HINTS_SANITY
g_assert(tile!=NULL);
#endif
ptr = tile_data_pointer (tile, 0, ymin);
#ifdef HINTS_SANITY
g_assert(ptr!=NULL);
#endif
for (y = ymin; y <= ymax; y++)
{
thishint = tile_get_rowhint (tile, y);
#ifdef HINTS_SANITY
if (thishint==TILEROWHINT_BROKEN)
g_error("BROKEN y=%d",y);
if (thishint==TILEROWHINT_OUTOFRANGE)
g_error("OOR y=%d",y);
if (thishint==TILEROWHINT_UNDEFINED)
g_error("UNDEFINED y=%d - bpp=%d ew=%d eh=%d",
y,bpp,ewidth,eheight);
#endif
#ifdef HINTS_SANITY
if (thishint == TILEROWHINT_TRANSPARENT ||
thishint == TILEROWHINT_MIXED ||
thishint == TILEROWHINT_OPAQUE)
{
goto next_row2;
}
if (thishint != TILEROWHINT_UNKNOWN)
{
g_error("MEGABOGUS y=%d - bpp=%d ew=%d eh=%d",
y,bpp,ewidth,eheight);
}
#endif
if (thishint == TILEROWHINT_UNKNOWN)
{
alpha = ptr[1];
/* row is all-opaque or all-transparent? */
if (alpha == 0 || alpha == 255)
{
if (ewidth > 1)
{
for (x = 1; x < ewidth; x++)
{
if (ptr[x*2 + 1] != alpha)
{
tile_set_rowhint (tile, y, TILEROWHINT_MIXED);
goto next_row2;
}
}
}
tile_set_rowhint (tile, y,
(alpha == 0) ?
TILEROWHINT_TRANSPARENT :
TILEROWHINT_OPAQUE);
}
else
{
tile_set_rowhint (tile, y, TILEROWHINT_MIXED);
}
}
next_row2:
ptr += 2 * ewidth;
}
return;
}
g_warning ("update_tile_rowhints: Don't know about tiles with bpp==%d", bpp);
}
static unsigned char *
paint_funcs_get_buffer (int size)
{
if (size > tmp_buffer_size)
{
tmp_buffer_size = size;
tmp_buffer = (unsigned char *) g_realloc (tmp_buffer, size);
}
return tmp_buffer;
}
/*
* The equations: g(r) = exp (- r^2 / (2 * sigma^2))
* r = sqrt (x^2 + y ^2)
*/
static int *
make_curve (double sigma,
int *length)
{
int *curve;
double sigma2;
double l;
int temp;
int i, n;
sigma2 = 2 * sigma * sigma;
l = sqrt (-sigma2 * log (1.0 / 255.0));
n = ceil (l) * 2;
if ((n % 2) == 0)
n += 1;
curve = g_malloc (sizeof (int) * n);
*length = n / 2;
curve += *length;
curve[0] = 255;
for (i = 1; i <= *length; i++)
{
temp = (int) (exp (- (i * i) / sigma2) * 255);
curve[-i] = temp;
curve[i] = temp;
}
return curve;
}
static void
run_length_encode (unsigned char *src,
int *dest,
int w,
int bytes)
{
int start;
int i;
int j;
unsigned char last;
last = *src;
src += bytes;
start = 0;
for (i = 1; i < w; i++)
{
if (*src != last)
{
for (j = start; j < i; j++)
{
*dest++ = (i - j);
*dest++ = last;
}
start = i;
last = *src;
}
src += bytes;
}
for (j = start; j < i; j++)
{
*dest++ = (i - j);
*dest++ = last;
}
}
/* Note: cubic function no longer clips result */
static inline double
cubic (double dx,
int jm1,
int j,
int jp1,
int jp2)
{
/* Catmull-Rom - not bad */
return (double) ((( ( - jm1 + 3 * j - 3 * jp1 + jp2 ) * dx +
( 2 * jm1 - 5 * j + 4 * jp1 - jp2 ) ) * dx +
( - jm1 + jp1 ) ) * dx + (j + j) ) / 2.0;
}
/*********************/
/* FUNCTIONS */
/*********************/
void
paint_funcs_setup ()
{
int i;
int j,k;
int tmp_sum;
/* allocate the temporary buffer */
tmp_buffer = (unsigned char *) g_malloc (STD_BUF_SIZE);
tmp_buffer_size = STD_BUF_SIZE;
/* initialize the color hash table--invalidate all entries */
for (i = 0; i < HASH_TABLE_SIZE; i++)
color_hash_table[i].gimage = NULL;
color_hash_misses = 0;
color_hash_hits = 0;
/* generate a table of random seeds */
srand (RANDOM_SEED);
/* FIXME: Why creating an array of random values and shuffle it randomly
* afterwards???
*/
for (i = 0; i < RANDOM_TABLE_SIZE; i++)
random_table[i] = rand ();
for (i = 0; i < RANDOM_TABLE_SIZE; i++)
{
int tmp;
int swap = i + rand () % (RANDOM_TABLE_SIZE - i);
tmp = random_table[i];
random_table[i] = random_table[swap];
random_table[swap] = tmp;
}
for (j = 0; j < 256; j++)
{ /* rows */
for (k = 0; k < 256; k++)
{ /* column */
tmp_sum = j + k;
if(tmp_sum > 255)
tmp_sum = 255;
add_lut[j][k] = tmp_sum;
}
}
}
void
paint_funcs_free ()
{
/* free the temporary buffer */
g_free (tmp_buffer);
/* print out the hash table statistics
printf ("RGB->indexed hash table lookups: %d\n", color_hash_hits + color_hash_misses);
printf ("RGB->indexed hash table hits: %d\n", color_hash_hits);
printf ("RGB->indexed hash table misses: %d\n", color_hash_misses);
printf ("RGB->indexed hash table hit rate: %f\n",
100.0 * color_hash_hits / (color_hash_hits + color_hash_misses));
*/
}
void
paint_funcs_invalidate_color_hash_table (GimpImage* gimage,
gint index)
{
gint i;
g_return_if_fail (gimage != NULL);
if (index == -1) /* invalidate all entries */
{
for (i = 0; i < HASH_TABLE_SIZE; i++)
if (color_hash_table[i].gimage == gimage)
color_hash_table[i].gimage = NULL;
}
else
{
for (i = 0; i < HASH_TABLE_SIZE; i++)
if (color_hash_table[i].gimage == gimage &&
color_hash_table[i].index == index)
color_hash_table[i].gimage = NULL;
}
}
void
color_pixels (unsigned char *dest,
const unsigned char *color,
int w,
int bytes)
{
/* dest % bytes and color % bytes must be 0 or we will crash
when bytes = 2 or 4.
Is this safe to assume? Lets find out.
This is 4-7X as fast as the simple version.
*/
#if defined(sparc) || defined(__sparc__)
register unsigned char c0, c1, c2, c3;
#else
register unsigned char c0, c1, c2;
register guint32 *longd, longc;
register guint16 *shortd, shortc;
#endif
switch (bytes)
{
case 1:
memset(dest, *color, w);
break;
case 2:
#if defined(sparc) || defined(__sparc__)
c0 = color[0];
c1 = color[1];
while (w--)
{
dest[0] = c0;
dest[1] = c1;
dest += 2;
}
#else
shortc = ((guint16 *)color)[0];
shortd = (guint16 *)dest;
while (w--)
{
*shortd = shortc;
shortd++;
}
#endif /* sparc || __sparc__ */
break;
case 3:
c0 = color[0];
c1 = color[1];
c2 = color[2];
while (w--)
{
dest[0] = c0;
dest[1] = c1;
dest[2] = c2;
dest += 3;
}
break;
case 4:
#if defined(sparc) || defined(__sparc__)
c0 = color[0];
c1 = color[1];
c2 = color[2];
c3 = color[3];
while (w--)
{
dest[0] = c0;
dest[1] = c1;
dest[2] = c2;
dest[3] = c3;
dest += 4;
}
#else
longc = ((guint32 *)color)[0];
longd = (guint32 *)dest;
while (w--)
{
*longd = longc;
longd++;
}
#endif /* sparc || __sparc__ */
break;
default:
while (w--)
{
memcpy (dest, color, bytes);
dest += bytes;
}
}
}
void
blend_pixels (const unsigned char *src1,
const unsigned char *src2,
unsigned char *dest,
int blend,
int w,
int bytes,
int has_alpha)
{
int b;
unsigned char blend2 = (255 - blend);
while (w --)
{
for (b = 0; b < bytes; b++)
dest[b] = (src1[b] * blend2 + src2[b] * blend) / 255;
src1 += bytes;
src2 += bytes;
dest += bytes;
}
}
void
shade_pixels (const unsigned char *src,
unsigned char *dest,
const unsigned char *col,
int blend,
int w,
int bytes,
int has_alpha)
{
int alpha, b;
unsigned char blend2 = (255 - blend);
alpha = (has_alpha) ? bytes - 1 : bytes;
while (w --)
{
for (b = 0; b < alpha; b++)
dest[b] = (src[b] * blend2 + col[b] * blend) / 255;
if (has_alpha)
dest[alpha] = src[alpha]; /* alpha channel */
src += bytes;
dest += bytes;
}
}
void
extract_alpha_pixels (const unsigned char *src,
const unsigned char *mask,
unsigned char *dest,
int w,
int bytes)
{
const unsigned char * m;
int tmp;
const int alpha = bytes - 1;
if (mask)
{
m = mask;
while (w --)
{
*dest++ = INT_MULT(src[alpha], *m, tmp);
m++;
src += bytes;
}
} else
{
m = &no_mask;
while (w --)
{
*dest++ = INT_MULT(src[alpha], *m, tmp);
src += bytes;
}
}
}
void
darken_pixels (const unsigned char *src1,
const unsigned char *src2,
unsigned char *dest,
int length,
int bytes1,
int bytes2,
int has_alpha1,
int has_alpha2)
{
int b, alpha;
unsigned char s1, s2;
alpha = (has_alpha1 || has_alpha2) ? MAX (bytes1, bytes2) - 1 : bytes1;
while (length--)
{
for (b = 0; b < alpha; b++)
{
s1 = src1[b];
s2 = src2[b];
dest[b] = (s1 < s2) ? s1 : s2;
}
if (has_alpha1 && has_alpha2)
dest[alpha] = MIN (src1[alpha], src2[alpha]);
else if (has_alpha2)
dest[alpha] = src2[alpha];
src1 += bytes1;
src2 += bytes2;
dest += bytes2;
}
}
void
lighten_pixels (const unsigned char *src1,
const unsigned char *src2,
unsigned char *dest,
int length,
int bytes1,
int bytes2,
int has_alpha1,
int has_alpha2)
{
int b, alpha;
unsigned char s1, s2;
alpha = (has_alpha1 || has_alpha2) ? MAX (bytes1, bytes2) - 1 : bytes1;
while (length--)
{
for (b = 0; b < alpha; b++)
{
s1 = src1[b];
s2 = src2[b];
dest[b] = (s1 < s2) ? s2 : s1;
}
if (has_alpha1 && has_alpha2)
dest[alpha] = MIN (src1[alpha], src2[alpha]);
else if (has_alpha2)
dest[alpha] = src2[alpha];
src1 += bytes1;
src2 += bytes2;
dest += bytes2;
}
}
void
hsv_only_pixels (const unsigned char *src1,
const unsigned char *src2,
unsigned char *dest,
int mode,
int length,
int bytes1,
int bytes2,
int has_alpha1,
int has_alpha2)
{
int r1, g1, b1;
int r2, g2, b2;
/* assumes inputs are only 4 byte RGBA pixels */
while (length--)
{
r1 = src1[0]; g1 = src1[1]; b1 = src1[2];
r2 = src2[0]; g2 = src2[1]; b2 = src2[2];
gimp_rgb_to_hsv (&r1, &g1, &b1);
gimp_rgb_to_hsv (&r2, &g2, &b2);
switch (mode)
{
case HUE_MODE:
r1 = r2;
break;
case SATURATION_MODE:
g1 = g2;
break;
case VALUE_MODE:
b1 = b2;
break;
}
/* set the destination */
gimp_hsv_to_rgb (&r1, &g1, &b1);
dest[0] = r1; dest[1] = g1; dest[2] = b1;
if (has_alpha1 && has_alpha2)
dest[3] = MIN (src1[3], src2[3]);
else if (has_alpha2)
dest[3] = src2[3];
src1 += bytes1;
src2 += bytes2;
dest += bytes2;
}
}
void
color_only_pixels (const unsigned char *src1,
const unsigned char *src2,
unsigned char *dest,
int mode,
int length,
int bytes1,
int bytes2,
int has_alpha1,
int has_alpha2)
{
int r1, g1, b1;
int r2, g2, b2;
/* assumes inputs are only 4 byte RGBA pixels */
while (length--)
{
r1 = src1[0]; g1 = src1[1]; b1 = src1[2];
r2 = src2[0]; g2 = src2[1]; b2 = src2[2];
gimp_rgb_to_hls (&r1, &g1, &b1);
gimp_rgb_to_hls (&r2, &g2, &b2);
/* transfer hue and saturation to the source pixel */
r1 = r2;
b1 = b2;
/* set the destination */
gimp_hls_to_rgb (&r1, &g1, &b1);
dest[0] = r1; dest[1] = g1; dest[2] = b1;
if (has_alpha1 && has_alpha2)
dest[3] = MIN (src1[3], src2[3]);
else if (has_alpha2)
dest[3] = src2[3];
src1 += bytes1;
src2 += bytes2;
dest += bytes2;
}
}
void
multiply_pixels (const unsigned char *src1,
const unsigned char *src2,
unsigned char *dest,
int length,
int bytes1,
int bytes2,
int has_alpha1,
int has_alpha2)
{
int alpha, b;
int tmp;
alpha = (has_alpha1 || has_alpha2) ? MAX (bytes1, bytes2) - 1 : bytes1;
if (has_alpha1 && has_alpha2)
while (length --)
{
for (b = 0; b < alpha; b++)
dest[b] = INT_MULT(src1[b], src2[b], tmp);
dest[alpha] = MIN (src1[alpha], src2[alpha]);
src1 += bytes1;
src2 += bytes2;
dest += bytes2;
}
else if (has_alpha2)
while (length --)
{
for (b = 0; b < alpha; b++)
dest[b] = INT_MULT(src1[b], src2[b], tmp);
dest[alpha] = src2[alpha];
src1 += bytes1;
src2 += bytes2;
dest += bytes2;
}
else
while (length --)
{
for (b = 0; b < alpha; b++)
dest[b] = INT_MULT(src1[b], src2[b], tmp);
src1 += bytes1;
src2 += bytes2;
dest += bytes2;
}
}
void
divide_pixels (const unsigned char *src1,
const unsigned char *src2,
unsigned char *dest,
int length,
int bytes1,
int bytes2,
int has_alpha1,
int has_alpha2)
{
int alpha, b, result;
alpha = (has_alpha1 || has_alpha2) ? MAX (bytes1, bytes2) - 1 : bytes1;
while (length --)
{
for (b = 0; b < alpha; b++)
{
result = ((src1[b] * 256) / (1+src2[b]));
dest[b] = MIN (result, 255);
}
if (has_alpha1 && has_alpha2)
dest[alpha] = MIN (src1[alpha], src2[alpha]);
else if (has_alpha2)
dest[alpha] = src2[alpha];
src1 += bytes1;
src2 += bytes2;
dest += bytes2;
}
}
void
screen_pixels (const unsigned char *src1,
const unsigned char *src2,
unsigned char *dest,
int length,
int bytes1,
int bytes2,
int has_alpha1,
int has_alpha2)
{
int alpha, b;
int tmp;
alpha = (has_alpha1 || has_alpha2) ? MAX (bytes1, bytes2) - 1 : bytes1;
while (length --)
{
for (b = 0; b < alpha; b++)
dest[b] = 255 - INT_MULT((255 - src1[b]), (255 - src2[b]), tmp);
if (has_alpha1 && has_alpha2)
dest[alpha] = MIN (src1[alpha], src2[alpha]);
else if (has_alpha2)
dest[alpha] = src2[alpha];
src1 += bytes1;
src2 += bytes2;
dest += bytes2;
}
}
void
overlay_pixels (const unsigned char *src1,
const unsigned char *src2,
unsigned char *dest,
int length,
int bytes1,
int bytes2,
int has_alpha1,
int has_alpha2)
{
int alpha, b;
int tmp;
alpha = (has_alpha1 || has_alpha2) ? MAX (bytes1, bytes2) - 1 : bytes1;
while (length --)
{
for (b = 0; b < alpha; b++)
{
dest[b] = INT_MULT(src1[b], src1[b] + INT_MULT(2 * src2[b],
255 - src1[b],
tmp), tmp);
}
if (has_alpha1 && has_alpha2)
dest[alpha] = MIN (src1[alpha], src2[alpha]);
else if (has_alpha2)
dest[alpha] = src2[alpha];
src1 += bytes1;
src2 += bytes2;
dest += bytes2;
}
}
void
add_pixels (const unsigned char *src1,
const unsigned char *src2,
unsigned char *dest,
int length,
int bytes1,
int bytes2,
int has_alpha1,
int has_alpha2)
{
int alpha, b;
alpha = (has_alpha1 || has_alpha2) ? MAX (bytes1, bytes2) - 1 : bytes1;
while (length --)
{
for (b = 0; b < alpha; b++)
{
/* TODO: wouldn't it be better use a 1 dimensional lut ie. add_lut[src1+src2]; */
dest[b] = add_lut[(src1[b])] [(src2[b])];
}
if (has_alpha1 && has_alpha2)
dest[alpha] = MIN (src1[alpha], src2[alpha]);
else if (has_alpha2)
dest[alpha] = src2[alpha];
src1 += bytes1;
src2 += bytes2;
dest += bytes2;
}
}
void
subtract_pixels (const unsigned char *src1,
const unsigned char *src2,
unsigned char *dest,
int length,
int bytes1,
int bytes2,
int has_alpha1,
int has_alpha2)
{
int alpha, b;
int diff;
alpha = (has_alpha1 || has_alpha2) ? MAX (bytes1, bytes2) - 1 : bytes1;
while (length --)
{
for (b = 0; b < alpha; b++)
{
diff = src1[b] - src2[b];
dest[b] = (diff < 0) ? 0 : diff;
}
if (has_alpha1 && has_alpha2)
dest[alpha] = MIN (src1[alpha], src2[alpha]);
else if (has_alpha2)
dest[alpha] = src2[alpha];
src1 += bytes1;
src2 += bytes2;
dest += bytes2;
}
}
void
difference_pixels (const unsigned char *src1,
const unsigned char *src2,
unsigned char *dest,
int length,
int bytes1,
int bytes2,
int has_alpha1,
int has_alpha2)
{
int alpha, b;
int diff;
alpha = (has_alpha1 || has_alpha2) ? MAX (bytes1, bytes2) - 1 : bytes1;
while (length --)
{
for (b = 0; b < alpha; b++)
{
diff = src1[b] - src2[b];
dest[b] = (diff < 0) ? -diff : diff;
}
if (has_alpha1 && has_alpha2)
dest[alpha] = MIN (src1[alpha], src2[alpha]);
else if (has_alpha2)
dest[alpha] = src2[alpha];
src1 += bytes1;
src2 += bytes2;
dest += bytes2;
}
}
void
dissolve_pixels (const unsigned char *src,
unsigned char *dest,
int x,
int y,
int opacity,
int length,
int sb,
int db,
int has_alpha)
{
int alpha, b;
int rand_val;
#if defined(ENABLE_MP) && defined(__GLIBC__)
/* The glibc 2.1 documentation recommends using the SVID random functions
* instead of rand_r
*/
struct drand48_data seed;
long temp_val;
srand48_r (random_table[y % RANDOM_TABLE_SIZE], &seed);
for (b = 0; b < x; b++)
lrand48_r (&seed, &temp_val);
#elif defined(ENABLE_MP) && !defined(__GLIBC__)
/* If we are running with multiple threads rand_r give _much_ better
* performance than rand
*/
unsigned int seed;
seed = random_table[y % RANDOM_TABLE_SIZE];
for (b = 0; b < x; b++)
rand_r (&seed);
#else
/* Set up the random number generator */
srand (random_table[y % RANDOM_TABLE_SIZE]);
for (b = 0; b < x; b++)
rand ();
#endif
alpha = db - 1;
while (length--)
{
/* preserve the intensity values */
for (b = 0; b < alpha; b++)
dest[b] = src[b];
/* dissolve if random value is > opacity */
#if defined(ENABLE_MP) && defined(__GLIBC__)
lrand48_r (&seed, &temp_val);
rand_val = temp_val & 0xff;
#elif defined(ENABLE_MP) && !defined(__GLIBC__)
rand_val = (rand_r (&seed) & 0xff);
#else
rand_val = (rand () & 0xff);
#endif
if (has_alpha)
dest[alpha] = (rand_val > src[alpha]) ? 0 : src[alpha];
else
dest[alpha] = (rand_val > opacity) ? 0 : OPAQUE_OPACITY;
dest += db;
src += sb;
}
}
void
replace_pixels (unsigned char *src1,
unsigned char *src2,
unsigned char *dest,
unsigned char *mask,
int length,
int opacity,
int *affect,
int bytes1,
int bytes2)
{
int alpha;
int b;
double a_val, a_recip, mask_val;
double norm_opacity;
int s1_a, s2_a;
int new_val;
if (bytes1 != bytes2)
{
g_warning ("replace_pixels only works on commensurate pixel regions");
return;
}
alpha = bytes1 - 1;
norm_opacity = opacity * (1.0 / 65536.0);
while (length --)
{
mask_val = mask[0] * norm_opacity;
/* calculate new alpha first. */
s1_a = src1[alpha];
s2_a = src2[alpha];
a_val = s1_a + mask_val * (s2_a - s1_a);
if (a_val == 0) /* In any case, write out versions of the blending function */
/* that result when combinations of s1_a, s2_a, and */
/* mask_val --> 0 (or mask_val -->1) */
{
/* Case 1: s1_a, s2_a, AND mask_val all approach 0+: */
/* Case 2: s1_a AND s2_a both approach 0+, regardless of mask_val: */
if(s1_a + s2_a == 0.0)
{
for (b = 0; b < alpha; b++)
{
new_val = 0.5 + (double)src1[b] + mask_val*((double)src2[b] - (double)src1[b]);
dest[b] = affect[b] ? MIN (new_val, 255) : src1[b];
}
}
/* Case 3: mask_val AND s1_a both approach 0+, regardless of s2_a */
else if(s1_a + mask_val == 0.0)
{
for (b = 0; b < alpha; b++)
{
dest[b] = src1[b];
}
}
/* Case 4: mask_val -->1 AND s2_a -->0, regardless of s1_a */
else if(1.0 - mask_val + s2_a == 0.0)
{
for (b = 0; b < alpha; b++)
{
dest[b] = affect[b] ? src2[b] : src1[b];
}
}
}
else
{
a_recip = 1.0 / a_val;
/* possible optimization: fold a_recip into s1_a and s2_a */
for (b = 0; b < alpha; b++)
{
new_val = 0.5 + a_recip * (src1[b] * s1_a + mask_val *
(src2[b] * s2_a - src1[b] * s1_a));
dest[b] = affect[b] ? MIN (new_val, 255) : src1[b];
}
}
dest[alpha] = affect[alpha] ? a_val + 0.5: s1_a;
src1 += bytes1;
src2 += bytes2;
dest += bytes2;
mask++;
}
}
void
swap_pixels (unsigned char *src,
unsigned char *dest,
int length)
{
while (length--)
{
*src = *src ^ *dest;
*dest = *dest ^ *src;
*src = *src ^ *dest;
src++;
dest++;
}
}
void
scale_pixels (const unsigned char *src,
unsigned char *dest,
int length,
int scale)
{
int tmp;
while (length --)
{
*dest++ = (unsigned char) INT_MULT(*src,scale,tmp);
src++;
}
}
void
add_alpha_pixels (const unsigned char *src,
unsigned char *dest,
int length,
int bytes)
{
int alpha, b;
alpha = bytes + 1;
while (length --)
{
for (b = 0; b < bytes; b++)
dest[b] = src[b];
dest[b] = OPAQUE_OPACITY;
src += bytes;
dest += alpha;
}
}
void
flatten_pixels (const unsigned char *src,
unsigned char *dest,
const unsigned char *bg,
int length,
int bytes)
{
int alpha, b;
int t1, t2;
alpha = bytes - 1;
while (length --)
{
for (b = 0; b < alpha; b++)
dest[b] = INT_MULT (src[b], src[alpha], t1) + INT_MULT (bg[b], (255 - src[alpha]), t2);
src += bytes;
dest += alpha;
}
}
void
gray_to_rgb_pixels (const unsigned char *src,
unsigned char *dest,
int length,
int bytes)
{
int b;
int dest_bytes;
int has_alpha;
has_alpha = (bytes == 2) ? 1 : 0;
dest_bytes = (has_alpha) ? 4 : 3;
while (length --)
{
for (b = 0; b < bytes; b++)
dest[b] = src[0];
if (has_alpha)
dest[3] = src[1];
src += bytes;
dest += dest_bytes;
}
}
void
apply_mask_to_alpha_channel (unsigned char *src,
const unsigned char *mask,
int opacity,
int length,
int bytes)
{
long tmp;
src += bytes - 1;
if (opacity == 255)
while (length --)
{
*src = INT_MULT(*src, *mask, tmp);
mask++;
src += bytes;
}
else
while (length --)
{
*src = INT_MULT3(*src, *mask, opacity, tmp);
mask++;
src += bytes;
}
}
void
combine_mask_and_alpha_channel (unsigned char *src,
const unsigned char *mask,
int opacity,
int length,
int bytes)
{
int mask_val;
int alpha;
int tmp;
alpha = bytes - 1;
src += alpha;
if (opacity != 255)
while (length --)
{
mask_val = INT_MULT(*mask, opacity, tmp);
mask++;
*src = *src + INT_MULT((255 - *src) , mask_val, tmp);
src += bytes;
}
else
while (length --)
{
*src = *src + INT_MULT((255 - *src) , *mask, tmp);
src += bytes;
mask++;
}
}
void
copy_gray_to_inten_a_pixels (const unsigned char *src,
unsigned char *dest,
int length,
int bytes)
{
int b;
int alpha;
alpha = bytes - 1;
while (length --)
{
for (b = 0; b < alpha; b++)
dest[b] = *src;
dest[b] = OPAQUE_OPACITY;
src ++;
dest += bytes;
}
}
void
initial_channel_pixels (const unsigned char *src,
unsigned char *dest,
int length,
int bytes)
{
int alpha, b;
alpha = bytes - 1;
while (length --)
{
for (b = 0; b < alpha; b++)
dest[b] = src[0];
dest[alpha] = OPAQUE_OPACITY;
dest += bytes;
src ++;
}
}
void
initial_indexed_pixels (const unsigned char *src,
unsigned char *dest,
const unsigned char *cmap,
int length)
{
int col_index;
/* This function assumes always that we're mapping from
* an RGB colormap to an RGBA image...
*/
while (length--)
{
col_index = *src++ * 3;
*dest++ = cmap[col_index++];
*dest++ = cmap[col_index++];
*dest++ = cmap[col_index++];
*dest++ = OPAQUE_OPACITY;
}
}
void
initial_indexed_a_pixels (const unsigned char *src,
unsigned char *dest,
const unsigned char *mask,
const unsigned char *cmap,
int opacity,
int length)
{
int col_index;
unsigned char new_alpha;
const unsigned char * m;
long tmp;
if (mask)
m = mask;
else
m = &no_mask;
while (length --)
{
col_index = *src++ * 3;
new_alpha = INT_MULT3(*src, *m, opacity, tmp);
src++;
*dest++ = cmap[col_index++];
*dest++ = cmap[col_index++];
*dest++ = cmap[col_index++];
/* Set the alpha channel */
*dest++ = (new_alpha > 127) ? OPAQUE_OPACITY : TRANSPARENT_OPACITY;
if (mask)
m++;
}
}
void
initial_inten_pixels (const unsigned char *src,
unsigned char *dest,
const unsigned char *mask,
int opacity,
const int *affect,
int length,
int bytes)
{
int b;
const unsigned char * m;
int tmp;
int l;
unsigned char *destp;
const unsigned char *srcp;
const int dest_bytes = bytes + 1;
if (mask)
{
m = mask;
/* This function assumes the source has no alpha channel and
* the destination has an alpha channel. So dest_bytes = bytes + 1
*/
if (bytes == 3 && affect[0] && affect[1] && affect[2])
{
if (!affect[bytes])
opacity = 0;
destp = dest + bytes;
if (opacity != 0)
while(length--)
{
dest[0] = src[0];
dest[1] = src[1];
dest[2] = src[2];
dest[3] = INT_MULT(opacity, *m, tmp);
src += bytes;
dest += dest_bytes;
m++;
}
else
while(length--)
{
dest[0] = src[0];
dest[1] = src[1];
dest[2] = src[2];
dest[3] = opacity;
src += bytes;
dest += dest_bytes;
}
return;
}
for (b =0; b < bytes; b++)
{
destp = dest + b;
srcp = src + b;
l = length;
if (affect[b])
while(l--)
{
*destp = *srcp;
srcp += bytes;
destp += dest_bytes;
}
else
while(l--)
{
*destp = 0;
destp += dest_bytes;
}
}
/* fill the alpha channel */
if (!affect[bytes])
opacity = 0;
destp = dest + bytes;
if (opacity != 0)
while (length--)
{
*destp = INT_MULT(opacity , *m, tmp);
destp += dest_bytes;
m++;
}
else
while (length--)
{
*destp = opacity;
destp += dest_bytes;
}
}
/* If no mask */
else
{
m = &no_mask;
/* This function assumes the source has no alpha channel and
* the destination has an alpha channel. So dest_bytes = bytes + 1
*/
if (bytes == 3 && affect[0] && affect[1] && affect[2])
{
if (!affect[bytes])
opacity = 0;
destp = dest + bytes;
while(length--)
{
dest[0] = src[0];
dest[1] = src[1];
dest[2] = src[2];
dest[3] = opacity;
src += bytes;
dest += dest_bytes;
}
return;
}
for (b =0; b < bytes; b++)
{
destp = dest + b;
srcp = src + b;
l = length;
if (affect[b])
while(l--)
{
*destp = *srcp;
srcp += bytes;
destp += dest_bytes;
}
else
while(l--)
{
*destp = 0;
destp += dest_bytes;
}
}
/* fill the alpha channel */
if (!affect[bytes])
opacity = 0;
destp = dest + bytes;
while (length--)
{
*destp = opacity;
destp += dest_bytes;
}
}
}
void
initial_inten_a_pixels (const unsigned char *src,
unsigned char *dest,
const unsigned char *mask,
int opacity,
const int *affect,
int length,
int bytes)
{
int alpha, b;
const unsigned char * m;
long tmp;
alpha = bytes - 1;
if (mask)
{
m = mask;
while (length --)
{
for (b = 0; b < alpha; b++)
dest[b] = src[b] * affect[b];
/* Set the alpha channel */
dest[alpha] = affect [alpha] ? INT_MULT3(opacity, src[alpha], *m, tmp)
: 0;
m++;
dest += bytes;
src += bytes;
}
}
else
{
while (length --)
{
for (b = 0; b < alpha; b++)
dest[b] = src[b] * affect[b];
/* Set the alpha channel */
dest[alpha] = affect [alpha] ? INT_MULT(opacity , src[alpha], tmp) : 0;
dest += bytes;
src += bytes;
}
}
}
void
combine_indexed_and_indexed_pixels (const unsigned char *src1,
const unsigned char *src2,
unsigned char *dest,
const unsigned char *mask,
int opacity,
const int *affect,
int length,
int bytes)
{
int b;
unsigned char new_alpha;
const unsigned char * m;
int tmp;
if (mask)
{
m = mask;
while (length --)
{
new_alpha = INT_MULT(*m , opacity, tmp);
for (b = 0; b < bytes; b++)
dest[b] = (affect[b] && new_alpha > 127) ? src2[b] : src1[b];
m++;
src1 += bytes;
src2 += bytes;
dest += bytes;
}
}
else
{
while (length --)
{
new_alpha = opacity;
for (b = 0; b < bytes; b++)
dest[b] = (affect[b] && new_alpha > 127) ? src2[b] : src1[b];
src1 += bytes;
src2 += bytes;
dest += bytes;
}
}
}
void
combine_indexed_and_indexed_a_pixels (const unsigned char *src1,
const unsigned char *src2,
unsigned char *dest,
const unsigned char *mask,
int opacity,
const int *affect,
int length,
int bytes)
{
int b, alpha;
unsigned char new_alpha;
const unsigned char * m;
int src2_bytes;
long tmp;
alpha = 1;
src2_bytes = 2;
if (mask)
{
m = mask;
while (length --)
{
new_alpha = INT_MULT3(src2[alpha], *m, opacity, tmp);
for (b = 0; b < bytes; b++)
dest[b] = (affect[b] && new_alpha > 127) ? src2[b] : src1[b];
m++;
src1 += bytes;
src2 += src2_bytes;
dest += bytes;
}
}
else
{
while (length --)
{
new_alpha = INT_MULT(src2[alpha], opacity, tmp);
for (b = 0; b < bytes; b++)
dest[b] = (affect[b] && new_alpha > 127) ? src2[b] : src1[b];
src1 += bytes;
src2 += src2_bytes;
dest += bytes;
}
}
}
void
combine_indexed_a_and_indexed_a_pixels (const unsigned char *src1,
const unsigned char *src2,
unsigned char *dest,
const unsigned char *mask,
int opacity,
const int *affect,
int length,
int bytes)
{
int b, alpha;
unsigned char new_alpha;
const unsigned char * m;
long tmp;
alpha = 1;
if (mask)
{
m = mask;
while (length --)
{
new_alpha = INT_MULT3(src2[alpha], *m, opacity, tmp);
for (b = 0; b < alpha; b++)
dest[b] = (affect[b] && new_alpha > 127) ? src2[b] : src1[b];
dest[alpha] = (affect[alpha] && new_alpha > 127) ? OPAQUE_OPACITY : src1[alpha];
m++;
src1 += bytes;
src2 += bytes;
dest += bytes;
}
}
else
{
while (length --)
{
new_alpha = INT_MULT(src2[alpha], opacity, tmp);
for (b = 0; b < alpha; b++)
dest[b] = (affect[b] && new_alpha > 127) ? src2[b] : src1[b];
dest[alpha] = (affect[alpha] && new_alpha > 127) ? OPAQUE_OPACITY : src1[alpha];
src1 += bytes;
src2 += bytes;
dest += bytes;
}
}
}
void
combine_inten_a_and_indexed_a_pixels (const unsigned char *src1,
const unsigned char *src2,
unsigned char *dest,
const unsigned char *mask,
const unsigned char *cmap,
int opacity,
int length,
int bytes)
{
int b, alpha;
unsigned char new_alpha;
int src2_bytes;
int index;
long tmp;
alpha = 1;
src2_bytes = 2;
if (mask)
{
const unsigned char *m = mask;
while (length --)
{
new_alpha = INT_MULT3(src2[alpha], *m, opacity, tmp);
index = src2[0] * 3;
for (b = 0; b < bytes-1; b++)
dest[b] = (new_alpha > 127) ? cmap[index + b] : src1[b];
dest[b] = (new_alpha > 127) ? OPAQUE_OPACITY : src1[b]; /* alpha channel is opaque */
m++;
src1 += bytes;
src2 += src2_bytes;
dest += bytes;
}
}
else
{
while (length --)
{
new_alpha = INT_MULT(src2[alpha], opacity, tmp);
index = src2[0] * 3;
for (b = 0; b < bytes-1; b++)
dest[b] = (new_alpha > 127) ? cmap[index + b] : src1[b];
dest[b] = (new_alpha > 127) ? OPAQUE_OPACITY : src1[b]; /* alpha channel is opaque */
/* m++; /Per */
src1 += bytes;
src2 += src2_bytes;
dest += bytes;
}
}
}
void
combine_inten_and_inten_pixels (const unsigned char *src1,
const unsigned char *src2,
unsigned char *dest,
const unsigned char *mask,
int opacity,
const int *affect,
int length,
int bytes)
{
int b;
unsigned char new_alpha;
const unsigned char * m;
int tmp;
if (mask)
{
m = mask;
while (length --)
{
new_alpha = INT_MULT(*m, opacity, tmp);
for (b = 0; b < bytes; b++)
dest[b] = (affect[b]) ?
INT_BLEND(src2[b], src1[b], new_alpha, tmp) :
src1[b];
m++;
src1 += bytes;
src2 += bytes;
dest += bytes;
}
}
else
{
while (length --)
{
for (b = 0; b < bytes; b++)
dest[b] = (affect[b]) ?
INT_BLEND(src2[b], src1[b], opacity, tmp) :
src1[b];
src1 += bytes;
src2 += bytes;
dest += bytes;
}
}
}
void
combine_inten_and_inten_a_pixels (const unsigned char *src1,
const unsigned char *src2,
unsigned char *dest,
const unsigned char *mask,
int opacity,
const int *affect,
int length,
int bytes)
{
int alpha, b;
int src2_bytes;
unsigned char new_alpha;
const unsigned char * m;
register long t1;
alpha = bytes;
src2_bytes = bytes + 1;
if (mask)
{
m = mask;
while (length --)
{
new_alpha = INT_MULT3(src2[alpha], *m, opacity, t1);
for (b = 0; b < bytes; b++)
dest[b] = (affect[b]) ?
INT_BLEND(src2[b], src1[b], new_alpha, t1) :
src1[b];
m++;
src1 += bytes;
src2 += src2_bytes;
dest += bytes;
}
}
else
{
if (bytes == 3 && affect[0] && affect[1] && affect[2])
while (length --)
{
new_alpha = INT_MULT(src2[alpha],opacity,t1);
dest[0] = INT_BLEND(src2[0] , src1[0] , new_alpha, t1);
dest[1] = INT_BLEND(src2[1] , src1[1] , new_alpha, t1);
dest[2] = INT_BLEND(src2[2] , src1[2] , new_alpha, t1);
src1 += bytes;
src2 += src2_bytes;
dest += bytes;
}
else
while (length --)
{
new_alpha = INT_MULT(src2[alpha],opacity,t1);
for (b = 0; b < bytes; b++)
dest[b] = (affect[b]) ?
INT_BLEND(src2[b] , src1[b] , new_alpha, t1) :
src1[b];
src1 += bytes;
src2 += src2_bytes;
dest += bytes;
}
}
}
/*orig #define alphify(src2_alpha,new_alpha) \
if (new_alpha == 0 || src2_alpha == 0) \
{ \
for (b = 0; b < alpha; b++) \
dest[b] = src1 [b]; \
} \
else if (src2_alpha == new_alpha){ \
for (b = 0; b < alpha; b++) \
dest [b] = affect [b] ? src2 [b] : src1 [b]; \
} else { \
ratio = (float) src2_alpha / new_alpha; \
compl_ratio = 1.0 - ratio; \
\
for (b = 0; b < alpha; b++) \
dest[b] = affect[b] ? \
(unsigned char) (src2[b] * ratio + src1[b] * compl_ratio + EPSILON) : src1[b]; \
}*/
/*shortened #define alphify(src2_alpha,new_alpha) \
if (src2_alpha != 0 && new_alpha != 0) \
{ \
if (src2_alpha == new_alpha){ \
for (b = 0; b < alpha; b++) \
dest [b] = affect [b] ? src2 [b] : src1 [b]; \
} else { \
ratio = (float) src2_alpha / new_alpha; \
compl_ratio = 1.0 - ratio; \
\
for (b = 0; b < alpha; b++) \
dest[b] = affect[b] ? \
(unsigned char) (src2[b] * ratio + src1[b] * compl_ratio + EPSILON) : src1[b];\
} \
}*/
#define alphify(src2_alpha,new_alpha) \
if (src2_alpha != 0 && new_alpha != 0) \
{ \
b = alpha; \
if (src2_alpha == new_alpha){ \
do { \
b--; dest [b] = affect [b] ? src2 [b] : src1 [b];} while (b); \
} else { \
ratio = (float) src2_alpha / new_alpha; \
compl_ratio = 1.0 - ratio; \
\
do { b--; \
dest[b] = affect[b] ? \
(unsigned char) (src2[b] * ratio + src1[b] * compl_ratio + EPSILON) : src1[b];\
} while (b); \
} \
}
/*special #define alphify4(src2_alpha,new_alpha) \
if (src2_alpha != 0 && new_alpha != 0) \
{ \
if (src2_alpha == new_alpha){ \
dest [0] = affect [0] ? src2 [0] : src1 [0]; \
dest [1] = affect [1] ? src2 [1] : src1 [1]; \
dest [2] = affect [2] ? src2 [2] : src1 [2]; \
} else { \
ratio = (float) src2_alpha / new_alpha; \
compl_ratio = 1.0 - ratio; \
\
dest[0] = affect[0] ? \
(unsigned char) (src2[0] * ratio + src1[0] * compl_ratio + EPSILON) : src1[0]; \
dest[1] = affect[1] ? \
(unsigned char) (src2[1] * ratio + src1[1] * compl_ratio + EPSILON) : src1[1]; \
dest[2] = affect[2] ? \
(unsigned char) (src2[2] * ratio + src1[2] * compl_ratio + EPSILON) : src1[2]; \
} \
}*/
void
combine_inten_a_and_inten_pixels (const unsigned char *src1,
const unsigned char *src2,
unsigned char *dest,
const unsigned char *mask,
int opacity,
const int *affect,
int mode_affect, /* how does the combination mode affect alpha? */
int length,
int bytes) /* 4 or 2 depending on RGBA or GRAYA */
{
int alpha, b;
int src2_bytes;
unsigned char src2_alpha;
unsigned char new_alpha;
const unsigned char * m;
float ratio, compl_ratio;
long tmp;
src2_bytes = bytes - 1;
alpha = bytes - 1;
if (mask)
{
m = mask;
if (opacity == OPAQUE_OPACITY) /* HAS MASK, FULL OPACITY */
{
while (length--)
{
src2_alpha = *m;
new_alpha = src1[alpha] +
INT_MULT((255 - src1[alpha]), src2_alpha, tmp);
alphify (src2_alpha, new_alpha);
if (mode_affect)
{
dest[alpha] = (affect[alpha]) ? new_alpha : src1[alpha];
}
else
{
dest[alpha] = (src1[alpha]) ? src1[alpha] :
(affect[alpha] ? new_alpha : src1[alpha]);
}
m++;
src1 += bytes;
src2 += src2_bytes;
dest += bytes;
}
}
else /* HAS MASK, SEMI-OPACITY */
{
while (length--)
{
src2_alpha = INT_MULT(*m, opacity, tmp);
new_alpha = src1[alpha] +
INT_MULT((255 - src1[alpha]), src2_alpha, tmp);
alphify (src2_alpha, new_alpha);
if (mode_affect)
{
dest[alpha] = (affect[alpha]) ? new_alpha : src1[alpha];
}
else
{
dest[alpha] = (src1[alpha]) ? src1[alpha] :
(affect[alpha] ? new_alpha : src1[alpha]);
}
m++;
src1 += bytes;
src2 += src2_bytes;
dest += bytes;
}
}
}
else /* NO MASK */
{
while (length --)
{
src2_alpha = opacity;
new_alpha = src1[alpha] +
INT_MULT((255 - src1[alpha]), src2_alpha, tmp);
alphify (src2_alpha, new_alpha);
if (mode_affect)
dest[alpha] = (affect[alpha]) ? new_alpha : src1[alpha];
else
dest[alpha] = (src1[alpha]) ? src1[alpha] : (affect[alpha] ? new_alpha : src1[alpha]);
src1 += bytes;
src2 += src2_bytes;
dest += bytes;
}
}
}
void
combine_inten_a_and_inten_a_pixels (const unsigned char *src1,
const unsigned char *src2,
unsigned char *dest,
const unsigned char *mask,
int opacity,
const int *affect,
int mode_affect, /* how does the combination mode affect alpha? */
int length,
int bytes) /* 4 or 2 depending on RGBA or GRAYA */
{
int b;
unsigned char src2_alpha;
unsigned char new_alpha;
const unsigned char * m;
float ratio, compl_ratio;
long tmp;
const int alpha = bytes - 1;
if (mask)
{
m = mask;
if (opacity == OPAQUE_OPACITY) /* HAS MASK, FULL OPACITY */
{
const int* mask_ip;
int i,j;
if (length >= sizeof(int))
{
/* HEAD */
i = (((int)m) & (sizeof(int)-1));
if (i != 0)
{
i = sizeof(int) - i;
length -= i;
while (i--)
{
/* GUTS */
src2_alpha = INT_MULT(src2[alpha], *m, tmp);
new_alpha = src1[alpha] +
INT_MULT((255 - src1[alpha]), src2_alpha, tmp);
alphify (src2_alpha, new_alpha);
if (mode_affect)
{
dest[alpha] = (affect[alpha]) ? new_alpha : src1[alpha];
}
else
{
dest[alpha] = (src1[alpha]) ? src1[alpha] :
(affect[alpha] ? new_alpha : src1[alpha]);
}
m++;
src1 += bytes;
src2 += bytes;
dest += bytes;
/* GUTS END */
}
}
/* BODY */
mask_ip = (int*)m;
i = length / sizeof(int);
length %= sizeof(int);
while (i--)
{
if (*mask_ip)
{
m = (const unsigned char*)mask_ip;
j = sizeof(int);
while (j--)
{
/* GUTS */
src2_alpha = INT_MULT(src2[alpha], *m, tmp);
new_alpha = src1[alpha] +
INT_MULT((255 - src1[alpha]), src2_alpha, tmp);
alphify (src2_alpha, new_alpha);
if (mode_affect)
{
dest[alpha] = (affect[alpha]) ? new_alpha : src1[alpha];
}
else
{
dest[alpha] = (src1[alpha]) ? src1[alpha] :
(affect[alpha] ? new_alpha : src1[alpha]);
}
m++;
src1 += bytes;
src2 += bytes;
dest += bytes;
/* GUTS END */
}
}
else
{
j = bytes * sizeof(int);
src2 += j;
while (j--)
{
*(dest++) = *(src1++);
}
}
mask_ip++;
}
m = (const unsigned char*)mask_ip;
}
/* TAIL */
while (length--)
{
/* GUTS */
src2_alpha = INT_MULT(src2[alpha], *m, tmp);
new_alpha = src1[alpha] +
INT_MULT((255 - src1[alpha]), src2_alpha, tmp);
alphify (src2_alpha, new_alpha);
if (mode_affect)
{
dest[alpha] = (affect[alpha]) ? new_alpha : src1[alpha];
}
else
{
dest[alpha] = (src1[alpha]) ? src1[alpha] :
(affect[alpha] ? new_alpha : src1[alpha]);
}
m++;
src1 += bytes;
src2 += bytes;
dest += bytes;
/* GUTS END */
}
}
else /* HAS MASK, SEMI-OPACITY */
{
const int* mask_ip;
int i,j;
if (length >= sizeof(int))
{
/* HEAD */
i = (((int)m) & (sizeof(int)-1));
if (i != 0)
{
i = sizeof(int) - i;
length -= i;
while (i--)
{
/* GUTS */
src2_alpha = INT_MULT3(src2[alpha], *m, opacity, tmp);
new_alpha = src1[alpha] +
INT_MULT((255 - src1[alpha]), src2_alpha, tmp);
alphify (src2_alpha, new_alpha);
if (mode_affect)
{
dest[alpha] = (affect[alpha]) ? new_alpha : src1[alpha];
}
else
{
dest[alpha] = (src1[alpha]) ? src1[alpha] :
(affect[alpha] ? new_alpha : src1[alpha]);
}
m++;
src1 += bytes;
src2 += bytes;
dest += bytes;
/* GUTS END */
}
}
/* BODY */
mask_ip = (int*)m;
i = length / sizeof(int);
length %= sizeof(int);
while (i--)
{
if (*mask_ip)
{
m = (const unsigned char*)mask_ip;
j = sizeof(int);
while (j--)
{
/* GUTS */
src2_alpha = INT_MULT3(src2[alpha], *m, opacity, tmp);
new_alpha = src1[alpha] +
INT_MULT((255 - src1[alpha]), src2_alpha, tmp);
alphify (src2_alpha, new_alpha);
if (mode_affect)
{
dest[alpha] = (affect[alpha]) ? new_alpha : src1[alpha];
}
else
{
dest[alpha] = (src1[alpha]) ? src1[alpha] :
(affect[alpha] ? new_alpha : src1[alpha]);
}
m++;
src1 += bytes;
src2 += bytes;
dest += bytes;
/* GUTS END */
}
}
else
{
j = bytes * sizeof(int);
src2 += j;
while (j--)
{
*(dest++) = *(src1++);
}
}
mask_ip++;
}
m = (const unsigned char*)mask_ip;
}
/* TAIL */
while (length--)
{
/* GUTS */
src2_alpha = INT_MULT3(src2[alpha], *m, opacity, tmp);
new_alpha = src1[alpha] +
INT_MULT((255 - src1[alpha]), src2_alpha, tmp);
alphify (src2_alpha, new_alpha);
if (mode_affect)
{
dest[alpha] = (affect[alpha]) ? new_alpha : src1[alpha];
}
else
{
dest[alpha] = (src1[alpha]) ? src1[alpha] :
(affect[alpha] ? new_alpha : src1[alpha]);
}
m++;
src1 += bytes;
src2 += bytes;
dest += bytes;
/* GUTS END */
}
}
}
else
{
if (opacity == OPAQUE_OPACITY) /* NO MASK, FULL OPACITY */
{
while (length --)
{
src2_alpha = src2[alpha];
new_alpha = src1[alpha] +
INT_MULT((255 - src1[alpha]), src2_alpha, tmp);
alphify (src2_alpha, new_alpha);
if (mode_affect)
{
dest[alpha] = (affect[alpha]) ? new_alpha : src1[alpha];
}
else
{
dest[alpha] = (src1[alpha]) ? src1[alpha] :
(affect[alpha] ? new_alpha : src1[alpha]);
}
src1 += bytes;
src2 += bytes;
dest += bytes;
}
}
else /* NO MASK, SEMI OPACITY */
{
while (length --)
{
src2_alpha = INT_MULT(src2[alpha], opacity, tmp);
new_alpha = src1[alpha] +
INT_MULT((255 - src1[alpha]), src2_alpha, tmp);
alphify (src2_alpha, new_alpha);
if (mode_affect)
{
dest[alpha] = (affect[alpha]) ? new_alpha : src1[alpha];
}
else
{
dest[alpha] = (src1[alpha]) ? src1[alpha] :
(affect[alpha] ? new_alpha : src1[alpha]);
}
src1 += bytes;
src2 += bytes;
dest += bytes;
}
}
}
}
#undef alphify
void
combine_inten_a_and_channel_mask_pixels (const unsigned char *src,
const unsigned char *channel,
unsigned char *dest,
const unsigned char *col,
int opacity,
int length,
int bytes)
{
int alpha, b;
unsigned char channel_alpha;
unsigned char new_alpha;
unsigned char compl_alpha;
int t, s;
alpha = bytes - 1;
while (length --)
{
channel_alpha = INT_MULT (255 - *channel, opacity, t);
if (channel_alpha)
{
new_alpha = src[alpha] + INT_MULT ((255 - src[alpha]), channel_alpha, t);
if (new_alpha != 255)
channel_alpha = (channel_alpha * 255) / new_alpha;
compl_alpha = 255 - channel_alpha;
for (b = 0; b < alpha; b++)
dest[b] = INT_MULT (col[b], channel_alpha, t) +
INT_MULT (src[b], compl_alpha, s);
dest[b] = new_alpha;
}
else
memcpy(dest, src, bytes);
/* advance pointers */
src+=bytes;
dest+=bytes;
channel++;
}
}
void
combine_inten_a_and_channel_selection_pixels (const unsigned char *src,
const unsigned char *channel,
unsigned char *dest,
const unsigned char *col,
int opacity,
int length,
int bytes)
{
int alpha, b;
unsigned char channel_alpha;
unsigned char new_alpha;
unsigned char compl_alpha;
int t, s;
alpha = bytes - 1;
while (length --)
{
channel_alpha = INT_MULT (*channel, opacity, t);
if (channel_alpha)
{
new_alpha = src[alpha] + INT_MULT ((255 - src[alpha]), channel_alpha, t);
if (new_alpha != 255)
channel_alpha = (channel_alpha * 255) / new_alpha;
compl_alpha = 255 - channel_alpha;
for (b = 0; b < alpha; b++)
dest[b] = INT_MULT (col[b], channel_alpha, t) +
INT_MULT (src[b], compl_alpha, s);
dest[b] = new_alpha;
}
else
memcpy(dest, src, bytes);
/* advance pointers */
src+=bytes;
dest+=bytes;
channel++;
}
}
void
behind_inten_pixels (const unsigned char *src1,
const unsigned char *src2,
unsigned char *dest,
const unsigned char *mask,
int opacity,
const int *affect,
int length,
int bytes1,
int bytes2,
int has_alpha1,
int has_alpha2)
{
int alpha, b;
unsigned char src1_alpha;
unsigned char src2_alpha;
unsigned char new_alpha;
const unsigned char * m;
float ratio, compl_ratio;
long tmp;
if (mask)
m = mask;
else
m = &no_mask;
/* the alpha channel */
alpha = bytes1 - 1;
while (length --)
{
src1_alpha = src1[alpha];
src2_alpha = INT_MULT3(src2[alpha], *m, opacity, tmp);
new_alpha = src2_alpha +
INT_MULT((255 - src2_alpha), src1_alpha, tmp);
if (new_alpha)
ratio = (float) src1_alpha / new_alpha;
else
ratio = 0.0;
compl_ratio = 1.0 - ratio;
for (b = 0; b < alpha; b++)
dest[b] = (affect[b]) ?
(unsigned char) (src1[b] * ratio + src2[b] * compl_ratio + EPSILON) :
src1[b];
dest[alpha] = (affect[alpha]) ? new_alpha : src1[alpha];
if (mask)
m++;
src1 += bytes1;
src2 += bytes2;
dest += bytes1;
}
}
void
behind_indexed_pixels (const unsigned char *src1,
const unsigned char *src2,
unsigned char *dest,
const unsigned char *mask,
int opacity,
const int *affect,
int length,
int bytes1,
int bytes2,
int has_alpha1,
int has_alpha2)
{
int alpha, b;
unsigned char src1_alpha;
unsigned char src2_alpha;
unsigned char new_alpha;
const unsigned char * m;
long tmp;
if (mask)
m = mask;
else
m = &no_mask;
/* the alpha channel */
alpha = bytes1 - 1;
while (length --)
{
src1_alpha = src1[alpha];
src2_alpha = INT_MULT3(src2[alpha], *m, opacity, tmp);
new_alpha = (src2_alpha > 127) ? OPAQUE_OPACITY : TRANSPARENT_OPACITY;
for (b = 0; b < bytes1; b++)
dest[b] = (affect[b] && new_alpha == OPAQUE_OPACITY && (src1_alpha > 127)) ?
src2[b] : src1[b];
if (mask)
m++;
src1 += bytes1;
src2 += bytes2;
dest += bytes1;
}
}
void
replace_inten_pixels (const unsigned char *src1,
const unsigned char *src2,
unsigned char *dest,
const unsigned char *mask,
int opacity,
const int *affect,
int length,
int bytes1,
int bytes2,
int has_alpha1,
int has_alpha2)
{
int b;
int tmp;
const int bytes = MIN (bytes1, bytes2);
if (mask)
{
unsigned char mask_alpha;
const unsigned char *m = mask;
while (length --)
{
mask_alpha = INT_MULT(*m, opacity, tmp);
for (b = 0; b < bytes; b++)
dest[b] = (affect[b]) ?
INT_BLEND(src2[b], src1[b], mask_alpha, tmp) :
src1[b];
if (has_alpha1 && !has_alpha2)
dest[b] = src1[b];
m++;
src1 += bytes1;
src2 += bytes2;
dest += bytes1;
}
}
else
{
static const unsigned char mask_alpha = OPAQUE_OPACITY ;
while (length --)
{
for (b = 0; b < bytes; b++)
dest[b] = (affect[b]) ?
INT_BLEND(src2[b], src1[b], mask_alpha, tmp) :
src1[b];
if (has_alpha1 && !has_alpha2)
dest[b] = src1[b];
src1 += bytes1;
src2 += bytes2;
dest += bytes1;
}
}
}
void
replace_indexed_pixels (const unsigned char *src1,
const unsigned char *src2,
unsigned char *dest,
const unsigned char *mask,
int opacity,
const int *affect,
int length,
int bytes1,
int bytes2,
int has_alpha1,
int has_alpha2)
{
int bytes, b;
unsigned char mask_alpha;
const unsigned char * m;
int tmp;
if (mask)
m = mask;
else
m = &no_mask;
bytes = MIN (bytes1, bytes2);
while (length --)
{
mask_alpha = INT_MULT(*m, opacity, tmp);
for (b = 0; b < bytes; b++)
dest[b] = (affect[b] && mask_alpha) ?
src2[b] : src1[b];
if (has_alpha1 && !has_alpha2)
dest[b] = src1[b];
if (mask)
m++;
src1 += bytes1;
src2 += bytes2;
dest += bytes1;
}
}
void
erase_inten_pixels (const unsigned char *src1,
const unsigned char *src2,
unsigned char *dest,
const unsigned char *mask,
int opacity,
const int *affect,
int length,
int bytes)
{
int b;
unsigned char src2_alpha;
long tmp;
const int alpha = bytes - 1;
if (mask)
{
const unsigned char *m = mask;
while (length --)
{
for (b = 0; b < alpha; b++)
dest[b] = src1[b];
src2_alpha = INT_MULT3(src2[alpha], *m, opacity, tmp);
dest[alpha] = src1[alpha] - INT_MULT(src1[alpha], src2_alpha, tmp);
m++;
src1 += bytes;
src2 += bytes;
dest += bytes;
}
}
else
{
unsigned char *m = &no_mask;
while (length --)
{
for (b = 0; b < alpha; b++)
dest[b] = src1[b];
src2_alpha = INT_MULT3(src2[alpha], *m, opacity, tmp);
dest[alpha] = src1[alpha] - INT_MULT(src1[alpha], src2_alpha, tmp);
src1 += bytes;
src2 += bytes;
dest += bytes;
}
}
}
void
erase_indexed_pixels (const unsigned char *src1,
const unsigned char *src2,
unsigned char *dest,
const unsigned char *mask,
int opacity,
const int *affect,
int length,
int bytes)
{
int alpha, b;
unsigned char src2_alpha;
const unsigned char * m;
long tmp;
if (mask)
m = mask;
else
m = &no_mask;
alpha = bytes - 1;
while (length --)
{
for (b = 0; b < alpha; b++)
dest[b] = src1[b];
src2_alpha = INT_MULT3(src2[alpha], *m, opacity, tmp);
dest[alpha] = (src2_alpha > 127) ? TRANSPARENT_OPACITY : src1[alpha];
if (mask)
m++;
src1 += bytes;
src2 += bytes;
dest += bytes;
}
}
void
anti_erase_inten_pixels (const unsigned char *src1,
const unsigned char *src2,
unsigned char *dest,
const unsigned char *mask,
int opacity,
const int *affect,
int length,
int bytes)
{
int alpha, b;
unsigned char src2_alpha;
const unsigned char * m;
long tmp;
if (mask)
m = mask;
else
m = &no_mask;
alpha = bytes - 1;
while (length --)
{
for (b = 0; b < alpha; b++)
dest[b] = src1[b];
src2_alpha = INT_MULT3(src2[alpha], *m, opacity, tmp);
dest[alpha] = src1[alpha] + INT_MULT((255 - src1[alpha]), src2_alpha, tmp);
if (mask)
m++;
src1 += bytes;
src2 += bytes;
dest += bytes;
}
}
void
anti_erase_indexed_pixels (const unsigned char *src1,
const unsigned char *src2,
unsigned char *dest,
const unsigned char *mask,
int opacity,
const int *affect,
int length,
int bytes)
{
int alpha, b;
unsigned char src2_alpha;
const unsigned char * m;
long tmp;
if (mask)
m = mask;
else
m = &no_mask;
alpha = bytes - 1;
while (length --)
{
for (b = 0; b < alpha; b++)
dest[b] = src1[b];
src2_alpha = INT_MULT3(src2[alpha], *m, opacity, tmp);
dest[alpha] = (src2_alpha > 127) ? OPAQUE_OPACITY : src1[alpha];
if (mask)
m++;
src1 += bytes;
src2 += bytes;
dest += bytes;
}
}
void
extract_from_inten_pixels (unsigned char *src,
unsigned char *dest,
const unsigned char *mask,
const unsigned char *bg,
int cut,
int length,
int bytes,
int has_alpha)
{
int b, alpha;
int dest_bytes;
const unsigned char * m;
int tmp;
if (mask)
m = mask;
else
m = &no_mask;
alpha = (has_alpha) ? bytes - 1 : bytes;
dest_bytes = (has_alpha) ? bytes : bytes + 1;
while (length --)
{
for (b = 0; b < alpha; b++)
dest[b] = src[b];
if (has_alpha)
{
dest[alpha] = INT_MULT(*m, src[alpha], tmp);
if (cut)
src[alpha] = INT_MULT((255 - *m), src[alpha], tmp);
}
else
{
dest[alpha] = *m;
if (cut)
for (b = 0; b < bytes; b++)
src[b] = INT_BLEND(bg[b], src[b], *m, tmp);
}
if (mask)
m++;
src += bytes;
dest += dest_bytes;
}
}
void
extract_from_indexed_pixels (unsigned char *src,
unsigned char *dest,
const unsigned char *mask,
const unsigned char *cmap,
const unsigned char *bg,
int cut,
int length,
int bytes,
int has_alpha)
{
int b;
int index;
const unsigned char * m;
int t;
if (mask)
m = mask;
else
m = &no_mask;
while (length --)
{
index = src[0] * 3;
for (b = 0; b < 3; b++)
dest[b] = cmap[index + b];
if (has_alpha)
{
dest[3] = INT_MULT (*m, src[1], t);
if (cut)
src[1] = INT_MULT ((255 - *m), src[1], t);
}
else
{
dest[3] = *m;
if (cut)
src[0] = (*m > 127) ? bg[0] : src[0];
}
if (mask)
m++;
src += bytes;
dest += 4;
}
}
void
map_to_color (int src_type,
const unsigned char *cmap,
const unsigned char *src,
unsigned char *rgb)
{
switch (src_type)
{
case 0: /* RGB */
/* Straight copy */
*rgb++ = *src++;
*rgb++ = *src++;
*rgb = *src;
break;
case 1: /* GRAY */
*rgb++ = *src;
*rgb++ = *src;
*rgb = *src;
break;
case 2: /* INDEXED */
{
int index = *src * 3;
*rgb++ = cmap [index++];
*rgb++ = cmap [index++];
*rgb = cmap [index++];
}
break;
}
}
int
map_rgb_to_indexed (const unsigned char *cmap,
int num_cols,
GimpImage* gimage,
int r,
int g,
int b)
{
unsigned int pixel;
int hash_index;
int cmap_index;
pixel = (r << 16) | (g << 8) | b;
hash_index = pixel % HASH_TABLE_SIZE;
/* Hash table lookup hit */
if (color_hash_table[hash_index].gimage == gimage &&
color_hash_table[hash_index].pixel == pixel)
{
cmap_index = color_hash_table[hash_index].index;
color_hash_hits++;
}
/* Hash table lookup miss */
else
{
const unsigned char *col;
int diff, sum, max;
int i;
max = MAXDIFF;
cmap_index = 0;
col = cmap;
for (i = 0; i < num_cols; i++)
{
diff = r - *col++;
sum = diff * diff;
diff = g - *col++;
sum += diff * diff;
diff = b - *col++;
sum += diff * diff;
if (sum < max)
{
cmap_index = i;
max = sum;
}
}
/* update the hash table */
color_hash_table[hash_index].pixel = pixel;
color_hash_table[hash_index].index = cmap_index;
color_hash_table[hash_index].gimage = gimage;
color_hash_misses++;
}
return cmap_index;
}
/**************************************************/
/* REGION FUNCTIONS */
/**************************************************/
void
color_region (PixelRegion *dest,
const unsigned char *col)
{
int h;
unsigned char * s;
void * pr;
for (pr = pixel_regions_register (1, dest); pr != NULL; pr = pixel_regions_process (pr))
{
h = dest->h;
s = dest->data;
if (dest->w*dest->bytes == dest->rowstride)
{
/* do it all in one function call if we can */
/* this hasn't been tested to see if it is a
signifigant speed gain yet */
color_pixels (s, col, dest->w*h, dest->bytes);
}
else
{
while (h--)
{
color_pixels (s, col, dest->w, dest->bytes);
s += dest->rowstride;
}
}
}
}
void
blend_region (PixelRegion *src1,
PixelRegion *src2,
PixelRegion *dest,
int blend)
{
int h;
unsigned char *s1, *s2, * d;
void * pr;
for (pr = pixel_regions_register (3, src1, src2, dest); pr != NULL; pr = pixel_regions_process (pr))
{
s1 = src1->data;
s2 = src2->data;
d = dest->data;
h = src1->h;
while (h --)
{
blend_pixels (s1, s2, d, blend, src1->w, src1->bytes, FALSE);
s1 += src1->rowstride;
s2 += src2->rowstride;
d += dest->rowstride;
}
}
}
void
shade_region (PixelRegion *src,
PixelRegion *dest,
unsigned char *col,
int blend)
{
int h;
unsigned char * s, * d;
s = src->data;
d = dest->data;
h = src->h;
while (h --)
{
/* blend_pixels (s, d, col, blend, src->w, src->bytes);*/
s += src->rowstride;
d += dest->rowstride;
}
}
void
copy_region (PixelRegion *src,
PixelRegion *dest)
{
int h;
int pixelwidth;
unsigned char * s, * d;
void * pr;
#ifdef COWSHOW
fputc('[',stderr);
#endif
for (pr = pixel_regions_register (2, src, dest);
pr != NULL;
pr = pixel_regions_process (pr))
{
if (src->tiles && dest->tiles &&
src->curtile && dest->curtile &&
src->offx == 0 && dest->offx == 0 &&
src->offy == 0 && dest->offy == 0 &&
src->w == (src->curtile->ewidth) &&
dest->w == (dest->curtile->ewidth) &&
src->h == tile_eheight(src->curtile) &&
dest->h == tile_eheight(dest->curtile))
{
#ifdef COWSHOW
fputc('!',stderr);
#endif
tile_manager_map_over_tile (dest->tiles, dest->curtile, src->curtile);
}
else
{
#ifdef COWSHOW
fputc('.',stderr);
#endif
pixelwidth = src->w * src->bytes;
s = src->data;
d = dest->data;
h = src->h;
while (h --)
{
memcpy (d, s, pixelwidth);
s += src->rowstride;
d += dest->rowstride;
}
}
}
#ifdef COWSHOW
fputc(']',stderr);
fputc('\n',stderr);
#endif
}
void
add_alpha_region (PixelRegion *src,
PixelRegion *dest)
{
int h;
unsigned char * s, * d;
void * pr;
for (pr = pixel_regions_register (2, src, dest); pr != NULL; pr = pixel_regions_process (pr))
{
s = src->data;
d = dest->data;
h = src->h;
while (h --)
{
add_alpha_pixels (s, d, src->w, src->bytes);
s += src->rowstride;
d += dest->rowstride;
}
}
}
void
flatten_region (PixelRegion *src,
PixelRegion *dest,
unsigned char *bg)
{
int h;
unsigned char * s, * d;
s = src->data;
d = dest->data;
h = src->h;
while (h --)
{
flatten_pixels (s, d, bg, src->w, src->bytes);
s += src->rowstride;
d += dest->rowstride;
}
}
void
extract_alpha_region (PixelRegion *src,
PixelRegion *mask,
PixelRegion *dest)
{
int h;
unsigned char * s, * m, * d;
void * pr;
for (pr = pixel_regions_register (3, src, mask, dest); pr != NULL; pr = pixel_regions_process (pr))
{
s = src->data;
d = dest->data;
if (mask)
m = mask->data;
else
m = NULL;
h = src->h;
while (h --)
{
extract_alpha_pixels (s, m, d, src->w, src->bytes);
s += src->rowstride;
d += dest->rowstride;
if (mask)
m += mask->rowstride;
}
}
}
void
extract_from_region (PixelRegion *src,
PixelRegion *dest,
PixelRegion *mask,
unsigned char *cmap,
unsigned char *bg,
int type,
int has_alpha,
int cut)
{
int h;
unsigned char * s, * d, * m;
void * pr;
for (pr = pixel_regions_register (3, src, dest, mask); pr != NULL; pr = pixel_regions_process (pr))
{
s = src->data;
d = dest->data;
m = (mask) ? mask->data : NULL;
h = src->h;
while (h --)
{
switch (type)
{
case 0: /* RGB */
case 1: /* GRAY */
extract_from_inten_pixels (s, d, m, bg, cut, src->w,
src->bytes, has_alpha);
break;
case 2: /* INDEXED */
extract_from_indexed_pixels (s, d, m, cmap, bg, cut, src->w,
src->bytes, has_alpha);
break;
}
s += src->rowstride;
d += dest->rowstride;
if (mask)
m += mask->rowstride;
}
}
}
void
convolve_region (PixelRegion *srcR,
PixelRegion *destR,
int *matrix,
int size,
int divisor,
ConvolutionType mode)
{
/* Convolve the src image using the convolution matrix, writing to dest */
/* Convolve is not tile-enabled--use accordingly */
unsigned char *src, *s_row, * s;
unsigned char *dest, * d;
int * m;
int total [4];
int b, bytes;
int length;
int wraparound;
int margin; /* margin imposed by size of conv. matrix */
int i, j;
int x, y;
int offset;
/* If the mode is NEGATIVE_CONVOL, the offset should be 128 */
if (mode == NEGATIVE_CONVOL)
{
offset = 128;
mode = NORMAL_CONVOL;
}
else
offset = 0;
/* check for the boundary cases */
if (srcR->w < (size - 1) || srcR->h < (size - 1))
return;
/* Initialize some values */
bytes = srcR->bytes;
length = bytes * srcR->w;
margin = size / 2;
src = srcR->data;
dest = destR->data;
/* calculate the source wraparound value */
wraparound = srcR->rowstride - size * bytes;
/* copy the first (size / 2) scanlines of the src image... */
for (i = 0; i < margin; i++)
{
memcpy (dest, src, length);
src += srcR->rowstride;
dest += destR->rowstride;
}
src = srcR->data;
for (y = margin; y < srcR->h - margin; y++)
{
s_row = src;
s = s_row + srcR->rowstride*margin;
d = dest;
/* handle the first margin pixels... */
b = bytes * margin;
while (b --)
*d++ = *s++;
/* now, handle the center pixels */
x = srcR->w - margin*2;
while (x--)
{
s = s_row;
m = matrix;
total [0] = total [1] = total [2] = total [3] = 0;
i = size;
while (i --)
{
j = size;
while (j --)
{
for (b = 0; b < bytes; b++)
total [b] += *m * *s++;
m ++;
}
s += wraparound;
}
for (b = 0; b < bytes; b++)
{
total [b] = total [b] / divisor + offset;
if (total [b] < 0 && mode != NORMAL_CONVOL)
total [b] = - total [b];
if (total [b] < 0)
*d++ = 0;
else
*d++ = (total [b] > 255) ? 255 : (unsigned char) total [b];
}
s_row += bytes;
}
/* handle the last pixel... */
s = s_row + (srcR->rowstride + bytes) * margin;
b = bytes * margin;
while (b --)
*d++ = *s++;
/* set the memory pointers */
src += srcR->rowstride;
dest += destR->rowstride;
}
src += srcR->rowstride*margin;
/* copy the last (margin) scanlines of the src image... */
for (i = 0; i < margin; i++)
{
memcpy (dest, src, length);
src += srcR->rowstride;
dest += destR->rowstride;
}
}
/* Convert from separated alpha to premultiplied alpha. Only works on
non-tiled regions! */
void
multiply_alpha_region (PixelRegion *srcR)
{
unsigned char *src, *s;
int x, y;
int width, height;
int b, bytes;
double alpha_val;
width = srcR->w;
height = srcR->h;
bytes = srcR->bytes;
src = srcR->data;
for (y = 0; y < height; y++)
{
s = src;
for (x = 0; x < width; x++)
{
alpha_val = s[bytes - 1] * (1.0 / 255.0);
for (b = 0; b < bytes - 1; b++)
s[b] = 0.5 + s[b] * alpha_val;
s += bytes;
}
src += srcR->rowstride;
}
}
/* Convert from premultiplied alpha to separated alpha. Only works on
non-tiled regions! */
void
separate_alpha_region (PixelRegion *srcR)
{
unsigned char *src, *s;
int x, y;
int width, height;
int b, bytes;
double alpha_recip;
int new_val;
width = srcR->w;
height = srcR->h;
bytes = srcR->bytes;
src = srcR->data;
for (y = 0; y < height; y++)
{
s = src;
for (x = 0; x < width; x++)
{
/* predicate is equivalent to:
(((s[bytes - 1] - 1) & 255) + 2) & 256
*/
if (s[bytes - 1] != 0 && s[bytes - 1] != 255)
{
alpha_recip = 255.0 / s[bytes - 1];
for (b = 0; b < bytes - 1; b++)
{
new_val = 0.5 + s[b] * alpha_recip;
new_val = MIN (new_val, 255);
s[b] = new_val;
}
}
s += bytes;
}
src += srcR->rowstride;
}
}
void
gaussian_blur_region (PixelRegion *srcR,
double radius_x,
double radius_y)
{
double std_dev;
long width, height;
int bytes;
unsigned char *src, *sp;
unsigned char *dest, *dp;
unsigned char *data;
int *buf, *b;
int pixels;
int total;
int i, row, col;
int start, end;
int *curve;
int *sum;
int val;
int length;
int alpha;
int initial_p, initial_m;
if (radius_x == 0.0 && radius_y == 0.0) return; /* zero blur is a no-op */
/* allocate the result buffer */
length = MAX (srcR->w, srcR->h) * srcR->bytes;
data = paint_funcs_get_buffer (length * 2);
src = data;
dest = data + length;
width = srcR->w;
height = srcR->h;
bytes = srcR->bytes;
alpha = bytes - 1;
buf = g_malloc (sizeof (int) * MAX (width, height) * 2);
if (radius_y != 0.0)
{
std_dev = sqrt (-(radius_y * radius_y) / (2 * log (1.0 / 255.0)));
curve = make_curve (std_dev, &length);
sum = g_malloc (sizeof (int) * (2 * length + 1));
sum[0] = 0;
for (i = 1; i <= length*2; i++)
sum[i] = curve[i-length-1] + sum[i-1];
sum += length;
total = sum[length] - sum[-length];
for (col = 0; col < width; col++)
{
pixel_region_get_col (srcR, col + srcR->x, srcR->y, height, src, 1);
sp = src + alpha;
initial_p = sp[0];
initial_m = sp[(height-1) * bytes];
/* Determine a run-length encoded version of the column */
run_length_encode (sp, buf, height, bytes);
for (row = 0; row < height; row++)
{
start = (row < length) ? -row : -length;
end = (height <= (row + length)) ? (height - row - 1) : length;
val = 0;
i = start;
b = buf + (row + i) * 2;
if (start != -length)
val += initial_p * (sum[start] - sum[-length]);
while (i < end)
{
pixels = b[0];
i += pixels;
if (i > end)
i = end;
val += b[1] * (sum[i] - sum[start]);
b += (pixels * 2);
start = i;
}
if (end != length)
val += initial_m * (sum[length] - sum[end]);
sp[row * bytes] = val / total;
}
pixel_region_set_col (srcR, col + srcR->x, srcR->y, height, src);
}
g_free (sum - length);
g_free (curve - length);
}
if (radius_x != 0.0)
{
std_dev = sqrt (-(radius_x * radius_x) / (2 * log (1.0 / 255.0)));
curve = make_curve (std_dev, &length);
sum = g_malloc (sizeof (int) * (2 * length + 1));
sum[0] = 0;
for (i = 1; i <= length*2; i++)
sum[i] = curve[i-length-1] + sum[i-1];
sum += length;
total = sum[length] - sum[-length];
for (row = 0; row < height; row++)
{
pixel_region_get_row (srcR, srcR->x, row + srcR->y, width, src, 1);
sp = src + alpha;
dp = dest + alpha;
initial_p = sp[0];
initial_m = sp[(width-1) * bytes];
/* Determine a run-length encoded version of the row */
run_length_encode (sp, buf, width, bytes);
for (col = 0; col < width; col++)
{
start = (col < length) ? -col : -length;
end = (width <= (col + length)) ? (width - col - 1) : length;
val = 0;
i = start;
b = buf + (col + i) * 2;
if (start != -length)
val += initial_p * (sum[start] - sum[-length]);
while (i < end)
{
pixels = b[0];
i += pixels;
if (i > end)
i = end;
val += b[1] * (sum[i] - sum[start]);
b += (pixels * 2);
start = i;
}
if (end != length)
val += initial_m * (sum[length] - sum[end]);
val = val / total;
dp[col * bytes] = val;
}
pixel_region_set_row (srcR, srcR->x, row + srcR->y, width, dest);
}
g_free (sum - length);
g_free (curve - length);
}
g_free (buf);
}
/* non-interpolating scale_region. [adam]
*/
void
scale_region_no_resample (PixelRegion *srcPR,
PixelRegion *destPR)
{
int * x_src_offsets;
int * y_src_offsets;
unsigned char * src;
unsigned char * dest;
int width, height, orig_width, orig_height;
int last_src_y;
int row_bytes;
int x,y,b;
char bytes;
orig_width = srcPR->w;
orig_height = srcPR->h;
width = destPR->w;
height = destPR->h;
bytes = srcPR->bytes;
/* the data pointers... */
x_src_offsets = (int *) g_malloc (width * bytes * sizeof(int));
y_src_offsets = (int *) g_malloc (height * sizeof(int));
src = (unsigned char *) g_malloc (orig_width * bytes);
dest = (unsigned char *) g_malloc (width * bytes);
/* pre-calc the scale tables */
for (b = 0; b < bytes; b++)
{
for (x = 0; x < width; x++)
{
x_src_offsets [b + x * bytes] = b + bytes * ((x * orig_width + orig_width / 2) / width);
}
}
for (y = 0; y < height; y++)
{
y_src_offsets [y] = (y * orig_height + orig_height / 2) / height;
}
/* do the scaling */
row_bytes = width * bytes;
last_src_y = -1;
for (y = 0; y < height; y++)
{
/* if the source of this line was the same as the source
* of the last line, there's no point in re-rescaling.
*/
if (y_src_offsets[y] != last_src_y)
{
pixel_region_get_row (srcPR, 0, y_src_offsets[y], orig_width, src, 1);
for (x = 0; x < row_bytes ; x++)
{
dest[x] = src[x_src_offsets[x]];
}
last_src_y = y_src_offsets[y];
}
pixel_region_set_row (destPR, 0, y, width, dest);
}
g_free (x_src_offsets);
g_free (y_src_offsets);
g_free (src);
g_free (dest);
}
static void
get_premultiplied_double_row(PixelRegion *srcPR, int x, int y,
int w, double *row, guchar *tmp_src, int n)
{
int b;
int bytes = srcPR->bytes;
pixel_region_get_row (srcPR, x, y, w, tmp_src, n);
if (pixel_region_has_alpha(srcPR))
{ /* premultiply the alpha into the double array */
double *irow = row;
int alpha = bytes - 1;
double mod_alpha;
for (x = 0; x < w; x++)
{
mod_alpha = tmp_src[alpha] / 255.0;
for (b = 0; b < alpha; b++)
irow[b] = mod_alpha * tmp_src[b];
irow[b] = tmp_src[alpha];
irow += bytes;
tmp_src += bytes;
}
}
else /* no alpha */
{
for (x = 0; x < w*bytes; x++)
row[x] = tmp_src[x];
}
/* set the off edge pixels to their nearest neighbor */
for (b = 0; b < 2 * bytes; b++)
row[-2*bytes + b] = row[(b%bytes)];
for (b = 0; b < bytes * 2; b++)
row[w*bytes + b] = row[(w - 1) * bytes + (b%bytes)];
}
static
void expand_line(double *dest, double *src, int bytes,
int old_width, int width, InterpolationType interp)
{
double ratio;
int x,b;
int src_col;
double frac;
double *s;
ratio = old_width/(double)width;
/* this could be opimized much more by precalculating the coeficients for
each x */
switch(interp)
{
case CUBIC_INTERPOLATION:
for (x = 0; x < width; x++)
{
src_col = ((int)((x) * ratio + 2.0 - 0.5)) - 2;
/* +2, -2 is there because (int) rounds towards 0 and we need
to round down */
frac = ((x) * ratio - 0.5) - src_col;
s = &src[src_col * bytes];
for (b = 0; b < bytes; b++)
dest[b] = cubic (frac, s[b - bytes], s[b], s[b+bytes], s[b+bytes*2]);
dest += bytes;
}
break;
case LINEAR_INTERPOLATION:
for (x = 0; x < width; x++)
{
src_col = ((int)((x) * ratio + 2.0 - 0.5)) - 2;
/* +2, -2 is there because (int) rounds towards 0 and we need
to round down */
frac = ((x) * ratio - 0.5) - src_col;
s = &src[src_col * bytes];
for (b = 0; b < bytes; b++)
dest[b] = ((s[b + bytes] - s[b]) * frac + s[b]);
dest += bytes;
}
break;
case NEAREST_NEIGHBOR_INTERPOLATION:
g_error("sampling_type can't be "
"NEAREST_NEIGHBOR_INTERPOLATION");
}
}
static void shrink_line(double *dest, double *src, int bytes,
int old_width, int width, InterpolationType interp)
{
int x, b;
double *source, *destp;
register double accum;
register unsigned int max;
register double mant, tmp;
register const double step = old_width/(double)width;
register const double inv_step = 1.0/step;
double position;
for (b = 0; b < bytes; b++)
{
source = &src[b];
destp = &dest[b];
position = -1;
mant = *source;
for (x = 0; x < width; x++)
{
source+= bytes;
accum = 0;
max = ((int)(position+step)) - ((int)(position));
max--;
while (max)
{
accum += *source;
source += bytes;
max--;
}
tmp = accum + mant;
mant = ((position+step) - (int)(position + step));
mant *= *source;
tmp += mant;
tmp *= inv_step;
mant = *source - mant;
*(destp) = tmp;
destp += bytes;
position += step;
}
}
}
static void
get_scaled_row(void **src, int y, int new_width, PixelRegion *srcPR, double *row,
guchar *src_tmp)
{
/* get the necesary lines from the source image, scale them,
and put them into src[] */
rotate_pointers(src, 4);
if (y < 0)
y = 0;
if (y < srcPR->h)
{
get_premultiplied_double_row(srcPR, 0, y, srcPR->w,
row, src_tmp, 1);
if (new_width > srcPR->w)
expand_line(src[3], row, srcPR->bytes,
srcPR->w, new_width, interpolation_type);
else if (srcPR->w > new_width)
shrink_line(src[3], row, srcPR->bytes,
srcPR->w, new_width, interpolation_type);
else /* no scailing needed */
memcpy(src[3], row, sizeof (double) * new_width * srcPR->bytes);
}
else
memcpy(src[3], src[2], sizeof (double) * new_width * srcPR->bytes);
}
void
scale_region (PixelRegion *srcPR,
PixelRegion *destPR)
{
double *src[4];
guchar * src_tmp;
guchar * dest;
double * row, *accum;
int bytes, b;
int width, height;
int orig_width, orig_height;
double y_rat;
int i;
int old_y = -4, new_y;
int x, y;
if (interpolation_type == NEAREST_NEIGHBOR_INTERPOLATION)
{
scale_region_no_resample (srcPR, destPR);
return;
}
orig_width = srcPR->w;
orig_height = srcPR->h;
width = destPR->w;
height = destPR->h;
/* find the ratios of old y to new y */
y_rat = (double) orig_height / (double) height;
bytes = destPR->bytes;
/* the data pointers... */
for (i = 0; i < 4; i++)
src[i] = g_new (double, (width) * bytes);
dest = g_new (guchar, width * bytes);
src_tmp = g_new (guchar, orig_width * bytes);
/* offset the row pointer by 2*bytes so the range of the array
is [-2*bytes] to [(orig_width + 2)*bytes] */
row = g_new(double, (orig_width + 2*2) * bytes);
row += bytes*2;
accum = g_new(double, (width) * bytes);
/* Scale the selected region */
for (y = 0; y < height; y++)
{
if (height < orig_height)
{
int max;
double frac;
const double inv_ratio = 1.0 / y_rat;
if (y == 0) /* load the first row if this it the first time through */
get_scaled_row((void **)&src[0], 0, width, srcPR, row,
src_tmp);
new_y = (int)((y) * y_rat);
frac = 1.0 - (y*y_rat - new_y);
for (x = 0; x < width*bytes; x++)
accum[x] = src[3][x] * frac;
max = ((int)((y+1) *y_rat)) - (new_y);
max--;
get_scaled_row((void **)&src[0], ++new_y, width, srcPR, row,
src_tmp);
while (max > 0)
{
for (x = 0; x < width*bytes; x++)
accum[x] += src[3][x];
get_scaled_row((void **)&src[0], ++new_y, width, srcPR, row,
src_tmp);
max--;
}
frac = (y + 1)*y_rat - ((int)((y + 1)*y_rat));
for (x = 0; x < width*bytes; x++)
{
accum[x] += frac * src[3][x];
accum[x] *= inv_ratio;
}
}
else if (height > orig_height)
{
new_y = floor((y) * y_rat - .5);
while (old_y <= new_y)
{ /* get the necesary lines from the source image, scale them,
and put them into src[] */
get_scaled_row((void **)&src[0], old_y + 2, width, srcPR, row,
src_tmp);
old_y++;
}
switch(interpolation_type)
{
case CUBIC_INTERPOLATION:
{
double p0, p1, p2, p3;
double dy = ((y) * y_rat - .5) - new_y;
p0 = cubic(dy, 1, 0, 0, 0);
p1 = cubic(dy, 0, 1, 0, 0);
p2 = cubic(dy, 0, 0, 1, 0);
p3 = cubic(dy, 0, 0, 0, 1);
for (x = 0; x < width * bytes; x++)
accum[x] = p0 * src[0][x] + p1 * src[1][x] +
p2 * src[2][x] + p3 * src[3][x];
} break;
case LINEAR_INTERPOLATION:
{
double idy = ((y) * y_rat - 0.5) - new_y;
double dy = 1.0 - idy;
for (x = 0; x < width * bytes; x++)
accum[x] = dy * src[1][x] + idy * src[2][x];
} break;
case NEAREST_NEIGHBOR_INTERPOLATION:
g_error("sampling_type can't be "
"NEAREST_NEIGHBOR_INTERPOLATION");
}
}
else /* height == orig_height */
{
get_scaled_row((void **)&src[0], y, width, srcPR, row,
src_tmp);
memcpy(accum, src[3], sizeof(double) * width * bytes);
}
if (pixel_region_has_alpha(srcPR))
{ /* unmultiply the alpha */
double inv_alpha;
double *p = accum;
int alpha = bytes - 1;
int result;
guchar *d = dest;
for (x = 0; x < width; x++)
{
if (p[alpha] > 0.001)
{
inv_alpha = 255.0 / p[alpha];
for (b = 0; b < alpha; b++)
{
result = RINT(inv_alpha * p[b]);
if (result < 0)
d[b] = 0;
else if (result > 255)
d[b] = 255;
else
d[b] = result;
}
result = RINT(p[alpha]);
if (result > 255)
d[alpha] = 255;
else
d[alpha] = result;
}
else /* alpha <= 0 */
for (b = 0; b <= alpha; b++)
d[b] = 0;
d += bytes;
p += bytes;
}
}
else
{
int w = width * bytes;
for (x = 0; x < w; x++)
{
if (accum[x] < 0.0)
dest[x] = 0;
else if (accum[x] > 255.0)
dest[x] = 255;
else
dest[x] = RINT(accum[x]);
}
}
pixel_region_set_row (destPR, 0, y, width, dest);
}
/* free up temporary arrays */
g_free (accum);
for (i = 0; i < 4; i++)
g_free (src[i]);
g_free (src_tmp);
g_free (dest);
row -= 2*bytes;
g_free (row);
}
void
subsample_region (PixelRegion *srcPR,
PixelRegion *destPR,
int subsample)
{
unsigned char * src, * s;
unsigned char * dest, * d;
double * row, * r;
int destwidth;
int src_row, src_col;
int bytes, b;
int width, height;
int orig_width, orig_height;
double x_rat, y_rat;
double x_cum, y_cum;
double x_last, y_last;
double * x_frac, y_frac, tot_frac;
int i, j;
int frac;
int advance_dest;
orig_width = srcPR->w / subsample;
orig_height = srcPR->h / subsample;
width = destPR->w;
height = destPR->h;
/* Some calculations... */
bytes = destPR->bytes;
destwidth = destPR->rowstride;
/* the data pointers... */
src = (unsigned char *) g_malloc (orig_width * bytes);
dest = destPR->data;
/* find the ratios of old x to new x and old y to new y */
x_rat = (double) orig_width / (double) width;
y_rat = (double) orig_height / (double) height;
/* allocate an array to help with the calculations */
row = (double *) g_malloc (sizeof (double) * width * bytes);
x_frac = (double *) g_malloc (sizeof (double) * (width + orig_width));
/* initialize the pre-calculated pixel fraction array */
src_col = 0;
x_cum = (double) src_col;
x_last = x_cum;
for (i = 0; i < width + orig_width; i++)
{
if (x_cum + x_rat <= (src_col + 1 + EPSILON))
{
x_cum += x_rat;
x_frac[i] = x_cum - x_last;
}
else
{
src_col ++;
x_frac[i] = src_col - x_last;
}
x_last += x_frac[i];
}
/* clear the "row" array */
memset (row, 0, sizeof (double) * width * bytes);
/* counters... */
src_row = 0;
y_cum = (double) src_row;
y_last = y_cum;
pixel_region_get_row (srcPR, 0, src_row * subsample, orig_width * subsample, src, subsample);
/* Scale the selected region */
for (i = 0; i < height; )
{
src_col = 0;
x_cum = (double) src_col;
/* determine the fraction of the src pixel we are using for y */
if (y_cum + y_rat <= (src_row + 1 + EPSILON))
{
y_cum += y_rat;
y_frac = y_cum - y_last;
advance_dest = TRUE;
}
else
{
src_row ++;
y_frac = src_row - y_last;
advance_dest = FALSE;
}
y_last += y_frac;
s = src;
r = row;
frac = 0;
j = width;
while (j)
{
tot_frac = x_frac[frac++] * y_frac;
for (b = 0; b < bytes; b++)
r[b] += s[b] * tot_frac;
/* increment the destination */
if (x_cum + x_rat <= (src_col + 1 + EPSILON))
{
r += bytes;
x_cum += x_rat;
j--;
}
/* increment the source */
else
{
s += bytes;
src_col++;
}
}
if (advance_dest)
{
tot_frac = 1.0 / (x_rat * y_rat);
/* copy "row" to "dest" */
d = dest;
r = row;
j = width;
while (j--)
{
b = bytes;
while (b--)
*d++ = (unsigned char) (*r++ * tot_frac + 0.5);
}
dest += destwidth;
/* clear the "row" array */
memset (row, 0, sizeof (double) * destwidth);
i++;
}
else
pixel_region_get_row (srcPR, 0, src_row * subsample, orig_width * subsample, src, subsample);
}
/* free up temporary arrays */
g_free (row);
g_free (x_frac);
g_free (src);
}
float
shapeburst_region (PixelRegion *srcPR,
PixelRegion *distPR)
{
Tile *tile;
unsigned char *tile_data;
float max_iterations;
float *distp_cur;
float *distp_prev;
float *tmp;
float min_prev;
float float_tmp;
int min;
int min_left;
int length;
int i, j, k;
int src;
int fraction;
int prev_frac;
int x, y;
int end;
int boundary;
int inc;
src = 0;
max_iterations = 0.0;
length = distPR->w + 1;
distp_prev = (float *) paint_funcs_get_buffer (sizeof (float) * length * 2);
for (i = 0; i < length; i++)
distp_prev[i] = 0.0;
distp_prev += 1;
distp_cur = distp_prev + length;
for (i = 0; i < srcPR->h; i++)
{
/* set the current dist row to 0's */
memset(distp_cur - 1, 0, sizeof(float) * (length - 1));
for (j = 0; j < srcPR->w; j++)
{
min_prev = MIN (distp_cur[j-1], distp_prev[j]);
min_left = MIN ((srcPR->w - j - 1), (srcPR->h - i - 1));
min = (int) MIN (min_left, min_prev);
fraction = 255;
/* This might need to be changed to 0 instead of k = (min) ? (min - 1) : 0 */
for (k = (min) ? (min - 1) : 0; k <= min; k++)
{
x = j;
y = i + k;
end = y - k;
while (y >= end)
{
tile = tile_manager_get_tile (srcPR->tiles, x, y, TRUE, FALSE);
tile_data = tile_data_pointer (tile, x%TILE_WIDTH, y%TILE_HEIGHT);
boundary = MIN ((y % TILE_HEIGHT),
(tile->ewidth - (x % TILE_WIDTH) - 1));
boundary = MIN (boundary, (y - end)) + 1;
inc = 1 - (tile->ewidth);
while (boundary--)
{
src = *tile_data;
if (src == 0)
{
min = k;
y = -1;
break;
}
if (src < fraction)
fraction = src;
x++;
y--;
tile_data += inc;
}
tile_release (tile, FALSE);
}
}
if (src != 0)
{
/* If min_left != min_prev use the previous fraction
* if it is less than the one found
*/
if (min_left != min)
{
prev_frac = (int) (255 * (min_prev - min));
if (prev_frac == 255)
prev_frac = 0;
fraction = MIN (fraction, prev_frac);
}
min++;
}
float_tmp = distp_cur[j] = min + fraction / 256.0;
if (float_tmp > max_iterations)
max_iterations = float_tmp;
}
/* set the dist row */
pixel_region_set_row (distPR, distPR->x, distPR->y + i, distPR->w, (unsigned char *) distp_cur);
/* swap pointers around */
tmp = distp_prev;
distp_prev = distp_cur;
distp_cur = tmp;
}
return max_iterations;
}
static void
rotate_pointers(void **p, guint32 n)
{
guint32 i;
void *tmp;
tmp = p[0];
for (i = 0; i < n-1; i++)
{
p[i] = p[i+1];
}
p[i] = tmp;
}
static void
compute_border(gint16 *circ, guint16 xradius, guint16 yradius)
{
gint32 i;
gint32 diameter = xradius*2 +1;
gdouble tmp;
for (i = 0; i < diameter; i++)
{
if (i > xradius)
tmp = (i - xradius) - .5;
else if (i < xradius)
tmp = (xradius - i) - .5;
else
tmp = 0.0;
circ[i] = RINT(yradius/(double)xradius *
sqrt((xradius)*(xradius) - (tmp)*(tmp)));
}
}
void
fatten_region(PixelRegion *src, gint16 xradius, gint16 yradius)
{
/*
Any bugs in this fuction are probably also in thin_region
Blame all bugs in this function on jaycox@gimp.org
*/
register gint32 i, j, x, y;
guchar **buf; /* caches the region's pixel data */
guchar *out; /* holds the new scan line we are computing */
guchar **max; /* caches the largest values for each column */
gint16 *circ; /* holds the y coords of the filter's mask */
gint16 last_max, last_index;
guchar *buffer;
if (xradius <= 0 || yradius <= 0)
return;
max = (guchar **)g_malloc ((src->w + 2*xradius) * sizeof(void *));
buf = (guchar **)g_malloc((yradius + 1) * sizeof(void *));
for (i = 0; i < yradius+1; i++)
{
buf[i] = (guchar *)g_malloc(src->w * sizeof(guchar));
}
buffer = g_malloc((src->w + 2*xradius)*(yradius + 1) * sizeof(guchar));
for (i = 0; i < src->w + 2*xradius; i++)
{
if (i < xradius)
max[i] = buffer;
else if (i < src->w + xradius)
max[i] = &buffer[(yradius+1)*(i - xradius)];
else
max[i] = &buffer[(yradius+1)*(src->w + xradius - 1)];
for (j = 0 ; j < xradius + 1; j++)
max[i][j] = 0;
}
/* offset the max pointer by xradius so the range of the array
is [-xradius] to [src->w + xradius] */
max += xradius;
out = (guchar *)g_malloc (src->w * sizeof(guchar));
circ = (short *)g_malloc ((2*xradius + 1) * sizeof(gint16));
compute_border (circ, xradius, yradius);
/* offset the circ pointer by xradius so the range of the array
is [-xradius] to [xradius] */
circ += xradius;
memset (buf[0], 0, src->w);
for (i = 0; i < yradius && i < src->h; i++) /* load top of image */
pixel_region_get_row (src, src->x, src->y + i, src->w, buf[i+1], 1);
for (x = 0; x < src->w; x++) /* set up max for top of image */
{
max[x][0] = buf[0][x];
for (j = 1; j < yradius+1; j++)
if (max[x][j] < buf[j][x])
max[x][j] = buf[j][x];
else
max[x][j] = max[x][j-1];
}
for (y = 0; y < src->h; y++)
{
rotate_pointers((void **)buf, yradius+1);
if (y < src->h - (yradius))
pixel_region_get_row (src, src->x, src->y + y + yradius, src->w,
buf[yradius], 1);
else
memset (buf[yradius], 0, src->w);
for (x = 0 ; x < src->w; x++) /* update max array */
{
for (i = yradius; i > 0; i--)
{
max[x][i] = (MAX (MAX (max[x][i - 1], buf[i-1][x]), buf[i][x]));
}
max[x][0] = buf[0][x];
}
last_max = max[0][circ[-1]];
last_index = 1;
for (x = 0 ; x < src->w; x++) /* render scan line */
{
last_index--;
if (last_index >= 0)
{
if (last_max == 255)
out[x] = 255;
else
{
last_max = 0;
for (i = xradius; i >= 0; i--)
if (last_max < max[x+i][circ[i]])
{
last_max = max[x+i][circ[i]];
last_index = i;
}
out[x] = last_max;
}
}
else
{
last_index = xradius;
last_max = max[x+xradius][circ[xradius]];
for (i = xradius-1; i >= -xradius; i--)
if (last_max < max[x+i][circ[i]])
{
last_max = max[x+i][circ[i]];
last_index = i;
}
out[x] = last_max;
}
}
pixel_region_set_row (src, src->x, src->y + y, src->w, out);
}
/* undo the offsets to the pointers so we can free the malloced memmory */
circ -= xradius;
max -= xradius;
g_free (circ);
g_free (buffer);
g_free (max);
for (i = 0; i < yradius + 1; i++)
g_free (buf[i]);
g_free (buf);
g_free (out);
}
void
thin_region(PixelRegion *src, gint16 xradius, gint16 yradius, int edge_lock)
{
/*
pretty much the same as fatten_region only different
blame all bugs in this function on jaycox@gimp.org
*/
/* If edge_lock is true we assume that pixels outside the region
we are passed are identical to the edge pixels.
If edge_lock is false, we assume that pixels outside the region are 0
*/
register gint32 i, j, x, y;
guchar **buf; /* caches the the region's pixels */
guchar *out; /* holds the new scan line we are computing */
guchar **max; /* caches the smallest values for each column */
gint16 *circ; /* holds the y coords of the filter's mask */
gint16 last_max, last_index;
guchar *buffer;
if (xradius <= 0 || yradius <= 0)
return;
max = (guchar **)g_malloc ((src->w+2*xradius) * sizeof(void *));
buf = (guchar **)g_malloc ((yradius+1) * sizeof(void *));
for (i = 0; i < yradius+1; i++)
{
buf[i] = (guchar *)g_malloc (src->w * sizeof(guchar));
}
buffer = g_malloc ((src->w+2*xradius + 1)*(yradius+1));
if (edge_lock)
memset(buffer, 255, (src->w+2*xradius + 1)*(yradius+1));
else
memset(buffer, 0, (src->w+2*xradius + 1)*(yradius+1));
for (i = 0; i < src->w+2*xradius; i++)
{
if (i < xradius)
if (edge_lock)
max[i] = buffer;
else
max[i] = &buffer[(yradius+1)*(src->w + xradius)];
else if (i < src->w + xradius)
max[i] = &buffer[(yradius+1)*(i - xradius)];
else
if (edge_lock)
max[i] = &buffer[(yradius+1)*(src->w + xradius - 1)];
else
max[i] = &buffer[(yradius+1)*(src->w + xradius)];
}
if (!edge_lock)
for (j = 0 ; j < xradius+1; j++)
max[0][j] = 0;
/* offset the max pointer by xradius so the range of the array
is [-xradius] to [src->w + xradius] */
max += xradius;
out = (guchar *)g_malloc(src->w);
circ = (short *)g_malloc((2*xradius + 1)*sizeof(gint16));
compute_border(circ, xradius, yradius);
/* offset the circ pointer by xradius so the range of the array
is [-xradius] to [xradius] */
circ += xradius;
for (i = 0; i < yradius && i < src->h; i++) /* load top of image */
pixel_region_get_row (src, src->x, src->y + i, src->w, buf[i+1], 1);
if (edge_lock)
memcpy (buf[0], buf[1], src->w);
else
memset (buf[0], 0, src->w);
for (x = 0; x < src->w; x++) /* set up max for top of image */
{
max[x][0] = buf[0][x];
for (j = 1; j < yradius+1; j++)
if (max[x][j] > buf[j][x])
max[x][j] = buf[j][x];
else
max[x][j] = max[x][j-1];
}
for (y = 0; y < src->h; y++)
{
rotate_pointers ((void **)buf, yradius+1);
if (y < src->h - (yradius))
pixel_region_get_row (src, src->x, src->y + y + yradius, src->w,
buf[yradius], 1);
else if (edge_lock)
memcpy (buf[yradius], buf[yradius -1], src->w);
else
memset (buf[yradius], 0, src->w);
for (x = 0 ; x < src->w; x++) /* update max array */
{
for (i = yradius; i > 0; i--)
{
max[x][i] = (MIN (MIN (max[x][i - 1], buf[i-1][x]), buf[i][x]));
}
max[x][0] = buf[0][x];
}
last_max = max[0][circ[-1]];
last_index = 0;
for (x = 0 ; x < src->w; x++) /* render scan line */
{
last_index--;
if (last_index >= 0)
{
if (last_max == 0)
out[x] = 0;
else
{
last_max = 255;
for (i = xradius; i >= 0; i--)
if (last_max > max[x+i][circ[i]])
{
last_max = max[x+i][circ[i]];
last_index = i;
}
out[x] = last_max;
}
}
else
{
last_index = xradius;
last_max = max[x+xradius][circ[xradius]];
for (i = xradius-1; i >= -xradius; i--)
if (last_max > max[x+i][circ[i]])
{
last_max = max[x+i][circ[i]];
last_index = i;
}
out[x] = last_max;
}
}
pixel_region_set_row (src, src->x, src->y + y, src->w, out);
}
/* undo the offsets to the pointers so we can free the malloced memmory */
circ -= xradius;
max -= xradius;
/* free the memmory */
g_free (circ);
g_free (buffer);
g_free (max);
for (i = 0; i < yradius + 1; i++)
g_free (buf[i]);
g_free (buf);
g_free (out);
}
static void
compute_transition(guchar *transition, guchar **buf, gint32 width)
{
register gint32 x = 0;
if (width == 1)
{
if (buf[1][x] > 127 && (buf[0][x] < 128 || buf[2][x] < 128))
transition[x] = 255;
else
transition[x] = 0;
return;
}
if (buf[1][x] > 127)
{
if ( buf[0][x] < 128 || buf[0][x+1] < 128 ||
buf[1][x+1] < 128 ||
buf[2][x] < 128 || buf[2][x+1] < 128 )
transition[x] = 255;
else
transition[x] = 0;
}
else
transition[x] = 0;
for (x = 1; x < width - 1; x++)
{
if (buf[1][x] >= 128)
{
if (buf[0][x-1] < 128 || buf[0][x] < 128 || buf[0][x+1] < 128 ||
buf[1][x-1] < 128 || buf[1][x+1] < 128 ||
buf[2][x-1] < 128 || buf[2][x] < 128 || buf[2][x+1] < 128)
transition[x] = 255;
else
transition[x] = 0;
}
else
transition[x] = 0;
}
if (buf[1][x] >= 128)
{
if ( buf[0][x-1] < 128 || buf[0][x] < 128 ||
buf[1][x-1] < 128 ||
buf[2][x-1] < 128 || buf[2][x] < 128)
transition[x] = 255;
else
transition[x] = 0;
}
else
transition[x] = 0;
}
void
border_region(PixelRegion *src, gint16 xradius, gint16 yradius)
{
/*
This function has no bugs, but if you imagine some you can
blame them on jaycox@gimp.org
*/
register gint32 i, j, x, y;
guchar **buf, *out;
gint16 *max;
guchar **density;
guchar **transition;
guchar last_max;
gint16 last_index;
if (xradius < 0 || yradius < 0)
{
g_warning ("border_region: negative radius specified.");
return;
}
if (xradius == 0 || yradius == 0)
{
unsigned char color[] = "\0\0\0\0";
color_region(src, color);
return;
}
if (xradius == 1 && yradius == 1) /* optimize this case specifically */
{
guchar *transition;
guchar *source[3];
for (i = 0; i < 3; i++)
source[i] = (guchar *)g_malloc ((src->w)*sizeof(guchar));
transition = (guchar *)g_malloc ((src->w)*sizeof(guchar));
pixel_region_get_row (src, src->x, src->y + 0, src->w, source[0], 1);
memcpy (source[1], source[0], src->w);
if (src->h > 1)
pixel_region_get_row (src, src->x, src->y + 1, src->w, source[2], 1);
else
memcpy (source[2], source[1], src->w);
compute_transition (transition, source, src->w);
pixel_region_set_row (src, src->x, src->y , src->w, transition);
for (y = 1; y < src->h; y++)
{
rotate_pointers ((void **)source, 3);
if (y +1 < src->h)
pixel_region_get_row (src, src->x, src->y +y +1, src->w, source[2], 1);
else
memcpy(source[2], source[1], src->w);
compute_transition (transition, source, src->w);
pixel_region_set_row (src, src->x, src->y + y, src->w, transition);
}
for (i = 0; i < 3; i++)
g_free(source[i]);
g_free(transition);
return;
} /* end of if (xradius == 1 && yradius == 1) */
max = (gint16 *)g_malloc ((src->w+2*xradius)*sizeof(gint16 *));
for (i = 0; i < (src->w+2*xradius); i++)
max[i] = yradius+2;
max += xradius;
buf = (guchar **)g_malloc ((3)*sizeof(void *));
for (i = 0; i < 3; i++)
{
buf[i] = (guchar *)g_malloc ((src->w)*sizeof(guchar));
}
transition = (guchar **)g_malloc ((yradius+1)*sizeof(void*));
for (i = 0; i < yradius +1; i++)
{
transition[i] = (guchar *)g_malloc (src->w+2*xradius);
memset(transition[i], 0, src->w+2*xradius);
transition[i] += xradius;
}
out = (guchar *)g_malloc ((src->w)*sizeof(guchar));
density = (guchar **)g_malloc ((2*xradius + 1)*sizeof(void *));
density += xradius;
for (x = 0; x < (xradius+1); x++) /* allocate density[][] */
{
density[ x] = (guchar *)g_malloc (2*yradius +1);
density[ x] += yradius;
density[-x] = density[x];
}
for (x = 0; x < (xradius+1); x++) /* compute density[][] */
{
register double tmpx, tmpy, dist;
guchar a;
if (x > 0)
tmpx = x - 0.5;
else if (x < 0)
tmpx = x + 0.5;
else
tmpx = 0.0;
for (y = 0; y < (yradius+1); y++)
{
if (y > 0)
tmpy = y - 0.5;
else if (y < 0)
tmpy = y + 0.5;
else
tmpy = 0.0;
dist = (tmpy*tmpy)/(yradius*yradius) + (tmpx*tmpx)/(xradius*xradius);
if (dist < 1.0)
a = 255*(1.0 - sqrt (dist));
else
a = 0;
density[ x][ y] = a;
density[ x][-y] = a;
density[-x][ y] = a;
density[-x][-y] = a;
}
}
pixel_region_get_row (src, src->x, src->y + 0, src->w, buf[0], 1);
memcpy (buf[1], buf[0], src->w);
if (src->h > 1)
pixel_region_get_row (src, src->x, src->y + 1, src->w, buf[2], 1);
else
memcpy (buf[2], buf[1], src->w);
compute_transition (transition[1], buf, src->w);
for (y = 1; y < yradius && y + 1< src->h; y++) /* set up top of image */
{
rotate_pointers ((void **)buf, 3);
pixel_region_get_row (src, src->x, src->y + y + 1, src->w, buf[2], 1);
compute_transition (transition[y + 1], buf, src->w);
}
for (x = 0; x < src->w; x++) /* set up max[] for top of image */
{
max[x] = -(yradius+7);
for (j = 1; j < yradius+1; j++)
if (transition[j][x])
{
max[x] = j;
break;
}
}
for (y = 0; y < src->h; y++) /* main calculation loop */
{
rotate_pointers ((void **)buf, 3);
rotate_pointers ((void **)transition, yradius + 1);
if (y < src->h - (yradius+1))
{
pixel_region_get_row (src, src->x, src->y + y + yradius + 1, src->w,
buf[2], 1);
compute_transition (transition[yradius], buf, src->w);
}
else
memcpy (transition[yradius], transition[yradius - 1], src->w);
for (x = 0; x < src->w; x++) /* update max array */
{
if (max[x] < 1)
{
if (max[x] <= -yradius)
{
if (transition[yradius][x])
max[x] = yradius;
else
max[x]--;
}
else
if (transition[-max[x]][x])
max[x] = -max[x];
else if (transition[-max[x]+1][x])
max[x] = -max[x]+1;
else
max[x]--;
}
else
max[x]--;
if (max[x] < -yradius - 1)
max[x] = -yradius -1;
}
last_max = max[0][density[-1]];
last_index = 1;
for (x = 0 ; x < src->w; x++) /* render scan line */
{
last_index--;
if (last_index >= 0)
{
last_max = 0;
for (i = xradius; i >= 0; i--)
if (max[x+i] <= yradius && max[x+i] >= -yradius &&
density[i][max[x+i]] > last_max)
{
last_max = density[i][max[x+i]];
last_index = i;
}
out[x] = last_max;
}
else
{
last_max = 0;
for (i = xradius; i >= -xradius; i--)
if (max[x+i] <= yradius && max[x+i] >= -yradius &&
density[i][max[x+i]] > last_max)
{
last_max = density[i][max[x+i]];
last_index = i;
}
out[x] = last_max;
}
if (last_max == 0)
{
for (i = x+1; i < src->w; i++)
{
if (max[i] >= -yradius)
break;
}
if (i - x > xradius)
{
for (; x < i - xradius; x++)
out[x] = 0;
x--;
}
last_index = xradius;
}
}
pixel_region_set_row (src, src->x, src->y + y, src->w, out);
}
g_free(out);
for (i = 0; i < 3; i++)
g_free(buf[i]);
g_free (buf);
max -= xradius;
g_free (max);
for (i = 0; i < yradius +1; i++)
{
transition[i] -= xradius;
g_free (transition[i]);
}
g_free (transition);
for (i = 0; i < xradius +1 ; i++)
{
density[i]-= yradius;
g_free(density[i]);
}
density -= xradius;
g_free(density);
}
void
swap_region (PixelRegion *src,
PixelRegion *dest)
{
int h;
int length;
unsigned char * s, * d;
void * pr;
for (pr = pixel_regions_register (2, src, dest); pr != NULL; pr = pixel_regions_process (pr))
{
s = src->data;
h = src->h;
d = dest->data;
length = src->w * src->bytes;
while (h --)
{
swap_pixels (s, d, length);
s += src->rowstride;
d += dest->rowstride;
}
}
}
static void
apply_mask_to_sub_region (int *opacityp,
PixelRegion *src,
PixelRegion *mask)
{
int h;
unsigned char * s, * m;
int opacity = *opacityp;
s = src->data;
m = mask->data;
h = src->h;
while (h --)
{
apply_mask_to_alpha_channel (s, m, opacity, src->w, src->bytes);
s += src->rowstride;
m += mask->rowstride;
}
}
void
apply_mask_to_region (PixelRegion *src,
PixelRegion *mask,
int opacity)
{
pixel_regions_process_parallel ((p_func)apply_mask_to_sub_region,
&opacity, 2, src, mask);
}
static void
combine_mask_and_sub_region (int *opacityp,
PixelRegion *src,
PixelRegion *mask)
{
int h;
unsigned char * s, * m;
int opacity = *opacityp;
s = src->data;
m = mask->data;
h = src->h;
while (h --)
{
combine_mask_and_alpha_channel (s, m, opacity, src->w, src->bytes);
s += src->rowstride;
m += mask->rowstride;
}
}
void
combine_mask_and_region (PixelRegion *src,
PixelRegion *mask,
int opacity)
{
pixel_regions_process_parallel ((p_func)combine_mask_and_sub_region,
&opacity, 2, src, mask);
}
void
copy_gray_to_region (PixelRegion *src,
PixelRegion *dest)
{
int h;
unsigned char * s, * d;
void * pr;
for (pr = pixel_regions_register (2, src, dest); pr != NULL; pr = pixel_regions_process (pr))
{
s = src->data;
d = dest->data;
h = src->h;
while (h --)
{
copy_gray_to_inten_a_pixels (s, d, src->w, dest->bytes);
s += src->rowstride;
d += dest->rowstride;
}
}
}
struct initial_regions_struct
{
int opacity;
LayerModeEffects mode;
int *affect;
int type;
unsigned char *data;
};
void
initial_sub_region(struct initial_regions_struct *st,
PixelRegion *src,
PixelRegion *dest,
PixelRegion *mask)
{
int h;
unsigned char * s, * d, * m;
unsigned char buf[512];
unsigned char *data;
int opacity;
LayerModeEffects mode;
int *affect;
int type;
data = st->data;
opacity = st->opacity;
mode = st->mode;
affect = st->affect;
type = st->type;
if (src->w * (src->bytes + 1) > 512)
fprintf(stderr, "initial_sub_region:: error :: src->w * (src->bytes + 1) > 512\n");
s = src->data;
d = dest->data;
m = (mask) ? mask->data : NULL;
for (h = 0; h < src->h; h++)
{
/* based on the type of the initial image... */
switch (type)
{
case INITIAL_CHANNEL_MASK:
case INITIAL_CHANNEL_SELECTION:
initial_channel_pixels (s, d, src->w, dest->bytes);
break;
case INITIAL_INDEXED:
initial_indexed_pixels (s, d, data, src->w);
break;
case INITIAL_INDEXED_ALPHA:
initial_indexed_a_pixels (s, d, m, data, opacity, src->w);
break;
case INITIAL_INTENSITY:
if (mode == DISSOLVE_MODE)
{
dissolve_pixels (s, buf, src->x, src->y + h, opacity, src->w, src->bytes,
src->bytes + 1, 0);
initial_inten_pixels (buf, d, m, opacity, affect,
src->w, src->bytes);
}
else
initial_inten_pixels (s, d, m, opacity, affect, src->w, src->bytes);
break;
case INITIAL_INTENSITY_ALPHA:
if (mode == DISSOLVE_MODE)
{
dissolve_pixels (s, buf, src->x, src->y + h, opacity, src->w, src->bytes,
src->bytes, 1);
initial_inten_a_pixels (buf, d, m, opacity, affect,
src->w, src->bytes);
}
else
initial_inten_a_pixels (s, d, m, opacity, affect, src->w, src->bytes);
break;
}
s += src->rowstride;
d += dest->rowstride;
if (mask)
m += mask->rowstride;
}
}
void
initial_region (PixelRegion *src,
PixelRegion *dest,
PixelRegion *mask,
unsigned char *data,
int opacity,
LayerModeEffects mode,
int *affect,
int type)
{
struct initial_regions_struct st;
st.opacity = opacity;
st.mode = mode;
st.affect = affect;
st.type = type;
st.data = data;
pixel_regions_process_parallel ((p_func)initial_sub_region, &st, 3,
src, dest, mask);
}
struct combine_regions_struct
{
int opacity;
LayerModeEffects mode;
int *affect;
int type;
unsigned char *data;
int has_alpha1, has_alpha2;
gboolean opacity_quickskip_possible;
gboolean transparency_quickskip_possible;
};
void
combine_sub_region(struct combine_regions_struct *st,
PixelRegion *src1, PixelRegion *src2,
PixelRegion *dest, PixelRegion *mask)
{
unsigned char *data;
int opacity;
LayerModeEffects mode;
int *affect;
int type;
int h;
int has_alpha1, has_alpha2;
int combine = 0;
int mode_affect;
unsigned char * s, * s1, * s2;
unsigned char * d, * m;
unsigned char buf[512];
gboolean opacity_quickskip_possible;
gboolean transparency_quickskip_possible;
TileRowHint hint;
opacity = st->opacity;
mode = st->mode;
affect = st->affect;
type = st->type;
data = st->data;
has_alpha1 = st->has_alpha1;
has_alpha2 = st->has_alpha2;
opacity_quickskip_possible = (st->opacity_quickskip_possible &&
src2->tiles);
transparency_quickskip_possible = (st->transparency_quickskip_possible &&
src2->tiles);
s1 = src1->data;
s2 = src2->data;
d = dest->data;
m = (mask) ? mask->data : NULL;
if (src1->w > 128)
g_error("combine_sub_region::src1->w = %d\n", src1->w);
if (transparency_quickskip_possible || opacity_quickskip_possible)
{
#ifdef HINTS_SANITY
if (src1->h != src2->h)
g_error("HEIGHTS SUCK!!");
if (src1->offy != dest->offy)
g_error("SRC1 OFFSET != DEST OFFSET");
#endif
update_tile_rowhints (src2->curtile,
src2->offy, src2->offy + (src1->h - 1));
}
/* else it's probably a brush-composite */
for (h = 0; h < src1->h; h++)
{
hint = TILEROWHINT_UNDEFINED;
if (transparency_quickskip_possible)
{
hint = tile_get_rowhint (src2->curtile, (src2->offy + h));
if (hint == TILEROWHINT_TRANSPARENT)
{
goto next_row;
}
}
else
{
if (opacity_quickskip_possible)
{
hint = tile_get_rowhint (src2->curtile, (src2->offy + h));
}
}
s = buf;
/* apply the paint mode based on the combination type & mode */
switch (type)
{
case COMBINE_INTEN_A_INDEXED_A:
case COMBINE_INTEN_A_CHANNEL_MASK:
case COMBINE_INTEN_A_CHANNEL_SELECTION:
combine = type;
break;
case COMBINE_INDEXED_INDEXED:
case COMBINE_INDEXED_INDEXED_A:
case COMBINE_INDEXED_A_INDEXED_A:
/* Now, apply the paint mode--for indexed images */
combine = apply_indexed_layer_mode (s1, s2, &s, mode,
has_alpha1, has_alpha2);
break;
case COMBINE_INTEN_INTEN_A:
case COMBINE_INTEN_A_INTEN:
case COMBINE_INTEN_INTEN:
case COMBINE_INTEN_A_INTEN_A:
/* Now, apply the paint mode */
combine = apply_layer_mode (s1, s2, &s, src1->x, src1->y + h,
opacity, src1->w, mode,
src1->bytes, src2->bytes,
has_alpha1, has_alpha2, &mode_affect);
break;
default:
g_warning ("combine_sub_region: unhandled combine-type.");
break;
}
/* based on the type of the initial image... */
switch (combine)
{
case COMBINE_INDEXED_INDEXED:
combine_indexed_and_indexed_pixels (s1, s2, d, m, opacity,
affect, src1->w,
src1->bytes);
break;
case COMBINE_INDEXED_INDEXED_A:
combine_indexed_and_indexed_a_pixels (s1, s2, d, m, opacity,
affect, src1->w,
src1->bytes);
break;
case COMBINE_INDEXED_A_INDEXED_A:
combine_indexed_a_and_indexed_a_pixels (s1, s2, d, m, opacity,
affect, src1->w,
src1->bytes);
break;
case COMBINE_INTEN_A_INDEXED_A:
/* assume the data passed to this procedure is the
* indexed layer's colormap
*/
combine_inten_a_and_indexed_a_pixels (s1, s2, d, m, data, opacity,
src1->w, dest->bytes);
break;
case COMBINE_INTEN_A_CHANNEL_MASK:
/* assume the data passed to this procedure is the
* indexed layer's colormap
*/
combine_inten_a_and_channel_mask_pixels (s1, s2, d, data, opacity,
src1->w, dest->bytes);
break;
case COMBINE_INTEN_A_CHANNEL_SELECTION:
combine_inten_a_and_channel_selection_pixels (s1, s2, d, data,
opacity,
src1->w,
src1->bytes);
break;
case COMBINE_INTEN_INTEN:
if ((hint == TILEROWHINT_OPAQUE) &&
opacity_quickskip_possible)
{
memcpy (d, s, dest->w * dest->bytes);
}
else
combine_inten_and_inten_pixels (s1, s, d, m, opacity,
affect, src1->w, src1->bytes);
break;
case COMBINE_INTEN_INTEN_A:
combine_inten_and_inten_a_pixels (s1, s, d, m, opacity,
affect, src1->w, src1->bytes);
break;
case COMBINE_INTEN_A_INTEN:
combine_inten_a_and_inten_pixels (s1, s, d, m, opacity,
affect, mode_affect, src1->w,
src1->bytes);
break;
case COMBINE_INTEN_A_INTEN_A:
if ((hint == TILEROWHINT_OPAQUE) &&
opacity_quickskip_possible)
{
memcpy (d, s, dest->w * dest->bytes);
}
else
combine_inten_a_and_inten_a_pixels (s1, s, d, m, opacity,
affect, mode_affect,
src1->w, src1->bytes);
break;
case BEHIND_INTEN:
behind_inten_pixels (s1, s, d, m, opacity,
affect, src1->w, src1->bytes,
src2->bytes, has_alpha1, has_alpha2);
break;
case BEHIND_INDEXED:
behind_indexed_pixels (s1, s, d, m, opacity,
affect, src1->w, src1->bytes,
src2->bytes, has_alpha1, has_alpha2);
break;
case REPLACE_INTEN:
replace_inten_pixels (s1, s, d, m, opacity,
affect, src1->w, src1->bytes,
src2->bytes, has_alpha1, has_alpha2);
break;
case REPLACE_INDEXED:
replace_indexed_pixels (s1, s, d, m, opacity,
affect, src1->w, src1->bytes,
src2->bytes, has_alpha1, has_alpha2);
break;
case ERASE_INTEN:
erase_inten_pixels (s1, s, d, m, opacity,
affect, src1->w, src1->bytes);
break;
case ERASE_INDEXED:
erase_indexed_pixels (s1, s, d, m, opacity,
affect, src1->w, src1->bytes);
break;
case ANTI_ERASE_INTEN:
anti_erase_inten_pixels (s1, s, d, m, opacity,
affect, src1->w, src1->bytes);
break;
case ANTI_ERASE_INDEXED:
anti_erase_indexed_pixels (s1, s, d, m, opacity,
affect, src1->w, src1->bytes);
break;
case NO_COMBINATION:
g_warning("NO_COMBINATION");
break;
default:
g_warning("UNKNOWN COMBINATION");
break;
}
next_row:
s1 += src1->rowstride;
s2 += src2->rowstride;
d += dest->rowstride;
if (mask)
m += mask->rowstride;
}
}
void
combine_regions (PixelRegion *src1,
PixelRegion *src2,
PixelRegion *dest,
PixelRegion *mask,
unsigned char *data,
int opacity,
LayerModeEffects mode,
int *affect,
int type)
{
int has_alpha1, has_alpha2;
int i;
struct combine_regions_struct st;
/* Determine which sources have alpha channels */
switch (type)
{
case COMBINE_INTEN_INTEN:
case COMBINE_INDEXED_INDEXED:
has_alpha1 = has_alpha2 = 0;
break;
case COMBINE_INTEN_A_INTEN:
has_alpha1 = 1;
has_alpha2 = 0;
break;
case COMBINE_INTEN_INTEN_A:
case COMBINE_INDEXED_INDEXED_A:
has_alpha1 = 0;
has_alpha2 = 1;
break;
case COMBINE_INTEN_A_INTEN_A:
case COMBINE_INDEXED_A_INDEXED_A:
has_alpha1 = has_alpha2 = 1;
break;
default:
has_alpha1 = has_alpha2 = 0;
}
st.opacity = opacity;
st.mode = mode;
st.affect = affect;
st.type = type;
st.data = data;
st.has_alpha1 = has_alpha1;
st.has_alpha2 = has_alpha2;
/* cheap and easy when the row of src2 is completely opaque/transparent
and the wind is otherwise blowing in the right direction.
*/
/* First check - we can't do an opacity quickskip if the drawable
has a mask, or non-full opacity, or the layer mode dictates
that we might gain transparency.
*/
st.opacity_quickskip_possible = ((!mask) && (opacity==255) &&
(!layer_modes[mode].decrease_opacity) &&
(layer_modes[mode].affect_alpha &&
has_alpha1 &&
affect[src1->bytes-1]) );
/* Second check - if any single colour channel can't be affected,
we can't use the opacity quickskip.
*/
if (st.opacity_quickskip_possible)
{
for (i=0; i<src1->bytes-1; i++)
{
if (!affect[i])
{
st.opacity_quickskip_possible = FALSE;
break;
}
}
}
/* transparency quickskip is only possible if the layer mode
dictates that we cannot possibly gain opacity, or the 'overall'
opacity of the layer is set to zero anyway.
*/
st.transparency_quickskip_possible = ((!layer_modes[mode].increase_opacity)
|| (opacity==0));
/* Start the actual processing.
*/
pixel_regions_process_parallel ((p_func)combine_sub_region, &st, 4,
src1, src2, dest, mask);
}
void
combine_regions_replace (PixelRegion *src1,
PixelRegion *src2,
PixelRegion *dest,
PixelRegion *mask,
unsigned char *data,
int opacity,
int *affect,
int type)
{
int h;
unsigned char * s1, * s2;
unsigned char * d, * m;
void * pr;
for (pr = pixel_regions_register (4, src1, src2, dest, mask); pr != NULL; pr = pixel_regions_process (pr))
{
s1 = src1->data;
s2 = src2->data;
d = dest->data;
m = mask->data;
for (h = 0; h < src1->h; h++)
{
/* Now, apply the paint mode */
apply_layer_mode_replace (s1, s2, d, m, src1->x, src1->y + h, opacity, src1->w,
src1->bytes, src2->bytes, affect);
s1 += src1->rowstride;
s2 += src2->rowstride;
d += dest->rowstride;
m += mask->rowstride;
}
}
}
/************************************/
/* apply layer modes */
/************************************/
int
apply_layer_mode (unsigned char *src1,
unsigned char *src2,
unsigned char **dest,
int x,
int y,
int opacity,
int length,
LayerModeEffects mode,
int bytes1, /* bytes */
int bytes2, /* bytes */
int has_alpha1, /* has alpha */
int has_alpha2, /* has alpha */
int *mode_affect)
{
int combine;
if (!has_alpha1 && !has_alpha2)
combine = COMBINE_INTEN_INTEN;
else if (!has_alpha1 && has_alpha2)
combine = COMBINE_INTEN_INTEN_A;
else if (has_alpha1 && !has_alpha2)
combine = COMBINE_INTEN_A_INTEN;
else
combine = COMBINE_INTEN_A_INTEN_A;
/* assumes we're applying src2 TO src1 */
switch (mode)
{
case NORMAL_MODE:
*dest = src2;
break;
case DISSOLVE_MODE:
/* Since dissolve requires an alpha channels... */
if (! has_alpha2)
add_alpha_pixels (src2, *dest, length, bytes2);
dissolve_pixels (src2, *dest, x, y, opacity, length, bytes2,
((has_alpha2) ? bytes2 : bytes2 + 1), has_alpha2);
combine = (has_alpha1) ? COMBINE_INTEN_A_INTEN_A : COMBINE_INTEN_INTEN_A;
break;
case MULTIPLY_MODE:
multiply_pixels (src1, src2, *dest, length, bytes1, bytes2, has_alpha1, has_alpha2);
break;
case DIVIDE_MODE:
divide_pixels (src1, src2, *dest, length, bytes1, bytes2, has_alpha1, has_alpha2);
break;
case SCREEN_MODE:
screen_pixels (src1, src2, *dest, length, bytes1, bytes2, has_alpha1, has_alpha2);
break;
case OVERLAY_MODE:
overlay_pixels (src1, src2, *dest, length, bytes1, bytes2, has_alpha1, has_alpha2);
break;
case DIFFERENCE_MODE:
difference_pixels (src1, src2, *dest, length, bytes1, bytes2, has_alpha1, has_alpha2);
break;
case ADDITION_MODE:
add_pixels (src1, src2, *dest, length, bytes1, bytes2, has_alpha1, has_alpha2);
break;
case SUBTRACT_MODE:
subtract_pixels (src1, src2, *dest, length, bytes1, bytes2, has_alpha1, has_alpha2);
break;
case DARKEN_ONLY_MODE:
darken_pixels (src1, src2, *dest, length, bytes1, bytes2, has_alpha1, has_alpha2);
break;
case LIGHTEN_ONLY_MODE:
lighten_pixels (src1, src2, *dest, length, bytes1, bytes2, has_alpha1, has_alpha2);
break;
case HUE_MODE: case SATURATION_MODE: case VALUE_MODE:
/* only works on RGB color images */
if (bytes1 > 2)
hsv_only_pixels (src1, src2, *dest, mode, length, bytes1, bytes2, has_alpha1, has_alpha2);
else
*dest = src2;
break;
case COLOR_MODE:
/* only works on RGB color images */
if (bytes1 > 2)
color_only_pixels (src1, src2, *dest, mode, length, bytes1, bytes2, has_alpha1, has_alpha2);
else
*dest = src2;
break;
case BEHIND_MODE:
*dest = src2;
if (has_alpha1)
combine = BEHIND_INTEN;
else
combine = NO_COMBINATION;
break;
case REPLACE_MODE:
*dest = src2;
combine = REPLACE_INTEN;
break;
case ERASE_MODE:
*dest = src2;
/* If both sources have alpha channels, call erase function.
* Otherwise, just combine in the normal manner
*/
combine = (has_alpha1 && has_alpha2) ? ERASE_INTEN : combine;
break;
case ANTI_ERASE_MODE:
*dest = src2;
combine = (has_alpha1 && has_alpha2) ? ANTI_ERASE_INTEN : combine;
break;
default :
break;
}
/* Determine whether the alpha channel of the destination can be affected
* by the specified mode--This keeps consistency with varying opacities
*/
*mode_affect = layer_modes[mode].affect_alpha;
return combine;
}
int
apply_indexed_layer_mode (unsigned char *src1,
unsigned char *src2,
unsigned char **dest,
LayerModeEffects mode,
int has_alpha1, /* has alpha */
int has_alpha2) /* has alpha */
{
int combine;
if (!has_alpha1 && !has_alpha2)
combine = COMBINE_INDEXED_INDEXED;
else if (!has_alpha1 && has_alpha2)
combine = COMBINE_INDEXED_INDEXED_A;
else if (has_alpha1 && has_alpha2)
combine = COMBINE_INDEXED_A_INDEXED_A;
else
combine = NO_COMBINATION;
/* assumes we're applying src2 TO src1 */
switch (mode)
{
case REPLACE_MODE:
*dest = src2;
combine = REPLACE_INDEXED;
break;
case BEHIND_MODE:
*dest = src2;
if (has_alpha1)
combine = BEHIND_INDEXED;
else
combine = NO_COMBINATION;
break;
case ERASE_MODE:
*dest = src2;
/* If both sources have alpha channels, call erase function.
* Otherwise, just combine in the normal manner
*/
combine = (has_alpha1 && has_alpha2) ? ERASE_INDEXED : combine;
break;
default:
break;
}
return combine;
}
static void
apply_layer_mode_replace (unsigned char *src1,
unsigned char *src2,
unsigned char *dest,
unsigned char *mask,
int x,
int y,
int opacity,
int length,
int bytes1, /* bytes */
int bytes2, /* bytes */
int *affect)
{
replace_pixels (src1, src2, dest, mask, length, opacity, affect, bytes1, bytes2);
}