gimp/app/core/gimpdrawable-blend.c

1143 lines
31 KiB
C

/* The GIMP -- an image manipulation program
* Copyright (C) 1995 Spencer Kimball and Peter Mattis
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "config.h"
#include <stdlib.h>
#include <string.h>
#include <glib-object.h>
#include "libgimpbase/gimpbase.h"
#include "libgimpcolor/gimpcolor.h"
#include "core-types.h"
#include "base/pixel-region.h"
#include "base/tile.h"
#include "base/tile-manager.h"
#include "paint-funcs/paint-funcs.h"
#include "gimp.h"
#include "gimpchannel.h"
#include "gimpcontext.h"
#include "gimpdrawable-blend.h"
#include "gimpgradient.h"
#include "gimpimage.h"
#include "gimp-intl.h"
typedef struct
{
GimpGradient *gradient;
gboolean reverse;
gdouble offset;
gdouble sx, sy;
GimpBlendMode blend_mode;
GimpGradientType gradient_type;
GimpRGB fg, bg;
gdouble dist;
gdouble vec[2];
GimpRepeatMode repeat;
} RenderBlendData;
typedef struct
{
PixelRegion *PR;
guchar *row_data;
gint bytes;
gint width;
gboolean dither;
GRand *dither_rand;
} PutPixelData;
/* local function prototypes */
static gdouble gradient_calc_conical_sym_factor (gdouble dist,
gdouble *axis,
gdouble offset,
gdouble x,
gdouble y);
static gdouble gradient_calc_conical_asym_factor (gdouble dist,
gdouble *axis,
gdouble offset,
gdouble x,
gdouble y);
static gdouble gradient_calc_square_factor (gdouble dist,
gdouble offset,
gdouble x,
gdouble y);
static gdouble gradient_calc_radial_factor (gdouble dist,
gdouble offset,
gdouble x,
gdouble y);
static gdouble gradient_calc_linear_factor (gdouble dist,
gdouble *vec,
gdouble offset,
gdouble x,
gdouble y);
static gdouble gradient_calc_bilinear_factor (gdouble dist,
gdouble *vec,
gdouble offset,
gdouble x,
gdouble y);
static gdouble gradient_calc_spiral_factor (gdouble dist,
gdouble *axis,
gdouble offset,
gdouble x,
gdouble y,
gboolean clockwise);
static gdouble gradient_calc_shapeburst_angular_factor (gdouble x,
gdouble y);
static gdouble gradient_calc_shapeburst_spherical_factor (gdouble x,
gdouble y);
static gdouble gradient_calc_shapeburst_dimpled_factor (gdouble x,
gdouble y);
static void gradient_precalc_shapeburst (GimpImage *gimage,
GimpDrawable *drawable,
PixelRegion *PR,
gdouble dist,
GimpProgressFunc progress_callback,
gpointer progress_data);
static void gradient_render_pixel (gdouble x,
gdouble y,
GimpRGB *color,
gpointer render_data);
static void gradient_put_pixel (gint x,
gint y,
GimpRGB *color,
gpointer put_pixel_data);
static void gradient_fill_region (GimpImage *gimage,
GimpDrawable *drawable,
GimpContext *context,
PixelRegion *PR,
gint width,
gint height,
GimpBlendMode blend_mode,
GimpGradientType gradient_type,
gdouble offset,
GimpRepeatMode repeat,
gboolean reverse,
gboolean supersample,
gint max_depth,
gdouble threshold,
gboolean dither,
gdouble sx,
gdouble sy,
gdouble ex,
gdouble ey,
GimpProgressFunc progress_callback,
gpointer progress_data);
/* variables for the shapeburst algs */
static PixelRegion distR =
{
NULL, /* data */
NULL, /* tiles */
0, /* rowstride */
0, 0, /* w, h */
0, 0, /* x, y */
4, /* bytes */
0 /* process count */
};
/* public functions */
void
gimp_drawable_blend (GimpDrawable *drawable,
GimpContext *context,
GimpBlendMode blend_mode,
GimpLayerModeEffects paint_mode,
GimpGradientType gradient_type,
gdouble opacity,
gdouble offset,
GimpRepeatMode repeat,
gboolean reverse,
gboolean supersample,
gint max_depth,
gdouble threshold,
gboolean dither,
gdouble startx,
gdouble starty,
gdouble endx,
gdouble endy,
GimpProgressFunc progress_callback,
gpointer progress_data)
{
GimpImage *gimage;
TileManager *buf_tiles;
PixelRegion bufPR;
gint bytes;
gint x1, y1, x2, y2;
g_return_if_fail (GIMP_IS_DRAWABLE (drawable));
g_return_if_fail (GIMP_IS_CONTEXT (context));
gimage = gimp_item_get_image (GIMP_ITEM (drawable));
g_return_if_fail (GIMP_IS_IMAGE (gimage));
gimp_set_busy (gimage->gimp);
gimp_drawable_mask_bounds (drawable, &x1, &y1, &x2, &y2);
bytes = gimp_drawable_bytes (drawable);
/* Always create an alpha temp buf (for generality) */
if (! gimp_drawable_has_alpha (drawable))
{
bytes += 1;
}
buf_tiles = tile_manager_new ((x2 - x1), (y2 - y1), bytes);
pixel_region_init (&bufPR, buf_tiles, 0, 0, (x2 - x1), (y2 - y1), TRUE);
gradient_fill_region (gimage, drawable, context,
&bufPR, (x2 - x1), (y2 - y1),
blend_mode, gradient_type, offset, repeat, reverse,
supersample, max_depth, threshold, dither,
(startx - x1), (starty - y1),
(endx - x1), (endy - y1),
progress_callback, progress_data);
if (distR.tiles)
{
tile_manager_unref (distR.tiles);
distR.tiles = NULL;
}
pixel_region_init (&bufPR, buf_tiles, 0, 0, (x2 - x1), (y2 - y1), FALSE);
gimp_drawable_apply_region (drawable, &bufPR,
TRUE, _("Blend"),
opacity, paint_mode,
NULL, x1, y1);
/* update the image */
gimp_drawable_update (drawable, x1, y1, x2 - x1, y2 - y1);
/* free the temporary buffer */
tile_manager_unref (buf_tiles);
gimp_unset_busy (gimage->gimp);
}
static gdouble
gradient_calc_conical_sym_factor (gdouble dist,
gdouble *axis,
gdouble offset,
gdouble x,
gdouble y)
{
gdouble vec[2];
gdouble r;
gdouble rat;
if (dist == 0.0)
{
rat = 0.0;
}
else if ((x != 0) || (y != 0))
{
/* Calculate offset from the start in pixels */
r = sqrt (x * x + y * y);
vec[0] = x / r;
vec[1] = y / r;
rat = axis[0] * vec[0] + axis[1] * vec[1]; /* Dot product */
if (rat > 1.0)
rat = 1.0;
else if (rat < -1.0)
rat = -1.0;
/* This cool idea is courtesy Josh MacDonald,
* Ali Rahimi --- two more XCF losers. */
rat = acos (rat) / G_PI;
rat = pow (rat, (offset / 10.0) + 1.0);
rat = CLAMP (rat, 0.0, 1.0);
}
else
{
rat = 0.5;
}
return rat;
}
static gdouble
gradient_calc_conical_asym_factor (gdouble dist,
gdouble *axis,
gdouble offset,
gdouble x,
gdouble y)
{
gdouble ang0, ang1;
gdouble ang;
gdouble rat;
if (dist == 0.0)
{
rat = 0.0;
}
else
{
if ((x != 0) || (y != 0))
{
ang0 = atan2 (axis[0], axis[1]) + G_PI;
ang1 = atan2 (x, y) + G_PI;
ang = ang1 - ang0;
if (ang < 0.0)
ang += (2.0 * G_PI);
rat = ang / (2.0 * G_PI);
rat = pow (rat, (offset / 10.0) + 1.0);
rat = CLAMP (rat, 0.0, 1.0);
}
else
{
rat = 0.5; /* We are on middle point */
}
}
return rat;
}
static gdouble
gradient_calc_square_factor (gdouble dist,
gdouble offset,
gdouble x,
gdouble y)
{
gdouble r;
gdouble rat;
if (dist == 0.0)
{
rat = 0.0;
}
else
{
/* Calculate offset from start as a value in [0, 1] */
offset = offset / 100.0;
r = MAX (abs (x), abs (y));
rat = r / dist;
if (rat < offset)
rat = 0.0;
else if (offset == 1.0)
rat = (rat >= 1.0) ? 1.0 : 0.0;
else
rat = (rat - offset) / (1.0 - offset);
}
return rat;
}
static gdouble
gradient_calc_radial_factor (gdouble dist,
gdouble offset,
gdouble x,
gdouble y)
{
gdouble r;
gdouble rat;
if (dist == 0.0)
{
rat = 0.0;
}
else
{
/* Calculate radial offset from start as a value in [0, 1] */
offset = offset / 100.0;
r = sqrt (SQR (x) + SQR (y));
rat = r / dist;
if (rat < offset)
rat = 0.0;
else if (offset == 1.0)
rat = (rat >= 1.0) ? 1.0 : 0.0;
else
rat = (rat - offset) / (1.0 - offset);
}
return rat;
}
static gdouble
gradient_calc_linear_factor (gdouble dist,
gdouble *vec,
gdouble offset,
gdouble x,
gdouble y)
{
gdouble r;
gdouble rat;
if (dist == 0.0)
{
rat = 0.0;
}
else
{
offset = offset / 100.0;
r = vec[0] * x + vec[1] * y;
rat = r / dist;
if (rat >= 0.0 && rat < offset)
rat = 0.0;
else if (offset == 1.0)
rat = (rat >= 1.0) ? 1.0 : 0.0;
else if (rat < 0.0)
rat = rat / (1.0 - offset);
else
rat = (rat - offset) / (1.0 - offset);
}
return rat;
}
static gdouble
gradient_calc_bilinear_factor (gdouble dist,
gdouble *vec,
gdouble offset,
gdouble x,
gdouble y)
{
gdouble r;
gdouble rat;
if (dist == 0.0)
{
rat = 0.0;
}
else
{
/* Calculate linear offset from the start line outward */
offset = offset / 100.0;
r = vec[0] * x + vec[1] * y;
rat = r / dist;
if (fabs (rat) < offset)
rat = 0.0;
else if (offset == 1.0)
rat = (rat == 1.0) ? 1.0 : 0.0;
else
rat = (fabs (rat) - offset) / (1.0 - offset);
}
return rat;
}
static gdouble
gradient_calc_spiral_factor (gdouble dist,
gdouble *axis,
gdouble offset,
gdouble x,
gdouble y,
gboolean clockwise)
{
gdouble ang0, ang1;
gdouble ang, r;
gdouble rat;
if (dist == 0.0)
{
rat = 0.0;
}
else
{
if (x != 0.0 || y != 0.0)
{
ang0 = atan2 (axis[0], axis[1]) + G_PI;
ang1 = atan2 (x, y) + G_PI;
if (clockwise)
ang = ang1 - ang0;
else
ang = ang0 - ang1;
if (ang < 0.0)
ang += (2.0 * G_PI);
r = sqrt (x * x + y * y) / dist;
rat = ang / (2.0 * G_PI) + r + offset;
rat = fmod (rat, 1.0);
}
else
rat = 0.5 ; /* We are on the middle point */
}
return rat;
}
static gdouble
gradient_calc_shapeburst_angular_factor (gdouble x,
gdouble y)
{
gint ix, iy;
Tile *tile;
gfloat value;
ix = (gint) CLAMP (x, 0.0, distR.w - 0.7);
iy = (gint) CLAMP (y, 0.0, distR.h - 0.7);
tile = tile_manager_get_tile (distR.tiles, ix, iy, TRUE, FALSE);
value = 1.0 - *((gfloat *) tile_data_pointer (tile,
ix % TILE_WIDTH,
iy % TILE_HEIGHT));
tile_release (tile, FALSE);
return value;
}
static gdouble
gradient_calc_shapeburst_spherical_factor (gdouble x,
gdouble y)
{
gint ix, iy;
Tile *tile;
gfloat value;
ix = (gint) CLAMP (x, 0.0, distR.w - 0.7);
iy = (gint) CLAMP (y, 0.0, distR.h - 0.7);
tile = tile_manager_get_tile (distR.tiles, ix, iy, TRUE, FALSE);
value = *((gfloat *) tile_data_pointer (tile,
ix % TILE_WIDTH,
iy % TILE_HEIGHT));
value = 1.0 - sin (0.5 * G_PI * value);
tile_release (tile, FALSE);
return value;
}
static gdouble
gradient_calc_shapeburst_dimpled_factor (gdouble x,
gdouble y)
{
gint ix, iy;
Tile *tile;
gfloat value;
ix = (gint) CLAMP (x, 0.0, distR.w - 0.7);
iy = (gint) CLAMP (y, 0.0, distR.h - 0.7);
tile = tile_manager_get_tile (distR.tiles, ix, iy, TRUE, FALSE);
value = *((gfloat *) tile_data_pointer (tile,
ix % TILE_WIDTH,
iy % TILE_HEIGHT));
value = cos (0.5 * G_PI * value);
tile_release (tile, FALSE);
return value;
}
static void
gradient_precalc_shapeburst (GimpImage *gimage,
GimpDrawable *drawable,
PixelRegion *PR,
gdouble dist,
GimpProgressFunc progress_callback,
gpointer progress_data)
{
GimpChannel *mask;
PixelRegion tempR;
gfloat max_iteration;
gfloat *distp;
gint size;
gpointer pr;
guchar white[1] = { OPAQUE_OPACITY };
/* allocate the distance map */
distR.tiles = tile_manager_new (PR->w, PR->h, sizeof (gfloat));
/* allocate the selection mask copy */
tempR.tiles = tile_manager_new (PR->w, PR->h, 1);
pixel_region_init (&tempR, tempR.tiles, 0, 0, PR->w, PR->h, TRUE);
mask = gimp_image_get_mask (gimage);
/* If the gimage mask is not empty, use it as the shape burst source */
if (! gimp_channel_is_empty (mask))
{
PixelRegion maskR;
gint x1, y1, x2, y2;
gint offx, offy;
gimp_drawable_mask_bounds (drawable, &x1, &y1, &x2, &y2);
gimp_item_offsets (GIMP_ITEM (drawable), &offx, &offy);
pixel_region_init (&maskR, gimp_drawable_data (GIMP_DRAWABLE (mask)),
x1 + offx, y1 + offy, (x2 - x1), (y2 - y1), FALSE);
/* copy the mask to the temp mask */
copy_region (&maskR, &tempR);
}
/* otherwise... */
else
{
/* If the intended drawable has an alpha channel, use that */
if (gimp_drawable_has_alpha (drawable))
{
PixelRegion drawableR;
pixel_region_init (&drawableR, gimp_drawable_data (drawable),
PR->x, PR->y, PR->w, PR->h, FALSE);
extract_alpha_region (&drawableR, NULL, &tempR);
}
else
{
/* Otherwise, just fill the shapeburst to white */
color_region (&tempR, white);
}
}
pixel_region_init (&tempR, tempR.tiles, 0, 0, PR->w, PR->h, TRUE);
pixel_region_init (&distR, distR.tiles, 0, 0, PR->w, PR->h, TRUE);
max_iteration = shapeburst_region (&tempR, &distR, progress_callback, progress_data);
/* normalize the shapeburst with the max iteration */
if (max_iteration > 0)
{
pixel_region_init (&distR, distR.tiles, 0, 0, PR->w, PR->h, TRUE);
for (pr = pixel_regions_register (1, &distR);
pr != NULL;
pr = pixel_regions_process (pr))
{
distp = (gfloat *) distR.data;
size = distR.w * distR.h;
while (size--)
*distp++ /= max_iteration;
}
pixel_region_init (&distR, distR.tiles, 0, 0, PR->w, PR->h, FALSE);
}
tile_manager_unref (tempR.tiles);
}
static void
gradient_render_pixel (double x,
double y,
GimpRGB *color,
gpointer render_data)
{
RenderBlendData *rbd = render_data;
gdouble factor;
/* Calculate blending factor */
switch (rbd->gradient_type)
{
case GIMP_GRADIENT_LINEAR:
factor = gradient_calc_linear_factor (rbd->dist, rbd->vec, rbd->offset,
x - rbd->sx, y - rbd->sy);
break;
case GIMP_GRADIENT_BILINEAR:
factor = gradient_calc_bilinear_factor (rbd->dist, rbd->vec, rbd->offset,
x - rbd->sx, y - rbd->sy);
break;
case GIMP_GRADIENT_RADIAL:
factor = gradient_calc_radial_factor (rbd->dist, rbd->offset,
x - rbd->sx, y - rbd->sy);
break;
case GIMP_GRADIENT_SQUARE:
factor = gradient_calc_square_factor (rbd->dist, rbd->offset,
x - rbd->sx, y - rbd->sy);
break;
case GIMP_GRADIENT_CONICAL_SYMMETRIC:
factor = gradient_calc_conical_sym_factor (rbd->dist, rbd->vec, rbd->offset,
x - rbd->sx, y - rbd->sy);
break;
case GIMP_GRADIENT_CONICAL_ASYMMETRIC:
factor = gradient_calc_conical_asym_factor (rbd->dist, rbd->vec, rbd->offset,
x - rbd->sx, y - rbd->sy);
break;
case GIMP_GRADIENT_SHAPEBURST_ANGULAR:
factor = gradient_calc_shapeburst_angular_factor (x, y);
break;
case GIMP_GRADIENT_SHAPEBURST_SPHERICAL:
factor = gradient_calc_shapeburst_spherical_factor (x, y);
break;
case GIMP_GRADIENT_SHAPEBURST_DIMPLED:
factor = gradient_calc_shapeburst_dimpled_factor (x, y);
break;
case GIMP_GRADIENT_SPIRAL_CLOCKWISE:
factor = gradient_calc_spiral_factor (rbd->dist, rbd->vec, rbd->offset,
x - rbd->sx, y - rbd->sy,TRUE);
break;
case GIMP_GRADIENT_SPIRAL_ANTICLOCKWISE:
factor = gradient_calc_spiral_factor (rbd->dist, rbd->vec, rbd->offset,
x - rbd->sx, y - rbd->sy,FALSE);
break;
default:
g_assert_not_reached ();
return;
}
/* Adjust for repeat */
switch (rbd->repeat)
{
case GIMP_REPEAT_NONE:
factor = CLAMP (factor, 0.0, 1.0);
break;
case GIMP_REPEAT_SAWTOOTH:
factor = factor - floor (factor);
break;
case GIMP_REPEAT_TRIANGULAR:
{
guint ifactor;
if (factor < 0.0)
factor = -factor;
ifactor = (guint) factor;
factor = factor - floor (factor);
if (ifactor & 1)
factor = 1.0 - factor;
}
break;
}
/* Blend the colors */
if (rbd->blend_mode == GIMP_CUSTOM_MODE)
{
gimp_gradient_get_color_at (rbd->gradient, factor, rbd->reverse, color);
}
else
{
/* Blend values */
if (rbd->reverse)
factor = 1.0 - factor;
color->r = rbd->fg.r + (rbd->bg.r - rbd->fg.r) * factor;
color->g = rbd->fg.g + (rbd->bg.g - rbd->fg.g) * factor;
color->b = rbd->fg.b + (rbd->bg.b - rbd->fg.b) * factor;
color->a = rbd->fg.a + (rbd->bg.a - rbd->fg.a) * factor;
if (rbd->blend_mode == GIMP_FG_BG_HSV_MODE)
{
GimpHSV hsv = *((GimpHSV *) color);
gimp_hsv_to_rgb (&hsv, color);
}
}
}
static void
gradient_put_pixel (gint x,
gint y,
GimpRGB *color,
gpointer put_pixel_data)
{
PutPixelData *ppd = put_pixel_data;
guchar *data;
/* Paint */
data = ppd->row_data + ppd->bytes * x;
if (ppd->bytes >= 3)
{
if (ppd->dither)
{
gdouble dither_prob;
gdouble ftmp;
gint itmp;
ftmp = color->r * 255.0;
itmp = ftmp;
dither_prob = ftmp - itmp;
if (g_rand_double (ppd->dither_rand) < dither_prob)
color->r += (1.0 / 255.0);
ftmp = color->g * 255.0;
itmp = ftmp;
dither_prob = ftmp - itmp;
if (g_rand_double (ppd->dither_rand) < dither_prob)
color->g += (1.0 / 255.0);
ftmp = color->b * 255.0;
itmp = ftmp;
dither_prob = ftmp - itmp;
if (g_rand_double (ppd->dither_rand) < dither_prob)
color->b += (1.0 / 255.0);
ftmp = color->a * 255.0;
itmp = ftmp;
dither_prob = ftmp - itmp;
if (g_rand_double (ppd->dither_rand) < dither_prob)
color->a += (1.0 / 255.0);
if (color->r > 1.0) color->r = 1.0;
if (color->g > 1.0) color->g = 1.0;
if (color->b > 1.0) color->b = 1.0;
if (color->a > 1.0) color->a = 1.0;
}
*data++ = color->r * 255.0;
*data++ = color->g * 255.0;
*data++ = color->b * 255.0;
*data++ = color->a * 255.0;
}
else
{
/* Convert to grayscale */
gdouble gray = gimp_rgb_intensity (color);
if (ppd->dither)
{
gdouble dither_prob;
gdouble ftmp;
gint itmp;
ftmp = gray * 255.0;
itmp = ftmp;
dither_prob = ftmp - itmp;
if (g_rand_double (ppd->dither_rand) < dither_prob)
gray += (1.0 / 255.0);
ftmp = color->a * 255.0;
itmp = ftmp;
dither_prob = ftmp - itmp;
if (g_rand_double (ppd->dither_rand) < dither_prob)
color->a += (1.0 / 255.0);
if (gray > 1.0) gray = 1.0;
if (color->a > 1.0) color->a = 1.0;
}
*data++ = gray * 255.0;
*data++ = color->a * 255.0;
}
/* Paint whole row if we are on the rightmost pixel */
if (x == (ppd->width - 1))
pixel_region_set_row (ppd->PR, 0, y, ppd->width, ppd->row_data);
}
static void
gradient_fill_region (GimpImage *gimage,
GimpDrawable *drawable,
GimpContext *context,
PixelRegion *PR,
gint width,
gint height,
GimpBlendMode blend_mode,
GimpGradientType gradient_type,
gdouble offset,
GimpRepeatMode repeat,
gboolean reverse,
gboolean supersample,
gint max_depth,
gdouble threshold,
gboolean dither,
gdouble sx,
gdouble sy,
gdouble ex,
gdouble ey,
GimpProgressFunc progress_callback,
gpointer progress_data)
{
RenderBlendData rbd;
gint x, y;
gint endx, endy;
gpointer pr;
guchar *data;
GimpRGB color;
GRand *dither_rand = NULL;
rbd.gradient = gimp_context_get_gradient (context);
rbd.reverse = reverse;
gimp_context_get_foreground (context, &rbd.fg);
gimp_context_get_background (context, &rbd.bg);
switch (blend_mode)
{
case GIMP_FG_BG_RGB_MODE:
break;
case GIMP_FG_BG_HSV_MODE:
/* Convert to HSV */
{
GimpHSV fg_hsv;
GimpHSV bg_hsv;
gimp_rgb_to_hsv (&rbd.fg, &fg_hsv);
gimp_rgb_to_hsv (&rbd.bg, &bg_hsv);
memcpy (&rbd.fg, &fg_hsv, sizeof (GimpRGB));
memcpy (&rbd.bg, &bg_hsv, sizeof (GimpRGB));
}
break;
case GIMP_FG_TRANSPARENT_MODE:
/* Color does not change, just the opacity */
rbd.bg = rbd.fg;
rbd.bg.a = GIMP_OPACITY_TRANSPARENT;
break;
case GIMP_CUSTOM_MODE:
break;
default:
g_assert_not_reached ();
break;
}
/* Calculate type-specific parameters */
switch (gradient_type)
{
case GIMP_GRADIENT_RADIAL:
rbd.dist = sqrt (SQR (ex - sx) + SQR (ey - sy));
break;
case GIMP_GRADIENT_SQUARE:
rbd.dist = MAX (fabs (ex - sx), fabs (ey - sy));
break;
case GIMP_GRADIENT_CONICAL_SYMMETRIC:
case GIMP_GRADIENT_CONICAL_ASYMMETRIC:
case GIMP_GRADIENT_SPIRAL_CLOCKWISE:
case GIMP_GRADIENT_SPIRAL_ANTICLOCKWISE:
case GIMP_GRADIENT_LINEAR:
case GIMP_GRADIENT_BILINEAR:
rbd.dist = sqrt (SQR (ex - sx) + SQR (ey - sy));
if (rbd.dist > 0.0)
{
rbd.vec[0] = (ex - sx) / rbd.dist;
rbd.vec[1] = (ey - sy) / rbd.dist;
}
break;
case GIMP_GRADIENT_SHAPEBURST_ANGULAR:
case GIMP_GRADIENT_SHAPEBURST_SPHERICAL:
case GIMP_GRADIENT_SHAPEBURST_DIMPLED:
rbd.dist = sqrt (SQR (ex - sx) + SQR (ey - sy));
gradient_precalc_shapeburst (gimage, drawable, PR, rbd.dist,
progress_callback, progress_data);
break;
default:
g_assert_not_reached ();
break;
}
/* Initialize render data */
rbd.offset = offset;
rbd.sx = sx;
rbd.sy = sy;
rbd.blend_mode = blend_mode;
rbd.gradient_type = gradient_type;
rbd.repeat = repeat;
if (dither)
dither_rand = g_rand_new ();
/* Render the gradient! */
if (supersample)
{
PutPixelData ppd;
ppd.PR = PR;
ppd.row_data = g_malloc (width * PR->bytes);
ppd.bytes = PR->bytes;
ppd.width = width;
ppd.dither = dither;
ppd.dither_rand = dither_rand;
gimp_adaptive_supersample_area (0, 0, (width - 1), (height - 1),
max_depth, threshold,
gradient_render_pixel, &rbd,
gradient_put_pixel, &ppd,
progress_callback, progress_data);
g_free (ppd.row_data);
}
else
{
gint max_progress = PR->w * PR->h;
gint progress = 0;
for (pr = pixel_regions_register (1, PR);
pr != NULL;
pr = pixel_regions_process (pr))
{
data = PR->data;
endx = PR->x + PR->w;
endy = PR->y + PR->h;
for (y = PR->y; y < endy; y++)
{
for (x = PR->x; x < endx; x++)
{
gradient_render_pixel (x, y, &color, &rbd);
if (PR->bytes >= 3)
{
if (dither)
{
gdouble dither_prob;
gdouble ftmp;
gint itmp;
ftmp = color.r * 255.0;
itmp = ftmp;
dither_prob = ftmp - itmp;
if (g_rand_double (dither_rand) < dither_prob)
color.r += (1.0 / 255.0);
ftmp = color.g * 255.0;
itmp = ftmp;
dither_prob = ftmp - itmp;
if (g_rand_double (dither_rand) < dither_prob)
color.g += (1.0 / 255.0);
ftmp = color.b * 255.0;
itmp = ftmp;
dither_prob = ftmp - itmp;
if (g_rand_double (dither_rand) < dither_prob)
color.b += (1.0 / 255.0);
ftmp = color.a * 255.0;
itmp = ftmp;
dither_prob = ftmp - itmp;
if (g_rand_double (dither_rand) < dither_prob)
color.a += (1.0 / 255.0);
if (color.r > 1.0) color.r = 1.0;
if (color.g > 1.0) color.g = 1.0;
if (color.b > 1.0) color.b = 1.0;
if (color.a > 1.0) color.a = 1.0;
}
*data++ = color.r * 255.0;
*data++ = color.g * 255.0;
*data++ = color.b * 255.0;
*data++ = color.a * 255.0;
}
else
{
/* Convert to grayscale */
gdouble gray = gimp_rgb_intensity (&color);
if (dither)
{
gdouble dither_prob;
gdouble ftmp;
gint itmp;
ftmp = gray * 255.0;
itmp = ftmp;
dither_prob = ftmp - itmp;
if (g_rand_double (dither_rand) < dither_prob)
gray += (1.0 / 255.0);
ftmp = color.a * 255.0;
itmp = ftmp;
dither_prob = ftmp - itmp;
if (g_rand_double (dither_rand) < dither_prob)
color.a += (1.0 / 255.0);
if (gray > 1.0) gray = 1.0;
if (color.a > 1.0) color.a = 1.0;
}
*data++ = gray * 255.0;
*data++ = color.a * 255.0;
}
}
}
if (progress_callback)
{
progress += PR->w * PR->h;
(* progress_callback) (0, max_progress, progress, progress_data);
}
}
}
if (dither)
g_rand_free (dither_rand);
}