gimp/app/core/gimp-transform-region.c

866 lines
26 KiB
C

/* The GIMP -- an image manipulation program
* Copyright (C) 1995-2001 Spencer Kimball, Peter Mattis, and others
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "config.h"
#include <glib-object.h>
#include "libgimpmath/gimpmath.h"
#include "core-types.h"
#include "base/pixel-region.h"
#include "base/pixel-surround.h"
#include "base/tile-manager.h"
#include "base/tile.h"
#include "paint-funcs/paint-funcs.h"
#include "gimp.h"
#include "gimpchannel.h"
#include "gimpcontext.h"
#include "gimpdrawable.h"
#include "gimpdrawable-transform.h"
#include "gimpimage.h"
#include "gimpimage-mask.h"
#include "gimpimage-undo.h"
#include "gimpimage-undo-push.h"
#include "gimplayer.h"
#include "gimplayer-floating-sel.h"
#include "libgimp/gimpintl.h"
#define BILINEAR(jk,j1k,jk1,j1k1,dx,dy) \
((1-dy) * (jk + dx * (j1k - jk)) + \
dy * (jk1 + dx * (j1k1 - jk1)))
/* access interleaved pixels */
#define CUBIC_ROW(dx, row, step) \
gimp_drawable_transform_cubic(dx, (row)[0], (row)[step], (row)[step+step], (row)[step+step+step])
#define CUBIC_SCALED_ROW(dx, row, step, i) \
gimp_drawable_transform_cubic(dx, (row)[0] * (row)[i], \
(row)[step] * (row)[step + i], \
(row)[step+step]* (row)[step+step + i], \
(row)[step+step+step] * (row)[step+step+step + i])
#define REF_TILE(i,x,y) \
tile[i] = tile_manager_get_tile (float_tiles, x, y, TRUE, FALSE); \
src[i] = tile_data_pointer (tile[i], (x) % TILE_WIDTH, (y) % TILE_HEIGHT);
/* forward function prototypes */
static gdouble gimp_drawable_transform_cubic (gdouble dx,
gint jm1,
gint j,
gint jp1,
gint jp2);
/* public functions */
TileManager *
gimp_drawable_transform_tiles_affine (GimpDrawable *drawable,
TileManager *float_tiles,
GimpInterpolationType interpolation_type,
gboolean clip_result,
GimpMatrix3 matrix,
GimpTransformDirection direction,
GimpProgressFunc progress_callback,
gpointer progress_data)
{
GimpImage *gimage;
PixelRegion destPR;
TileManager *tiles;
GimpMatrix3 m;
GimpMatrix3 im;
gint itx, ity;
gint tx1, ty1, tx2, ty2;
gint width, height;
gint alpha;
gint bytes, b;
gint x, y;
gint sx, sy;
gint x1, y1, x2, y2;
gdouble xinc, yinc, winc;
gdouble tx, ty, tw;
gdouble ttx = 0.0, tty = 0.0;
guchar *dest;
guchar *d;
guchar *src[16];
Tile *tile[16];
guchar bg_col[MAX_CHANNELS];
gint i;
gdouble a_val, a_recip;
gint newval;
PixelSurround surround;
g_return_val_if_fail (GIMP_IS_DRAWABLE (drawable), NULL);
g_return_val_if_fail (float_tiles != NULL, NULL);
gimage = gimp_item_get_image (GIMP_ITEM (drawable));
g_return_val_if_fail (GIMP_IS_IMAGE (gimage), NULL);
alpha = 0;
/* turn interpolation off for simple transformations (e.g. rot90) */
if (gimp_matrix3_is_simple (matrix))
interpolation_type = GIMP_INTERPOLATION_NONE;
/* Get the background color */
gimp_image_get_background (gimage, drawable, bg_col);
switch (GIMP_IMAGE_TYPE_BASE_TYPE (gimp_drawable_type (drawable)))
{
case GIMP_RGB:
bg_col[ALPHA_PIX] = TRANSPARENT_OPACITY;
alpha = ALPHA_PIX;
break;
case GIMP_GRAY:
bg_col[ALPHA_G_PIX] = TRANSPARENT_OPACITY;
alpha = ALPHA_G_PIX;
break;
case GIMP_INDEXED:
bg_col[ALPHA_I_PIX] = TRANSPARENT_OPACITY;
alpha = ALPHA_I_PIX;
/* If the gimage is indexed color, ignore interpolation value */
interpolation_type = GIMP_INTERPOLATION_NONE;
break;
default:
g_assert_not_reached ();
break;
}
/* enable rotating un-floated non-layers */
if (tile_manager_bpp (float_tiles) == 1)
{
bg_col[0] = OPAQUE_OPACITY;
/* setting alpha = 0 will cause the channel's value to be treated
* as alpha and the color channel loops never to be entered
*/
alpha = 0;
}
if (direction == GIMP_TRANSFORM_BACKWARD)
{
/* keep the original matrix here, so we dont need to recalculate
* the inverse later
*/
gimp_matrix3_duplicate (matrix, m);
gimp_matrix3_invert (matrix, im);
matrix = im;
}
else
{
/* Find the inverse of the transformation matrix */
gimp_matrix3_invert (matrix, m);
}
#ifdef __GNUC__
#warning FIXME: path_transform_current_path
#endif
#if 0
path_transform_current_path (gimage, matrix, FALSE);
#endif
tile_manager_get_offsets (float_tiles, &x1, &y1);
x2 = x1 + tile_manager_width (float_tiles);
y2 = y1 + tile_manager_height (float_tiles);
/* Find the bounding coordinates */
if (alpha == 0 || clip_result)
{
tx1 = x1;
ty1 = y1;
tx2 = x2;
ty2 = y2;
}
else
{
gdouble dx1, dy1;
gdouble dx2, dy2;
gdouble dx3, dy3;
gdouble dx4, dy4;
gimp_matrix3_transform_point (matrix, x1, y1, &dx1, &dy1);
gimp_matrix3_transform_point (matrix, x2, y1, &dx2, &dy2);
gimp_matrix3_transform_point (matrix, x1, y2, &dx3, &dy3);
gimp_matrix3_transform_point (matrix, x2, y2, &dx4, &dy4);
#define MIN4(a,b,c,d) MIN(MIN(MIN(a,b),c),d)
#define MAX4(a,b,c,d) MAX(MAX(MAX(a,b),c),d)
tx1 = ROUND (MIN4 (dx1, dx2, dx3, dx4));
ty1 = ROUND (MIN4 (dy1, dy2, dy3, dy4));
tx2 = ROUND (MAX4 (dx1, dx2, dx3, dx4));
ty2 = ROUND (MAX4 (dy1, dy2, dy3, dy4));
#undef MIN2
#undef MAX4
}
/* Get the new temporary buffer for the transformed result */
tiles = tile_manager_new ((tx2 - tx1), (ty2 - ty1),
tile_manager_bpp (float_tiles));
pixel_region_init (&destPR, tiles, 0, 0, (tx2 - tx1), (ty2 - ty1), TRUE);
tile_manager_set_offsets (tiles, tx1, ty1);
/* initialise the pixel_surround accessor */
switch (interpolation_type)
{
case GIMP_INTERPOLATION_NONE:
/* not actually useful, keeps the code cleaner */
pixel_surround_init (&surround, float_tiles, 1, 1, bg_col);
break;
case GIMP_INTERPOLATION_CUBIC:
pixel_surround_init (&surround, float_tiles, 4, 4, bg_col);
break;
case GIMP_INTERPOLATION_LINEAR:
pixel_surround_init (&surround, float_tiles, 2, 2, bg_col);
break;
}
width = tile_manager_width (tiles);
height = tile_manager_height (tiles);
bytes = tile_manager_bpp (tiles);
dest = g_new (guchar, width * bytes);
xinc = m[0][0];
yinc = m[1][0];
winc = m[2][0];
/* these loops could be rearranged, depending on which bit of code
* you'd most like to write more than once.
*/
for (y = ty1; y < ty2; y++)
{
if (progress_callback && !(y & 0xf))
(* progress_callback) (ty1, ty2, y, progress_data);
/* set up inverse transform steps */
if (interpolation_type == GIMP_INTERPOLATION_NONE)
{
/* need to transform the pixel's center for INTERPOLATION_NONE,
* as we end up at discrete pixel positions and are not aware of
* errors in the algorithm below
*/
tx = xinc * (tx1 + 0.5) + m[0][1] * (y + 0.5) + m[0][2];
ty = yinc * (tx1 + 0.5) + m[1][1] * (y + 0.5) + m[1][2];
tw = winc * (tx1 + 0.5) + m[2][1] * (y + 0.5) + m[2][2];
}
else
{
tx = xinc * tx1 + m[0][1] * y + m[0][2];
ty = yinc * tx1 + m[1][1] * y + m[1][2];
tw = winc * tx1 + m[2][1] * y + m[2][2];
}
d = dest;
for (x = tx1; x < tx2; x++)
{
/* normalize homogeneous coords */
if (tw == 0.0)
{
g_warning ("homogeneous coordinate = 0...\n");
}
else if (tw != 1.0)
{
ttx = tx / tw;
tty = ty / tw;
}
else
{
ttx = tx;
tty = ty;
}
/* Set the destination pixels */
switch (interpolation_type)
{
case GIMP_INTERPOLATION_CUBIC:
/* ttx & tty are the subpixel coordinates of the point in
* the original selection's floating buffer.
* We need the four integer pixel coords around them:
* itx to itx + 3, ity to ity + 3
*/
itx = floor (ttx);
ity = floor (tty);
/* check if any part of our region overlaps the buffer */
if ((itx + 2) >= x1 && (itx - 1) < x2 &&
(ity + 2) >= y1 && (ity - 1) < y2)
{
guchar *data;
gint row;
gdouble dx, dy;
guchar *start;
/* lock the pixel surround */
data = pixel_surround_lock (&surround,
itx - 1 - x1, ity - 1 - y1);
row = pixel_surround_rowstride (&surround);
/* the fractional error */
dx = ttx - itx;
dy = tty - ity;
/* calculate alpha of result */
start = &data[alpha];
a_val = gimp_drawable_transform_cubic
(dy,
CUBIC_ROW (dx, start, bytes),
CUBIC_ROW (dx, start + row, bytes),
CUBIC_ROW (dx, start + row + row, bytes),
CUBIC_ROW (dx, start + row + row + row, bytes));
if (a_val <= 0.0)
{
a_recip = 0.0;
d[alpha] = 0;
}
else if (a_val > 255.0)
{
a_recip = 1.0 / a_val;
d[alpha] = 255;
}
else
{
a_recip = 1.0 / a_val;
d[alpha] = RINT(a_val);
}
/* for colour channels c,
* result = bicubic (c * alpha) / bicubic (alpha)
*
* never entered for alpha == 0
*/
for (i = -alpha; i < 0; ++i)
{
start = &data[alpha];
newval =
RINT (a_recip *
gimp_drawable_transform_cubic
(dy,
CUBIC_SCALED_ROW (dx, start, bytes, i),
CUBIC_SCALED_ROW (dx, start + row, bytes, i),
CUBIC_SCALED_ROW (dx, start + row + row, bytes, i),
CUBIC_SCALED_ROW (dx, start + row + row + row, bytes, i)));
if (newval <= 0)
{
*d++ = 0;
}
else if (newval > 255)
{
*d++ = 255;
}
else
{
*d++ = newval;
}
}
/* alpha already done */
d++;
pixel_surround_release (&surround);
}
else /* not in source range */
{
/* increment the destination pointers */
for (b = 0; b < bytes; b++)
*d++ = bg_col[b];
}
break;
case GIMP_INTERPOLATION_LINEAR:
itx = floor (ttx);
ity = floor (tty);
/* expand source area to cover interpolation region
* (which runs from itx to itx + 1, same in y)
*/
if ((itx + 1) >= x1 && itx < x2 &&
(ity + 1) >= y1 && ity < y2)
{
guchar *data;
gint row;
double dx, dy;
guchar *chan;
/* lock the pixel surround */
data = pixel_surround_lock (&surround, itx - x1, ity - y1);
row = pixel_surround_rowstride (&surround);
/* the fractional error */
dx = ttx - itx;
dy = tty - ity;
/* calculate alpha value of result pixel */
chan = &data[alpha];
a_val = BILINEAR (chan[0], chan[bytes], chan[row],
chan[row+bytes], dx, dy);
if (a_val <= 0.0)
{
a_recip = 0.0;
d[alpha] = 0.0;
}
else if (a_val >= 255.0)
{
a_recip = 1.0 / a_val;
d[alpha] = 255;
}
else
{
a_recip = 1.0 / a_val;
d[alpha] = RINT (a_val);
}
/* for colour channels c,
* result = bilinear (c * alpha) / bilinear (alpha)
*
* never entered for alpha == 0
*/
for (i = -alpha; i < 0; ++i)
{
chan = &data[alpha];
newval =
RINT (a_recip *
BILINEAR (chan[0] * chan[i],
chan[bytes] * chan[bytes+i],
chan[row] * chan[row+i],
chan[row+bytes] * chan[row+bytes+i],
dx, dy));
if (newval <= 0)
{
*d++ = 0;
}
else if (newval > 255)
{
*d++ = 255;
}
else
{
*d++ = newval;
}
}
/* alpha already done */
d++;
pixel_surround_release (&surround);
}
else /* not in source range */
{
/* increment the destination pointers */
for (b = 0; b < bytes; b++)
*d++ = bg_col[b];
}
break;
case GIMP_INTERPOLATION_NONE:
itx = floor (ttx);
ity = floor (tty);
if (itx >= x1 && itx < x2 &&
ity >= y1 && ity < y2)
{
/* x, y coordinates into source tiles */
sx = itx - x1;
sy = ity - y1;
REF_TILE (0, sx, sy);
for (b = 0; b < bytes; b++)
*d++ = src[0][b];
tile_release (tile[0], FALSE);
}
else /* not in source range */
{
/* increment the destination pointers */
for (b = 0; b < bytes; b++)
*d++ = bg_col[b];
}
break;
}
/* increment the transformed coordinates */
tx += xinc;
ty += yinc;
tw += winc;
}
/* set the pixel region row */
pixel_region_set_row (&destPR, 0, (y - ty1), width, dest);
}
pixel_surround_clear (&surround);
g_free (dest);
return tiles;
}
TileManager *
gimp_drawable_transform_tiles_flip (GimpDrawable *drawable,
TileManager *orig,
GimpOrientationType flip_type)
{
TileManager *new;
PixelRegion srcPR, destPR;
gint orig_width;
gint orig_height;
gint orig_bpp;
gint orig_x, orig_y;
gint i;
g_return_val_if_fail (GIMP_IS_DRAWABLE (drawable), NULL);
g_return_val_if_fail (orig != NULL, NULL);
orig_width = tile_manager_width (orig);
orig_height = tile_manager_height (orig);
orig_bpp = tile_manager_bpp (orig);
tile_manager_get_offsets (orig, &orig_x, &orig_y);
new = tile_manager_new (orig_width, orig_height, orig_bpp);
tile_manager_set_offsets (new, orig_x, orig_y);
if (flip_type == GIMP_ORIENTATION_HORIZONTAL)
{
for (i = 0; i < orig_width; i++)
{
pixel_region_init (&srcPR, orig, i, 0, 1, orig_height, FALSE);
pixel_region_init (&destPR, new,
(orig_width - i - 1), 0, 1, orig_height, TRUE);
copy_region (&srcPR, &destPR);
}
}
else
{
for (i = 0; i < orig_height; i++)
{
pixel_region_init (&srcPR, orig, 0, i, orig_width, 1, FALSE);
pixel_region_init (&destPR, new,
0, (orig_height - i - 1), orig_width, 1, TRUE);
copy_region (&srcPR, &destPR);
}
}
#ifdef __GNUC__
#warning FIXME: path_transform_flip_horz/vert
#endif
#if 0
/* flip locked paths */
/* Note that the undo structures etc are setup before we enter this
* function.
*/
if (flip_type == GIMP_ORIENTATION_HORIZONTAL)
path_transform_flip_horz (gimage);
else
path_transform_flip_vert (gimage);
#endif
return new;
}
gboolean
gimp_drawable_transform_affine (GimpDrawable *drawable,
GimpInterpolationType interpolation_type,
gboolean clip_result,
GimpMatrix3 matrix,
GimpTransformDirection direction)
{
GimpImage *gimage;
TileManager *float_tiles;
gboolean new_layer;
gboolean success = FALSE;
g_return_val_if_fail (GIMP_IS_DRAWABLE (drawable), FALSE);
gimage = gimp_item_get_image (GIMP_ITEM (drawable));
g_return_val_if_fail (GIMP_IS_IMAGE (gimage), FALSE);
/* Start a transform undo group */
gimp_image_undo_group_start (gimage, GIMP_UNDO_GROUP_TRANSFORM,
_("Transform"));
/* Cut/Copy from the specified drawable */
float_tiles = gimp_drawable_transform_cut (drawable, &new_layer);
if (float_tiles)
{
TileManager *new_tiles;
/* transform the buffer */
new_tiles = gimp_drawable_transform_tiles_affine (drawable,
float_tiles,
interpolation_type,
FALSE,
matrix,
GIMP_TRANSFORM_FORWARD,
NULL, NULL);
/* Free the cut/copied buffer */
tile_manager_destroy (float_tiles);
if (new_tiles)
success = gimp_drawable_transform_paste (drawable, new_tiles, new_layer);
}
/* push the undo group end */
gimp_image_undo_group_end (gimage);
return success;
}
gboolean
gimp_drawable_transform_flip (GimpDrawable *drawable,
GimpOrientationType flip_type)
{
GimpImage *gimage;
TileManager *float_tiles;
gboolean new_layer;
gboolean success = FALSE;
g_return_val_if_fail (GIMP_IS_DRAWABLE (drawable), FALSE);
gimage = gimp_item_get_image (GIMP_ITEM (drawable));
g_return_val_if_fail (GIMP_IS_IMAGE (gimage), FALSE);
/* Start a transform undo group */
gimp_image_undo_group_start (gimage, GIMP_UNDO_GROUP_TRANSFORM,
_("Flip"));
/* Cut/Copy from the specified drawable */
float_tiles = gimp_drawable_transform_cut (drawable, &new_layer);
if (float_tiles)
{
TileManager *new_tiles;
/* transform the buffer */
new_tiles = gimp_drawable_transform_tiles_flip (drawable,
float_tiles,
flip_type);
/* Free the cut/copied buffer */
tile_manager_destroy (float_tiles);
if (new_tiles)
success = gimp_drawable_transform_paste (drawable, new_tiles, new_layer);
}
/* push the undo group end */
gimp_image_undo_group_end (gimage);
return success;
}
TileManager *
gimp_drawable_transform_cut (GimpDrawable *drawable,
gboolean *new_layer)
{
GimpImage *gimage;
TileManager *tiles;
g_return_val_if_fail (GIMP_IS_DRAWABLE (drawable), NULL);
g_return_val_if_fail (new_layer != NULL, NULL);
gimage = gimp_item_get_image (GIMP_ITEM (drawable));
g_return_val_if_fail (GIMP_IS_IMAGE (gimage), NULL);
/* extract the selected mask if there is a selection */
if (! gimp_image_mask_is_empty (gimage))
{
/* set the keep_indexed flag to FALSE here, since we use
* gimp_layer_new_from_tiles() later which assumes that the tiles
* are either RGB or GRAY. Eeek!!! (Sven)
*/
tiles = gimp_image_mask_extract (gimage, drawable, TRUE, FALSE, TRUE);
*new_layer = TRUE;
}
/* otherwise, just copy the layer */
else
{
if (GIMP_IS_LAYER (drawable))
tiles = gimp_image_mask_extract (gimage, drawable, FALSE, TRUE, TRUE);
else
tiles = gimp_image_mask_extract (gimage, drawable, FALSE, TRUE, FALSE);
*new_layer = FALSE;
}
return tiles;
}
gboolean
gimp_drawable_transform_paste (GimpDrawable *drawable,
TileManager *tiles,
gboolean new_layer)
{
GimpImage *gimage;
GimpLayer *layer = NULL;
GimpChannel *channel = NULL;
GimpLayer *floating_layer;
g_return_val_if_fail (GIMP_IS_DRAWABLE (drawable), FALSE);
g_return_val_if_fail (tiles != NULL, FALSE);
gimage = gimp_item_get_image (GIMP_ITEM (drawable));
g_return_val_if_fail (GIMP_IS_IMAGE (gimage), FALSE);
if (new_layer)
{
layer =
gimp_layer_new_from_tiles (tiles,
gimage,
gimp_drawable_type_with_alpha (drawable),
_("Transformation"),
GIMP_OPACITY_OPAQUE, GIMP_NORMAL_MODE);
if (! layer)
{
g_warning ("%s: gimp_layer_new_frome_tiles() failed",
G_GNUC_FUNCTION);
return FALSE;
}
tile_manager_get_offsets (tiles,
&(GIMP_DRAWABLE (layer)->offset_x),
&(GIMP_DRAWABLE (layer)->offset_y));
/* Start a group undo */
gimp_image_undo_group_start (gimage, GIMP_UNDO_GROUP_EDIT_PASTE,
_("Paste Transform"));
floating_sel_attach (layer, drawable);
/* End the group undo */
gimp_image_undo_group_end (gimage);
/* Free the tiles */
tile_manager_destroy (tiles);
return TRUE;
}
else
{
if (GIMP_IS_LAYER (drawable))
layer = GIMP_LAYER (drawable);
else if (GIMP_IS_CHANNEL (drawable))
channel = GIMP_CHANNEL (drawable);
else
return FALSE;
if (layer)
gimp_layer_add_alpha (layer);
floating_layer = gimp_image_floating_sel (gimage);
if (floating_layer)
floating_sel_relax (floating_layer, TRUE);
gimp_image_update (gimage,
drawable->offset_x,
drawable->offset_y,
drawable->width,
drawable->height);
/* Push an undo */
if (layer)
gimp_image_undo_push_layer_mod (gimage, _("Transform Layer"),
layer);
else if (channel)
gimp_image_undo_push_channel_mod (gimage, _("Transform Channel"),
channel);
/* set the current layer's data */
drawable->tiles = tiles;
/* Fill in the new layer's attributes */
drawable->width = tile_manager_width (tiles);
drawable->height = tile_manager_height (tiles);
drawable->bytes = tile_manager_bpp (tiles);
tile_manager_get_offsets (tiles,
&drawable->offset_x, &drawable->offset_y);
if (floating_layer)
floating_sel_rigor (floating_layer, TRUE);
gimp_drawable_update (drawable,
0, 0,
gimp_drawable_width (drawable),
gimp_drawable_height (drawable));
/* if we were operating on the floating selection, then it's boundary
* and previews need invalidating
*/
if (drawable == (GimpDrawable *) floating_layer)
floating_sel_invalidate (floating_layer);
return TRUE;
}
}
/* Note: cubic function no longer clips result */
static gdouble
gimp_drawable_transform_cubic (gdouble dx,
gint jm1,
gint j,
gint jp1,
gint jp2)
{
gdouble result;
#if 0
/* Equivalent to Gimp 1.1.1 and earlier - some ringing */
result = ((( ( - jm1 + j - jp1 + jp2 ) * dx +
( jm1 + jm1 - j - j + jp1 - jp2 ) ) * dx +
( - jm1 + jp1 ) ) * dx + j );
/* Recommended by Mitchell and Netravali - too blurred? */
result = ((( ( - 7 * jm1 + 21 * j - 21 * jp1 + 7 * jp2 ) * dx +
( 15 * jm1 - 36 * j + 27 * jp1 - 6 * jp2 ) ) * dx +
( - 9 * jm1 + 9 * jp1 ) ) * dx + (jm1 + 16 * j + jp1) ) / 18.0;
#endif
/* Catmull-Rom - not bad */
result = ((( ( - jm1 + 3 * j - 3 * jp1 + jp2 ) * dx +
( 2 * jm1 - 5 * j + 4 * jp1 - jp2 ) ) * dx +
( - jm1 + jp1 ) ) * dx + (j + j) ) / 2.0;
return result;
}