mirror of https://github.com/GNOME/gimp.git
829 lines
18 KiB
C
829 lines
18 KiB
C
/* blob.c: routines for manipulating scan converted convex
|
|
* polygons.
|
|
*
|
|
* Copyright 1998, Owen Taylor <otaylor@gtk.org>
|
|
*
|
|
* > Please contact the above author before modifying the copy <
|
|
* > of this file in the GIMP distribution. Thanks. <
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
#include "blob.h"
|
|
#include "glib.h"
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#define ROUND(A) floor((A)+0.5)
|
|
|
|
static Blob *
|
|
blob_new (int y, int height)
|
|
{
|
|
Blob *result;
|
|
|
|
result = g_malloc (sizeof (Blob) + sizeof(BlobSpan) * height);
|
|
result->y = y;
|
|
result->height = height;
|
|
|
|
return result;
|
|
}
|
|
|
|
typedef enum {
|
|
NONE = 0,
|
|
LEFT = 1 << 0,
|
|
RIGHT = 1 << 1,
|
|
} EdgeType;
|
|
|
|
Blob *
|
|
blob_convex_union (Blob *b1, Blob *b2)
|
|
{
|
|
Blob *result;
|
|
int y, x1, x2, y1, y2, i1, i2;
|
|
int i, j;
|
|
int start;
|
|
EdgeType *present;
|
|
|
|
/* Create the storage for the result */
|
|
|
|
y = MIN(b1->y,b2->y);
|
|
result = blob_new (y, MAX(b1->y+b1->height,b2->y+b2->height)-y);
|
|
|
|
if (result->height == 0)
|
|
return result;
|
|
|
|
present = g_new (EdgeType, result->height);
|
|
memset (present, 0, result->height * sizeof(EdgeType));
|
|
|
|
/* Initialize spans from original objects */
|
|
|
|
for (i=0, j=b1->y-y; i<b1->height; i++,j++)
|
|
{
|
|
if (b1->data[i].right >= b1->data[i].left)
|
|
{
|
|
present[j] = LEFT | RIGHT;
|
|
result->data[j].left = b1->data[i].left;
|
|
result->data[j].right = b1->data[i].right;
|
|
}
|
|
}
|
|
|
|
for (i=0, j=b2->y-y; i<b2->height; i++,j++)
|
|
{
|
|
if (b2->data[i].right >= b2->data[i].left)
|
|
{
|
|
if (present[j])
|
|
{
|
|
if (result->data[j].left > b2->data[i].left)
|
|
result->data[j].left = b2->data[i].left;
|
|
if (result->data[j].right < b2->data[i].right)
|
|
result->data[j].right = b2->data[i].right;
|
|
}
|
|
else
|
|
{
|
|
present[j] = LEFT | RIGHT;
|
|
result->data[j].left = b2->data[i].left;
|
|
result->data[j].right = b2->data[i].right;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Now walk through edges, deleting points that aren't on convex hull */
|
|
|
|
start = 0;
|
|
while (!(present[start])) start++;
|
|
|
|
/* left edge */
|
|
|
|
i1 = start-1;
|
|
i2 = start;
|
|
x1 = result->data[start].left - result->data[start].right;
|
|
y1 = 0;
|
|
|
|
for (i=start+1;i<result->height;i++)
|
|
{
|
|
if (!(present[i] & LEFT))
|
|
continue;
|
|
|
|
x2 = result->data[i].left - result->data[i2].left;
|
|
y2 = i-i2;
|
|
|
|
while (x2*y1 - x1*y2 < 0) /* clockwise rotation */
|
|
{
|
|
present[i2] &= ~LEFT;
|
|
i2 = i1;
|
|
while (!(present[--i1] & LEFT) && i1>=start);
|
|
|
|
if (i1<start)
|
|
{
|
|
x1 = result->data[start].left - result->data[start].right;
|
|
y1 = 0;
|
|
}
|
|
else
|
|
{
|
|
x1 = result->data[i2].left - result->data[i1].left;
|
|
y1 = i2 - i1;
|
|
}
|
|
x2 = result->data[i].left - result->data[i2].left;
|
|
y2 = i - i2;
|
|
}
|
|
x1 = x2;
|
|
y1 = y2;
|
|
i1 = i2;
|
|
i2 = i;
|
|
}
|
|
|
|
/* Right edge */
|
|
|
|
i1 = start -1;
|
|
i2 = start;
|
|
x1 = result->data[start].right - result->data[start].left;
|
|
y1 = 0;
|
|
|
|
for (i=start+1;i<result->height;i++)
|
|
{
|
|
if (!(present[i] & RIGHT))
|
|
continue;
|
|
|
|
x2 = result->data[i].right - result->data[i2].right;
|
|
y2 = i-i2;
|
|
|
|
while (x2*y1 - x1*y2 > 0) /* counter-clockwise rotation */
|
|
{
|
|
present[i2] &= ~RIGHT;
|
|
i2 = i1;
|
|
while (!(present[--i1] & RIGHT) && i1>=start);
|
|
|
|
if (i1<start)
|
|
{
|
|
x1 = result->data[start].right - result->data[start].left;
|
|
y1 = 0;
|
|
}
|
|
else
|
|
{
|
|
x1 = result->data[i2].right - result->data[i1].right;
|
|
y1 = i2 - i1;
|
|
}
|
|
x2 = result->data[i].right - result->data[i2].right;
|
|
y2 = i - i2;
|
|
}
|
|
x1 = x2;
|
|
y1 = y2;
|
|
i1 = i2;
|
|
i2 = i;
|
|
}
|
|
|
|
/* Restore edges of spans that were deleted in last step or never present */
|
|
|
|
/* We fill only interior regions of convex hull, as if we were filling
|
|
polygons. But since we draw ellipses with nearest points, not interior
|
|
points, maybe it would look better if we did the same here. Probably
|
|
not a big deal either way after anti-aliasing */
|
|
|
|
/* left edge */
|
|
for (i1=start; i1<result->height-2; i1++)
|
|
{
|
|
/* Find empty gaps */
|
|
if (!(present[i1+1] & LEFT))
|
|
{
|
|
int increment; /* fractional part */
|
|
int denom; /* denominator of fraction */
|
|
int step; /* integral step */
|
|
int frac; /* fractional step */
|
|
int reverse;
|
|
|
|
/* find bottom of gap */
|
|
i2 = i1+2;
|
|
while (!(present[i2] & LEFT) && i2 < result->height) i2++;
|
|
|
|
if (i2 < result->height)
|
|
{
|
|
denom = i2-i1;
|
|
x1 = result->data[i1].left;
|
|
x2 = result->data[i2].left;
|
|
step = (x2-x1)/denom;
|
|
frac = x2-x1 - step*denom;
|
|
if (frac < 0)
|
|
{
|
|
frac = -frac;
|
|
reverse = 1;
|
|
}
|
|
else
|
|
reverse = 0;
|
|
|
|
increment = 0;
|
|
for (i=i1+1; i<i2; i++)
|
|
{
|
|
x1 += step;
|
|
increment += frac;
|
|
if (increment >= denom)
|
|
{
|
|
increment -= denom;
|
|
x1 += reverse ? -1 : 1;
|
|
}
|
|
if (increment == 0 || reverse)
|
|
result->data[i].left = x1;
|
|
else
|
|
result->data[i].left = x1 + 1;
|
|
}
|
|
}
|
|
i1 = i2-1; /* advance to next possibility */
|
|
}
|
|
}
|
|
|
|
/* right edge */
|
|
for (i1=start; i1<result->height-2; i1++)
|
|
{
|
|
/* Find empty gaps */
|
|
if (!(present[i1+1] & RIGHT))
|
|
{
|
|
int increment; /* fractional part */
|
|
int denom; /* denominator of fraction */
|
|
int step; /* integral step */
|
|
int frac; /* fractional step */
|
|
int reverse;
|
|
|
|
/* find bottom of gap */
|
|
i2 = i1+2;
|
|
while (!(present[i2] & RIGHT) && i2 < result->height) i2++;
|
|
|
|
if (i2 < result->height)
|
|
{
|
|
denom = i2-i1;
|
|
x1 = result->data[i1].right;
|
|
x2 = result->data[i2].right;
|
|
step = (x2-x1)/denom;
|
|
frac = x2-x1 - step*denom;
|
|
if (frac < 0)
|
|
{
|
|
frac = -frac;
|
|
reverse = 1;
|
|
}
|
|
else
|
|
reverse = 0;
|
|
|
|
increment = 0;
|
|
for (i=i1+1; i<i2; i++)
|
|
{
|
|
x1 += step;
|
|
increment += frac;
|
|
if (increment >= denom)
|
|
{
|
|
increment -= denom;
|
|
x1 += reverse ? -1 : 1;
|
|
}
|
|
if (reverse && increment != 0)
|
|
result->data[i].right = x1 - 1;
|
|
else
|
|
result->data[i].right = x1;
|
|
}
|
|
}
|
|
i1 = i2-1; /* advance to next possibility */
|
|
}
|
|
}
|
|
|
|
/* Mark empty lines at top and bottom as unused */
|
|
for (i=0;i<start;i++)
|
|
{
|
|
result->data[i].left = 0;
|
|
result->data[i].right = -1;
|
|
}
|
|
for (i=result->height-1;!present[i];i--)
|
|
{
|
|
result->data[i].left = 0;
|
|
result->data[i].right = -1;
|
|
}
|
|
|
|
g_free (present);
|
|
return result;
|
|
}
|
|
|
|
static void
|
|
blob_line_add_pixel (Blob *b, int x, int y)
|
|
{
|
|
if (b->data[y-b->y].left > b->data[y-b->y].right)
|
|
b->data[y-b->y].left = b->data[y-b->y].right = x;
|
|
else
|
|
{
|
|
b->data[y-b->y].left = MIN (b->data[y-b->y].left, x);
|
|
b->data[y-b->y].right = MAX (b->data[y-b->y].right, x);
|
|
}
|
|
}
|
|
|
|
void
|
|
blob_line (Blob *b, int x0, int y0, int x1, int y1)
|
|
{
|
|
int dx, dy, d;
|
|
int incrE, incrNE;
|
|
int x, y;
|
|
|
|
int xstep = 1;
|
|
int ystep = 1;
|
|
|
|
dx = x1 - x0;
|
|
dy = y1 - y0;
|
|
|
|
if (dx < 0)
|
|
{
|
|
dx = -dx;
|
|
xstep = -1;
|
|
}
|
|
|
|
if (dy < 0)
|
|
{
|
|
dy = -dy;
|
|
ystep = -1;
|
|
}
|
|
|
|
/* for (y = y0; y != y1 + ystep ; y += ystep)
|
|
{
|
|
b->data[y-b->y].left = 0;
|
|
b->data[y-b->y].right = -1;
|
|
}*/
|
|
|
|
x = x0;
|
|
y = y0;
|
|
|
|
if (dy < dx)
|
|
{
|
|
d = 2*dy - dx; /* initial value of d */
|
|
incrE = 2 * dy; /* increment used for move to E */
|
|
incrNE = 2 * (dy-dx); /* increment used for move to NE */
|
|
|
|
blob_line_add_pixel (b, x, y);
|
|
|
|
while (x != x1)
|
|
{
|
|
if (d <= 0)
|
|
{
|
|
d += incrE;
|
|
x += xstep;
|
|
}
|
|
else
|
|
{
|
|
d += incrNE;
|
|
x += xstep;
|
|
y += ystep;
|
|
}
|
|
blob_line_add_pixel (b, x, y);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
d = 2*dx - dy; /* initial value of d */
|
|
incrE = 2 * dx; /* increment used for move to E */
|
|
incrNE = 2 * (dx-dy); /* increment used for move to NE */
|
|
|
|
blob_line_add_pixel (b, x, y);
|
|
|
|
while (y != y1)
|
|
{
|
|
if (d <= 0)
|
|
{
|
|
d += incrE;
|
|
y += ystep;
|
|
}
|
|
else
|
|
{
|
|
d += incrNE;
|
|
x += xstep;
|
|
y += ystep;
|
|
}
|
|
blob_line_add_pixel (b, x, y);
|
|
}
|
|
}
|
|
}
|
|
|
|
/****************************************************************
|
|
* Code to scan convert an arbitrary ellipse into a Blob. Based
|
|
* on Van Aken's conic algorithm in Foley and Van Damn
|
|
****************************************************************/
|
|
|
|
/* Return octant from gradient */
|
|
static int
|
|
blob_get_octant (int D, int E)
|
|
{
|
|
if (D>=0)
|
|
{
|
|
if (E<0)
|
|
return (D<-E) ? 1 : 2;
|
|
else
|
|
return (D>E) ? 3 : 4;
|
|
}
|
|
else
|
|
if (E>0)
|
|
return (-D<E) ? 5 : 6;
|
|
else
|
|
return (-D>-E) ? 7 : 8;
|
|
}
|
|
|
|
static void
|
|
blob_conic_add_pixel (Blob *b, EdgeType *present, int x, int y, int octant)
|
|
{
|
|
/* printf ("%d %d\n",x,y); */
|
|
if (y<b->y || y>=b->y+b->height)
|
|
{
|
|
/* g_warning("Out of bounds!\n"); */
|
|
}
|
|
else
|
|
{
|
|
if (octant <= 4)
|
|
{
|
|
if (present[y-b->y] & RIGHT)
|
|
b->data[y-b->y].right = MAX(b->data[y-b->y].right,x);
|
|
else
|
|
{
|
|
b->data[y-b->y].right = x;
|
|
present[y-b->y] |= RIGHT;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (present[y-b->y] & LEFT)
|
|
b->data[y-b->y].left = MIN(b->data[y-b->y].left,x);
|
|
else
|
|
{
|
|
b->data[y-b->y].left = x;
|
|
present[y-b->y] |= LEFT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
blob_conic (Blob *b, int xs, int ys,
|
|
int A, int B, int C, int D, int E, int F)
|
|
{
|
|
int x,y; /* current point */
|
|
int octant; /* current octant */
|
|
int dxsquare, dysquare; /* change in (x,y) for square moves */
|
|
int dxdiag, dydiag; /* change in (x,y) for diagonal moves */
|
|
int d,u,v,k1,k2,k3; /* decision variables and increments */
|
|
int octantCount; /* number of octants to be drawn */
|
|
int count; /* number of steps for last octant */
|
|
int tmp, i;
|
|
|
|
EdgeType *present;
|
|
|
|
present = g_new (EdgeType, b->height);
|
|
memset (present, 0, b->height * sizeof(EdgeType));
|
|
|
|
octant = blob_get_octant (D,E);
|
|
|
|
switch (octant)
|
|
{
|
|
case 1:
|
|
d = ROUND (A+B/2.+C/4.+D+E/2.+F);
|
|
u = ROUND (A+B/2.+D);
|
|
v = ROUND (A+B/2.+D+E);
|
|
k1 = 2*A;
|
|
k2 = 2*A + B;
|
|
k3 = k2 + B + 2*C;
|
|
dxsquare = 1;
|
|
dysquare = 0;
|
|
dxdiag = 1;
|
|
dydiag = 1;
|
|
break;
|
|
case 2:
|
|
d = ROUND (A/4.+B/2.+C+D/2.+E+F);
|
|
u = ROUND (B/2.+C+E);
|
|
v = ROUND (B/2.+C+D+E);
|
|
k1 = 2*C;
|
|
k2 = B + 2*C;
|
|
k3 = 2*A + 2*B + 2*C;
|
|
dxsquare = 0;
|
|
dysquare = 1;
|
|
dxdiag = 1;
|
|
dydiag = 1;
|
|
break;
|
|
case 3:
|
|
d = ROUND (A/4.-B/2.+C-D/2.+E+F);
|
|
u = ROUND (-B/2.+C+E);
|
|
v = ROUND (-B/2.+C-D+E);
|
|
k1 = 2*C;
|
|
k2 = 2*C - B;
|
|
k3 = 2*A - 2*B + 2*C;
|
|
dxsquare = 0;
|
|
dysquare = 1;
|
|
dxdiag = -1;
|
|
dydiag = 1;
|
|
break;
|
|
case 4:
|
|
d = ROUND (A-B/2.+C/4.-D+E/2.+F);
|
|
u = ROUND (A-B/2.-D);
|
|
v = ROUND (A-B/2.-D+E);
|
|
k1 = 2*A;
|
|
k2 = 2*A - B;
|
|
k3 = k2 - B + 2*C;
|
|
dxsquare = -1;
|
|
dysquare = 0;
|
|
dxdiag = -1;
|
|
dydiag = 1;
|
|
break;
|
|
case 5:
|
|
d = ROUND (A+B/2.+C/4.-D-E/2.+F);
|
|
u = ROUND (A+B/2.-D);
|
|
v = ROUND (A+B/2.-D-E);
|
|
k1 = 2*A;
|
|
k2 = 2*A + B;
|
|
k3 = k2 + B + 2*C;
|
|
dxsquare = -1;
|
|
dysquare = 0;
|
|
dxdiag = -1;
|
|
dydiag = -1;
|
|
break;
|
|
case 6:
|
|
d = ROUND (A/4.+B/2.+C-D/2.-E+F);
|
|
u = ROUND (B/2.+C-E);
|
|
v = ROUND (B/2.+C-D-E);
|
|
k1 = 2*C;
|
|
k2 = B + 2*C;
|
|
k3 = 2*A + 2*B + 2*C;
|
|
dxsquare = 0;
|
|
dysquare = -1;
|
|
dxdiag = -1;
|
|
dydiag = -1;
|
|
break;
|
|
case 7:
|
|
d = ROUND (A/4.-B/2.+C+D/2.-E+F);
|
|
u = ROUND (-B/2.+C-E);
|
|
v = ROUND (-B/2.+C+D-E);
|
|
k1 = 2*C;
|
|
k2 = 2*C - B;
|
|
k3 = 2*A - 2*B + 2*C;
|
|
dxsquare = 0;
|
|
dysquare = -1;
|
|
dxdiag = 1;
|
|
dydiag = -1;
|
|
break;
|
|
default: /* case 8: */
|
|
d = ROUND (A-B/2.+C/4.+D-E/2.+F);
|
|
u = ROUND (A-B/2.+D);
|
|
v = ROUND (A-B/2.+D-E);
|
|
k1 = 2*A;
|
|
k2 = 2*A - B;
|
|
k3 = k2 - B + 2*C;
|
|
dxsquare = 1;
|
|
dysquare = 0;
|
|
dxdiag = 1;
|
|
dydiag = -1;
|
|
break;
|
|
}
|
|
|
|
octantCount = 8;
|
|
x = xs;
|
|
y = ys;
|
|
count = 0; /* ignore until last octant */
|
|
|
|
/* Initialize boundary checking - we keep track of the discriminants
|
|
for the conic as quadratics in x and y, and when they go negative
|
|
we know we are beyond the boundaries of the conic. */
|
|
|
|
while (1)
|
|
{
|
|
if (octantCount == 0)
|
|
{
|
|
/* figure out remaining steps in square direction */
|
|
switch (octant)
|
|
{
|
|
case 1:
|
|
case 8:
|
|
count = xs - x;
|
|
break;
|
|
case 2:
|
|
case 3:
|
|
count = ys - y;
|
|
break;
|
|
case 4:
|
|
case 5:
|
|
count = x - xs;
|
|
break;
|
|
case 6:
|
|
case 7:
|
|
count = y - ys;
|
|
break;
|
|
}
|
|
/* if (count < 0)
|
|
g_warning("Negative count (%d) in octant %d\n",count,octant); */
|
|
if (count <= 0)
|
|
goto done;
|
|
|
|
}
|
|
if (octant %2) /* odd octants */
|
|
{
|
|
while (v < k2/2)
|
|
{
|
|
blob_conic_add_pixel (b, present, x, y, octant);
|
|
if (d<0)
|
|
{
|
|
x += dxsquare; y += dysquare;
|
|
u += k1;
|
|
v += k2;
|
|
d += u;
|
|
}
|
|
else
|
|
{
|
|
x += dxdiag; y += dydiag;
|
|
u += k2;
|
|
v += k3;
|
|
d += v;
|
|
}
|
|
if (count && --count == 0)
|
|
goto done;
|
|
}
|
|
/* We now cross diagonal octant boundary */
|
|
d = ROUND (d - u + v/2. - k2/2. + 3*k3/8.);
|
|
u = ROUND (-u + v - k2/2. + k3/2.);
|
|
v = ROUND (v - k2 + k3/2.); /* could be v + A - C */
|
|
k1 = k1 - 2*k2 + k3;
|
|
k2 = k3 - k2;
|
|
tmp = dxsquare;
|
|
dxsquare = -dysquare;
|
|
dysquare = tmp;
|
|
}
|
|
else /* Even octants */
|
|
{
|
|
while (u < k2 /2)
|
|
{
|
|
blob_conic_add_pixel (b, present, x, y, octant);
|
|
if (d<0)
|
|
{
|
|
x += dxdiag; y += dydiag;
|
|
u += k2;
|
|
v += k3;
|
|
d += v;
|
|
}
|
|
else
|
|
{
|
|
x += dxsquare; y += dysquare;
|
|
u += k1;
|
|
v += k2;
|
|
d += u;
|
|
}
|
|
if (count && --count <= 0)
|
|
goto done;
|
|
}
|
|
/* We now cross square octant boundary */
|
|
d = d + u - v + k1 - k2;
|
|
v = 2*u - v + k1 - k2;
|
|
/* Do v first; it depends on u */
|
|
u = u + k1 - k2;
|
|
k3 = 4 * (k1 - k2) + k3;
|
|
k2 = 2 * k1 - k2;
|
|
tmp = dxdiag;
|
|
dxdiag = -dydiag;
|
|
dydiag = tmp;
|
|
}
|
|
octant++;
|
|
if (octant > 8) octant -= 8;
|
|
octantCount--;
|
|
}
|
|
|
|
done: /* jump out of two levels */
|
|
|
|
for (i=0; i<b->height; i++)
|
|
if (present[i] != (LEFT | RIGHT))
|
|
{
|
|
b->data[i].left = 0;
|
|
b->data[i].right = -1;
|
|
}
|
|
|
|
g_free (present);
|
|
}
|
|
|
|
/* Scan convert an ellipse specified by _offsets_ of major and
|
|
minor axes, and by center into a blob */
|
|
Blob *
|
|
blob_ellipse (double xc, double yc, double xp, double yp, double xq, double yq)
|
|
{
|
|
Blob *r;
|
|
double A,B,C,D,E,F; /* coefficients of conic */
|
|
double xprod,tmp;
|
|
double height;
|
|
/* double dpx, dpy; */
|
|
int y;
|
|
|
|
xprod = xp*yq - xq*yp;
|
|
|
|
if (xprod == 0) /* colinear points */
|
|
{
|
|
g_print("Colinear points!\n");
|
|
g_debug("gsumi");
|
|
}
|
|
|
|
if (xprod < 0)
|
|
{
|
|
tmp = xp; xp = xq; xq = tmp;
|
|
tmp = yp; yp = yq; yq = tmp;
|
|
xprod = -xprod;
|
|
}
|
|
|
|
A = yp*yp + yq*yq;
|
|
B = -2 * (xp*yp + xq*yq);
|
|
C = xp*xp + xq*xq;
|
|
D = 2*yq*xprod;
|
|
E = -2*xq*xprod;
|
|
F = 0;
|
|
/* Now offset the ellipse so that the center is exact, but the
|
|
starting point is no longer exactly on the ellipse */
|
|
|
|
/* This needs a change to blob_conic to work. blob_conic assumes
|
|
* we start at (0,0)
|
|
*/
|
|
|
|
/* dpx = ROUND(xp+xc)-xp-xc;
|
|
dpy = ROUND(yp+yc)-yp-yc;
|
|
|
|
F += dpx*(A*dpx+D+B*dpy) + dpy*(C*dpy+E);
|
|
D += 2*A*dpx + B*dpy;
|
|
E += B*dpx + 2*C*dpy;
|
|
*/
|
|
height = sqrt(A);
|
|
y = floor(yc-height-0.5);
|
|
|
|
/* We allow an extra pixel of slop on top and bottom to deal with
|
|
round-off error */
|
|
r = blob_new (y-1,ceil(yc+height+0.5)-y+3);
|
|
|
|
/* Although it seems that multiplying A-F by a constant would improve
|
|
things, this seems not to be the case in practice. Several test
|
|
cases showed about equal improvement and degradation */
|
|
blob_conic (r,ROUND(xp+xc),ROUND(yp+yc),ROUND(1*A),ROUND(1*B),ROUND(1*C),
|
|
ROUND(1*D),ROUND(1*E),ROUND(1*F));
|
|
|
|
/* Add a line through the center to improve things a bit. (Doesn't
|
|
* work perfectly because sometimes we overshoot
|
|
*/
|
|
{
|
|
int x0 = floor (0.5 + xc - xp);
|
|
int x1 = floor (0.5 + xc + xp);
|
|
int y0 = floor (0.5 + yc - yp);
|
|
int y1 = floor (0.5 + yc + yp);
|
|
/* r = blob_new (MIN(y0,y1), abs(y1-y0)+1); */
|
|
blob_line (r, x0, y0, x1, y1);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
void
|
|
blob_bounds(Blob *b, int *x, int *y, int *width, int *height)
|
|
{
|
|
int i;
|
|
int x0, x1, y0, y1;
|
|
|
|
i = 0;
|
|
while (i<b->height && b->data[i].left > b->data[i].right)
|
|
i++;
|
|
|
|
if (i<b->height)
|
|
{
|
|
y0 = b->y + i;
|
|
x0 = b->data[i].left;
|
|
x1 = b->data[i].right + 1;
|
|
while (i<b->height && b->data[i].left <= b->data[i].right)
|
|
{
|
|
x0 = MIN(b->data[i].left, x0);
|
|
x1 = MAX(b->data[i].right+1, x1);
|
|
i++;
|
|
}
|
|
y1 = b->y + i;
|
|
}
|
|
else
|
|
{
|
|
x0 = y0 = 0;
|
|
x1 = y1 = 0;
|
|
}
|
|
|
|
*x = x0;
|
|
*y = y0;
|
|
*width = x1 - x0;
|
|
*height = y1 - y0;
|
|
}
|
|
|
|
void
|
|
blob_dump(Blob *b) {
|
|
int i,j;
|
|
for (i=0; i<b->height; i++)
|
|
{
|
|
for (j=0;j<b->data[i].left;j++)
|
|
putchar(' ');
|
|
for (j=b->data[i].left;j<=b->data[i].right;j++)
|
|
putchar('*');
|
|
putchar('\n');
|
|
}
|
|
}
|