gimp/app/core/gimpbrush-transform.cc

1008 lines
36 KiB
C++

/* GIMP - The GNU Image Manipulation Program
* Copyright (C) 1995 Spencer Kimball and Peter Mattis
*
* gimpbrush-transform.c
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <string.h>
#include <gdk-pixbuf/gdk-pixbuf.h>
#include <gegl.h>
extern "C"
{
#include "libgimpmath/gimpmath.h"
#include "core-types.h"
#include "gegl/gimp-gegl-loops.h"
#include "gimpbrush.h"
#include "gimpbrush-transform.h"
#include "gimptempbuf.h"
#define PIXELS_PER_THREAD \
(/* each thread costs as much as */ 64.0 * 64.0 /* pixels */)
/* local function prototypes */
static void gimp_brush_transform_bounding_box (GimpBrush *brush,
const GimpMatrix3 *matrix,
gint *x,
gint *y,
gint *width,
gint *height);
static void gimp_brush_transform_blur (GimpTempBuf *buf,
gint r);
static gint gimp_brush_transform_blur_radius (gint height,
gint width,
gdouble hardness);
static void gimp_brush_transform_adjust_hardness_matrix (gdouble width,
gdouble height,
gdouble blur_radius,
GimpMatrix3 *matrix);
/* public functions */
void
gimp_brush_real_transform_size (GimpBrush *brush,
gdouble scale,
gdouble aspect_ratio,
gdouble angle,
gboolean reflect,
gint *width,
gint *height)
{
GimpMatrix3 matrix;
gint x, y;
gimp_brush_transform_matrix (gimp_brush_get_width (brush),
gimp_brush_get_height (brush),
scale, aspect_ratio, angle, reflect, &matrix);
gimp_brush_transform_bounding_box (brush, &matrix, &x, &y, width, height);
}
/*
* Transforms the brush mask with bilinear interpolation.
*
* Rather than calculating the inverse transform for each point in the
* transformed image, this algorithm uses the inverse transformed
* corner points of the destination image to work out the starting
* position in the source image and the U and V deltas in the source
* image space. It then uses a scan-line approach, looping through
* rows and columns in the transformed (destination) image while
* walking along the corresponding rows and columns (named U and V) in
* the source image.
*
* The horizontal in destination space (transform result) is reverse
* transformed into source image space to get U. The vertical in
* destination space (transform result) is reverse transformed into
* source image space to get V.
*
* The strength of this particular algorithm is that calculation work
* should depend more upon the final transformed brush size rather
* than the input brush size.
*
* There are no floating point calculations in the inner loop for speed.
*
* Some variables end with the suffix _i to indicate they have been
* premultiplied by int_multiple
*/
GimpTempBuf *
gimp_brush_real_transform_mask (GimpBrush *brush,
gdouble scale,
gdouble aspect_ratio,
gdouble angle,
gboolean reflect,
gdouble hardness)
{
GimpTempBuf *result;
GimpTempBuf *source;
const guchar *src;
GimpMatrix3 matrix;
gint src_width;
gint src_height;
gint src_width_minus_one;
gint src_height_minus_one;
gint dest_width;
gint dest_height;
gint blur_radius;
gint x, y;
gdouble b_lx, b_rx, t_lx, t_rx;
gdouble b_ly, b_ry, t_ly, t_ry;
gdouble src_tl_to_tr_delta_x;
gdouble src_tl_to_tr_delta_y;
gdouble src_tl_to_bl_delta_x;
gdouble src_tl_to_bl_delta_y;
gint src_walk_ux_i;
gint src_walk_uy_i;
gint src_walk_vx_i;
gint src_walk_vy_i;
/*
* tl, tr etc are used because it is easier to visualize top left,
* top right etc corners of the forward transformed source image
* rectangle.
*/
const gint fraction_bits = 12;
const gint int_multiple = pow (2, fraction_bits);
/* In inner loop's bilinear calculation, two numbers that were each
* previously multiplied by int_multiple are multiplied together.
* To get back the right result, the multiplication result must be
* divided *twice* by 2^fraction_bits, equivalent to bit shift right
* by 2 * fraction_bits
*/
const gint recovery_bits = 2 * fraction_bits;
/*
* example: suppose fraction_bits = 9
* a 9-bit mask looks like this: 0001 1111 1111
* and is given by: 2^fraction_bits - 1
* demonstration:
* 2^0 = 0000 0000 0001
* 2^1 = 0000 0000 0010
* :
* 2^8 = 0001 0000 0000
* 2^9 = 0010 0000 0000
* 2^9 - 1 = 0001 1111 1111
*/
const guint fraction_bitmask = pow(2, fraction_bits) - 1 ;
source = gimp_brush_get_mask (brush);
src_width = gimp_brush_get_width (brush);
src_height = gimp_brush_get_height (brush);
gimp_brush_transform_matrix (src_width, src_height,
scale, aspect_ratio, angle, reflect, &matrix);
if (gimp_matrix3_is_identity (&matrix) && hardness == 1.0)
return gimp_temp_buf_copy (source);
src_width_minus_one = src_width - 1;
src_height_minus_one = src_height - 1;
gimp_brush_transform_bounding_box (brush, &matrix,
&x, &y, &dest_width, &dest_height);
blur_radius = 0;
if (hardness < 1.0)
{
GimpMatrix3 unrotated_matrix;
gint unrotated_x;
gint unrotated_y;
gint unrotated_dest_width;
gint unrotated_dest_height;
gimp_brush_transform_matrix (src_width, src_height,
scale, aspect_ratio, 0.0, FALSE,
&unrotated_matrix);
gimp_brush_transform_bounding_box (brush, &unrotated_matrix,
&unrotated_x, &unrotated_y,
&unrotated_dest_width,
&unrotated_dest_height);
blur_radius = gimp_brush_transform_blur_radius (unrotated_dest_width,
unrotated_dest_height,
hardness);
gimp_brush_transform_adjust_hardness_matrix (dest_width, dest_height,
blur_radius, &matrix);
}
gimp_matrix3_translate (&matrix, -x, -y);
gimp_matrix3_invert (&matrix);
result = gimp_temp_buf_new (dest_width, dest_height,
gimp_temp_buf_get_format (source));
src = gimp_temp_buf_get_data (source);
/* prevent disappearance of 1x1 pixel brush at some rotations when
scaling < 1 */
/*
if (src_width == 1 && src_height == 1 && scale_x < 1 && scale_y < 1 )
{
*dest = src[0];
return result;
}*/
gimp_matrix3_transform_point (&matrix, 0, 0, &t_lx, &t_ly);
gimp_matrix3_transform_point (&matrix, dest_width, 0, &t_rx, &t_ry);
gimp_matrix3_transform_point (&matrix, 0, dest_height, &b_lx, &b_ly);
gimp_matrix3_transform_point (&matrix, dest_width, dest_height, &b_rx, &b_ry);
/* in image space, calc U (what was horizontal originally)
* note: double precision
*/
src_tl_to_tr_delta_x = t_rx - t_lx;
src_tl_to_tr_delta_y = t_ry - t_ly;
/* in image space, calc V (what was vertical originally)
* note: double precision
*/
src_tl_to_bl_delta_x = b_lx - t_lx;
src_tl_to_bl_delta_y = b_ly - t_ly;
/* speed optimized, note conversion to int precision */
src_walk_ux_i = (gint) ((src_tl_to_tr_delta_x / dest_width) * int_multiple);
src_walk_uy_i = (gint) ((src_tl_to_tr_delta_y / dest_width) * int_multiple);
src_walk_vx_i = (gint) ((src_tl_to_bl_delta_x / dest_height) * int_multiple);
src_walk_vy_i = (gint) ((src_tl_to_bl_delta_y / dest_height) * int_multiple);
gegl_parallel_distribute_area (
GEGL_RECTANGLE (0, 0, dest_width, dest_height), PIXELS_PER_THREAD,
[=] (const GeglRectangle *area)
{
guchar *dest;
gint src_space_cur_pos_x;
gint src_space_cur_pos_y;
gint src_space_cur_pos_x_i;
gint src_space_cur_pos_y_i;
gint src_space_row_start_x_i;
gint src_space_row_start_y_i;
const guchar *src_walker;
const guchar *pixel_next;
const guchar *pixel_below;
const guchar *pixel_below_next;
gint opposite_x, distance_from_true_x;
gint opposite_y, distance_from_true_y;
gint u, v;
dest = gimp_temp_buf_get_data (result) +
dest_width * area->y + area->x;
/* initialize current position in source space to the start position (tl)
* speed optimized, note conversion to int precision
*/
src_space_row_start_x_i = (gint) (t_lx * int_multiple) +
src_walk_vx_i * area->y +
src_walk_ux_i * area->x;
src_space_row_start_y_i = (gint) (t_ly * int_multiple) +
src_walk_vy_i * area->y +
src_walk_uy_i * area->x;
for (v = 0; v < area->height; v++)
{
src_space_cur_pos_x_i = src_space_row_start_x_i;
src_space_cur_pos_y_i = src_space_row_start_y_i;
for (u = 0; u < area->width; u++)
{
src_space_cur_pos_x = src_space_cur_pos_x_i >> fraction_bits;
src_space_cur_pos_y = src_space_cur_pos_y_i >> fraction_bits;
if (src_space_cur_pos_x > src_width_minus_one ||
src_space_cur_pos_x < 0 ||
src_space_cur_pos_y > src_height_minus_one ||
src_space_cur_pos_y < 0)
/* no corresponding pixel in source space */
{
*dest = 0;
}
else /* reverse transformed point hits source pixel */
{
src_walker = src +
src_space_cur_pos_y * src_width +
src_space_cur_pos_x;
/* bottom right corner
* no pixel below, reuse current pixel instead
* no next pixel to the right so reuse current pixel instead
*/
if (src_space_cur_pos_y == src_height_minus_one &&
src_space_cur_pos_x == src_width_minus_one )
{
pixel_next = src_walker;
pixel_below = src_walker;
pixel_below_next = src_walker;
}
/* bottom edge pixel row, except rightmost corner
* no pixel below, reuse current pixel instead */
else if (src_space_cur_pos_y == src_height_minus_one)
{
pixel_next = src_walker + 1;
pixel_below = src_walker;
pixel_below_next = src_walker + 1;
}
/* right edge pixel column, except bottom corner
* no next pixel to the right so reuse current pixel instead */
else if (src_space_cur_pos_x == src_width_minus_one)
{
pixel_next = src_walker;
pixel_below = src_walker + src_width;
pixel_below_next = pixel_below;
}
/* neither on bottom edge nor on right edge */
else
{
pixel_next = src_walker + 1;
pixel_below = src_walker + src_width;
pixel_below_next = pixel_below + 1;
}
distance_from_true_x = src_space_cur_pos_x_i & fraction_bitmask;
distance_from_true_y = src_space_cur_pos_y_i & fraction_bitmask;
opposite_x = int_multiple - distance_from_true_x;
opposite_y = int_multiple - distance_from_true_y;
*dest = ((src_walker[0] * opposite_x +
pixel_next[0] * distance_from_true_x) * opposite_y +
(pixel_below[0] * opposite_x +
pixel_below_next[0] *distance_from_true_x) * distance_from_true_y
) >> recovery_bits;
}
src_space_cur_pos_x_i += src_walk_ux_i;
src_space_cur_pos_y_i += src_walk_uy_i;
dest++;
} /* end for x */
src_space_row_start_x_i += src_walk_vx_i;
src_space_row_start_y_i += src_walk_vy_i;
dest += dest_width - area->width;
} /* end for y */
});
gimp_brush_transform_blur (result, blur_radius);
return result;
}
/*
* Transforms the brush pixmap with bilinear interpolation.
*
* The algorithm used is exactly the same as for the brush mask
* (gimp_brush_real_transform_mask) except it accounts for 3 color channels
* instead of 1 grayscale channel.
*
* Rather than calculating the inverse transform for each point in the
* transformed image, this algorithm uses the inverse transformed
* corner points of the destination image to work out the starting
* position in the source image and the U and V deltas in the source
* image space. It then uses a scan-line approach, looping through
* rows and columns in the transformed (destination) image while
* walking along the corresponding rows and columns (named U and V) in
* the source image.
*
* The horizontal in destination space (transform result) is reverse
* transformed into source image space to get U. The vertical in
* destination space (transform result) is reverse transformed into
* source image space to get V.
*
* The strength of this particular algorithm is that calculation work
* should depend more upon the final transformed brush size rather
* than the input brush size.
*
* There are no floating point calculations in the inner loop for speed.
*
* Some variables end with the suffix _i to indicate they have been
* premultiplied by int_multiple
*/
GimpTempBuf *
gimp_brush_real_transform_pixmap (GimpBrush *brush,
gdouble scale,
gdouble aspect_ratio,
gdouble angle,
gboolean reflect,
gdouble hardness)
{
GimpTempBuf *result;
GimpTempBuf *source;
const guchar *src;
GimpMatrix3 matrix;
gint src_width;
gint src_height;
gint src_width_minus_one;
gint src_height_minus_one;
gint dest_width;
gint dest_height;
gint blur_radius;
gint x, y;
gdouble b_lx, b_rx, t_lx, t_rx;
gdouble b_ly, b_ry, t_ly, t_ry;
gdouble src_tl_to_tr_delta_x;
gdouble src_tl_to_tr_delta_y;
gdouble src_tl_to_bl_delta_x;
gdouble src_tl_to_bl_delta_y;
gint src_walk_ux_i;
gint src_walk_uy_i;
gint src_walk_vx_i;
gint src_walk_vy_i;
/*
* tl, tr etc are used because it is easier to visualize top left,
* top right etc corners of the forward transformed source image
* rectangle.
*/
const gint fraction_bits = 12;
const gint int_multiple = pow (2, fraction_bits);
/* In inner loop's bilinear calculation, two numbers that were each
* previously multiplied by int_multiple are multiplied together.
* To get back the right result, the multiplication result must be
* divided *twice* by 2^fraction_bits, equivalent to bit shift right
* by 2 * fraction_bits
*/
const gint recovery_bits = 2 * fraction_bits;
/*
* example: suppose fraction_bits = 9
* a 9-bit mask looks like this: 0001 1111 1111
* and is given by: 2^fraction_bits - 1
* demonstration:
* 2^0 = 0000 0000 0001
* 2^1 = 0000 0000 0010
* :
* 2^8 = 0001 0000 0000
* 2^9 = 0010 0000 0000
* 2^9 - 1 = 0001 1111 1111
*/
const guint fraction_bitmask = pow(2, fraction_bits) - 1 ;
source = gimp_brush_get_pixmap (brush);
src_width = gimp_brush_get_width (brush);
src_height = gimp_brush_get_height (brush);
gimp_brush_transform_matrix (src_width, src_height,
scale, aspect_ratio, angle, reflect, &matrix);
if (gimp_matrix3_is_identity (&matrix) && hardness == 1.0)
return gimp_temp_buf_copy (source);
src_width_minus_one = src_width - 1;
src_height_minus_one = src_height - 1;
gimp_brush_transform_bounding_box (brush, &matrix,
&x, &y, &dest_width, &dest_height);
blur_radius = 0;
if (hardness < 1.0)
{
GimpMatrix3 unrotated_matrix;
gint unrotated_x;
gint unrotated_y;
gint unrotated_dest_width;
gint unrotated_dest_height;
gimp_brush_transform_matrix (src_width, src_height,
scale, aspect_ratio, 0.0, FALSE,
&unrotated_matrix);
gimp_brush_transform_bounding_box (brush, &unrotated_matrix,
&unrotated_x, &unrotated_y,
&unrotated_dest_width,
&unrotated_dest_height);
blur_radius = gimp_brush_transform_blur_radius (unrotated_dest_width,
unrotated_dest_height,
hardness);
gimp_brush_transform_adjust_hardness_matrix (dest_width, dest_height,
blur_radius, &matrix);
}
gimp_matrix3_translate (&matrix, -x, -y);
gimp_matrix3_invert (&matrix);
result = gimp_temp_buf_new (dest_width, dest_height,
gimp_temp_buf_get_format (source));
src = gimp_temp_buf_get_data (source);
/* prevent disappearance of 1x1 pixel brush at some rotations when
scaling < 1 */
/*
if (src_width == 1 && src_height == 1 && scale_x < 1 && scale_y < 1 )
{
*dest = src[0];
return result;
}*/
gimp_matrix3_transform_point (&matrix, 0, 0, &t_lx, &t_ly);
gimp_matrix3_transform_point (&matrix, dest_width, 0, &t_rx, &t_ry);
gimp_matrix3_transform_point (&matrix, 0, dest_height, &b_lx, &b_ly);
gimp_matrix3_transform_point (&matrix, dest_width, dest_height, &b_rx, &b_ry);
/* in image space, calc U (what was horizontal originally)
* note: double precision
*/
src_tl_to_tr_delta_x = t_rx - t_lx;
src_tl_to_tr_delta_y = t_ry - t_ly;
/* in image space, calc V (what was vertical originally)
* note: double precision
*/
src_tl_to_bl_delta_x = b_lx - t_lx;
src_tl_to_bl_delta_y = b_ly - t_ly;
/* speed optimized, note conversion to int precision */
src_walk_ux_i = (gint) ((src_tl_to_tr_delta_x / dest_width) * int_multiple);
src_walk_uy_i = (gint) ((src_tl_to_tr_delta_y / dest_width) * int_multiple);
src_walk_vx_i = (gint) ((src_tl_to_bl_delta_x / dest_height) * int_multiple);
src_walk_vy_i = (gint) ((src_tl_to_bl_delta_y / dest_height) * int_multiple);
gegl_parallel_distribute_area (
GEGL_RECTANGLE (0, 0, dest_width, dest_height), PIXELS_PER_THREAD,
[=] (const GeglRectangle *area)
{
guchar *dest;
gint src_space_cur_pos_x;
gint src_space_cur_pos_y;
gint src_space_cur_pos_x_i;
gint src_space_cur_pos_y_i;
gint src_space_row_start_x_i;
gint src_space_row_start_y_i;
const guchar *src_walker;
const guchar *pixel_next;
const guchar *pixel_below;
const guchar *pixel_below_next;
gint opposite_x, distance_from_true_x;
gint opposite_y, distance_from_true_y;
gint u, v;
dest = gimp_temp_buf_get_data (result) +
3 * (dest_width * area->y + area->x);
/* initialize current position in source space to the start position (tl)
* speed optimized, note conversion to int precision
*/
src_space_row_start_x_i = (gint) (t_lx * int_multiple) +
src_walk_vx_i * area->y +
src_walk_ux_i * area->x;
src_space_row_start_y_i = (gint) (t_ly * int_multiple) +
src_walk_vy_i * area->y +
src_walk_uy_i * area->x;
for (v = 0; v < area->height; v++)
{
src_space_cur_pos_x_i = src_space_row_start_x_i;
src_space_cur_pos_y_i = src_space_row_start_y_i;
for (u = 0; u < area->width; u++)
{
src_space_cur_pos_x = src_space_cur_pos_x_i >> fraction_bits;
src_space_cur_pos_y = src_space_cur_pos_y_i >> fraction_bits;
if (src_space_cur_pos_x > src_width_minus_one ||
src_space_cur_pos_x < 0 ||
src_space_cur_pos_y > src_height_minus_one ||
src_space_cur_pos_y < 0)
/* no corresponding pixel in source space */
{
dest[0] = 0;
dest[1] = 0;
dest[2] = 0;
}
else /* reverse transformed point hits source pixel */
{
src_walker = src +
3 * (src_space_cur_pos_y * src_width +
src_space_cur_pos_x);
/* bottom right corner
* no pixel below, reuse current pixel instead
* no next pixel to the right so reuse current pixel instead
*/
if (src_space_cur_pos_y == src_height_minus_one &&
src_space_cur_pos_x == src_width_minus_one )
{
pixel_next = src_walker;
pixel_below = src_walker;
pixel_below_next = src_walker;
}
/* bottom edge pixel row, except rightmost corner
* no pixel below, reuse current pixel instead */
else if (src_space_cur_pos_y == src_height_minus_one)
{
pixel_next = src_walker + 3;
pixel_below = src_walker;
pixel_below_next = src_walker + 3;
}
/* right edge pixel column, except bottom corner
* no next pixel to the right so reuse current pixel instead */
else if (src_space_cur_pos_x == src_width_minus_one)
{
pixel_next = src_walker;
pixel_below = src_walker + src_width * 3;
pixel_below_next = pixel_below;
}
/* neither on bottom edge nor on right edge */
else
{
pixel_next = src_walker + 3;
pixel_below = src_walker + src_width * 3;
pixel_below_next = pixel_below + 3;
}
distance_from_true_x = src_space_cur_pos_x_i & fraction_bitmask;
distance_from_true_y = src_space_cur_pos_y_i & fraction_bitmask;
opposite_x = int_multiple - distance_from_true_x;
opposite_y = int_multiple - distance_from_true_y;
dest[0] = ((src_walker[0] * opposite_x +
pixel_next[0] * distance_from_true_x) * opposite_y +
(pixel_below[0] * opposite_x +
pixel_below_next[0] *distance_from_true_x) * distance_from_true_y
) >> recovery_bits;
dest[1] = ((src_walker[1] * opposite_x +
pixel_next[1] * distance_from_true_x) * opposite_y +
(pixel_below[1] * opposite_x +
pixel_below_next[1] *distance_from_true_x) * distance_from_true_y
) >> recovery_bits;
dest[2] = ((src_walker[2] * opposite_x +
pixel_next[2] * distance_from_true_x) * opposite_y +
(pixel_below[2] * opposite_x +
pixel_below_next[2] *distance_from_true_x) * distance_from_true_y
) >> recovery_bits;
}
src_space_cur_pos_x_i += src_walk_ux_i;
src_space_cur_pos_y_i += src_walk_uy_i;
dest += 3;
} /* end for x */
src_space_row_start_x_i += src_walk_vx_i;
src_space_row_start_y_i += src_walk_vy_i;
dest += 3 * (dest_width - area->width);
} /* end for y */
});
gimp_brush_transform_blur (result, blur_radius);
return result;
}
void
gimp_brush_transform_matrix (gdouble width,
gdouble height,
gdouble scale,
gdouble aspect_ratio,
gdouble angle,
gboolean reflect,
GimpMatrix3 *matrix)
{
const gdouble center_x = width / 2;
const gdouble center_y = height / 2;
gdouble scale_x = scale;
gdouble scale_y = scale;
if (aspect_ratio < 0.0)
{
scale_x = scale * (1.0 - (fabs (aspect_ratio) / 20.0));
scale_y = scale;
}
else if (aspect_ratio > 0.0)
{
scale_x = scale;
scale_y = scale * (1.0 - (aspect_ratio / 20.0));
}
gimp_matrix3_identity (matrix);
gimp_matrix3_scale (matrix, scale_x, scale_y);
gimp_matrix3_translate (matrix, - center_x * scale_x, - center_y * scale_y);
gimp_matrix3_rotate (matrix, -2 * G_PI * angle);
if (reflect)
gimp_matrix3_scale (matrix, -1.0, 1.0);
gimp_matrix3_translate (matrix, center_x * scale_x, center_y * scale_y);
}
/* private functions */
static void
gimp_brush_transform_bounding_box (GimpBrush *brush,
const GimpMatrix3 *matrix,
gint *x,
gint *y,
gint *width,
gint *height)
{
const gdouble w = gimp_brush_get_width (brush);
const gdouble h = gimp_brush_get_height (brush);
gdouble x1, x2, x3, x4;
gdouble y1, y2, y3, y4;
gdouble temp_x;
gdouble temp_y;
gimp_matrix3_transform_point (matrix, 0, 0, &x1, &y1);
gimp_matrix3_transform_point (matrix, w, 0, &x2, &y2);
gimp_matrix3_transform_point (matrix, 0, h, &x3, &y3);
gimp_matrix3_transform_point (matrix, w, h, &x4, &y4);
temp_x = MIN (MIN (x1, x2), MIN (x3, x4));
temp_y = MIN (MIN (y1, y2), MIN (y3, y4));
*width = (gint) ceil (MAX (MAX (x1, x2), MAX (x3, x4)) - temp_x);
*height = (gint) ceil (MAX (MAX (y1, y2), MAX (y3, y4)) - temp_y);
*x = floor (temp_x);
*y = floor (temp_y);
/* Transform size can not be less than 1 px */
*width = MAX (1, *width);
*height = MAX (1, *height);
}
/* Blurs the brush mask/pixmap, in place, using a convolution of the form:
*
* 12 11 10 9 8
* 7 6 5 4 3
* 2 1 0 1 2
* 3 4 5 6 7
* 8 9 10 11 12
*
* (i.e., an array, wrapped into a matrix, whose i-th element is
* `abs (i - a / 2)`, where `a` is the length of the array.) `r` specifies the
* convolution kernel's radius.
*/
static void
gimp_brush_transform_blur (GimpTempBuf *buf,
gint r)
{
typedef struct
{
gint sum;
gint weighted_sum;
gint middle_sum;
} Sums;
const Babl *format = gimp_temp_buf_get_format (buf);
gint components = babl_format_get_n_components (format);
gint components_r = components * r;
gint width = gimp_temp_buf_get_width (buf);
gint height = gimp_temp_buf_get_height (buf);
gint stride = components * width;
gint stride_r = stride * r;
guchar *data = gimp_temp_buf_get_data (buf);
gint rw = MIN (r, width - 1);
gint rh = MIN (r, height - 1);
gfloat n = 2 * r + 1;
gfloat n_r = n * r;
gfloat weight = floor (n * n / 2) * (floor (n * n / 2) + 1);
gfloat weight_inv = 1 / weight;
Sums *sums;
if (rw <= 0 || rh <= 0)
return;
sums = g_new (Sums, width * height * components);
gegl_parallel_distribute_range (
height, PIXELS_PER_THREAD / width,
[=] (gint y0, gint height)
{
gint x;
gint y;
gint c;
const guchar *d;
Sums *s;
d = data + y0 * stride;
s = sums + y0 * stride;
for (y = 0; y < height; y++)
{
const guchar *p;
struct
{
gint sum;
gint weighted_sum;
gint leading_sum;
gint leading_weighted_sum;
} acc[components];
memset (acc, 0, sizeof (acc));
p = d;
for (x = 0; x <= rw; x++)
{
for (c = 0; c < components; c++)
{
acc[c].sum += *p;
acc[c].weighted_sum += -x * *p;
p++;
}
}
for (x = 0; x < width; x++)
{
for (c = 0; c < components; c++)
{
if (x > 0)
{
acc[c].weighted_sum += acc[c].sum;
acc[c].leading_weighted_sum += acc[c].leading_sum;
if (x < width - r)
{
acc[c].sum += d[components_r];
acc[c].weighted_sum += -r * d[components_r];
}
}
acc[c].leading_sum += d[0];
s->sum = acc[c].sum;
s->weighted_sum = acc[c].weighted_sum;
s->middle_sum = 2 * acc[c].leading_weighted_sum -
acc[c].weighted_sum;
if (x >= r)
{
acc[c].sum -= d[-components_r];
acc[c].weighted_sum -= r * d[-components_r];
acc[c].leading_sum -= d[-components_r];
acc[c].leading_weighted_sum -= r * d[-components_r];
}
d++;
s++;
}
}
}
});
gegl_parallel_distribute_range (
width, PIXELS_PER_THREAD / height,
[=] (gint x0, gint width)
{
gint x;
gint y;
gint c;
guchar *d0;
const Sums *s0;
guchar *d;
const Sums *s;
d0 = data + x0 * components;
s0 = sums + x0 * components;
for (x = 0; x < width; x++)
{
const Sums *p;
gfloat n_y;
struct
{
gfloat weighted_sum;
gint leading_sum;
gint trailing_sum;
} acc[components];
memset (acc, 0, sizeof (acc));
d = d0 + components * x;
s = s0 + components * x;
p = s + stride;
for (y = 1, n_y = n; y <= rh; y++, n_y += n)
{
for (c = 0; c < components; c++)
{
acc[c].weighted_sum += n_y * p->sum - p->weighted_sum;
acc[c].trailing_sum += p->sum;
p++;
}
p += stride - components;
}
for (y = 0; y < height; y++)
{
for (c = 0; c < components; c++)
{
if (y > 0)
{
acc[c].weighted_sum += s->weighted_sum +
n * (acc[c].leading_sum -
acc[c].trailing_sum);
acc[c].trailing_sum -= s->sum;
if (y < height - r)
{
acc[c].weighted_sum += n_r * s[stride_r].sum -
s[stride_r].weighted_sum;
acc[c].trailing_sum += s[stride_r].sum;
}
}
acc[c].leading_sum += s->sum;
*d = (acc[c].weighted_sum + s->middle_sum) * weight_inv + 0.5f;
acc[c].weighted_sum += s->weighted_sum;
if (y >= r)
{
acc[c].weighted_sum -= n_r * s[-stride_r].sum +
s[-stride_r].weighted_sum;
acc[c].leading_sum -= s[-stride_r].sum;
}
d++;
s++;
}
d += stride - components;
s += stride - components;
}
}
});
g_free (sums);
}
static gint
gimp_brush_transform_blur_radius (gint height,
gint width,
gdouble hardness)
{
return floor ((1.0 - hardness) * (sqrt (0.5) - 0.5) * MIN (width, height));
}
static void
gimp_brush_transform_adjust_hardness_matrix (gdouble width,
gdouble height,
gdouble blur_radius,
GimpMatrix3 *matrix)
{
gdouble scale;
if (blur_radius == 0.0)
return;
scale = (MIN (width, height) - 2.0 * blur_radius) / MIN (width, height);
gimp_matrix3_scale (matrix, scale, scale);
gimp_matrix3_translate (matrix,
(1.0 - scale) * width / 2.0,
(1.0 - scale) * height / 2.0);
}
} /* extern "C" */