gimp/app/core/gimp-transform-resize.c

498 lines
13 KiB
C

/* GIMP - The GNU Image Manipulation Program
* Copyright (C) 1995-2001 Spencer Kimball, Peter Mattis, and others
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "config.h"
#include <glib-object.h>
#include "libgimpmath/gimpmath.h"
#include "core-types.h"
#include "gimp-transform-resize.h"
#if defined (HAVE_FINITE)
#define FINITE(x) finite(x)
#elif defined (HAVE_ISFINITE)
#define FINITE(x) isfinite(x)
#elif defined (G_OS_WIN32)
#define FINITE(x) _finite(x)
#else
#error "no FINITE() implementation available?!"
#endif
#define MIN4(a,b,c,d) MIN(MIN((a),(b)),MIN((c),(d)))
#define MAX4(a,b,c,d) MAX(MAX((a),(b)),MAX((c),(d)))
typedef struct
{
gint x, y;
} Point;
typedef struct
{
gint xmin, xmax;
gint ymin, ymax;
gdouble m, b; /* y = mx + b */
gboolean top, right;
} Edge;
static void gimp_transform_resize_adjust (gdouble dx1,
gdouble dy1,
gdouble dx2,
gdouble dy2,
gdouble dx3,
gdouble dy3,
gdouble dx4,
gdouble dy4,
gint *x1,
gint *y1,
gint *x2,
gint *y2);
static void gimp_transform_resize_crop (gdouble dx1,
gdouble dy1,
gdouble dx2,
gdouble dy2,
gdouble dx3,
gdouble dy3,
gdouble dx4,
gdouble dy4,
gdouble aspect,
gint *x1,
gint *y1,
gint *x2,
gint *y2);
/*
* This function wants to be passed the inverse transformation matrix!!
*/
void
gimp_transform_resize_boundary (const GimpMatrix3 *inv,
GimpTransformResize resize,
gint u1,
gint v1,
gint u2,
gint v2,
gint *x1,
gint *y1,
gint *x2,
gint *y2)
{
gdouble dx1, dx2, dx3, dx4;
gdouble dy1, dy2, dy3, dy4;
g_return_if_fail (inv != NULL);
/* initialize with the original boundary */
*x1 = u1;
*y1 = v1;
*x2 = u2;
*y2 = v2;
if (resize == GIMP_TRANSFORM_RESIZE_CLIP)
return;
gimp_matrix3_transform_point (inv, u1, v1, &dx1, &dy1);
gimp_matrix3_transform_point (inv, u2, v1, &dx2, &dy2);
gimp_matrix3_transform_point (inv, u1, v2, &dx3, &dy3);
gimp_matrix3_transform_point (inv, u2, v2, &dx4, &dy4);
/* check if the transformation matrix is valid at all */
if (! FINITE (dx1) || ! FINITE (dy1) ||
! FINITE (dx2) || ! FINITE (dy2) ||
! FINITE (dx3) || ! FINITE (dy3) ||
! FINITE (dx4) || ! FINITE (dy4))
{
g_warning ("invalid transform matrix");
resize = GIMP_TRANSFORM_RESIZE_CLIP;
}
switch (resize)
{
case GIMP_TRANSFORM_RESIZE_ADJUST:
gimp_transform_resize_adjust (dx1, dy1, dx2, dy2, dx3, dy3, dx4, dy4,
x1, y1, x2, y2);
break;
case GIMP_TRANSFORM_RESIZE_CLIP:
/* we are all done already */
break;
case GIMP_TRANSFORM_RESIZE_CROP:
gimp_transform_resize_crop (dx1, dy1, dx2, dy2, dx3, dy3, dx4, dy4,
0.0,
x1, y1, x2, y2);
break;
case GIMP_TRANSFORM_RESIZE_CROP_WITH_ASPECT:
gimp_transform_resize_crop (dx1, dy1, dx2, dy2, dx3, dy3, dx4, dy4,
((gdouble) u2 - u1) / (v2 - v1),
x1, y1, x2, y2);
break;
}
if (*x1 == *x2)
(*x2)++;
if (*y1 == *y2)
(*y2)++;
}
static void
gimp_transform_resize_adjust (gdouble dx1,
gdouble dy1,
gdouble dx2,
gdouble dy2,
gdouble dx3,
gdouble dy3,
gdouble dx4,
gdouble dy4,
gint *x1,
gint *y1,
gint *x2,
gint *y2)
{
*x1 = (gint) floor (MIN4 (dx1, dx2, dx3, dx4));
*y1 = (gint) floor (MIN4 (dy1, dy2, dy3, dy4));
*x2 = (gint) ceil (MAX4 (dx1, dx2, dx3, dx4));
*y2 = (gint) ceil (MAX4 (dy1, dy2, dy3, dy4));
}
static void
edge_init (Edge *edge,
const Point *p,
const Point *q)
{
gdouble den;
edge->xmin = MIN ( (p->x), (q->x));
edge->xmax = MAX ( (p->x), (q->x));
edge->ymin = MIN ( (p->y), (q->y));
edge->ymax = MAX ( (p->y), (q->y));
edge->top = p->x > q->x;
edge->right = p->y > q->y;
den = q->x - p->x;
if (den == 0)
den = 0.001;
edge->m = ((gdouble) q->y - p->y) / den;
edge->b = p->y - edge->m * p->x;
}
static const Edge *
find_edge (const Edge *edges,
gint x,
gboolean top)
{
const Edge *emax = edges;
const Edge *e = edges;
gint i;
for (i = 0; i < 4; i++)
{
if ((e->xmin == x) && (e->xmax != e->xmin) &&
((e->top && top) || (!e->top && !top)))
emax = e;
e++;
}
return emax;
}
/* find largest pixel completely inside;
* look through all edges for intersection
*/
static gint
intersect_x (const Edge *edges,
gint y)
{
gdouble x0 = 0;
gdouble x1 = 0;
gint i;
for (i = 0; i < 4; i++)
if (edges[i].right && edges[i].ymin <= y && edges[i].ymax >= y)
{
x0 = (y + 0.5 - edges[i].b) / edges[i].m;
x1 = (y - 0.5 - edges[i].b) / edges[i].m;
}
return (gint) floor (MIN (x0, x1));
}
static gint
intersect_y (const Edge *edge,
gint xi)
{
gdouble yfirst = edge->m * (xi - 0.5) + edge->b;
gdouble ylast = edge->m * (xi + 0.5) + edge->b;
return (gint) (edge->top ? ceil (MAX (yfirst, ylast)) : floor (MIN (yfirst, ylast)));
}
static void
gimp_transform_resize_crop (gdouble dx1,
gdouble dy1,
gdouble dx2,
gdouble dy2,
gdouble dx3,
gdouble dy3,
gdouble dx4,
gdouble dy4,
gdouble aspect,
gint *x1,
gint *y1,
gint *x2,
gint *y2)
{
Point points[4];
gint ax, ay;
int min;
gint tx, ty;
Edge edges[4];
const Point *a;
const Point *b;
const Edge *top;
const Edge *bottom;
gint cxmin, cymin;
gint cxmax, cymax;
Point *xint;
gint ymin, ymax;
gint maxarea = 0;
gint xi;
gint i;
/* fill in the points array */
points[0].x = floor (dx1);
points[0].y = floor (dy1);
points[1].x = floor (dx2);
points[1].y = floor (dy2);
points[2].x = floor (dx3);
points[2].y = floor (dy3);
points[3].x = floor (dx4);
points[3].y = floor (dy4);
/* first, translate the vertices into the first quadrant */
ax = 0;
ay = 0;
for (i = 0; i < 4; i++)
{
if (points[i].x < ax)
ax = points[i].x;
if (points[i].y < ay)
ay = points[i].y;
}
for (i = 0; i < 4; i++)
{
points[i].x += (-ax) * 2;
points[i].y += (-ay) * 2;
}
/* find the convex hull using Jarvis's March as the points are passed
* in different orders due to gimp_matrix3_transform_point()
*/
min = 0;
for (i = 0; i < 4; i++)
{
if (points[i].y < points[min].y)
min = i;
}
tx = points[0].x;
ty = points[0].y;
points[0].x = points[min].x;
points[0].y = points[min].y;
points[min].x = tx;
points[min].y = ty;
for (i = 1; i < 4; i++)
{
gdouble theta, theta_m = 2 * G_PI;
gdouble theta_v = 0;
gint j;
min = 3;
for (j = i; j < 4; j++)
{
gdouble sy = points[j].y - points[i - 1].y;
gdouble sx = points[j].x - points[i - 1].x;
theta = atan2 (sy, sx);
if ((theta < theta_m) && ((theta > theta_v) || ((theta == theta_v) && (sx > 0))))
{
theta_m = theta;
min = j;
}
}
theta_v = theta_m;
tx = points[i].x;
ty = points[i].y;
points[i].x = points[min].x;
points[i].y = points[min].y;
points[min].x = tx;
points[min].y = ty;
}
/* reverse the order of points */
tx = points[0].x; ty = points[0].y;
points[0].x = points[3].x; points[0].y = points[3].y;
points[3].x = tx; points[3].y = ty;
tx = points[1].x; ty = points[1].y;
points[1].x = points[2].x; points[1].y = points[2].y;
points[2].x = tx; points[2].y = ty;
/* now, find the largest rectangle using the method described in
* "Computing the Largest Inscribed Isothetic Rectangle" by
* D. Hsu, J. Snoeyink, et al.
*/
/* first create an array of edges */
cxmin = cxmax = points[3].x;
cymin = cymax = points[3].y;
for (i = 0, a = points + 3, b = points; i < 4; i++, a = b, b++)
{
if (G_UNLIKELY(i == 0))
{
cxmin = cxmax = a->x;
cymin = cymax = a->y;
}
else
{
if (a->x < cxmin)
cxmin = a->x;
if (a->x > cxmax)
cxmax = a->x;
if (a->y < cymin)
cymin = a->y;
if (a->y > cymax)
cymax = a->y;
}
edge_init (edges + i, a, b);
}
xint = g_new (Point, cymax);
for (i = 0; i < cymax; i++)
{
xint[i].x = intersect_x (edges, i);
xint[i].y = i;
}
top = find_edge (edges, cxmin, TRUE);
bottom = find_edge (edges, cxmin, FALSE);
for (xi = cxmin; xi < cxmax; xi++)
{
gint ylo, yhi;
ymin = intersect_y (top, xi);
ymax = intersect_y (bottom, xi);
for (ylo = ymax; ylo > ymin; ylo--)
{
for (yhi = ymin; yhi < ymax; yhi++)
{
if (yhi > ylo)
{
gint xlo, xhi;
gint xright;
gint height, width, fixed_width;
gint area;
xlo = xint[ylo].x;
xhi = xint[yhi].x;
xright = MIN (xlo, xhi);
height = yhi - ylo;
width = xright - xi;
if (aspect != 0)
{
fixed_width = (int) ceil((gdouble) height * aspect);
if (fixed_width <= width)
width = fixed_width;
else
width = 0;
}
area = width * height;
if (area > maxarea)
{
maxarea = area;
*x1 = xi;
*y1 = ylo;
*x2 = xi + width;
*y2 = ylo + height;
}
}
}
}
if (xi == top->xmax)
top = find_edge (edges, xi, TRUE);
if (xi == bottom->xmax)
bottom = find_edge (edges, xi, FALSE);
}
g_free (xint);
/* translate back the vertices */
*x1 = *x1 - ((-ax) * 2);
*y1 = *y1 - ((-ay) * 2);
*x2 = *x2 - ((-ax) * 2);
*y2 = *y2 - ((-ay) * 2);
}