mirror of https://github.com/GNOME/gimp.git
420 lines
8.9 KiB
C
420 lines
8.9 KiB
C
/* LIBGIMP - The GIMP Library
|
|
* Copyright (C) 1995-1997 Peter Mattis and Spencer Kimball
|
|
*
|
|
* gimpmatrix.c
|
|
* Copyright (C) 1998 Jay Cox <jaycox@earthlink.net>
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <string.h> /* memcmp */
|
|
|
|
#include <glib.h>
|
|
|
|
#include "gimpmath.h"
|
|
|
|
|
|
#define EPSILON 1e-6
|
|
|
|
|
|
/**
|
|
* gimp_matrix3_transform_point:
|
|
* @matrix: The transformation matrix.
|
|
* @x: The source X coordinate.
|
|
* @y: The source Y coordinate.
|
|
* @newx: The transformed X coordinate.
|
|
* @newy: The transformed Y coordinate.
|
|
*
|
|
* Transforms a point in 2D as specified by the transformation matrix.
|
|
*/
|
|
void
|
|
gimp_matrix3_transform_point (GimpMatrix3 matrix,
|
|
gdouble x,
|
|
gdouble y,
|
|
gdouble *newx,
|
|
gdouble *newy)
|
|
{
|
|
gdouble w;
|
|
|
|
w = matrix[2][0]*x + matrix[2][1]*y + matrix[2][2];
|
|
|
|
if (w == 0.0)
|
|
w = 1.0;
|
|
else
|
|
w = 1.0/w;
|
|
|
|
*newx = (matrix[0][0]*x + matrix[0][1]*y + matrix[0][2])*w;
|
|
*newy = (matrix[1][0]*x + matrix[1][1]*y + matrix[1][2])*w;
|
|
}
|
|
|
|
/**
|
|
* gimp_matrix3_mult:
|
|
* @matrix1: The first input matrix.
|
|
* @matrix2: The second input matrix which will be oeverwritten ba the result.
|
|
*
|
|
* Multiplies two matrices and puts the result into the second one.
|
|
*/
|
|
void
|
|
gimp_matrix3_mult (GimpMatrix3 matrix1,
|
|
GimpMatrix3 matrix2)
|
|
{
|
|
gint i, j;
|
|
GimpMatrix3 tmp;
|
|
gdouble t1, t2, t3;
|
|
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
t1 = matrix1[i][0];
|
|
t2 = matrix1[i][1];
|
|
t3 = matrix1[i][2];
|
|
for (j = 0; j < 3; j++)
|
|
{
|
|
tmp[i][j] = t1 * matrix2[0][j];
|
|
tmp[i][j] += t2 * matrix2[1][j];
|
|
tmp[i][j] += t3 * matrix2[2][j];
|
|
}
|
|
}
|
|
|
|
/* put the results in matrix2 */
|
|
memcpy (&matrix2[0][0], &tmp[0][0], sizeof (GimpMatrix3));
|
|
}
|
|
|
|
/**
|
|
* gimp_matrix3_identity:
|
|
* @matrix: A matrix.
|
|
*
|
|
* Sets the matrix to the identity matrix.
|
|
*/
|
|
void
|
|
gimp_matrix3_identity (GimpMatrix3 matrix)
|
|
{
|
|
static GimpMatrix3 identity = { { 1.0, 0.0, 0.0 },
|
|
{ 0.0, 1.0, 0.0 },
|
|
{ 0.0, 0.0, 1.0 } };
|
|
|
|
memcpy (&matrix[0][0], &identity[0][0], sizeof (GimpMatrix3));
|
|
}
|
|
|
|
/**
|
|
* gimp_matrix3_translate:
|
|
* @matrix: The matrix that is to be translated.
|
|
* @x: Translation in X direction.
|
|
* @y: Translation in Y direction.
|
|
*
|
|
* Translates the matrix by x and y.
|
|
*/
|
|
void
|
|
gimp_matrix3_translate (GimpMatrix3 matrix,
|
|
gdouble x,
|
|
gdouble y)
|
|
{
|
|
gdouble g, h, i;
|
|
|
|
g = matrix[2][0];
|
|
h = matrix[2][1];
|
|
i = matrix[2][2];
|
|
|
|
matrix[0][0] += x * g;
|
|
matrix[0][1] += x * h;
|
|
matrix[0][2] += x * i;
|
|
matrix[1][0] += y * g;
|
|
matrix[1][1] += y * h;
|
|
matrix[1][2] += y * i;
|
|
}
|
|
|
|
/**
|
|
* gimp_matrix3_scale:
|
|
* @matrix: The matrix that is to be scaled.
|
|
* @x: X scale factor.
|
|
* @y: Y scale factor.
|
|
*
|
|
* Scales the matrix by x and y
|
|
*/
|
|
void
|
|
gimp_matrix3_scale (GimpMatrix3 matrix,
|
|
gdouble x,
|
|
gdouble y)
|
|
{
|
|
matrix[0][0] *= x;
|
|
matrix[0][1] *= x;
|
|
matrix[0][2] *= x;
|
|
|
|
matrix[1][0] *= y;
|
|
matrix[1][1] *= y;
|
|
matrix[1][2] *= y;
|
|
}
|
|
|
|
/**
|
|
* gimp_matrix3_rotate:
|
|
* @matrix: The matrix that is to be rotated.
|
|
* @theta: The angle of rotation (in radians).
|
|
*
|
|
* Rotates the matrix by theta degrees.
|
|
*/
|
|
void
|
|
gimp_matrix3_rotate (GimpMatrix3 matrix,
|
|
gdouble theta)
|
|
{
|
|
gdouble t1, t2;
|
|
gdouble cost, sint;
|
|
|
|
cost = cos (theta);
|
|
sint = sin (theta);
|
|
|
|
t1 = matrix[0][0];
|
|
t2 = matrix[1][0];
|
|
matrix[0][0] = cost * t1 - sint * t2;
|
|
matrix[1][0] = sint * t1 + cost * t2;
|
|
|
|
t1 = matrix[0][1];
|
|
t2 = matrix[1][1];
|
|
matrix[0][1] = cost * t1 - sint * t2;
|
|
matrix[1][1] = sint*t1 + cost*t2;
|
|
|
|
t1 = matrix[0][2];
|
|
t2 = matrix[1][2];
|
|
matrix[0][2] = cost*t1 - sint*t2;
|
|
matrix[1][2] = sint*t1 + cost*t2;
|
|
}
|
|
|
|
/**
|
|
* gimp_matrix3_xshear:
|
|
* @matrix: The matrix that is to be sheared.
|
|
* @amount: X shear amount.
|
|
*
|
|
* Shears the matrix in the X direction.
|
|
*/
|
|
void
|
|
gimp_matrix3_xshear (GimpMatrix3 matrix,
|
|
gdouble amount)
|
|
{
|
|
matrix[0][0] += amount * matrix[1][0];
|
|
matrix[0][1] += amount * matrix[1][1];
|
|
matrix[0][2] += amount * matrix[1][2];
|
|
}
|
|
|
|
/**
|
|
* gimp_matrix3_yshear:
|
|
* @matrix: The matrix that is to be sheared.
|
|
* @amount: Y shear amount.
|
|
*
|
|
* Shears the matrix in the Y direction.
|
|
*/
|
|
void
|
|
gimp_matrix3_yshear (GimpMatrix3 matrix,
|
|
gdouble amount)
|
|
{
|
|
matrix[1][0] += amount * matrix[0][0];
|
|
matrix[1][1] += amount * matrix[0][1];
|
|
matrix[1][2] += amount * matrix[0][2];
|
|
}
|
|
|
|
/**
|
|
* gimp_matrix3_determinant:
|
|
* @matrix: The input matrix.
|
|
*
|
|
* Calculates the determinant of the given matrix.
|
|
*
|
|
* Returns: The determinant.
|
|
*/
|
|
gdouble
|
|
gimp_matrix3_determinant (GimpMatrix3 matrix)
|
|
{
|
|
gdouble determinant;
|
|
|
|
determinant =
|
|
matrix[0][0] * (matrix[1][1]*matrix[2][2] - matrix[1][2]*matrix[2][1]);
|
|
determinant -=
|
|
matrix[1][0] * (matrix[0][1]*matrix[2][2] - matrix[0][2]*matrix[2][1]);
|
|
determinant +=
|
|
matrix[2][0] * (matrix[0][1]*matrix[1][2] - matrix[0][2]*matrix[1][1]);
|
|
|
|
return determinant;
|
|
}
|
|
|
|
/**
|
|
* gimp_matrix3_invert:
|
|
* @matrix: The matrix that is to be inverted.
|
|
* @matrix_inv: A matrix the inverted matrix should be written into.
|
|
*
|
|
* Inverts the given matrix.
|
|
*/
|
|
void
|
|
gimp_matrix3_invert (GimpMatrix3 matrix,
|
|
GimpMatrix3 matrix_inv)
|
|
{
|
|
gdouble det_1;
|
|
|
|
det_1 = gimp_matrix3_determinant (matrix);
|
|
|
|
if (det_1 == 0.0)
|
|
return;
|
|
|
|
det_1 = 1.0 / det_1;
|
|
|
|
matrix_inv[0][0] =
|
|
(matrix[1][1] * matrix[2][2] - matrix[1][2] * matrix[2][1]) * det_1;
|
|
|
|
matrix_inv[1][0] =
|
|
- (matrix[1][0] * matrix[2][2] - matrix[1][2] * matrix[2][0]) * det_1;
|
|
|
|
matrix_inv[2][0] =
|
|
(matrix[1][0] * matrix[2][1] - matrix[1][1] * matrix[2][0]) * det_1;
|
|
|
|
matrix_inv[0][1] =
|
|
- (matrix[0][1] * matrix[2][2] - matrix[0][2] * matrix[2][1] ) * det_1;
|
|
|
|
matrix_inv[1][1] =
|
|
(matrix[0][0] * matrix[2][2] - matrix[0][2] * matrix[2][0]) * det_1;
|
|
|
|
matrix_inv[2][1] =
|
|
- (matrix[0][0] * matrix[2][1] - matrix[0][1] * matrix[2][0]) * det_1;
|
|
|
|
matrix_inv[0][2] =
|
|
(matrix[0][1] * matrix[1][2] - matrix[0][2] * matrix[1][1]) * det_1;
|
|
|
|
matrix_inv[1][2] =
|
|
- (matrix[0][0] * matrix[1][2] - matrix[0][2] * matrix[1][0]) * det_1;
|
|
|
|
matrix_inv[2][2] =
|
|
(matrix[0][0] * matrix[1][1] - matrix[0][1] * matrix[1][0]) * det_1;
|
|
}
|
|
|
|
|
|
/**
|
|
* gimp_matrix3_duplicate:
|
|
* @src: The source matrix.
|
|
* @target: The destination matrix.
|
|
*
|
|
* Copies the source matrix to the destination matrix.
|
|
*/
|
|
void
|
|
gimp_matrix3_duplicate (GimpMatrix3 src,
|
|
GimpMatrix3 target)
|
|
{
|
|
memcpy (&target[0][0], &src[0][0], sizeof (GimpMatrix3));
|
|
}
|
|
|
|
|
|
/* functions to test for matrix properties */
|
|
|
|
|
|
/**
|
|
* gimp_matrix3_is_diagonal:
|
|
* @matrix: The matrix that is to be tested.
|
|
*
|
|
* Checks if the given matrix is diagonal.
|
|
*
|
|
* Returns: TRUE if the matrix is diagonal.
|
|
*/
|
|
gboolean
|
|
gimp_matrix3_is_diagonal (GimpMatrix3 matrix)
|
|
{
|
|
gint i, j;
|
|
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
for (j = 0; j < 3; j++)
|
|
{
|
|
if (i != j && fabs (matrix[i][j]) > EPSILON)
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/**
|
|
* gimp_matrix3_is_identity:
|
|
* @matrix: The matrix that is to be tested.
|
|
*
|
|
* Checks if the given matrix is the identity matrix.
|
|
*
|
|
* Returns: TRUE if the matrix is the identity matrix.
|
|
*/
|
|
gboolean
|
|
gimp_matrix3_is_identity (GimpMatrix3 matrix)
|
|
{
|
|
gint i,j;
|
|
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
for (j = 0; j < 3; j++)
|
|
{
|
|
if (i == j)
|
|
{
|
|
if (fabs (matrix[i][j] - 1.0) > EPSILON)
|
|
return FALSE;
|
|
}
|
|
else
|
|
{
|
|
if (fabs (matrix[i][j]) > EPSILON)
|
|
return FALSE;
|
|
}
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Check if we'll need to interpolate when applying this matrix.
|
|
This function returns TRUE if all entries of the upper left
|
|
2x2 matrix are either 0 or 1
|
|
*/
|
|
|
|
|
|
/**
|
|
* gimp_matrix3_is_simple:
|
|
* @matrix: The matrix that is to be tested.
|
|
*
|
|
* Checks if we'll need to interpolate when applying this matrix as
|
|
* a transformation.
|
|
*
|
|
* Returns: TRUE if all entries of the upper left 2x2 matrix are either
|
|
* 0 or 1
|
|
*/
|
|
gboolean
|
|
gimp_matrix3_is_simple (GimpMatrix3 matrix)
|
|
{
|
|
gdouble absm;
|
|
gint i, j;
|
|
|
|
for (i = 0; i < 2; i++)
|
|
{
|
|
for (j = 0; j < 2; j++)
|
|
{
|
|
absm = fabs (matrix[i][j]);
|
|
if (absm > EPSILON && fabs (absm - 1.0) > EPSILON)
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
void
|
|
gimp_matrix4_to_deg (GimpMatrix4 matrix,
|
|
gdouble *a,
|
|
gdouble *b,
|
|
gdouble *c)
|
|
{
|
|
*a = 180 * (asin (matrix[1][0]) / G_PI_2);
|
|
*b = 180 * (asin (matrix[2][0]) / G_PI_2);
|
|
*c = 180 * (asin (matrix[2][1]) / G_PI_2);
|
|
}
|