gimp/plug-ins/python/spyro-plus.py

2375 lines
91 KiB
Python
Executable File

#!/usr/bin/env python3
# Draw Spyrographs, Epitrochoids, and Lissajous curves with interactive feedback.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import gi
gi.require_version('Gimp', '3.0')
from gi.repository import Gimp
gi.require_version('GimpUi', '3.0')
from gi.repository import GimpUi
from gi.repository import GObject
from gi.repository import GLib
from gi.repository import Gio
gi.require_version('Gtk', '3.0')
from gi.repository import Gtk
gi.require_version('Gdk', '3.0')
from gi.repository import Gdk
import time
import sys
def N_(message): return message
def _(message): return GLib.dgettext(None, message)
from math import pi, sin, cos, atan, atan2, fmod, radians, sqrt
import math
import time
def result_success():
return procedure.new_return_values(Gimp.PDBStatusType.SUCCESS, GLib.Error())
PROC_NAME = "plug-in-spyrogimp"
two_pi, half_pi = 2 * pi, pi / 2
layer_name = _("Spyro Layer")
path_name = _("Spyro Path")
# "Enums"
GEAR_NOTATION, TOY_KIT_NOTATION, VISUAL_NOTATION = range(3) # Pattern notations
RESPONSE_REDRAW, RESPONSE_RESET_PARAMS = range(2) # Button responses in dialog.
# Save options of the dialog
SAVE_AS_NEW_LAYER, SAVE_BY_REDRAW, SAVE_AS_PATH = range(3)
save_options = [
_("As New Layer"),
_("Redraw on last active layer"),
_("As Path")
]
# Mapping of pattern notation to the corresponding tab in the pattern notation notebook.
pattern_notation_page = {}
ring_teeth = [96, 144, 105, 150]
# Moving gear. Each gear is a pair of (#teeth, #holes)
# Hole #1 is closest to the edge of the wheel.
# The last hole is closest to the center.
wheel = [
(24, 5), (30, 8), (32, 9), (36, 11), (40, 13), (42, 14), (45, 16),
(48, 17), (50, 18), (52, 19), (56, 21), (60, 23), (63, 25), (64, 25),
(72, 29), (75, 31), (80, 33), (84, 35)
]
wheel_teeth = [wh[0] for wh in wheel]
def lcm(a, b):
""" Least common multiplier """
return a * b // math.gcd(a, b)
### Shapes
class CanRotateShape:
pass
class Shape:
def configure(self, img, pp, cp):
self.image, self.pp, self.cp = img, pp, cp
def can_equal_w_h(self):
return True
def has_sides(self):
return isinstance(self, SidedShape)
def can_rotate(self):
return isinstance(self, CanRotateShape)
def can_morph(self):
return self.has_sides()
class CircleShape(Shape):
name = _("Circle")
def get_center_of_moving_gear(self, oangle, dist=None):
"""
:return: x,y - position where the center of the moving gear should be,
after going over oangle/two_pi of a full cycle over the outer gear.
"""
cp = self.cp
if dist is None:
dist = cp.moving_gear_radius
return (cp.x_center + (cp.x_half_size - dist) * cos(oangle),
cp.y_center + (cp.y_half_size - dist) * sin(oangle))
class SidedShape(CanRotateShape, Shape):
def configure(self, img, pp, cp):
Shape.configure(self, img, pp, cp)
self.angle_of_each_side = two_pi / pp.sides
self.half_angle = self.angle_of_each_side / 2.0
self.cos_half_angle = cos(self.half_angle)
def get_center_of_moving_gear(self, oangle, dist=None):
if dist is None:
dist = self.cp.moving_gear_radius
shape_factor = self.get_shape_factor(oangle)
return (
self.cp.x_center +
(self.cp.x_half_size - dist) * shape_factor * cos(oangle),
self.cp.y_center +
(self.cp.y_half_size - dist) * shape_factor * sin(oangle)
)
class PolygonShape(SidedShape):
name = _("Polygon-Star")
def get_shape_factor(self, oangle):
oangle_mod = fmod(oangle + self.cp.shape_rotation_radians, self.angle_of_each_side)
if oangle_mod > self.half_angle:
oangle_mod = self.angle_of_each_side - oangle_mod
# When oangle_mod = 0, the shape_factor will be cos(half_angle)) - which is the minimal shape_factor.
# When oangle_mod is near the half_angle, the shape_factor will near 1.
shape_factor = self.cos_half_angle / cos(oangle_mod)
shape_factor -= self.pp.morph * (1 - shape_factor) * (1 + (self.pp.sides - 3) * 2)
return shape_factor
class SineShape(SidedShape):
# Sine wave on a circle ring.
name = _("Sine")
def get_shape_factor(self, oangle):
oangle_mod = fmod(oangle + self.cp.shape_rotation_radians, self.angle_of_each_side)
oangle_stretched = oangle_mod * self.pp.sides
return 1 - self.pp.morph * (cos(oangle_stretched) + 1)
class BumpShape(SidedShape):
# Semi-circles, based on a polygon
name = _("Bumps")
def get_shape_factor(self, oangle):
oangle_mod = fmod(oangle + self.cp.shape_rotation_radians, self.angle_of_each_side)
# Stretch back to angle between 0 and pi
oangle_stretched = oangle_mod/2.0 * self.pp.sides
# Compute factor for polygon.
poly_angle = oangle_mod
if poly_angle > self.half_angle:
poly_angle = self.angle_of_each_side - poly_angle
# When poly_oangle = 0, the shape_factor will be cos(half_angle)) - the minimal shape_factor.
# When poly_angle is near the half_angle, the shape_factor will near 1.
polygon_factor = self.cos_half_angle / cos(poly_angle)
# Bump
return polygon_factor - self.pp.morph * (1 - abs(cos(oangle_stretched)))
class ShapePart(object):
def set_bounds(self, start, end):
self.bound_start, self.bound_end = start, end
self.bound_diff = self.bound_end - self.bound_start
class StraightPart(ShapePart):
def __init__(self, teeth, perp_direction, x1, y1, x2, y2):
self.teeth, self.perp_direction = max(teeth, 1), perp_direction
self.x1, self.y1, self.x2, self.y2 = x1, y1, x2, y2
self.x_diff = self.x2 - self.x1
self.y_diff = self.y2 - self.y1
angle = atan2(self.y_diff, self.x_diff) # - shape_rotation_radians
perp_angle = angle + perp_direction * half_pi
self.sin_angle = sin(perp_angle)
self.cos_angle = cos(perp_angle)
def perpendicular_at_oangle(self, oangle, perp_distance):
factor = (oangle - self.bound_start) / self.bound_diff
return (self.x1 + factor * self.x_diff + perp_distance * self.cos_angle,
self.y1 + factor * self.y_diff + perp_distance * self.sin_angle)
class RoundPart(ShapePart):
def __init__(self, teeth, x, y, start_angle, end_angle):
self.teeth = max(teeth, 1)
self.start_angle, self.end_angle = start_angle, end_angle
self.x, self.y = x, y
self.diff_angle = self.end_angle - self.start_angle
def perpendicular_at_oangle(self, oangle, perp_distance):
angle = (
self.start_angle +
self.diff_angle * (oangle - self.bound_start) / self.bound_diff
)
return (self.x + perp_distance * cos(angle),
self.y + perp_distance * sin(angle))
class ShapeParts(list):
""" A list of shape parts. """
def __init__(self):
list.__init__(self)
self.total_teeth = 0
def finish(self):
for part in self:
self.total_teeth += part.teeth
teeth = 0
bound_end = 0.0
for part in self:
bound_start = bound_end
teeth += part.teeth
bound_end = teeth/float(self.total_teeth) * two_pi
part.set_bounds(bound_start, bound_end)
def perpendicular_at_oangle(self, oangle, perp_distance):
for part in self:
if oangle <= part.bound_end:
return part.perpendicular_at_oangle(oangle, perp_distance)
# We shouldn't reach here
return 0.0, 0.0
class AbstractShapeFromParts(Shape):
def __init__(self):
self.parts = None
def get_center_of_moving_gear(self, oangle, dist=None):
"""
:param oangle: an angle in radians, between 0 and 2*pi
:return: x,y - position where the center of the moving gear should be,
after going over oangle/two_pi of a full cycle over the outer gear.
"""
if dist is None:
dist = self.cp.moving_gear_radius
return self.parts.perpendicular_at_oangle(oangle, dist)
class RackShape(CanRotateShape, AbstractShapeFromParts):
name = _("Rack")
def configure(self, img, pp, cp):
Shape.configure(self, img, pp, cp)
round_teeth = 12
side_teeth = (cp.fixed_gear_teeth - 2 * round_teeth) / 2
# Determine start and end points of rack.
cos_rot = cos(cp.shape_rotation_radians)
sin_rot = sin(cp.shape_rotation_radians)
x_size = cp.x2 - cp.x1 - cp.moving_gear_radius * 4
y_size = cp.y2 - cp.y1 - cp.moving_gear_radius * 4
size = ((x_size * cos_rot)**2 + (y_size * sin_rot)**2) ** 0.5
x1 = cp.x_center - size/2.0 * cos_rot
y1 = cp.y_center - size/2.0 * sin_rot
x2 = cp.x_center + size/2.0 * cos_rot
y2 = cp.y_center + size/2.0 * sin_rot
# Build shape from shape parts.
self.parts = ShapeParts()
self.parts.append(StraightPart(side_teeth, -1, x2, y2, x1, y1))
self.parts.append(
RoundPart(
round_teeth, x1, y1,
half_pi + cp.shape_rotation_radians,
3 * half_pi + cp.shape_rotation_radians
)
)
self.parts.append(StraightPart(side_teeth, -1, x1, y1, x2, y2))
self.parts.append(
RoundPart(
round_teeth, x2, y2,
3 * half_pi + cp.shape_rotation_radians,
5 * half_pi + cp.shape_rotation_radians)
)
self.parts.finish()
class FrameShape(AbstractShapeFromParts):
name = _("Frame")
def configure(self, img, pp, cp):
Shape.configure(self, img, pp, cp)
x1, x2 = cp.x1 + cp.moving_gear_radius, cp.x2 - cp.moving_gear_radius
y1, y2 = cp.y1 + cp.moving_gear_radius, cp.y2 - cp.moving_gear_radius
x_diff, y_diff = abs(x2 - x1), abs(y2 - y1)
# Build shape from shape parts.
self.parts = ShapeParts()
self.parts.append(StraightPart(x_diff, 1, x2, cp.y2, x1, cp.y2))
self.parts.append(StraightPart(y_diff, 1, cp.x1, y2, cp.x1, y1))
self.parts.append(StraightPart(x_diff, 1, x1, cp.y1, x2, cp.y1))
self.parts.append(StraightPart(y_diff, 1, cp.x2, y1, cp.x2, y2))
self.parts.finish()
# Naive hash that gets only a limited amount of points from the selection.
# We use this hash to detect whether the selection has changed or not.
def naive_hash(img):
selection = img.get_selection()
# Get bounds of selection.
flag, non_empty, x1, y1, x2, y2 = selection.bounds(img)
# We want to compute a hash of the selection, but getting all the points in the selection
# will take too long. We will get at most 25 points in each axis, so at most 25**2 points.
step_x = 1 if (x2 - x1) <= 25 else (x2 - x1) // 25 + 1
step_y = 1 if (y2 - y1) <= 25 else (y2 - y1) // 25 + 1
hash = x1 * y1 + x2 * y2
for x in range(x1, x2, step_x):
for y in range(y1, y2, step_y):
hash += selection.get_pixel(x, y)[0] * x * y
return hash
class SelectionToPath:
""" Converts a selection to a path """
def __init__(self, image):
self.image = image
# Compute hash of selection, so we can detect when it was modified.
self.last_selection_hash = self.compute_selection_hash()
self.convert_selection_to_path()
def convert_selection_to_path(self):
if Gimp.Selection.is_empty(self.image):
selection_was_empty = True
Gimp.Selection.all(self.image)
else:
selection_was_empty = False
result = Gimp.get_pdb().run_procedure('plug-in-sel2path', [
GObject.Value(Gimp.RunMode, Gimp.RunMode.NONINTERACTIVE),
GObject.Value(Gimp.Image, self.image),
GObject.Value(GObject.TYPE_INT, 0),
# XXX: I could use self.image.list_selected_layers() but for
# this call, it doesn't matter anyway.
GObject.Value(Gimp.ObjectArray,
Gimp.ObjectArray.new(Gimp.Drawable, [], False)),
])
self.path = self.image.list_vectors()[0]
self.stroke_ids = self.path.get_strokes()
# A path may contain several strokes. If so lets throw away a stroke that
# simply describes the borders of the image, if one exists.
if len(self.stroke_ids) > 1:
# Lets compute what a stroke of the image borders should look like.
w, h = float(self.image.get_width()), float(self.image.get_height())
frame_strokes = [0.0] * 6 + [0.0, h] * 3 + [w, h] * 3 + [w, 0.0] * 3
for stroke in range(len(self.stroke_ids)):
stroke_id = self.stroke_ids[stroke]
vectors_stroke_type, control_points, closed = self.path.stroke_get_points(stroke_id)
if control_points == frame_strokes:
del self.stroke_ids[stroke]
break
self.set_current_stroke(0)
if selection_was_empty:
# Restore empty selection if it was empty.
Gimp.Selection.none(self.image)
def compute_selection_hash(self):
return naive_hash(self.image)
# In gimp 2 we used this:
#px = self.image.get_selection(). get_pixel_rgn(0, 0, self.image.get_width(), self.image.get_height())
#return px[0:self.image.get_width(), 0:self.image.get_height()].__hash__()
def regenerate_path_if_selection_changed(self):
current_selection_hash = self.compute_selection_hash()
if self.last_selection_hash != current_selection_hash:
self.last_selection_hash = current_selection_hash
self.convert_selection_to_path()
def get_num_strokes(self):
return len(self.stroke_ids)
def set_current_stroke(self, stroke_id=0):
# Compute path length.
self.path_length = self.path.stroke_get_length(self.stroke_ids[stroke_id], 1.0)
self.current_stroke = stroke_id
def point_at_angle(self, oangle):
oangle_mod = fmod(oangle, two_pi)
dist = self.path_length * oangle_mod / two_pi
return self.path.stroke_get_point_at_dist(self.stroke_ids[self.current_stroke], dist, 1.0)
class SelectionShape(Shape):
name = _("Selection")
def __init__(self):
self.path = None
def process_selection(self, img):
if self.path is None:
self.path = SelectionToPath(img)
else:
self.path.regenerate_path_if_selection_changed()
def configure(self, img, pp, cp):
""" Set bounds of pattern """
Shape.configure(self, img, pp, cp)
self.drawing_no = cp.current_drawing
self.path.set_current_stroke(self.drawing_no)
def get_num_drawings(self):
return self.path.get_num_strokes()
def can_equal_w_h(self):
return False
def get_center_of_moving_gear(self, oangle, dist=None):
"""
:param oangle: an angle in radians, between 0 and 2*pi
:return: x,y - position where the center of the moving gear should be,
after going over oangle/two_pi of a full cycle over the outer gear.
"""
cp = self.cp
if dist is None:
dist = cp.moving_gear_radius
another_bool, x, y, slope, valid = self.path.point_at_angle(oangle)
slope_angle = atan(slope)
# We want to find an angle perpendicular to the slope, but in which direction?
# Lets try both sides and see which of them is inside the selection.
perpendicular_p, perpendicular_m = slope_angle + half_pi, slope_angle - half_pi
step_size = 2 # The distance we are going to go in the direction of each angle.
xp, yp = x + step_size * cos(perpendicular_p), y + step_size * sin(perpendicular_p)
value_plus = Gimp.Selection.value(self.image, xp, yp)
xp, yp = x + step_size * cos(perpendicular_m), y + step_size * sin(perpendicular_m)
value_minus = Gimp.Selection.value(self.image, xp, yp)
perpendicular = perpendicular_p if value_plus > value_minus else perpendicular_m
return x + dist * cos(perpendicular), y + dist * sin(perpendicular)
shapes = [
CircleShape(), RackShape(), FrameShape(), SelectionShape(),
PolygonShape(), SineShape(), BumpShape()
]
### Tools
def get_gradient_samples(num_samples):
gradient = Gimp.context_get_gradient()
reverse_mode = Gimp.context_get_gradient_reverse()
repeat_mode = Gimp.context_get_gradient_repeat_mode()
if repeat_mode == Gimp.RepeatMode.TRIANGULAR:
# Get two uniform samples, which are reversed from each other, and connect them.
sample_count = num_samples/2 + 1
success, color_samples = gradient.get_uniform_samples(sample_count, reverse_mode)
del color_samples[-4:] # Delete last color because it will appear in the next sample
# If num_samples is odd, lets get an extra sample this time.
if num_samples % 2 == 1:
sample_count += 1
success, color_samples2 = gradient.get_uniform_samples(sample_count, 1 - reverse_mode)
del color_samples2[-4:] # Delete last color because it will appear in the very first sample
color_samples = tuple(color_samples)
else:
success, color_samples = gradient.get_uniform_samples(num_samples, reverse_mode)
return color_samples
class PencilTool():
name = _("Pencil")
can_color = True
def draw(self, layer, strokes, color=None):
if color:
Gimp.context_push()
Gimp.context_enable_dynamics(False)
Gimp.context_set_foreground(color)
Gimp.pencil(layer, strokes)
if color:
Gimp.context_pop()
class AirBrushTool():
name = _("AirBrush")
can_color = True
def draw(self, layer, strokes, color=None):
if color:
Gimp.context_push()
Gimp.context_enable_dynamics(False)
Gimp.context_set_foreground(color)
Gimp.airbrush_default(layer, strokes)
if color:
Gimp.context_pop()
class AbstractStrokeTool():
def draw(self, layer, strokes, color=None):
# We need to multiply every point by 3, because we are creating a path,
# where each point has two additional control points.
control_points = []
for i, k in zip(strokes[0::2], strokes[1::2]):
control_points += [i, k] * 3
# Create path
path = Gimp.Vectors.new(layer.get_image(), 'temp_path')
layer.get_image().insert_vectors(path, None, 0)
sid = path.stroke_new_from_points(Gimp.VectorsStrokeType.BEZIER,
control_points, False)
# Draw it.
Gimp.context_push()
# Call template method to set the kind of stroke to draw.
self.prepare_stroke_context(color)
layer.edit_stroke_item(path)
Gimp.context_pop()
# Get rid of the path.
layer.get_image().remove_vectors(path)
# Drawing tool that should be quick, for purposes of previewing the pattern.
class PreviewTool:
# Implementation using pencil. (A previous implementation using stroke was slower, and thus removed).
def draw(self, layer, strokes, color=None):
success, foreground = Gimp.context_get_foreground()
Gimp.context_push()
Gimp.context_set_defaults()
Gimp.context_set_foreground(foreground)
Gimp.context_enable_dynamics(False)
# Create a brush proxy. Set the 'id' property, not a Python attribute.
# The id must match an installed real brush.
# FUTURE: add method of brush, say get_named()
brush = Gimp.Brush()
brush.set_property('id', '1. Pixel')
assert brush.is_valid()
Gimp.context_set_brush(brush)
Gimp.context_set_brush_size(1.0)
Gimp.context_set_brush_spacing(3.0)
Gimp.pencil(layer, strokes)
Gimp.context_pop()
name = _("Preview")
can_color = False
class StrokeTool(AbstractStrokeTool):
name = _("Stroke")
can_color = True
def prepare_stroke_context(self, color):
if color:
Gimp.context_enable_dynamics(False)
Gimp.context_set_foreground(color)
Gimp.context_set_stroke_method(Gimp.StrokeMethod.LINE)
class StrokePaintTool(AbstractStrokeTool):
def __init__(self, name, paint_method, can_color=True):
self.name = name
self.paint_method = paint_method
self.can_color = can_color
def prepare_stroke_context(self, color):
if self.can_color and color is not None:
Gimp.context_enable_dynamics(False)
Gimp.context_set_foreground(color)
Gimp.context_set_stroke_method(Gimp.StrokeMethod.PAINT_METHOD)
Gimp.context_set_paint_method(self.paint_method)
class SaveToPathTool():
""" This tool cannot be chosen by the user from the tools menu.
We dont add this to the list of tools. """
def __init__(self, img):
self.path = Gimp.Vectors.new(img, path_name)
img.insert_vectors(self.path, None, 0)
def draw(self, layer, strokes, color=None):
# We need to multiply every point by 3, because we are creating a path,
# where each point has two additional control points.
control_points = []
for i, k in zip(strokes[0::2], strokes[1::2]):
control_points += [i, k] * 3
self.path.stroke_new_from_points(Gimp.VectorsStrokeType.BEZIER,
control_points, False)
tools = [
PreviewTool(),
StrokePaintTool(_("PaintBrush"), "gimp-paintbrush"),
PencilTool(), AirBrushTool(), StrokeTool(),
StrokePaintTool(_("Ink"), 'gimp-ink'),
StrokePaintTool(_("MyPaintBrush"), 'gimp-mybrush')
# Clone does not work properly when an image is not set. When that happens, drawing fails, and
# I am unable to catch the error. This causes the plugin to crash, and subsequent problems with undo.
# StrokePaintTool("Clone", 'gimp-clone', False)
]
class PatternParameters:
"""
All the parameters that define a pattern live in objects of this class.
If you serialize and saved this class, you should reproduce
the pattern that the plugin would draw.
"""
def __init__(self):
if not hasattr(self, 'curve_type'):
self.curve_type = 0
# Pattern
if not hasattr(self, 'pattern_notation'):
self.pattern_notation = 0
if not hasattr(self, 'outer_teeth'):
self.outer_teeth = 96
if not hasattr(self, 'inner_teeth'):
self.inner_teeth = 36
if not hasattr(self, 'pattern_rotation'):
self.pattern_rotation = 0
# Location of hole as a percent of the radius of the inner gear - runs between 0 and 100.
# A value of 0 means, the hole is at the center of the wheel, which would produce a boring circle.
# A value of 100 means the edge of the wheel.
if not hasattr(self, 'hole_percent'):
self.hole_percent = 100.0
# Toy Kit parameters
# Hole number in Toy Kit notation. Hole #1 is at the edge of the wheel, and the last hole is
# near the center of the wheel, but not exactly at the center.
if not hasattr(self, 'hole_number'):
self.hole_number = 1
if not hasattr(self, 'kit_fixed_gear_index'):
self.kit_fixed_gear_index = 1
if not hasattr(self, 'kit_moving_gear_index'):
self.kit_moving_gear_index = 1
# Visual notation parameters
if not hasattr(self, 'petals'):
self.petals = 5
if not hasattr(self, 'petal_skip'):
self.petal_skip = 2
if not hasattr(self, 'doughnut_hole'):
self.doughnut_hole = 50.0
if not hasattr(self, 'doughnut_width'):
self.doughnut_width = 50.0
# Shape
if not hasattr(self, 'shape_index'):
self.shape_index = 0 # Index in the shapes array
if not hasattr(self, 'sides'):
self.sides = 5
if not hasattr(self, 'morph'):
self.morph = 0.5
if not hasattr(self, 'shape_rotation'):
self.shape_rotation = 0
if not hasattr(self, 'equal_w_h'):
self.equal_w_h = False
if not hasattr(self, 'margin_pixels'):
self.margin_pixels = 0 # Distance between the drawn shape, and the selection borders.
# Drawing style
if not hasattr(self, 'tool_index'):
self.tool_index = 0 # Index in the tools array.
if not hasattr(self, 'long_gradient'):
self.long_gradient = False
if not hasattr(self, 'save_option'):
self.save_option = SAVE_AS_NEW_LAYER
def kit_max_hole_number(self):
return wheel[self.kit_moving_gear_index][1]
# Handle shelving of plugin parameters
def unshelf_parameters():
# TODO: we'd usually use Gimp.PDB.set_data() but this won't work on
# introspection bindings. We will need to work on this.
#if shelf.has_key("p"):
#parameters = shelf["p"]
#parameters.__init__() # Fill in missing values with defaults.
#return parameters
return PatternParameters()
def shelf_parameters(pp):
# TODO: see unshelf_parameters() which explains why we can't use
# Gimp.PDB.get_data().
pass
#shelf["p"] = pp
class ComputedParameters:
"""
Stores computations performed on a PatternParameters object.
The results of these computations are used to perform the drawing.
Having all these computations in one place makes it convenient to pass
around as a parameter.
If the pattern parameters should result in multiple patterns to be drawn, the
compute parameters also stores which one is currently being drawn.
"""
def __init__(self, pp, img):
def compute_gradients():
self.use_gradient = self.pp.long_gradient and tools[self.pp.tool_index].can_color
# If gradient is used, determine how the lines are two be split to different colors.
if self.use_gradient:
# We want to use enough samples to be beautiful, but not too many, that would
# force us to make many separate calls for drawing the pattern.
if self.rotations > 30:
self.chunk_num = self.rotations
self.chunk_size_lines = self.fixed_gear_teeth
else:
# Lets try to find a chunk size, such that it divides num_lines, and we get at least 30 chunks.
# In the worse case, we will just use "1"
for chunk_size in range(self.fixed_gear_teeth - 1, 0, -1):
if self.num_lines % chunk_size == 0:
if self.num_lines / chunk_size > 30:
break
self.chunk_num = self.num_lines / chunk_size
self.chunk_size_lines = chunk_size
self.gradients = get_gradient_samples(self.chunk_num)
else:
self.chunk_num, self.chunk_size_lines = None, None
def compute_sizes():
# Get rid of the margins.
self.x1 = x1 + pp.margin_pixels
self.y1 = y1 + pp.margin_pixels
self.x2 = x2 - pp.margin_pixels
self.y2 = y2 - pp.margin_pixels
# Compute size and position of the pattern
self.x_half_size, self.y_half_size = (self.x2 - self.x1) / 2, (self.y2 - self.y1) / 2
self.x_center, self.y_center = (self.x1 + self.x2) / 2.0, (self.y1 + self.y2) / 2.0
if pp.equal_w_h:
if self.x_half_size < self.y_half_size:
self.y_half_size = self.x_half_size
self.y1, self.y2 = self.y_center - self.y_half_size, self.y_center + self.y_half_size
elif self.x_half_size > self.y_half_size:
self.x_half_size = self.y_half_size
self.x1, self.x2 = self.x_center - self.x_half_size, self.x_center + self.x_half_size
# Find the distance between the hole and the center of the inner circle.
# To do this, we compute the size of the gears, by the number of teeth.
# The circumference of the outer ring is 2 * pi * outer_R = #fixed_gear_teeth * tooth size.
outer_R = min(self.x_half_size, self.y_half_size)
if self.pp.pattern_notation == VISUAL_NOTATION:
doughnut_width = self.pp.doughnut_width
if doughnut_width + self.pp.doughnut_hole > 100:
doughnut_width = 100.0 - self.pp.doughnut_hole
# Let R, r be the radius of fixed and moving gear, and let hp be the hole percent.
# Let dwp, dhp be the doughnut width and hole in percents of R.
# The two sides of the following equation calculate how to reach the center of the moving
# gear from the center of the fixed gear:
# I) R * (dhp/100 + dwp/100/2) = R - r
# The following equation expresses which r and hp would generate a doughnut of width dw.
# II) R * dw/100 = 2 * r * hp/100
# We solve the two above equations to calculate hp and r:
self.hole_percent = doughnut_width / (2.0 * (1 - (self.pp.doughnut_hole + doughnut_width / 2.0) / 100.0))
self.moving_gear_radius = outer_R * doughnut_width / (2 * self.hole_percent)
else:
size_of_tooth_in_pixels = two_pi * outer_R / self.fixed_gear_teeth
self.moving_gear_radius = size_of_tooth_in_pixels * self.moving_gear_teeth / two_pi
self.hole_dist_from_center = self.hole_percent / 100.0 * self.moving_gear_radius
self.pp = pp
# Check if the shape is made of multiple shapes, as in using Selection as fixed gear.
if (
isinstance(shapes[self.pp.shape_index], SelectionShape) and
curve_types[self.pp.curve_type].supports_shapes()
):
shapes[self.pp.shape_index].process_selection(img)
Gimp.displays_flush()
self.num_drawings = shapes[self.pp.shape_index].get_num_drawings()
else:
self.num_drawings = 1
self.current_drawing = 0
# Get bounds. We don't care weather a selection exists or not.
success, exists, x1, y1, x2, y2 = Gimp.Selection.bounds(img)
# Combine different ways to specify patterns, into a unified set of computed parameters.
self.num_notation_drawings = 1
self.current_notation_drawing = 0
if self.pp.pattern_notation == GEAR_NOTATION:
self.fixed_gear_teeth = int(round(pp.outer_teeth))
self.moving_gear_teeth = int(round(pp.inner_teeth))
self.petals = self.num_petals()
self.hole_percent = pp.hole_percent
elif self.pp.pattern_notation == TOY_KIT_NOTATION:
self.fixed_gear_teeth = ring_teeth[pp.kit_fixed_gear_index]
self.moving_gear_teeth = wheel[pp.kit_moving_gear_index][0]
self.petals = self.num_petals()
# We want to map hole #1 to 100% and hole of max_hole_number to 2.5%
# We don't want 0% because that would be the exact center of the moving gear,
# and that would create a boring pattern.
max_hole_number = wheel[pp.kit_moving_gear_index][1]
self.hole_percent = (max_hole_number - pp.hole_number) / float(max_hole_number - 1) * 97.5 + 2.5
elif self.pp.pattern_notation == VISUAL_NOTATION:
self.petals = pp.petals
self.fixed_gear_teeth = pp.petals
self.moving_gear_teeth = pp.petals - pp.petal_skip
if self.moving_gear_teeth < 20:
self.fixed_gear_teeth *= 10
self.moving_gear_teeth *= 10
self.hole_percent = 100.0
self.num_notation_drawings = math.gcd(pp.petals, pp.petal_skip)
self.notation_drawings_rotation = two_pi / pp.petals
# Rotations
self.shape_rotation_radians = self.radians_from_degrees(pp.shape_rotation)
self.pattern_rotation_start_radians = self.radians_from_degrees(pp.pattern_rotation)
self.pattern_rotation_radians = self.pattern_rotation_start_radians
# Additional fixed pattern rotation for lissajous.
self.lissajous_rotation = two_pi / self.petals / 4.0
# Compute the total number of teeth we have to go over.
# Another way to view it is the total of lines we are going to draw.
# To find this we compute the Least Common Multiplier.
self.num_lines = lcm(self.fixed_gear_teeth, self.moving_gear_teeth)
# The number of points we are going to compute. This is the number of lines, plus 1, because to draw
# a line we need two points.
self.num_points = self.num_lines + 1
# Compute gradients.
# The number or rotations needed in order to complete the pattern.
# Each rotation has cp.fixed_gear_teeth points + 1 points.
self.rotations = self.num_lines / self.fixed_gear_teeth
compute_gradients()
# Computations needed for the actual drawing of the patterns - how much should we advance each angle
# in each step of the computation.
# How many radians is each tooth of outer gear. This is also the amount that we
# will step in the iterations that generate the points of the pattern.
self.oangle_factor = two_pi / self.fixed_gear_teeth
# How many radians should the moving gear be moved, for each tooth of the fixed gear
angle_factor = curve_types[pp.curve_type].get_angle_factor(self)
self.iangle_factor = self.oangle_factor * angle_factor
compute_sizes()
def num_petals(self):
""" The number of 'petals' (or points) that will be produced by a spirograph drawing. """
return lcm(self.fixed_gear_teeth, self.moving_gear_teeth) / self.moving_gear_teeth
def radians_from_degrees(self, degrees):
positive_degrees = degrees if degrees >= 0 else degrees + 360
return radians(positive_degrees)
def get_color(self, n):
colors = self.gradients[4*n:4*(n+1)]
color = Gimp.RGB()
color.r = colors[0]
color.g = colors[1]
color.b = colors[2]
color.a = colors[3]
return color
def next_drawing(self):
""" Multiple drawings can be drawn either when the selection is used as a fixed
gear, and/or the visual tab is used, which causes multiple drawings
to be drawn at different rotations. """
if self.current_notation_drawing < self.num_notation_drawings - 1:
self.current_notation_drawing += 1
self.pattern_rotation_radians = self.pattern_rotation_start_radians + (
self.current_notation_drawing * self.notation_drawings_rotation)
else:
self.current_drawing += 1
self.current_notation_drawing = 0
self.pattern_rotation_radians = self.pattern_rotation_start_radians
def has_more_drawings(self):
return (self.current_notation_drawing < self.num_notation_drawings - 1 or
self.current_drawing < self.num_drawings - 1)
### Curve types
class CurveType:
def supports_shapes(self):
return True
class RouletteCurveType(CurveType):
def get_strokes(self, p, cp):
strokes = []
for curr_tooth in range(cp.num_points):
iangle = fmod(curr_tooth * cp.iangle_factor + cp.pattern_rotation_radians, two_pi)
oangle = fmod(curr_tooth * cp.oangle_factor + cp.pattern_rotation_radians, two_pi)
x, y = shapes[p.shape_index].get_center_of_moving_gear(oangle)
strokes.append(x + cp.hole_dist_from_center * cos(iangle))
strokes.append(y + cp.hole_dist_from_center * sin(iangle))
return strokes
class SpyroCurveType(RouletteCurveType):
name = _("Spyrograph")
def get_angle_factor(self, cp):
return - (cp.fixed_gear_teeth - cp.moving_gear_teeth) / float(cp.moving_gear_teeth)
class EpitrochoidCurvetype(RouletteCurveType):
name = _("Epitrochoid")
def get_angle_factor(self, cp):
return (cp.fixed_gear_teeth + cp.moving_gear_teeth) / float(cp.moving_gear_teeth)
class SineCurveType(CurveType):
name = _("Sine")
def get_angle_factor(self, cp):
return cp.fixed_gear_teeth / float(cp.moving_gear_teeth)
def get_strokes(self, p, cp):
strokes = []
for curr_tooth in range(cp.num_points):
iangle = curr_tooth * cp.iangle_factor
oangle = fmod(curr_tooth * cp.oangle_factor + cp.pattern_rotation_radians, two_pi)
dist = cp.moving_gear_radius + sin(iangle) * cp.hole_dist_from_center
x, y = shapes[p.shape_index].get_center_of_moving_gear(oangle, dist)
strokes.append(x)
strokes.append(y)
return strokes
class LissaCurveType:
name = _("Lissajous")
def get_angle_factor(self, cp):
return cp.fixed_gear_teeth / float(cp.moving_gear_teeth)
def get_strokes(self, p, cp):
strokes = []
for curr_tooth in range(cp.num_points):
iangle = curr_tooth * cp.iangle_factor
# Adding the cp.lissajous_rotation rotation makes the pattern have the same number of curves
# as the other curve types. Without it, many lissajous patterns would redraw the same lines twice,
# and thus look less dense than the other curves.
oangle = fmod(curr_tooth * cp.oangle_factor + cp.pattern_rotation_radians + cp.lissajous_rotation, two_pi)
strokes.append(cp.x_center + cp.x_half_size * cos(oangle))
strokes.append(cp.y_center + cp.y_half_size * cos(iangle))
return strokes
def supports_shapes(self):
return False
curve_types = [SpyroCurveType(), EpitrochoidCurvetype(), SineCurveType(), LissaCurveType()]
# Drawing engine. Also implements drawing incrementally.
# We don't draw the entire stroke, because it could take several seconds,
# Instead, we break it into chunks. Incremental drawing is also used for drawing gradients.
class DrawingEngine:
def __init__(self, img, p):
self.img, self.p = img, p
self.cp = None
# For incremental drawing
self.strokes = []
self.start = 0
self.chunk_size_lines = 600
self.chunk_no = 0
# We are aiming for the drawing time of a chunk to be no longer than max_time.
self.max_time_sec = 0.1
self.dynamic_chunk_size = True
def pre_draw(self):
""" Needs to be called before starting to draw a pattern. """
self.cp = ComputedParameters(self.p, self.img)
def draw_full(self, layer):
""" Non incremental drawing. """
self.pre_draw()
self.img.undo_group_start()
while True:
self.set_strokes()
if self.cp.use_gradient:
while self.has_more_strokes():
self.draw_next_chunk(layer, fetch_next_drawing=False)
else:
tools[self.p.tool_index].draw(layer, self.strokes)
if self.cp.has_more_drawings():
self.cp.next_drawing()
else:
break
self.img.undo_group_end()
Gimp.displays_flush()
# Methods for incremental drawing.
def draw_next_chunk(self, layer, fetch_next_drawing=True, tool=None):
stroke_chunk, color = self.next_chunk(fetch_next_drawing)
if not tool:
tool = tools[self.p.tool_index]
tool.draw(layer, stroke_chunk, color)
return len(stroke_chunk)
def set_strokes(self):
""" Compute the strokes of the current pattern. The heart of the plugin. """
shapes[self.p.shape_index].configure(self.img, self.p, self.cp)
self.strokes = curve_types[self.p.curve_type].get_strokes(self.p, self.cp)
self.start = 0
self.chunk_no = 0
if self.cp.use_gradient:
self.chunk_size_lines = self.cp.chunk_size_lines
self.dynamic_chunk_size = False
else:
self.dynamic_chunk_size = True
def reset_incremental(self):
""" Setup incremental drawing to start drawing from scratch. """
self.pre_draw()
self.set_strokes()
def next_chunk(self, fetch_next_drawing):
# chunk_size_lines, is the number of lines we want to draw. We need 1 extra point to draw that.
end = self.start + (self.chunk_size_lines + 1) * 2
if end > len(self.strokes):
end = len(self.strokes)
result = self.strokes[self.start:end]
# Promote the start to the last point. This is the start of the first line to draw next time.
self.start = end - 2
color = self.cp.get_color(self.chunk_no) if self.cp.use_gradient else None
self.chunk_no += 1
# If self.strokes has ended, lets fetch strokes for the next drawing.
if fetch_next_drawing and not self.has_more_strokes():
if self.cp.has_more_drawings():
self.cp.next_drawing()
self.set_strokes()
return result, color
def has_more_strokes(self):
return self.start + 2 < len(self.strokes)
# Used for displaying progress.
def fraction_done(self):
return (self.start + 2.0) / len(self.strokes)
def report_time(self, time_sec):
"""
Report the time it took, in seconds, to draw the last stroke chunk.
This helps to determine the size of chunks to return in future calls of 'next_chunk',
since we want the calls to be short, to not make the user interface feel stuck.
"""
if time_sec != 0 and self.dynamic_chunk_size:
self.chunk_size_lines = int(self.chunk_size_lines * self.max_time_sec / time_sec)
# Don't let chunk size be too large or small.
self.chunk_size_lines = max(10, self.chunk_size_lines)
self.chunk_size_lines = min(1000, self.chunk_size_lines)
# Constants for DoughnutWidget
# Enum - When the mouse is pressed, which target value is being changed.
TARGET_NONE, TARGET_HOLE, TARGET_WIDTH = range(3)
CIRCLE_CENTER_X = 4
RIGHT_MARGIN = 2
TOTAL_MARGIN = CIRCLE_CENTER_X + RIGHT_MARGIN
# A widget for displaying and setting the pattern of a spirograph, using a "doughnut" as
# a visual metaphor. This widget replaces two scale widgets.
class DoughnutWidget(Gtk.DrawingArea):
__gtype_name__ = 'DoughnutWidget'
def __init__(self, *args, **kwds):
super().__init__(*args, **kwds)
self.set_size_request(80, 40)
self.set_margin_start(2)
self.set_margin_end(2)
self.set_margin_top(2)
self.set_margin_bottom(2)
self.add_events(
Gdk.EventMask.BUTTON1_MOTION_MASK |
Gdk.EventMask.BUTTON_PRESS_MASK |
Gdk.EventMask.BUTTON_RELEASE_MASK |
Gdk.EventMask.POINTER_MOTION_MASK
)
self.resize_cursor = Gdk.Cursor.new_for_display(self.get_display(),
Gdk.CursorType.SB_H_DOUBLE_ARROW)
self.button_pressed = False
self.target = TARGET_NONE
self.hole_radius = 30
self.doughnut_width = 30
def set_hole_radius(self, hole_radius):
self.hole_radius = hole_radius
self.queue_draw()
def get_hole_radius(self):
return self.hole_radius
def set_width(self, width):
self.doughnut_width = width
self.queue_draw()
def get_width(self):
return self.doughnut_width
def compute_doughnut(self):
""" Compute the location of the doughnut circles.
Returns (circle center x, circle center y, radius of inner circle, radius of outer circle) """
allocation = self.get_allocation()
alloc_width = allocation.width - TOTAL_MARGIN
return (
CIRCLE_CENTER_X, allocation.height/2,
alloc_width * self.hole_radius/ 100.0,
alloc_width * min(self.hole_radius + self.doughnut_width, 100.0)/ 100.0
)
def set_cursor_h_resize(self, flag):
""" Set the mouse to be a double arrow, if flag is true.
Otherwise, use the cursor of the parent window. """
gdk_window = self.get_window()
gdk_window.set_cursor(self.resize_cursor if flag else None)
def get_target(self, x, y):
# Find out if x, y is over one of the circle edges.
center_x, center_y, hole_radius, outer_radius = self.compute_doughnut()
# Compute distance from circle center to point
dist = math.sqrt((center_x - x) ** 2 + (center_y - y) ** 2)
if abs(dist - hole_radius) <= 3:
return TARGET_HOLE
if abs(dist - outer_radius) <= 3:
return TARGET_WIDTH
return TARGET_NONE
def do_draw(self, cr):
allocation = self.get_allocation()
center_x, center_y, hole_radius, outer_radius = self.compute_doughnut()
# Paint background
Gtk.render_background(self.get_style_context(), cr,
0, 0, allocation.width, allocation.height)
fg_color = self.get_style_context().get_color(Gtk.StateFlags.NORMAL)
# Draw doughnut interior
arc = math.pi*3/2.0
cr.set_source_rgba(fg_color.red, fg_color.green, fg_color.blue, fg_color.alpha/2);
cr.arc(center_x, center_y, hole_radius, -arc, arc)
cr.arc_negative(center_x, center_y, outer_radius, arc, -arc)
cr.close_path()
cr.fill()
# Draw doughnut border.
cr.set_source_rgba(*list(fg_color));
cr.set_line_width(3)
cr.arc_negative(center_x, center_y, outer_radius, arc, -arc)
cr.stroke()
if hole_radius < 1.0:
# If the radius is too small, nothing will be drawn.
# So draw a small cross marker instead.
cr.set_line_width(2)
cr.move_to(center_x-4, center_y)
cr.line_to(center_x+4, center_y)
cr.move_to(center_x, center_y-4)
cr.line_to(center_x, center_y+4)
else:
cr.arc(center_x, center_y, hole_radius, -arc, arc)
cr.stroke()
def compute_new_radius(self, x):
""" This method is called during mouse dragging of the widget.
Compute the new radius based on
the current x location of the mouse pointer. """
allocation = self.get_allocation()
# How much does a single pixel difference in x, change the radius?
# Note that: allocation.width - TOTAL_MARGIN = 100 radius units,
radius_per_pixel = 100.0 / (allocation.width - TOTAL_MARGIN)
new_radius = self.start_radius + (x - self.start_x) * radius_per_pixel
if self.target == TARGET_HOLE:
self.hole_radius = max(min(new_radius, 99.0), 0.0)
else:
self.doughnut_width = max(min(new_radius, 100.0), 1.0)
self.queue_draw()
def do_button_press_event(self, event):
self.button_pressed = True
# If we clicked on one of the doughnut borders, remember which
# border we clicked on, and setup variable to start dragging it.
target = self.get_target(event.x, event.y)
if target == TARGET_HOLE or target == TARGET_WIDTH:
self.target = target
self.start_x = event.x
self.start_radius = (
self.hole_radius if target == TARGET_HOLE else
self.doughnut_width
)
def do_button_release_event(self, event):
# If one the doughnut borders was being dragged, recompute doughnut size.
if self.target != TARGET_NONE:
self.compute_new_radius(event.x)
# Clip the width, if it is too large to fit.
if self.hole_radius + self.doughnut_width > 100:
self.doughnut_width = 100 - self.hole_radius
self.emit("values_changed", self.hole_radius, self.doughnut_width)
self.button_pressed = False
self.target = TARGET_NONE
def do_motion_notify_event(self, event):
if self.button_pressed:
# We are dragging one of the doughnut borders; recompute its size.
if self.target != TARGET_NONE:
self.compute_new_radius(event.x)
else:
# Set cursor according to whether we are over one of the doughnut borders.
target = self.get_target(event.x, event.y)
self.set_cursor_h_resize(target != TARGET_NONE)
# Create signal that returns change parameters.
GObject.type_register(DoughnutWidget)
GObject.signal_new("values_changed", DoughnutWidget, GObject.SignalFlags.RUN_LAST,
GObject.TYPE_NONE, (GObject.TYPE_INT, GObject.TYPE_INT))
class SpyroWindow():
class MyScale():
""" Combintation of scale and spin that control the same adjuster. """
def __init__(self, scale, spin):
self.scale, self.spin = scale, spin
def set_sensitive(self, val):
self.scale.set_sensitive(val)
self.spin.set_sensitive(val)
def on_adj_changed(self, widget):
self.adj_changed = True
def on_adj_release(self, widget, event, callback):
# Force update to accommodate manually typing numbers into the entry.
if isinstance(widget, Gtk.SpinButton):
widget.update()
if self.adj_changed:
callback(widget)
self.adj_changed = False
def __init__(self, img, layer):
def add_horizontal_separator(vbox):
hsep = Gtk.HSeparator()
vbox.add(hsep)
hsep.show()
def add_vertical_space(vbox, height):
hbox = Gtk.HBox()
hbox.set_border_width(height/2)
vbox.add(hbox)
hbox.show()
def add_to_box(box, w):
box.add(w)
w.show()
def create_table(border_width):
table = Gtk.Grid()
table.set_column_homogeneous(False)
table.set_border_width(border_width)
table.set_column_spacing(10)
table.set_row_spacing(10)
return table
def label_in_table(label_text, table, row, tooltip_text=None, col=0):
""" Create a label and set it in first col of table. """
label = Gtk.Label(label=label_text)
label.set_xalign(0.0)
label.set_yalign(0.5)
if tooltip_text:
label.set_tooltip_text(tooltip_text)
table.attach(label, col, row, 1, 1)
label.show()
def spin_in_table(adj, table, row, callback, digits=0, col=0):
spin = Gtk.SpinButton.new(adj, climb_rate=0.5, digits=digits)
spin.set_numeric(True)
spin.set_snap_to_ticks(True)
spin.set_max_length(5)
spin.set_width_chars(5)
table.attach(spin, col, row, 1, 1)
spin.show()
adj.connect("value_changed", self.on_adj_changed)
spin.connect("button_release_event", self.on_adj_release, callback)
spin.connect("activate", self.on_adj_release, None, callback)
spin.connect("focus_out_event", self.on_adj_release, callback)
return spin
def hscale_in_table(adj, table, row, callback, digits=0, col=1, cols=1):
""" Create an hscale and a spinner using the same Adjustment, and set it in table. """
scale = Gtk.Scale.new(Gtk.Orientation.HORIZONTAL, adj)
scale.set_size_request(150, -1)
scale.set_digits(digits)
scale.set_hexpand(True)
scale.set_halign(Gtk.Align.FILL)
table.attach(scale, col, row, cols, 1)
scale.show()
spin = Gtk.SpinButton.new(adj, climb_rate=0.5, digits=digits)
spin.set_numeric(True)
spin.set_snap_to_ticks(True)
spin.set_max_length(5)
spin.set_width_chars(5)
table.attach(spin, col + cols, row, 1, 1)
spin.show()
adj.connect("value_changed", self.on_adj_changed)
scale.connect("button_release_event", self.on_adj_release, callback)
spin.connect("button_release_event", self.on_adj_release, callback)
spin.connect("activate", self.on_adj_release, None, callback)
spin.connect("focus_out_event", self.on_adj_release, callback)
return self.MyScale(scale, spin)
def rotation_in_table(val, table, row, callback):
adj = Gtk.Adjustment.new(val, -180.0, 180.0, 1.0, 10.0, 0.0)
myscale = hscale_in_table(adj, table, row, callback, digits=1)
myscale.scale.add_mark(0.0, Gtk.PositionType.BOTTOM, None)
myscale.spin.set_max_length(6)
myscale.spin.set_width_chars(6)
return adj, myscale
def set_combo_in_table(txt_list, table, row, callback):
combo = Gtk.ComboBoxText.new()
for txt in txt_list:
combo.append_text(txt)
combo.set_halign(Gtk.Align.FILL)
table.attach(combo, 1, row, 1, 1)
combo.show()
combo.connect("changed", callback)
return combo
# Return table which is at the top of the dialog, and has several major input widgets.
def top_table():
# Add table for displaying attributes, each having a label and an input widget.
table = create_table(10)
# Curve type
row = 0
label_in_table(_("Curve Type"), table, row,
_("An Epitrochoid pattern is when the moving gear is on the outside of the fixed gear."))
self.curve_type_combo = set_combo_in_table([ct.name for ct in curve_types], table, row,
self.curve_type_changed)
row += 1
label_in_table(_("Tool"), table, row,
_("The tool with which to draw the pattern. "
"The Preview tool just draws quickly."))
self.tool_combo = set_combo_in_table([tool.name for tool in tools], table, row,
self.tool_combo_changed)
self.long_gradient_checkbox = Gtk.CheckButton(label=_("Long Gradient"))
self.long_gradient_checkbox.set_tooltip_text(
_("When unchecked, the current tool settings will be used. "
"When checked, will use a long gradient to match the length of the pattern, "
"based on current gradient and repeat mode from the gradient tool settings.")
)
self.long_gradient_checkbox.set_border_width(0)
table.attach(self.long_gradient_checkbox, 2, row, 1, 1)
self.long_gradient_checkbox.show()
self.long_gradient_checkbox.connect("toggled", self.long_gradient_changed)
return table
def pattern_notation_frame():
vbox = Gtk.VBox(spacing=0, homogeneous=False)
add_vertical_space(vbox, 14)
hbox = Gtk.HBox(spacing=5)
hbox.set_border_width(5)
label = Gtk.Label(label=_("Specify pattern using one of the following tabs:"))
label.set_tooltip_text(_(
"The pattern is specified only by the active tab. Toy Kit is similar to Gears, "
"but it uses gears and hole numbers which are found in toy kits. "
"If you follow the instructions from the toy kit manuals, results should be similar."))
hbox.pack_start(label, False, False, 0)
label.show()
alignment = Gtk.Alignment(xalign=0.0, yalign=0.0, xscale=0.0, yscale=0.0)
alignment.add(hbox)
hbox.show()
vbox.add(alignment)
alignment.show()
self.pattern_notebook = Gtk.Notebook()
self.pattern_notebook.set_border_width(10)
self.pattern_notebook.connect('switch-page', self.pattern_notation_tab_changed)
# "Gear" pattern notation.
# Add table for displaying attributes, each having a label and an input widget.
gear_table = create_table(5)
# Teeth
row = 0
fixed_gear_tooltip = _(
"Number of teeth of fixed gear. The size of the fixed gear is "
"proportional to the number of teeth."
)
label_in_table(_("Fixed Gear Teeth"), gear_table, row, fixed_gear_tooltip)
self.outer_teeth_adj = Gtk.Adjustment(value=self.p.outer_teeth,
lower=10, upper=180,
step_increment=1)
hscale_in_table(self.outer_teeth_adj, gear_table, row, self.outer_teeth_changed)
row += 1
moving_gear_tooltip = _(
"Number of teeth of moving gear. The size of the moving gear is "
"proportional to the number of teeth."
)
label_in_table(_("Moving Gear Teeth"), gear_table, row, moving_gear_tooltip)
self.inner_teeth_adj = Gtk.Adjustment.new(self.p.inner_teeth, 2, 100, 1, 10, 0)
hscale_in_table(self.inner_teeth_adj, gear_table, row, self.inner_teeth_changed)
row += 1
label_in_table(_("Hole percent"), gear_table, row,
_("How far is the hole from the center of the moving gear. "
"100% means that the hole is at the gear's edge."))
self.hole_percent_adj = Gtk.Adjustment.new(self.p.hole_percent, 2.5, 100.0, 0.5, 10, 0)
self.hole_percent_myscale = hscale_in_table(self.hole_percent_adj, gear_table,
row, self.hole_percent_changed, digits=1)
# "Kit" pattern notation.
kit_table = create_table(5)
row = 0
label_in_table(_("Fixed Gear Teeth"), kit_table, row, fixed_gear_tooltip)
self.kit_outer_teeth_combo = set_combo_in_table([str(t) for t in ring_teeth], kit_table, row,
self.kit_outer_teeth_combo_changed)
row += 1
label_in_table(_("Moving Gear Teeth"), kit_table, row, moving_gear_tooltip)
self.kit_inner_teeth_combo = set_combo_in_table([str(t) for t in wheel_teeth], kit_table, row,
self.kit_inner_teeth_combo_changed)
row += 1
label_in_table(_("Hole Number"), kit_table, row,
_("Hole #1 is at the edge of the gear. "
"The maximum hole number is near the center. "
"The maximum hole number is different for each gear."))
self.kit_hole_adj = Gtk.Adjustment.new(self.p.hole_number, 1, self.p.kit_max_hole_number(), 1, 10, 0)
self.kit_hole_myscale = hscale_in_table(self.kit_hole_adj, kit_table, row, self.kit_hole_changed)
# "Visual" pattern notation.
visual_table = create_table(5)
row = 0
label_in_table(_("Flower Petals"), visual_table, row,
_("The number of petals in the pattern."))
self.petals_adj = Gtk.Adjustment.new(self.p.petals, 2, 100, 1, 5, 0)
hscale_in_table(self.petals_adj, visual_table, row, self.petals_changed, cols=3)
row += 1
label_in_table(_("Petal Skip"), visual_table, row,
_( "The number of petals to advance for drawing the next petal."))
self.petal_skip_adj = Gtk.Adjustment.new(self.p.petal_skip, 1, 50, 1, 5, 0)
hscale_in_table(self.petal_skip_adj, visual_table, row, self.petal_skip_changed, cols=3)
row += 1
label_in_table(_("Hole Radius(%)"), visual_table, row,
_("The radius of the hole in the center of the pattern "
"where nothing will be drawn. Given as a percentage of the "
"size of the pattern. A value of 0 will produce no hole. "
"A Value of 99 will produce a thin line on the edge."))
self.doughnut_hole_adj = Gtk.Adjustment.new(self.p.doughnut_hole, 0.0, 99.0, 0.1, 5.0, 0.0)
self.doughnut_hole_myscale = spin_in_table(self.doughnut_hole_adj, visual_table,
row, self.doughnut_hole_changed, 1, 1)
self.doughnut = DoughnutWidget()
frame = Gtk.Frame()
frame.add(self.doughnut)
visual_table.attach(frame, 2, row, 1, 1)
self.doughnut.set_hexpand(True)
self.doughnut.set_halign(Gtk.Align.FILL)
frame.set_hexpand(True)
frame.set_halign(Gtk.Align.FILL)
self.doughnut.connect('values_changed', self.doughnut_changed)
frame.show()
self.doughnut.show()
label_in_table(_("Width(%)"), visual_table, row,
_("The width of the pattern as a percentage of the "
"size of the pattern. A Value of 1 will just draw a thin pattern. "
"A Value of 100 will fill the entire fixed gear."),
3)
self.doughnut_width_adj = Gtk.Adjustment.new(self.p.doughnut_width, 1.0, 100.0, 0.1, 5.0, 0.0)
self.doughnut_width_myscale = spin_in_table(self.doughnut_width_adj, visual_table,
row, self.doughnut_width_changed, 1, 4)
# Add tables to the pattern notebook
pattern_notation_page[VISUAL_NOTATION] = self.pattern_notebook.append_page(visual_table)
self.pattern_notebook.set_tab_label_text(visual_table, _("Visual"))
self.pattern_notebook.child_set_property(visual_table, 'tab-expand', False)
self.pattern_notebook.child_set_property(visual_table, 'tab-fill', False)
visual_table.show()
pattern_notation_page[TOY_KIT_NOTATION] = self.pattern_notebook.append_page(kit_table)
self.pattern_notebook.set_tab_label_text(kit_table, _("Toy Kit"))
self.pattern_notebook.child_set_property(kit_table, 'tab-expand', False)
self.pattern_notebook.child_set_property(kit_table, 'tab-fill', False)
kit_table.show()
pattern_notation_page[GEAR_NOTATION] = self.pattern_notebook.append_page(gear_table)
self.pattern_notebook.set_tab_label_text(gear_table, _("Gears"))
self.pattern_notebook.child_set_property(gear_table, 'tab-expand', False)
self.pattern_notebook.child_set_property(gear_table, 'tab-fill', False)
gear_table.show()
add_to_box(vbox, self.pattern_notebook)
add_vertical_space(vbox, 14)
hbox = Gtk.HBox(spacing=5)
pattern_table = create_table(5)
row = 0
label_in_table(_("Rotation"), pattern_table, row,
_("Rotation of the pattern, in degrees. "
"The starting position of the moving gear in the fixed gear."))
self.pattern_rotation_adj, myscale = rotation_in_table(
self.p.pattern_rotation, pattern_table, row, self.pattern_rotation_changed
)
hbox.pack_end(pattern_table, expand=True, fill=True, padding=0)
pattern_table.show()
vbox.add(hbox)
hbox.show()
return vbox
def fixed_gear_page():
vbox = Gtk.VBox(spacing=0, homogeneous=False)
add_vertical_space(vbox, 14)
table = create_table(10)
row = 0
label_in_table(_("Shape"), table, row,
_("The shape of the fixed gear to be used inside current selection. "
"Rack is a long round-edged shape provided in the toy kits. "
"Frame hugs the boundaries of the rectangular selection, "
"use hole=100 in Gear notation to touch boundary. "
"Selection will hug boundaries of current selection - try something non-rectangular."))
self.shape_combo = set_combo_in_table([shape.name for shape in shapes], table, row,
self.shape_combo_changed)
row += 1
label_in_table(_("Sides"), table, row, _("Number of sides of the shape."))
self.sides_adj = Gtk.Adjustment.new(self.p.sides, 3, 16, 1, 2, 2)
self.sides_myscale = hscale_in_table(self.sides_adj, table, row, self.sides_changed)
row += 1
label_in_table(_("Morph"), table, row, _("Morph fixed gear shape. Only affects some of the shapes."))
self.morph_adj = Gtk.Adjustment.new(self.p.morph, 0.0, 1.0, 0.01, 0.1, 0.1)
self.morph_myscale = hscale_in_table(self.morph_adj, table, row, self.morph_changed, digits=2)
row += 1
label_in_table(_("Rotation"), table, row, _("Rotation of the fixed gear, in degrees"))
self.shape_rotation_adj, self.shape_rotation_myscale = rotation_in_table(
self.p.shape_rotation, table, row, self.shape_rotation_changed
)
add_to_box(vbox, table)
return vbox
def size_page():
vbox = Gtk.VBox(spacing=0, homogeneous=False)
add_vertical_space(vbox, 14)
table = create_table(10)
row = 0
label_in_table(_("Margin (px)"), table, row, _("Margin from edge of selection."))
self.margin_adj = Gtk.Adjustment.new(self.p.margin_pixels, 0, max(img.get_height(), img.get_width()), 1, 10, 10)
hscale_in_table(self.margin_adj, table, row, self.margin_changed)
row += 1
self.equal_w_h_checkbox = Gtk.CheckButton(label=_("Make width and height equal"))
self.equal_w_h_checkbox.set_tooltip_text(
_("When unchecked, the pattern will fill the current image or selection. "
"When checked, the pattern will have same width and height, and will be centered.")
)
self.equal_w_h_checkbox.set_border_width(30)
table.attach(self.equal_w_h_checkbox, 0, row, 3, 1)
self.equal_w_h_checkbox.show()
self.equal_w_h_checkbox.connect("toggled", self.equal_w_h_checkbox_changed)
add_to_box(vbox, table)
return vbox
def dialog_button_box():
self.dialog.add_button("_Cancel", Gtk.ResponseType.CANCEL)
self.ok_btn = self.dialog.add_button("_OK", Gtk.ResponseType.OK)
btn = self.dialog.add_button(_("Re_draw"), RESPONSE_REDRAW)
btn.set_tooltip_text(
_("If you change the settings of a tool, change color, or change the selection, "
"press this to preview how the pattern looks.")
)
self.dialog.add_button(_("_Reset"), RESPONSE_RESET_PARAMS)
hbox = Gtk.HBox(homogeneous=True, spacing=20)
hbox.set_border_width(10)
table = create_table(5)
row = 0
label_in_table(_("Save"), table, row,
_("Choose whether to save as new layer, redraw on last active layer, or save to path"))
self.save_option_combo = set_combo_in_table(save_options, table, row,
self.save_option_changed)
self.save_option_combo.show()
hbox.add(table)
table.show()
return hbox
def create_ui():
use_header_bar = Gtk.Settings.get_default().get_property("gtk-dialogs-use-header")
self.dialog = GimpUi.Dialog(use_header_bar=use_header_bar,
title=_("Spyrogimp"))
#self.set_default_size(350, -1)
#self.set_border_width(10)
vbox = Gtk.Box(orientation=Gtk.Orientation.VERTICAL,
homogeneous=False, spacing=10)
self.dialog.get_content_area().add(vbox)
vbox.show()
box = GimpUi.HintBox.new(_("Draw spyrographs using current tool settings and selection."))
vbox.pack_start(box, False, False, 0)
box.show()
add_horizontal_separator(vbox)
add_to_box(vbox, top_table())
self.main_notebook = Gtk.Notebook()
self.main_notebook.set_show_tabs(True)
self.main_notebook.set_border_width(5)
pattern_frame = pattern_notation_frame()
self.main_notebook.append_page(pattern_frame, Gtk.Label.new(_("Curve Pattern")))
pattern_frame.show()
fixed_g_page = fixed_gear_page()
self.main_notebook.append_page(fixed_g_page, Gtk.Label.new(_("Fixed Gear")))
fixed_g_page.show()
size_p = size_page()
self.main_notebook.append_page(size_p, Gtk.Label.new(_("Size")))
size_p.show()
vbox.add(self.main_notebook)
self.main_notebook.show()
# add_horizontal_separator(vbox)
add_to_box(vbox, dialog_button_box())
self.progress_bar = Gtk.ProgressBar() # gimpui.ProgressBar() - causes gimppdbprogress error message.
self.progress_bar.set_show_text(True)
vbox.add(self.progress_bar)
self.progress_bar.show()
self.dialog.show()
self.enable_incremental_drawing = False
self.img = img
# Remember active layer, so we can restore it when the plugin is done.
self.active_layer = layer
self.p = unshelf_parameters() # Model
self.engine = DrawingEngine(img, self.p)
# Make a new GIMP layer to draw on
self.spyro_layer = Gimp.Layer.new(img, layer_name, img.get_width(), img.get_height(),
layer.type_with_alpha(), 100, Gimp.LayerMode.NORMAL)
img.insert_layer(self.spyro_layer, None, 0)
self.drawing_layer = self.spyro_layer
# Create the UI.
GimpUi.init(sys.argv[0])
create_ui()
self.update_view() # Update UI to reflect the parameter values.
# Map button responses to callback this method
self.dialog.connect('response', self.handle_response)
# Setup for Handling incremental/interactive drawing of pattern
self.idle_task = None
self.enable_incremental_drawing = True
self.adj_changed = False
# Draw pattern of the current settings.
self.start_new_incremental_drawing()
def handle_response(self, dialog, response_id):
if response_id in [Gtk.ResponseType.CANCEL, Gtk.ResponseType.CLOSE, Gtk.ResponseType.DELETE_EVENT]:
self.cancel_window(self.dialog)
elif response_id == Gtk.ResponseType.OK:
self.ok_window(self.dialog)
elif response_id == RESPONSE_REDRAW:
self.redraw()
elif response_id == RESPONSE_RESET_PARAMS:
self.reset_params()
else:
print("Unhandled response: " + str(response_id))
#GTK_RESPONSE_APPLY
#GTK_RESPONSE_HELP
def clear_idle_task(self):
if self.idle_task:
GLib.source_remove(self.idle_task)
# Close the undo group in the likely case the idle task left it open.
self.img.undo_group_end()
self.idle_task = None
# Callbacks for closing the plugin
def ok_window(self, widget):
""" Called when clicking on the 'close' button. """
self.ok_btn.set_sensitive(False)
shelf_parameters(self.p)
if self.p.save_option == SAVE_AS_NEW_LAYER:
if self.spyro_layer in self.img.list_layers():
self.img.active_layer = self.spyro_layer
# If we are in the middle of incremental draw, we want to complete it, and only then to exit.
# However, in order to complete it, we need to create another idle task.
if self.idle_task:
def quit_dialog_on_completion():
while self.idle_task:
yield True
Gtk.main_quit() # This will quit the dialog.
yield False
task = quit_dialog_on_completion()
GLib.idle_add(task.__next__)
else:
Gtk.main_quit()
else:
# If there is an incremental drawing taking place, lets stop it.
self.clear_idle_task()
if self.spyro_layer in self.img.list_layers():
self.img.remove_layer(self.spyro_layer)
self.img.active_layer = self.active_layer
self.drawing_layer = self.active_layer
def draw_full(tool):
self.progress_start()
yield True
self.engine.reset_incremental()
self.img.undo_group_start()
while self.engine.has_more_strokes():
yield True
self.draw_next_chunk(tool=tool)
self.img.undo_group_end()
Gimp.displays_flush()
Gtk.main_quit()
yield False
tool = SaveToPathTool(self.img) if self.p.save_option == SAVE_AS_PATH else None
task = draw_full(tool)
GLib.idle_add(task.__next__)
def cancel_window(self, widget, what=None):
self.clear_idle_task()
# We want to delete the temporary layer, but as a precaution, lets ask first,
# maybe it was already deleted by the user.
if self.spyro_layer in self.img.list_layers():
self.img.remove_layer(self.spyro_layer)
Gimp.displays_flush()
Gtk.main_quit()
def update_view(self):
""" Update the UI to reflect the values in the Pattern Parameters. """
self.curve_type_combo.set_active(self.p.curve_type)
self.curve_type_side_effects()
self.pattern_notebook.set_current_page(pattern_notation_page[self.p.pattern_notation])
self.outer_teeth_adj.set_value(self.p.outer_teeth)
self.inner_teeth_adj.set_value(self.p.inner_teeth)
self.hole_percent_adj.set_value(self.p.hole_percent)
self.pattern_rotation_adj.set_value(self.p.pattern_rotation)
self.kit_outer_teeth_combo.set_active(self.p.kit_fixed_gear_index)
self.kit_inner_teeth_combo.set_active(self.p.kit_moving_gear_index)
self.kit_hole_adj.set_value(self.p.hole_number)
self.kit_inner_teeth_combo_side_effects()
self.petals_adj.set_value(self.p.petals)
self.petal_skip_adj.set_value(self.p.petal_skip)
self.doughnut_hole_adj.set_value(self.p.doughnut_hole)
self.doughnut.set_hole_radius(self.p.doughnut_hole)
self.doughnut_width_adj.set_value(self.p.doughnut_width)
self.doughnut.set_width(self.p.doughnut_width)
self.petals_changed_side_effects()
self.shape_combo.set_active(self.p.shape_index)
self.shape_combo_side_effects()
self.sides_adj.set_value(self.p.sides)
self.morph_adj.set_value(self.p.morph)
self.equal_w_h_checkbox.set_active(self.p.equal_w_h)
self.shape_rotation_adj.set_value(self.p.shape_rotation)
self.margin_adj.set_value(self.p.margin_pixels)
self.tool_combo.set_active(self.p.tool_index)
self.long_gradient_checkbox.set_active(self.p.long_gradient)
self.save_option_combo.set_active(self.p.save_option)
def reset_params(self, widget=None):
self.engine.p = self.p = PatternParameters()
self.update_view()
# Callbacks to handle changes in dialog parameters.
def curve_type_side_effects(self):
if curve_types[self.p.curve_type].supports_shapes():
self.shape_combo.set_sensitive(True)
self.sides_myscale.set_sensitive(shapes[self.p.shape_index].has_sides())
self.morph_myscale.set_sensitive(shapes[self.p.shape_index].can_morph())
self.shape_rotation_myscale.set_sensitive(shapes[self.p.shape_index].can_rotate())
self.hole_percent_myscale.set_sensitive(True)
self.kit_hole_myscale.set_sensitive(True)
self.doughnut_hole_myscale.set_sensitive(True)
self.doughnut_width_myscale.set_sensitive(True)
else:
# Lissajous curves do not have shapes, or holes for moving gear
self.shape_combo.set_sensitive(False)
self.sides_myscale.set_sensitive(False)
self.morph_myscale.set_sensitive(False)
self.shape_rotation_myscale.set_sensitive(False)
self.hole_percent_myscale.set_sensitive(False)
self.kit_hole_myscale.set_sensitive(False)
self.doughnut_hole_myscale.set_sensitive(False)
self.doughnut_width_myscale.set_sensitive(False)
def curve_type_changed(self, val):
self.p.curve_type = val.get_active()
self.curve_type_side_effects()
self.redraw()
def pattern_notation_tab_changed(self, notebook, page, page_num, user_param1=None):
if self.enable_incremental_drawing:
for notation in pattern_notation_page:
if pattern_notation_page[notation] == page_num:
self.p.pattern_notation = notation
self.redraw()
# Callbacks: pattern changes using the Toy Kit notation.
def kit_outer_teeth_combo_changed(self, val):
self.p.kit_fixed_gear_index = val.get_active()
self.redraw()
def kit_inner_teeth_combo_side_effects(self):
# Change the max hole number according to the newly activated wheel.
# We might also need to update the hole value, if it is larger than the new max.
max_hole_number = self.p.kit_max_hole_number()
if self.p.hole_number > max_hole_number:
self.p.hole_number = max_hole_number
self.kit_hole_adj.set_value(max_hole_number)
self.kit_hole_adj.set_upper(max_hole_number)
def kit_inner_teeth_combo_changed(self, val):
self.p.kit_moving_gear_index = val.get_active()
self.kit_inner_teeth_combo_side_effects()
self.redraw()
def kit_hole_changed(self, val):
self.p.hole_number = val.get_value()
self.redraw()
# Callbacks: pattern changes using the Gears notation.
def outer_teeth_changed(self, val):
self.p.outer_teeth = val.get_value()
self.redraw()
def inner_teeth_changed(self, val):
self.p.inner_teeth = val.get_value()
self.redraw()
def hole_percent_changed(self, val):
self.p.hole_percent = val.get_value()
self.redraw()
def pattern_rotation_changed(self, val):
self.p.pattern_rotation = val.get_value()
self.redraw()
# Callbacks: pattern changes using the Visual notation.
def petals_changed_side_effects(self):
max_petal_skip = int(self.p.petals / 2)
if self.p.petal_skip > max_petal_skip:
self.p.petal_skip = max_petal_skip
self.petal_skip_adj.set_value(max_petal_skip)
self.petal_skip_adj.set_upper(max_petal_skip)
def petals_changed(self, val):
self.p.petals = int(val.get_value())
self.petals_changed_side_effects()
self.redraw()
def petal_skip_changed(self, val):
self.p.petal_skip = int(val.get_value())
self.redraw()
def doughnut_hole_changed(self, val):
self.p.doughnut_hole = val.get_value()
self.doughnut.set_hole_radius(val.get_value())
self.redraw()
def doughnut_width_changed(self, val):
self.p.doughnut_width = val.get_value()
self.doughnut.set_width(val.get_value())
self.redraw()
def doughnut_changed(self, widget, hole, width):
self.doughnut_hole_adj.set_value(hole)
self.p.doughnut_hole = hole
self.doughnut_width_adj.set_value(width)
self.p.doughnut_width = width
self.redraw()
# Callbacks: Fixed gear
def shape_combo_side_effects(self):
self.sides_myscale.set_sensitive(shapes[self.p.shape_index].has_sides())
self.morph_myscale.set_sensitive(shapes[self.p.shape_index].can_morph())
self.shape_rotation_myscale.set_sensitive(shapes[self.p.shape_index].can_rotate())
self.equal_w_h_checkbox.set_sensitive(shapes[self.p.shape_index].can_equal_w_h())
def shape_combo_changed(self, val):
self.p.shape_index = val.get_active()
self.shape_combo_side_effects()
self.redraw()
def sides_changed(self, val):
self.p.sides = val.get_value()
self.redraw()
def morph_changed(self, val):
self.p.morph = val.get_value()
self.redraw()
def equal_w_h_checkbox_changed(self, val):
self.p.equal_w_h = val.get_active()
self.redraw()
def shape_rotation_changed(self, val):
self.p.shape_rotation = val.get_value()
self.redraw()
def margin_changed(self, val) :
self.p.margin_pixels = val.get_value()
self.redraw()
# Style callbacks
def tool_changed_side_effects(self):
self.long_gradient_checkbox.set_sensitive(tools[self.p.tool_index].can_color)
def tool_combo_changed(self, val):
self.p.tool_index = val.get_active()
self.tool_changed_side_effects()
self.redraw()
def long_gradient_changed(self, val):
self.p.long_gradient = val.get_active()
self.redraw()
def save_option_changed(self, val):
self.p.save_option = self.save_option_combo.get_active()
# Progress bar of plugin window.
def progress_start(self):
self.progress_bar.set_text(_("Rendering Pattern"))
self.progress_bar.set_fraction(0.0)
Gimp.displays_flush()
def progress_end(self):
self.progress_bar.set_text("")
self.progress_bar.set_fraction(0.0)
def progress_update(self):
self.progress_bar.set_fraction(self.engine.fraction_done())
def progress_unknown(self):
self.progress_bar.set_text(_("Please wait : Rendering Pattern"))
self.progress_bar.pulse()
Gimp.displays_flush()
# Incremental drawing.
def draw_next_chunk(self, tool=None):
""" Incremental drawing """
t = time.time()
chunk_size = self.engine.draw_next_chunk(self.drawing_layer, tool=tool)
draw_time = time.time() - t
self.engine.report_time(draw_time)
print("Chunk size " + str(chunk_size) + " time " + str(draw_time))
if self.engine.has_more_strokes():
self.progress_update()
else:
self.progress_end()
Gimp.displays_flush()
def start_new_incremental_drawing(self):
"""
Compute strokes for the current pattern, and store then in the IncrementalDraw object,
so they can be drawn in pieces without blocking the user.
Finally, draw the first chunk of strokes.
"""
def incremental_drawing():
self.progress_start()
yield True
self.engine.reset_incremental()
self.img.undo_group_start()
while self.engine.has_more_strokes():
yield True
self.draw_next_chunk()
self.img.undo_group_end()
self.idle_task = None
yield False
# Start new idle task to perform incremental drawing in the background.
self.clear_idle_task()
task = incremental_drawing()
self.idle_task = GLib.idle_add(task.__next__)
def clear(self):
""" Clear current drawing. """
# pdb.gimp_edit_clear(self.spyro_layer)
self.spyro_layer.fill(Gimp.FillType.TRANSPARENT)
def redraw(self, data=None):
if self.enable_incremental_drawing:
self.clear()
self.start_new_incremental_drawing()
class SpyrogimpPlusPlugin(Gimp.PlugIn):
## Parameters ##
__gproperties__ = {
"curve_type" : (int,
_("The curve type { Spyrograph (0), Epitrochoid (1), Sine (2), Lissajous(3) }"),
_("The curve type { Spyrograph (0), Epitrochoid (1), Sine (2), Lissajous(3) }"),
0, 3, 0,
GObject.ParamFlags.READWRITE),
"shape": (int,
_("Shape of fixed gear"),
_("Shape of fixed gear"),
0, GLib.MAXINT, 0,
GObject.ParamFlags.READWRITE),
"sides": (int,
_("Number of sides of fixed gear (3 or greater). Only used by some shapes."),
_("Number of sides of fixed gear (3 or greater). Only used by some shapes."),
3, GLib.MAXINT, 3,
GObject.ParamFlags.READWRITE),
"morph": (float,
_("Morph shape of fixed gear, between 0 and 1. Only used by some shapes."),
_("Morph shape of fixed gear, between 0 and 1. Only used by some shapes."),
0.0, 1.0, 0.0,
GObject.ParamFlags.READWRITE),
"fixed_teeth": (int,
_("Number of teeth for fixed gear"),
_("Number of teeth for fixed gear"),
0, GLib.MAXINT, 96,
GObject.ParamFlags.READWRITE),
"moving_teeth": (int,
_("Number of teeth for moving gear"),
_("Number of teeth for moving gear"),
0, GLib.MAXINT, 36,
GObject.ParamFlags.READWRITE),
"hole_percent": (float,
_("Location of hole in moving gear in percent, where 100 means that "
"the hole is at the edge of the gear, and 0 means the hole is at the center"),
_("Location of hole in moving gear in percent, where 100 means that "
"the hole is at the edge of the gear, and 0 means the hole is at the center"),
0.0, 100.0, 100.0,
GObject.ParamFlags.READWRITE),
"margin": (int,
_("Margin from selection, in pixels"),
_("Margin from selection, in pixels"),
0, GLib.MAXINT, 0,
GObject.ParamFlags.READWRITE),
"equal_w_h": (bool,
_("Make height and width equal"),
_("Make height and width equal"),
False,
GObject.ParamFlags.READWRITE),
"pattern_rotation": (float,
_("Pattern rotation, in degrees"),
_("Pattern rotation, in degrees"),
-360.0, 360.0, 0.0,
GObject.ParamFlags.READWRITE),
"shape_rotation": (float,
_("Shape rotation of fixed gear, in degrees"),
_("Shape rotation of fixed gear, in degrees"),
-360.0, 360.0, 0.0,
GObject.ParamFlags.READWRITE),
"tool": (int,
_("Tool to use for drawing the pattern."),
_("Tool to use for drawing the pattern."),
0, GLib.MAXINT, 1,
GObject.ParamFlags.READWRITE),
"long_gradient" : (bool,
_("Whether to apply a long gradient to match the length of the pattern. "
"Only applicable to some of the tools."),
_("Whether to apply a long gradient to match the length of the pattern. "
"Only applicable to some of the tools."),
False,
GObject.ParamFlags.READWRITE),
}
## GimpPlugIn virtual methods ##
def do_set_i18n(self, procname):
return True, 'gimp30-python', None
def do_query_procedures(self):
return [PROC_NAME]
def do_create_procedure(self, name):
if name == PROC_NAME:
procedure = Gimp.ImageProcedure.new(self, name,
Gimp.PDBProcType.PLUGIN,
self.plug_in_spyrogimp, None)
procedure.set_image_types("*")
procedure.set_sensitivity_mask (Gimp.ProcedureSensitivityMask.DRAWABLE)
procedure.set_documentation (_("Draw spyrographs using current tool settings and selection."),
_("Uses current tool settings to draw Spyrograph patterns. "
"The size and location of the pattern is based on the current selection."),
name)
procedure.set_menu_label(_("Spyrogimp..."))
procedure.set_attribution("Elad Shahar",
"Elad Shahar",
"2018")
procedure.add_menu_path ("<Image>/Filters/Render/")
procedure.add_argument_from_property(self, "curve_type")
procedure.add_argument_from_property(self, "shape")
procedure.add_argument_from_property(self, "sides")
procedure.add_argument_from_property(self, "morph")
procedure.add_argument_from_property(self, "fixed_teeth")
procedure.add_argument_from_property(self, "moving_teeth")
procedure.add_argument_from_property(self, "hole_percent")
procedure.add_argument_from_property(self, "margin")
procedure.add_argument_from_property(self, "equal_w_h")
procedure.add_argument_from_property(self, "pattern_rotation")
procedure.add_argument_from_property(self, "shape_rotation")
procedure.add_argument_from_property(self, "tool")
procedure.add_argument_from_property(self, "long_gradient")
return procedure
# Implementation of plugin.
def plug_in_spyrogimp(self, procedure, run_mode, image, n_layers, layers, args, data):
curve_type=args.index(0)
shape=args.index(1)
sides=args.index(2)
morph=args.index(3)
fixed_teeth=args.index(4)
moving_teeth=args.index(5)
hole_percent=args.index(6)
margin=args.index(7)
equal_w_h=args.index(8)
pattern_rotation=args.index(9)
shape_rotation=args.index(10)
tool=args.index(11)
long_gradient=args.index(12)
if run_mode == Gimp.RunMode.NONINTERACTIVE:
pp = PatternParameters()
pp.curve_type = curve_type
pp.shape_index = shape
pp.sides = sides
pp.morph = morph
pp.outer_teeth = fixed_teeth
pp.inner_teeth = moving_teeth
pp.hole_percent = hole_percent
pp.margin_pixels = margin
pp.equal_w_h = equal_w_h
pp.pattern_rotation = pattern_rotation
pp.shape_rotation = shape_rotation
pp.tool_index = tool
pp.long_gradient = long_gradient
engine = DrawingEngine(image, pp)
engine.draw_full(layers[0])
elif run_mode == Gimp.RunMode.INTERACTIVE:
window = SpyroWindow(image, layers[0])
Gtk.main()
elif run_mode == Gimp.RunMode.WITH_LAST_VALS:
pp = unshelf_parameters()
engine = DrawingEngine(image, pp)
engine.draw_full(layers[0])
return procedure.new_return_values(Gimp.PDBStatusType.SUCCESS, GLib.Error())
Gimp.main(SpyrogimpPlusPlugin.__gtype__, sys.argv)