mirror of https://github.com/GNOME/gimp.git
4045 lines
172 KiB
C
4045 lines
172 KiB
C
/* The GIMP -- an image manipulation program
|
|
* Copyright (C) 1995 Spencer Kimball and Peter Mattis
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
/*
|
|
* TODO for Convert:
|
|
*
|
|
* Use palette of another open INDEXED image
|
|
*
|
|
* Do error-splitting trick for GREY->INDEXED
|
|
*/
|
|
|
|
/*
|
|
* 2000/01/30 - Use palette_selector instead of option_menu for custom
|
|
* palette. Use libgimp callback functions. [Sven]
|
|
*
|
|
* 99/09/01 - Created a low-bleed FS-dither option. [Adam]
|
|
*
|
|
* 99/08/29 - Deterministic colour dithering to arbitrary palettes.
|
|
* Ideal for animations that are going to be delta-optimized or simply
|
|
* don't want to look 'busy' in static areas. Also a bunch of bugfixes
|
|
* and tweaks. [Adam]
|
|
*
|
|
* 99/08/28 - Deterministic alpha dithering over layers, reduced bleeding
|
|
* of transparent values into opaque values, added optional stage to
|
|
* remove duplicate or unused colour entries from final colourmap. [Adam]
|
|
*
|
|
* 99/02/24 - Many revisions to the box-cut quantizer used in RGB->INDEXED
|
|
* conversion. Box to be cut is chosen on the basis of posessing an axis
|
|
* with the largest sum of weighted perceptible error, rather than based on
|
|
* volume or population. The box is split along this axis rather than its
|
|
* longest axis, at the point of error mean rather than simply at its centre.
|
|
* Error-limiting in the F-S dither has been disabled - it may become optional
|
|
* again later. If you're convinced that you have an image where the old
|
|
* dither looks better, let me know. [Adam]
|
|
*
|
|
* 99/01/10 - Hourglass... [Adam]
|
|
*
|
|
* 98/07/25 - Convert-to-indexed now remembers the last invocation's
|
|
* settings. Also, GRAY->INDEXED more flexible. [Adam]
|
|
*
|
|
* 98/07/05 - Sucked the warning about quantizing to too many colours into
|
|
* a text widget embedded in the dialog, improved intelligence of dialog
|
|
* to default 'custom palette' selection to 'Web' if available, and
|
|
* in this case not bother to present the native WWW-palette radio
|
|
* button. [Adam]
|
|
*
|
|
* 98/04/13 - avoid a division by zero when converting an empty gray-scale
|
|
* image (who would like to do such a thing anyway??) [Sven ]
|
|
*
|
|
* 98/03/23 - fixed a longstanding fencepost - hopefully the *right*
|
|
* way, *again*. [Adam]
|
|
*
|
|
* 97/11/14 - added a proper pdb interface and support for dithering
|
|
* to custom palettes (based on a patch by Eric Hernes) [Yosh]
|
|
*
|
|
* 97/11/04 - fixed the accidental use of the colour-counting case
|
|
* when palette_type is WEB or MONO. [Adam]
|
|
*
|
|
* 97/10/25 - colour-counting implemented (could use some hashing, but
|
|
* performance actually seems okay) - now RGB->INDEXED conversion isn't
|
|
* destructive if it doesn't have to be. [Adam]
|
|
*
|
|
* 97/10/14 - fixed divide-by-zero when converting a completely transparent
|
|
* RGB image to indexed. [Adam]
|
|
*
|
|
* 97/07/01 - started todo/revision log. Put code back in to
|
|
* eliminate full-alpha pixels from RGB histogram.
|
|
* [Adam D. Moss - adam@gimp.org]
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include "appenv.h"
|
|
#include "convert.h"
|
|
#include "cursorutil.h"
|
|
#include "drawable.h"
|
|
#include "floating_sel.h"
|
|
#include "fsdither.h"
|
|
#include "gdisplay.h"
|
|
#include "gimpui.h"
|
|
#include "undo.h"
|
|
#include "palette.h"
|
|
#include "palette_select.h"
|
|
|
|
#include "libgimp/gimpcolorspace.h"
|
|
#include "libgimp/gimpmath.h"
|
|
|
|
#include "libgimp/gimpintl.h"
|
|
|
|
#include "layer_pvt.h" /* ick. */
|
|
#include "drawable_pvt.h" /* ick ick. */
|
|
#include "tile_manager_pvt.h" /* ick ick ick. */
|
|
|
|
#define PRECISION_R 6
|
|
#define PRECISION_G 6
|
|
#define PRECISION_B 6
|
|
|
|
#define HIST_R_ELEMS (1<<PRECISION_R)
|
|
#define HIST_G_ELEMS (1<<PRECISION_G)
|
|
#define HIST_B_ELEMS (1<<PRECISION_B)
|
|
|
|
#define MR HIST_G_ELEMS*HIST_B_ELEMS
|
|
#define MG HIST_B_ELEMS
|
|
|
|
#define BITS_IN_SAMPLE 8
|
|
|
|
#define R_SHIFT (BITS_IN_SAMPLE-PRECISION_R)
|
|
#define G_SHIFT (BITS_IN_SAMPLE-PRECISION_G)
|
|
#define B_SHIFT (BITS_IN_SAMPLE-PRECISION_B)
|
|
|
|
/* this has to match the INTENSITY definition in libgimp/gimpcolorspace.h */
|
|
#define R_SCALE 30 /* scale R distances by this much */
|
|
#define G_SCALE 59 /* scale G distances by this much */
|
|
#define B_SCALE 11 /* and B by this much */
|
|
|
|
static const unsigned char webpal[] =
|
|
{
|
|
255,255,255,255,255,204,255,255,153,255,255,102,255,255,51,255,255,0,255,
|
|
204,255,255,204,204,255,204,153,255,204,102,255,204,51,255,204,0,255,153,
|
|
255,255,153,204,255,153,153,255,153,102,255,153,51,255,153,0,255,102,255,
|
|
255,102,204,255,102,153,255,102,102,255,102,51,255,102,0,255,51,255,255,
|
|
51,204,255,51,153,255,51,102,255,51,51,255,51,0,255,0,255,255,0,
|
|
204,255,0,153,255,0,102,255,0,51,255,0,0,204,255,255,204,255,204,
|
|
204,255,153,204,255,102,204,255,51,204,255,0,204,204,255,204,204,204,204,
|
|
204,153,204,204,102,204,204,51,204,204,0,204,153,255,204,153,204,204,153,
|
|
153,204,153,102,204,153,51,204,153,0,204,102,255,204,102,204,204,102,153,
|
|
204,102,102,204,102,51,204,102,0,204,51,255,204,51,204,204,51,153,204,
|
|
51,102,204,51,51,204,51,0,204,0,255,204,0,204,204,0,153,204,0,
|
|
102,204,0,51,204,0,0,153,255,255,153,255,204,153,255,153,153,255,102,
|
|
153,255,51,153,255,0,153,204,255,153,204,204,153,204,153,153,204,102,153,
|
|
204,51,153,204,0,153,153,255,153,153,204,153,153,153,153,153,102,153,153,
|
|
51,153,153,0,153,102,255,153,102,204,153,102,153,153,102,102,153,102,51,
|
|
153,102,0,153,51,255,153,51,204,153,51,153,153,51,102,153,51,51,153,
|
|
51,0,153,0,255,153,0,204,153,0,153,153,0,102,153,0,51,153,0,
|
|
0,102,255,255,102,255,204,102,255,153,102,255,102,102,255,51,102,255,0,
|
|
102,204,255,102,204,204,102,204,153,102,204,102,102,204,51,102,204,0,102,
|
|
153,255,102,153,204,102,153,153,102,153,102,102,153,51,102,153,0,102,102,
|
|
255,102,102,204,102,102,153,102,102,102,102,102,51,102,102,0,102,51,255,
|
|
102,51,204,102,51,153,102,51,102,102,51,51,102,51,0,102,0,255,102,
|
|
0,204,102,0,153,102,0,102,102,0,51,102,0,0,51,255,255,51,255,
|
|
204,51,255,153,51,255,102,51,255,51,51,255,0,51,204,255,51,204,204,
|
|
51,204,153,51,204,102,51,204,51,51,204,0,51,153,255,51,153,204,51,
|
|
153,153,51,153,102,51,153,51,51,153,0,51,102,255,51,102,204,51,102,
|
|
153,51,102,102,51,102,51,51,102,0,51,51,255,51,51,204,51,51,153,
|
|
51,51,102,51,51,51,51,51,0,51,0,255,51,0,204,51,0,153,51,
|
|
0,102,51,0,51,51,0,0,0,255,255,0,255,204,0,255,153,0,255,
|
|
102,0,255,51,0,255,0,0,204,255,0,204,204,0,204,153,0,204,102,
|
|
0,204,51,0,204,0,0,153,255,0,153,204,0,153,153,0,153,102,0,
|
|
153,51,0,153,0,0,102,255,0,102,204,0,102,153,0,102,102,0,102,
|
|
51,0,102,0,0,51,255,0,51,204,0,51,153,0,51,102,0,51,51,
|
|
0,51,0,0,0,255,0,0,204,0,0,153,0,0,102,0,0,51,0,0,0
|
|
};
|
|
|
|
/* Note: convert.c code currently makes assumptions about some of the
|
|
below defines, so small fixes are needed if they change... */
|
|
#define DM_WIDTH 128
|
|
#define DM_WIDTHMASK 127
|
|
#define DM_WIDTH_SHIFT 7
|
|
#define DM_HEIGHT 128
|
|
#define DM_HEIGHTMASK 127
|
|
/* This dither table was generated by Raph Levien using patented
|
|
technology (US Patent 5,276,535). The dither table itself is in the
|
|
public domain. */
|
|
static const guchar DM[128][128] =
|
|
{
|
|
{ 0, 41, 23, 5, 17, 39, 7, 15, 62, 23, 40, 51, 31, 47, 9, 32, 52, 27, 57, 25, 6, 61, 27, 52, 37, 7, 40, 63, 18, 36, 10, 42, 25, 62, 45, 34, 20, 42, 37, 14, 35, 29, 50, 10, 61, 2, 40, 8, 37, 12, 58, 22, 5, 41, 10, 39, 0, 60, 11, 46, 2, 55, 38, 17, 36, 59, 13, 54, 37, 56, 8, 29, 16, 13, 63, 22, 41, 55, 7, 20, 49, 14, 23, 55, 37, 23, 19, 36, 15, 49, 23, 63, 30, 14, 38, 27, 53, 13, 22, 41, 19, 31, 7, 19, 50, 30, 49, 16, 3, 32, 56, 40, 29, 34, 8, 48, 19, 45, 4, 51, 12, 46, 35, 49, 16, 42, 12, 62 },
|
|
{ 30, 57, 36, 54, 47, 34, 52, 27, 43, 4, 28, 7, 17, 36, 62, 13, 44, 7, 18, 48, 33, 21, 44, 14, 30, 47, 12, 33, 5, 55, 31, 58, 13, 30, 4, 17, 52, 10, 60, 26, 46, 0, 39, 27, 42, 22, 47, 25, 60, 32, 9, 38, 48, 17, 59, 30, 49, 18, 34, 25, 51, 19, 5, 48, 21, 8, 28, 46, 1, 32, 41, 19, 54, 47, 37, 18, 28, 11, 44, 30, 39, 56, 2, 33, 8, 42, 61, 28, 58, 8, 46, 9, 41, 4, 58, 7, 21, 48, 59, 10, 52, 14, 42, 57, 12, 25, 7, 53, 42, 24, 11, 50, 17, 59, 42, 2, 36, 60, 32, 17, 63, 29, 21, 7, 59, 32, 24, 39 },
|
|
{ 22, 8, 16, 32, 3, 25, 13, 57, 18, 45, 58, 39, 55, 20, 5, 42, 23, 34, 63, 1, 51, 10, 58, 4, 60, 23, 53, 27, 44, 21, 3, 48, 8, 50, 43, 54, 27, 32, 5, 55, 21, 58, 12, 53, 6, 36, 14, 50, 17, 29, 53, 15, 24, 52, 7, 36, 13, 42, 4, 53, 9, 35, 61, 26, 56, 32, 49, 15, 62, 23, 6, 60, 2, 31, 4, 48, 58, 38, 15, 61, 5, 25, 47, 28, 50, 15, 7, 40, 3, 32, 33, 52, 25, 50, 35, 42, 61, 3, 28, 36, 23, 63, 4, 33, 46, 62, 36, 23, 60, 6, 54, 28, 4, 37, 23, 55, 25, 8, 42, 54, 14, 6, 56, 38, 19, 52, 4, 46 },
|
|
{ 48, 53, 43, 12, 45, 63, 30, 37, 9, 34, 21, 1, 25, 47, 29, 58, 3, 54, 15, 39, 29, 17, 38, 35, 20, 43, 1, 49, 15, 59, 29, 39, 22, 35, 16, 23, 1, 47, 39, 18, 8, 44, 25, 31, 57, 19, 63, 4, 45, 3, 42, 61, 1, 31, 45, 20, 57, 29, 62, 21, 32, 41, 14, 44, 3, 39, 5, 34, 10, 43, 51, 35, 23, 52, 40, 10, 21, 1, 53, 18, 51, 43, 12, 62, 18, 54, 26, 51, 20, 57, 14, 1, 62, 16, 11, 18, 32, 39, 17, 44, 1, 48, 26, 37, 18, 2, 51, 14, 28, 45, 35, 18, 57, 13, 47, 11, 51, 20, 2, 39, 31, 47, 25, 1, 50, 11, 60, 7 },
|
|
{ 18, 28, 1, 56, 21, 10, 51, 2, 46, 54, 14, 61, 11, 50, 13, 38, 19, 31, 45, 9, 55, 24, 47, 5, 54, 9, 62, 11, 35, 8, 51, 14, 57, 6, 63, 40, 58, 14, 51, 28, 62, 34, 15, 48, 1, 41, 30, 35, 55, 21, 34, 11, 49, 37, 8, 52, 4, 23, 15, 43, 1, 58, 11, 23, 53, 16, 55, 26, 58, 18, 27, 12, 45, 14, 25, 63, 42, 33, 27, 35, 9, 31, 21, 38, 1, 44, 34, 12, 48, 38, 21, 44, 29, 47, 26, 53, 1, 46, 54, 8, 59, 29, 11, 55, 22, 41, 33, 20, 39, 1, 48, 9, 44, 32, 5, 62, 29, 44, 57, 23, 10, 58, 34, 43, 15, 37, 26, 33 },
|
|
{ 51, 38, 59, 24, 35, 42, 19, 60, 5, 32, 41, 26, 43, 33, 7, 53, 48, 11, 59, 23, 42, 2, 61, 30, 16, 40, 32, 24, 56, 41, 19, 33, 37, 26, 47, 9, 31, 22, 2, 45, 9, 54, 4, 37, 21, 52, 11, 23, 7, 57, 16, 25, 55, 18, 63, 27, 46, 39, 56, 10, 50, 37, 29, 47, 19, 63, 24, 9, 46, 2, 39, 60, 9, 57, 30, 7, 49, 11, 59, 3, 45, 57, 5, 60, 29, 22, 5, 60, 30, 9, 59, 18, 40, 6, 57, 36, 30, 12, 24, 34, 15, 40, 52, 6, 49, 9, 58, 4, 63, 12, 26, 61, 22, 53, 38, 16, 35, 14, 28, 50, 42, 17, 5, 28, 62, 20, 54, 12 },
|
|
{ 26, 6, 31, 15, 49, 6, 38, 27, 22, 49, 16, 56, 2, 62, 30, 21, 0, 36, 28, 6, 49, 32, 13, 52, 26, 50, 19, 46, 3, 26, 62, 0, 53, 12, 29, 3, 53, 41, 60, 24, 38, 13, 58, 16, 43, 9, 59, 39, 46, 28, 44, 40, 2, 33, 13, 41, 16, 6, 47, 31, 26, 17, 57, 6, 38, 0, 42, 36, 29, 52, 20, 31, 48, 0, 34, 56, 20, 36, 23, 54, 14, 41, 24, 37, 10, 55, 46, 25, 16, 45, 36, 4, 55, 23, 15, 8, 50, 62, 5, 56, 44, 20, 13, 28, 59, 31, 24, 47, 31, 52, 37, 17, 40, 0, 26, 49, 3, 60, 7, 33, 0, 61, 53, 40, 8, 45, 2, 41 },
|
|
{ 16, 63, 43, 4, 61, 24, 56, 13, 53, 8, 36, 12, 24, 41, 16, 46, 60, 26, 52, 39, 14, 57, 21, 37, 0, 45, 7, 59, 38, 17, 43, 10, 45, 20, 61, 43, 19, 11, 33, 17, 50, 32, 23, 61, 28, 49, 26, 0, 18, 51, 5, 60, 22, 58, 29, 0, 59, 34, 19, 62, 3, 52, 7, 44, 30, 59, 13, 50, 15, 62, 7, 17, 38, 22, 44, 15, 40, 4, 47, 28, 33, 17, 49, 16, 51, 40, 10, 56, 0, 53, 13, 49, 28, 38, 60, 21, 43, 19, 37, 27, 3, 51, 34, 39, 0, 45, 15, 43, 10, 21, 3, 55, 8, 33, 59, 10, 41, 18, 52, 24, 46, 20, 30, 13, 58, 22, 36, 57 },
|
|
{ 50, 34, 11, 47, 29, 17, 44, 0, 33, 63, 28, 46, 52, 5, 57, 10, 42, 18, 4, 63, 20, 8, 44, 10, 56, 34, 14, 29, 5, 54, 23, 59, 32, 49, 7, 34, 49, 27, 56, 0, 42, 7, 46, 3, 40, 6, 54, 32, 62, 13, 36, 10, 47, 8, 35, 49, 24, 51, 12, 40, 22, 35, 60, 12, 22, 51, 33, 4, 40, 25, 43, 55, 5, 54, 12, 61, 26, 51, 8, 62, 0, 53, 7, 63, 2, 32, 19, 34, 42, 24, 31, 63, 2, 10, 45, 33, 0, 48, 9, 61, 22, 47, 8, 62, 18, 56, 7, 54, 27, 57, 46, 30, 50, 19, 45, 30, 56, 36, 22, 47, 11, 38, 3, 51, 32, 48, 18, 9 },
|
|
{ 0, 21, 40, 19, 52, 9, 37, 48, 20, 40, 3, 18, 27, 38, 35, 22, 31, 56, 13, 35, 46, 28, 60, 40, 27, 18, 61, 50, 41, 30, 7, 36, 2, 25, 16, 57, 5, 15, 47, 29, 55, 19, 30, 52, 15, 34, 20, 12, 43, 30, 20, 54, 25, 44, 53, 12, 38, 5, 55, 27, 48, 15, 33, 27, 45, 8, 19, 28, 56, 11, 33, 49, 18, 36, 29, 2, 45, 16, 39, 19, 31, 43, 27, 35, 20, 52, 26, 6, 61, 11, 41, 17, 29, 51, 20, 56, 25, 32, 41, 17, 53, 31, 25, 14, 42, 23, 35, 16, 38, 6, 34, 12, 15, 62, 6, 21, 13, 1, 63, 9, 55, 27, 43, 25, 14, 4, 31, 55 },
|
|
{ 44, 29, 61, 2, 35, 58, 26, 15, 60, 10, 51, 59, 14, 55, 8, 50, 2, 44, 25, 51, 1, 33, 16, 4, 48, 36, 2, 21, 12, 57, 48, 13, 51, 55, 40, 28, 37, 62, 8, 39, 12, 63, 36, 10, 59, 24, 56, 47, 9, 50, 41, 1, 32, 17, 6, 21, 61, 30, 9, 43, 1, 54, 41, 2, 54, 37, 48, 61, 1, 46, 21, 3, 58, 24, 50, 32, 60, 10, 57, 25, 46, 12, 59, 4, 45, 13, 57, 47, 27, 39, 5, 58, 47, 14, 35, 4, 52, 13, 60, 6, 36, 10, 45, 55, 4, 50, 29, 2, 61, 50, 25, 58, 44, 24, 36, 42, 54, 28, 40, 32, 16, 56, 6, 62, 46, 39, 60, 23 },
|
|
{ 7, 48, 14, 54, 23, 40, 4, 45, 30, 22, 42, 32, 1, 44, 20, 29, 58, 8, 37, 19, 41, 54, 24, 58, 9, 53, 25, 46, 34, 16, 23, 38, 27, 11, 18, 1, 52, 21, 35, 22, 48, 5, 25, 45, 18, 38, 2, 27, 35, 4, 57, 15, 62, 39, 57, 28, 42, 16, 36, 60, 24, 18, 10, 63, 20, 5, 16, 23, 37, 14, 59, 27, 41, 8, 13, 42, 21, 35, 6, 50, 3, 38, 15, 48, 30, 39, 17, 3, 49, 14, 53, 33, 24, 7, 61, 44, 11, 39, 23, 49, 19, 58, 1, 32, 36, 12, 60, 41, 20, 13, 41, 4, 39, 1, 48, 8, 18, 51, 14, 44, 5, 37, 21, 34, 1, 26, 10, 37 },
|
|
{ 53, 36, 27, 9, 50, 12, 32, 55, 2, 57, 7, 17, 48, 34, 63, 15, 40, 26, 62, 11, 49, 6, 31, 39, 22, 42, 6, 63, 1, 39, 60, 4, 42, 61, 32, 45, 24, 44, 2, 60, 16, 41, 53, 1, 33, 61, 49, 17, 63, 23, 45, 26, 33, 3, 23, 46, 2, 50, 20, 4, 45, 34, 49, 30, 39, 58, 44, 31, 53, 34, 6, 52, 30, 47, 63, 1, 53, 22, 42, 31, 58, 23, 54, 22, 61, 8, 36, 59, 22, 35, 21, 1, 55, 40, 27, 16, 30, 54, 2, 29, 43, 16, 39, 63, 21, 46, 26, 10, 48, 32, 19, 53, 30, 56, 26, 60, 33, 4, 61, 23, 49, 59, 15, 53, 19, 58, 42, 16 },
|
|
{ 20, 5, 59, 46, 25, 62, 7, 19, 43, 25, 37, 61, 11, 24, 4, 54, 12, 52, 3, 32, 17, 61, 12, 47, 15, 55, 18, 31, 53, 28, 9, 50, 21, 6, 55, 9, 58, 14, 54, 26, 33, 7, 31, 58, 13, 21, 8, 42, 29, 6, 37, 11, 48, 52, 14, 60, 11, 39, 56, 32, 14, 58, 7, 26, 17, 4, 42, 8, 11, 47, 19, 38, 10, 17, 26, 37, 9, 55, 28, 13, 18, 40, 6, 33, 1, 43, 25, 11, 51, 7, 62, 43, 18, 37, 3, 57, 45, 9, 38, 58, 5, 52, 27, 7, 17, 53, 5, 57, 37, 2, 63, 9, 22, 15, 11, 38, 25, 45, 35, 0, 28, 10, 41, 30, 50, 8, 31, 57 },
|
|
{ 49, 33, 16, 38, 1, 42, 51, 34, 53, 14, 28, 49, 30, 56, 36, 23, 43, 20, 38, 56, 22, 45, 28, 0, 62, 35, 26, 44, 11, 19, 52, 35, 44, 15, 30, 38, 10, 31, 40, 4, 46, 50, 20, 40, 27, 44, 51, 14, 56, 53, 19, 59, 7, 29, 41, 19, 35, 25, 8, 52, 22, 44, 13, 53, 50, 32, 61, 24, 56, 25, 63, 0, 45, 57, 33, 59, 16, 46, 4, 62, 50, 11, 60, 37, 52, 19, 55, 29, 37, 46, 13, 26, 48, 10, 50, 34, 21, 63, 26, 13, 42, 33, 22, 55, 35, 28, 43, 15, 24, 51, 27, 34, 46, 49, 58, 3, 52, 9, 57, 19, 48, 55, 3, 35, 12, 45, 24, 3 },
|
|
{ 41, 11, 56, 28, 18, 31, 22, 10, 37, 6, 47, 13, 3, 41, 9, 46, 0, 48, 29, 6, 34, 10, 55, 37, 20, 8, 49, 3, 41, 59, 14, 25, 0, 63, 19, 47, 27, 51, 17, 57, 23, 10, 61, 6, 54, 3, 38, 31, 0, 22, 34, 43, 20, 55, 31, 0, 49, 63, 29, 38, 3, 62, 28, 40, 0, 22, 14, 35, 2, 48, 15, 43, 23, 14, 3, 29, 49, 20, 39, 34, 0, 44, 29, 9, 15, 47, 5, 42, 0, 31, 58, 5, 31, 61, 23, 15, 0, 47, 19, 50, 24, 3, 59, 11, 44, 0, 31, 59, 6, 42, 17, 60, 0, 39, 20, 31, 43, 17, 29, 40, 12, 25, 60, 22, 52, 15, 63, 29 },
|
|
{ 20, 52, 8, 44, 62, 4, 59, 49, 17, 63, 21, 39, 60, 18, 52, 27, 33, 59, 14, 51, 59, 43, 24, 5, 51, 30, 57, 17, 32, 5, 37, 56, 48, 34, 42, 3, 60, 5, 36, 13, 43, 37, 18, 34, 25, 12, 59, 24, 47, 36, 11, 50, 3, 38, 9, 58, 16, 5, 43, 18, 47, 10, 37, 18, 59, 46, 29, 52, 40, 12, 34, 28, 56, 36, 53, 7, 43, 8, 24, 52, 26, 17, 56, 43, 24, 32, 63, 20, 57, 16, 22, 52, 36, 8, 41, 56, 29, 32, 54, 7, 35, 57, 14, 48, 20, 62, 13, 39, 53, 29, 8, 45, 13, 29, 7, 61, 14, 54, 6, 63, 38, 32, 18, 43, 2, 39, 6, 47 },
|
|
{ 0, 58, 23, 35, 13, 46, 12, 39, 0, 31, 55, 24, 5, 35, 15, 61, 17, 5, 39, 25, 18, 2, 50, 33, 41, 13, 39, 23, 62, 46, 29, 12, 22, 8, 56, 25, 20, 49, 32, 62, 0, 56, 11, 46, 63, 42, 9, 16, 55, 5, 60, 15, 62, 26, 45, 21, 36, 51, 13, 57, 31, 24, 55, 6, 35, 9, 57, 5, 20, 60, 7, 51, 5, 19, 40, 25, 61, 32, 56, 12, 36, 48, 21, 2, 58, 12, 39, 28, 9, 50, 40, 12, 44, 18, 25, 49, 6, 38, 11, 62, 18, 46, 30, 9, 40, 25, 49, 19, 10, 36, 55, 22, 33, 52, 41, 18, 37, 27, 49, 21, 2, 46, 7, 53, 33, 61, 27, 35 },
|
|
{ 41, 31, 5, 39, 51, 26, 33, 57, 27, 41, 9, 44, 54, 29, 48, 7, 44, 36, 57, 10, 31, 63, 16, 45, 11, 60, 1, 47, 7, 20, 43, 3, 58, 36, 13, 52, 39, 7, 15, 28, 22, 48, 30, 21, 1, 29, 49, 44, 27, 17, 40, 30, 24, 42, 12, 53, 33, 7, 47, 20, 1, 42, 11, 49, 25, 43, 17, 32, 45, 27, 41, 21, 31, 62, 11, 49, 2, 15, 42, 5, 63, 7, 41, 27, 49, 6, 54, 23, 46, 34, 2, 28, 54, 3, 59, 12, 46, 17, 42, 28, 40, 1, 37, 51, 5, 55, 2, 34, 47, 16, 3, 62, 47, 5, 23, 56, 1, 44, 12, 34, 51, 16, 57, 11, 25, 17, 54, 13 },
|
|
{ 60, 26, 55, 18, 3, 60, 20, 6, 52, 15, 50, 19, 32, 11, 23, 53, 26, 21, 1, 47, 42, 27, 8, 58, 21, 27, 53, 36, 26, 54, 31, 50, 17, 30, 45, 1, 29, 59, 44, 53, 41, 4, 35, 58, 51, 19, 32, 4, 52, 34, 48, 8, 51, 5, 56, 2, 25, 61, 27, 38, 54, 27, 62, 21, 51, 1, 39, 62, 10, 50, 1, 58, 13, 47, 38, 18, 35, 54, 22, 51, 30, 19, 59, 34, 14, 32, 44, 4, 60, 15, 52, 62, 20, 43, 30, 35, 21, 60, 4, 52, 12, 24, 61, 18, 30, 42, 23, 61, 25, 50, 27, 38, 11, 59, 12, 35, 50, 30, 59, 24, 8, 42, 28, 37, 48, 9, 44, 21 },
|
|
{ 10, 47, 15, 50, 30, 43, 8, 45, 29, 2, 36, 59, 1, 58, 41, 3, 63, 31, 54, 20, 13, 55, 35, 38, 4, 44, 15, 9, 61, 2, 14, 38, 61, 10, 23, 54, 18, 12, 24, 2, 14, 55, 16, 8, 38, 14, 41, 60, 10, 23, 1, 58, 32, 17, 28, 37, 41, 15, 3, 60, 15, 33, 4, 36, 16, 59, 28, 14, 23, 55, 37, 18, 44, 28, 2, 57, 30, 10, 27, 46, 14, 38, 3, 53, 21, 61, 17, 35, 10, 41, 26, 7, 33, 9, 57, 1, 53, 37, 26, 20, 56, 48, 9, 33, 58, 16, 37, 7, 45, 1, 57, 15, 32, 26, 42, 23, 7, 20, 4, 54, 31, 62, 22, 1, 59, 30, 4, 51 },
|
|
{ 36, 2, 38, 11, 24, 36, 54, 22, 62, 47, 25, 8, 28, 45, 16, 38, 12, 43, 9, 37, 49, 3, 23, 52, 18, 30, 50, 33, 19, 42, 49, 26, 6, 40, 47, 35, 63, 38, 50, 33, 60, 26, 36, 47, 24, 57, 6, 26, 39, 63, 19, 44, 14, 46, 61, 9, 50, 30, 45, 23, 10, 50, 44, 8, 31, 54, 6, 46, 36, 4, 30, 54, 8, 52, 22, 41, 4, 60, 40, 0, 58, 24, 45, 10, 37, 1, 48, 30, 56, 17, 38, 48, 24, 47, 19, 39, 14, 8, 45, 32, 2, 34, 27, 44, 4, 52, 11, 56, 31, 21, 40, 19, 44, 51, 2, 63, 46, 58, 36, 43, 14, 5, 50, 38, 14, 56, 40, 23 },
|
|
{ 61, 46, 32, 63, 54, 1, 14, 34, 12, 40, 18, 49, 37, 10, 61, 30, 51, 24, 60, 7, 29, 40, 62, 11, 46, 58, 6, 56, 24, 10, 34, 52, 21, 59, 16, 3, 27, 5, 20, 46, 9, 40, 7, 62, 2, 30, 53, 15, 48, 10, 28, 35, 54, 6, 21, 34, 18, 55, 7, 40, 57, 19, 26, 60, 41, 13, 24, 51, 19, 61, 9, 25, 34, 15, 63, 11, 45, 17, 20, 47, 33, 8, 31, 62, 43, 26, 53, 7, 24, 59, 0, 13, 55, 4, 62, 27, 51, 31, 63, 15, 58, 7, 54, 14, 46, 22, 28, 43, 12, 63, 8, 54, 5, 17, 39, 33, 15, 10, 27, 17, 47, 34, 19, 45, 27, 12, 33, 17 },
|
|
{ 5, 28, 21, 7, 17, 48, 42, 58, 23, 4, 63, 14, 55, 21, 34, 5, 19, 0, 45, 17, 52, 15, 25, 32, 0, 22, 40, 13, 45, 62, 18, 0, 43, 11, 33, 55, 30, 42, 57, 19, 51, 31, 22, 43, 18, 45, 34, 0, 43, 31, 56, 3, 23, 40, 59, 0, 44, 13, 48, 35, 2, 32, 46, 0, 21, 48, 35, 3, 40, 32, 43, 59, 0, 48, 33, 26, 53, 36, 55, 12, 51, 16, 55, 5, 18, 29, 11, 39, 51, 19, 45, 31, 42, 21, 35, 6, 22, 47, 10, 38, 23, 50, 20, 36, 0, 60, 38, 4, 50, 35, 48, 34, 24, 57, 9, 53, 28, 48, 61, 0, 56, 24, 53, 3, 63, 6, 42, 57 },
|
|
{ 13, 53, 45, 40, 58, 27, 6, 16, 38, 51, 33, 30, 43, 2, 47, 56, 40, 50, 33, 57, 27, 5, 47, 42, 60, 36, 16, 54, 28, 4, 37, 57, 28, 51, 22, 8, 45, 14, 6, 39, 0, 54, 11, 59, 28, 12, 50, 21, 61, 13, 19, 38, 49, 11, 25, 37, 58, 29, 22, 63, 14, 56, 12, 53, 30, 63, 9, 57, 26, 12, 47, 16, 23, 39, 50, 6, 31, 2, 25, 6, 28, 41, 36, 22, 50, 57, 42, 3, 34, 8, 28, 61, 11, 50, 16, 54, 41, 0, 55, 43, 5, 29, 41, 63, 25, 16, 53, 18, 26, 10, 21, 0, 61, 30, 41, 22, 3, 38, 20, 39, 29, 8, 41, 16, 36, 52, 22, 19 },
|
|
{ 55, 34, 0, 25, 10, 32, 56, 44, 28, 0, 57, 7, 26, 53, 23, 8, 13, 35, 22, 12, 36, 60, 20, 8, 14, 29, 48, 2, 41, 49, 23, 13, 39, 7, 48, 58, 25, 53, 34, 62, 28, 16, 48, 4, 37, 56, 27, 5, 36, 52, 46, 7, 62, 33, 52, 11, 17, 53, 5, 28, 41, 24, 38, 17, 5, 39, 20, 45, 15, 56, 5, 38, 60, 8, 14, 57, 21, 48, 62, 39, 59, 13, 1, 60, 9, 32, 16, 63, 44, 25, 52, 15, 36, 2, 60, 29, 12, 33, 25, 17, 59, 45, 13, 8, 49, 32, 6, 40, 59, 29, 45, 37, 13, 47, 6, 55, 30, 45, 9, 52, 13, 59, 25, 47, 32, 1, 49, 30 },
|
|
{ 9, 39, 14, 61, 49, 37, 3, 20, 50, 13, 41, 19, 46, 17, 38, 59, 28, 62, 4, 44, 54, 1, 34, 51, 55, 7, 63, 32, 21, 8, 56, 31, 62, 19, 36, 1, 41, 17, 24, 12, 42, 35, 25, 52, 20, 8, 44, 59, 25, 2, 22, 42, 16, 29, 4, 46, 20, 36, 43, 9, 51, 8, 49, 26, 58, 33, 54, 1, 37, 29, 52, 20, 27, 45, 19, 35, 42, 16, 10, 32, 20, 49, 46, 27, 40, 4, 47, 22, 13, 55, 4, 47, 26, 44, 23, 40, 58, 19, 48, 13, 31, 2, 57, 34, 42, 19, 61, 32, 14, 55, 5, 51, 26, 19, 58, 16, 49, 14, 62, 5, 33, 44, 21, 7, 60, 26, 11, 41 },
|
|
{ 62, 24, 47, 29, 8, 19, 53, 11, 60, 24, 32, 61, 4, 55, 31, 2, 49, 16, 39, 9, 31, 24, 43, 17, 26, 38, 11, 25, 58, 43, 12, 35, 3, 46, 15, 32, 63, 4, 49, 56, 2, 60, 10, 32, 63, 17, 39, 12, 55, 30, 57, 9, 48, 55, 39, 24, 60, 2, 58, 31, 19, 61, 34, 3, 42, 11, 22, 46, 7, 61, 10, 42, 3, 55, 32, 1, 58, 28, 44, 54, 4, 34, 23, 15, 56, 20, 37, 58, 6, 30, 38, 18, 63, 9, 32, 5, 51, 3, 62, 37, 52, 18, 39, 23, 3, 51, 9, 47, 1, 23, 43, 15, 60, 35, 11, 40, 1, 36, 31, 26, 57, 2, 37, 54, 18, 44, 58, 16 },
|
|
{ 5, 51, 3, 33, 43, 62, 21, 42, 35, 9, 48, 15, 36, 10, 22, 42, 20, 46, 26, 56, 50, 12, 59, 3, 48, 19, 45, 53, 1, 27, 47, 17, 52, 24, 56, 11, 51, 21, 37, 30, 20, 46, 14, 41, 1, 47, 33, 7, 41, 17, 35, 27, 20, 1, 14, 54, 26, 33, 18, 47, 1, 44, 14, 59, 16, 52, 28, 18, 49, 31, 25, 34, 63, 13, 51, 24, 9, 50, 3, 23, 38, 63, 7, 52, 29, 46, 11, 33, 50, 22, 57, 36, 1, 57, 49, 17, 39, 28, 9, 35, 6, 27, 53, 15, 55, 30, 24, 58, 36, 41, 11, 52, 32, 3, 44, 25, 62, 23, 51, 15, 42, 22, 50, 10, 39, 4, 31, 35 },
|
|
{ 46, 22, 57, 17, 12, 39, 26, 5, 31, 59, 1, 45, 27, 62, 52, 7, 58, 33, 6, 18, 39, 22, 33, 41, 57, 5, 35, 18, 40, 16, 60, 5, 29, 42, 7, 39, 27, 44, 9, 47, 8, 26, 54, 22, 51, 29, 24, 49, 15, 61, 4, 51, 31, 63, 43, 6, 50, 8, 39, 12, 53, 37, 23, 30, 40, 6, 62, 43, 14, 53, 2, 49, 7, 36, 17, 41, 61, 37, 18, 56, 11, 18, 44, 35, 2, 19, 61, 0, 41, 14, 8, 30, 43, 12, 24, 46, 14, 54, 42, 21, 44, 61, 10, 46, 37, 11, 44, 7, 18, 63, 20, 29, 7, 49, 28, 54, 8, 43, 4, 48, 18, 63, 12, 29, 48, 24, 59, 20 },
|
|
{ 13, 36, 28, 54, 35, 2, 56, 46, 16, 49, 22, 40, 11, 34, 14, 43, 29, 12, 63, 48, 2, 61, 7, 15, 28, 30, 50, 9, 61, 33, 38, 23, 54, 13, 61, 33, 3, 59, 16, 35, 58, 40, 5, 38, 13, 57, 3, 58, 37, 21, 45, 12, 39, 7, 35, 30, 13, 56, 22, 62, 27, 6, 55, 10, 48, 21, 33, 2, 38, 23, 40, 20, 44, 29, 59, 4, 26, 12, 33, 47, 28, 53, 31, 13, 59, 41, 27, 49, 26, 54, 45, 16, 53, 21, 35, 7, 59, 26, 11, 56, 1, 24, 33, 4, 28, 62, 21, 49, 31, 2, 56, 39, 24, 58, 13, 17, 37, 21, 56, 10, 38, 0, 34, 55, 15, 43, 1, 52 },
|
|
{ 42, 9, 50, 6, 25, 60, 14, 38, 10, 29, 53, 18, 57, 3, 25, 51, 0, 53, 25, 17, 29, 37, 52, 46, 0, 62, 14, 37, 4, 50, 10, 44, 0, 46, 20, 25, 50, 19, 55, 0, 23, 31, 62, 34, 11, 45, 19, 32, 0, 53, 10, 59, 23, 47, 18, 60, 42, 28, 37, 3, 50, 15, 35, 44, 0, 51, 27, 60, 9, 57, 16, 58, 11, 22, 46, 15, 53, 48, 7, 42, 0, 60, 5, 49, 24, 54, 9, 17, 39, 5, 34, 62, 3, 40, 60, 31, 0, 47, 29, 16, 49, 39, 59, 17, 50, 0, 40, 13, 53, 38, 16, 46, 0, 42, 34, 60, 2, 53, 29, 31, 58, 46, 27, 6, 61, 8, 37, 28 },
|
|
{ 0, 63, 21, 40, 45, 18, 51, 23, 63, 34, 6, 43, 28, 38, 55, 19, 40, 35, 8, 41, 54, 10, 21, 32, 39, 23, 53, 26, 55, 28, 22, 63, 30, 34, 9, 48, 6, 38, 29, 43, 49, 6, 18, 52, 27, 61, 9, 43, 28, 42, 33, 26, 56, 3, 51, 23, 0, 48, 16, 45, 32, 25, 63, 20, 57, 17, 42, 12, 35, 47, 5, 31, 39, 56, 6, 30, 34, 21, 61, 25, 14, 40, 22, 38, 15, 6, 36, 56, 20, 60, 25, 12, 51, 27, 10, 56, 42, 20, 36, 63, 32, 6, 21, 41, 12, 34, 60, 26, 5, 48, 27, 10, 62, 19, 6, 47, 39, 14, 45, 7, 24, 17, 41, 32, 23, 51, 19, 56 },
|
|
{ 45, 31, 15, 59, 4, 33, 7, 47, 0, 41, 13, 61, 4, 47, 9, 23, 60, 14, 57, 31, 4, 45, 59, 6, 58, 10, 44, 20, 8, 42, 15, 6, 55, 17, 58, 31, 53, 12, 61, 10, 15, 57, 43, 2, 23, 35, 48, 14, 54, 6, 18, 49, 15, 38, 11, 34, 62, 9, 21, 58, 11, 41, 4, 31, 38, 8, 29, 55, 19, 36, 27, 52, 0, 25, 50, 43, 1, 39, 8, 55, 35, 51, 10, 30, 45, 62, 29, 2, 46, 10, 32, 48, 18, 38, 5, 22, 33, 8, 51, 3, 14, 44, 54, 25, 57, 30, 18, 52, 33, 22, 59, 28, 36, 52, 32, 21, 26, 50, 5, 55, 35, 60, 14, 54, 4, 40, 16, 33 },
|
|
{ 27, 3, 49, 10, 30, 40, 55, 27, 57, 24, 52, 21, 32, 17, 60, 30, 5, 44, 27, 49, 19, 34, 13, 24, 43, 36, 3, 49, 31, 59, 37, 48, 26, 41, 2, 41, 14, 36, 21, 32, 40, 26, 13, 49, 55, 5, 16, 40, 25, 60, 36, 1, 63, 29, 17, 44, 25, 40, 52, 5, 29, 47, 54, 13, 46, 24, 60, 4, 51, 22, 63, 14, 45, 18, 12, 62, 17, 57, 19, 42, 3, 26, 58, 48, 1, 21, 40, 52, 23, 37, 44, 1, 29, 58, 43, 50, 15, 61, 19, 45, 58, 28, 7, 48, 2, 46, 8, 42, 3, 55, 8, 50, 12, 4, 55, 10, 63, 33, 20, 40, 11, 3, 46, 20, 48, 26, 61, 11 },
|
|
{ 44, 56, 24, 36, 53, 19, 12, 37, 16, 44, 7, 36, 49, 54, 11, 37, 48, 21, 15, 1, 62, 25, 47, 56, 16, 18, 51, 12, 40, 1, 24, 11, 52, 16, 23, 59, 28, 1, 45, 53, 4, 60, 37, 21, 39, 30, 63, 20, 52, 10, 30, 45, 8, 41, 54, 4, 57, 7, 34, 55, 36, 18, 23, 59, 2, 48, 11, 32, 44, 1, 41, 8, 33, 54, 38, 23, 30, 46, 6, 29, 62, 18, 32, 16, 55, 34, 14, 11, 61, 7, 55, 16, 53, 13, 23, 2, 55, 37, 26, 10, 33, 23, 36, 16, 38, 22, 56, 15, 24, 43, 35, 17, 44, 40, 25, 46, 16, 1, 57, 25, 49, 36, 28, 62, 9, 35, 7, 53 },
|
|
{ 17, 38, 8, 61, 1, 50, 26, 62, 3, 31, 56, 15, 1, 26, 40, 2, 34, 51, 56, 36, 42, 9, 38, 2, 29, 60, 32, 57, 19, 62, 34, 47, 4, 57, 39, 7, 44, 63, 24, 18, 46, 28, 8, 54, 1, 34, 7, 46, 3, 37, 50, 23, 57, 21, 13, 46, 31, 20, 43, 15, 1, 61, 8, 33, 37, 17, 56, 26, 15, 49, 24, 59, 28, 3, 56, 9, 52, 32, 13, 49, 10, 43, 5, 45, 8, 25, 59, 42, 28, 33, 19, 40, 8, 63, 35, 47, 25, 4, 40, 52, 1, 60, 12, 53, 63, 9, 29, 60, 37, 19, 1, 62, 31, 20, 58, 12, 41, 30, 43, 9, 18, 52, 22, 1, 39, 30, 58, 21 },
|
|
{ 13, 47, 29, 18, 43, 34, 5, 48, 20, 42, 10, 45, 30, 58, 20, 63, 24, 11, 6, 28, 54, 14, 22, 52, 41, 7, 26, 5, 45, 15, 53, 13, 35, 27, 18, 50, 12, 33, 5, 56, 10, 17, 45, 24, 59, 15, 50, 26, 56, 13, 19, 5, 32, 52, 27, 36, 2, 61, 12, 26, 49, 40, 27, 52, 13, 50, 6, 39, 61, 34, 10, 37, 48, 20, 41, 27, 2, 36, 59, 24, 54, 33, 63, 20, 38, 50, 3, 17, 52, 4, 58, 27, 45, 21, 32, 11, 48, 17, 57, 20, 46, 38, 25, 43, 4, 34, 51, 6, 13, 45, 57, 26, 6, 48, 2, 35, 53, 23, 61, 34, 59, 6, 42, 56, 13, 51, 2, 41 },
|
|
{ 32, 5, 55, 23, 58, 14, 22, 52, 29, 15, 61, 25, 51, 8, 43, 13, 53, 41, 46, 20, 3, 33, 63, 11, 48, 21, 54, 38, 28, 3, 30, 43, 21, 62, 9, 31, 55, 22, 51, 29, 37, 62, 32, 12, 42, 29, 41, 9, 33, 44, 62, 28, 43, 1, 59, 19, 48, 30, 51, 39, 24, 4, 58, 19, 42, 29, 22, 43, 3, 18, 53, 5, 13, 50, 16, 60, 45, 21, 7, 40, 15, 0, 26, 53, 13, 31, 43, 24, 47, 31, 15, 49, 2, 41, 6, 59, 29, 42, 9, 30, 14, 7, 49, 18, 31, 47, 20, 39, 49, 32, 11, 41, 54, 15, 61, 18, 7, 38, 4, 13, 44, 28, 15, 32, 45, 19, 27, 49 },
|
|
{ 63, 34, 11, 39, 2, 45, 37, 8, 59, 39, 33, 4, 36, 17, 48, 5, 29, 18, 32, 61, 39, 50, 5, 27, 35, 0, 46, 12, 22, 49, 60, 6, 54, 0, 38, 49, 2, 42, 15, 40, 0, 47, 20, 51, 3, 57, 18, 61, 22, 0, 39, 16, 55, 12, 35, 8, 41, 22, 6, 59, 16, 45, 10, 36, 0, 62, 9, 54, 30, 58, 21, 43, 63, 31, 7, 35, 12, 48, 58, 28, 47, 37, 41, 9, 57, 20, 61, 0, 36, 11, 57, 35, 23, 52, 37, 18, 0, 62, 22, 55, 35, 62, 27, 54, 0, 15, 61, 28, 2, 59, 22, 9, 37, 27, 33, 51, 29, 48, 19, 50, 25, 37, 10, 57, 5, 37, 60, 8 },
|
|
{ 20, 25, 46, 52, 31, 60, 12, 55, 0, 19, 11, 46, 62, 35, 23, 38, 57, 0, 55, 10, 16, 30, 58, 44, 17, 59, 29, 63, 42, 8, 36, 20, 33, 46, 16, 61, 25, 35, 8, 54, 26, 7, 58, 22, 34, 6, 47, 14, 53, 31, 48, 9, 37, 25, 49, 63, 16, 55, 45, 14, 34, 63, 21, 53, 25, 33, 46, 16, 35, 7, 46, 29, 0, 39, 25, 55, 22, 34, 18, 4, 56, 11, 23, 51, 28, 6, 39, 14, 62, 44, 19, 8, 60, 12, 56, 28, 50, 34, 39, 5, 51, 3, 41, 12, 57, 35, 10, 53, 25, 17, 52, 30, 47, 0, 43, 14, 5, 57, 31, 55, 0, 63, 47, 23, 54, 24, 14, 43 },
|
|
{ 0, 57, 16, 6, 26, 19, 35, 28, 49, 42, 54, 26, 21, 1, 59, 27, 9, 47, 26, 44, 50, 22, 13, 40, 8, 37, 10, 34, 17, 56, 25, 58, 13, 27, 44, 9, 20, 58, 31, 17, 60, 36, 10, 41, 53, 25, 36, 39, 4, 24, 58, 17, 60, 4, 22, 38, 10, 32, 0, 50, 31, 7, 28, 47, 12, 57, 5, 26, 52, 23, 14, 40, 57, 17, 47, 5, 53, 1, 44, 31, 19, 60, 46, 2, 35, 48, 30, 54, 22, 5, 51, 39, 25, 31, 4, 43, 14, 9, 45, 16, 24, 44, 19, 29, 40, 23, 44, 7, 38, 42, 4, 63, 12, 54, 23, 59, 22, 42, 8, 15, 40, 21, 8, 34, 3, 41, 30, 50 },
|
|
{ 39, 10, 48, 33, 41, 54, 5, 47, 23, 13, 32, 7, 52, 44, 14, 39, 58, 18, 35, 6, 37, 2, 60, 24, 55, 19, 53, 2, 51, 32, 1, 41, 51, 4, 40, 29, 47, 3, 52, 44, 13, 49, 28, 16, 1, 62, 11, 27, 52, 35, 5, 42, 29, 47, 14, 56, 28, 53, 26, 38, 9, 56, 40, 3, 38, 15, 41, 60, 1, 37, 50, 25, 11, 28, 61, 19, 42, 62, 10, 52, 39, 6, 32, 14, 58, 17, 7, 26, 42, 34, 27, 10, 54, 40, 20, 63, 26, 53, 21, 61, 32, 7, 59, 48, 3, 56, 18, 31, 58, 14, 49, 21, 36, 16, 45, 9, 36, 24, 62, 45, 27, 31, 53, 17, 49, 12, 62, 18 },
|
|
{ 28, 59, 21, 58, 2, 16, 38, 9, 62, 3, 56, 41, 10, 31, 50, 4, 32, 52, 12, 63, 23, 46, 33, 31, 4, 48, 25, 43, 14, 23, 47, 11, 22, 55, 14, 60, 23, 37, 11, 39, 23, 2, 45, 56, 31, 43, 19, 55, 16, 46, 21, 51, 11, 33, 44, 2, 41, 18, 5, 52, 23, 44, 17, 60, 27, 49, 11, 32, 44, 10, 54, 2, 56, 33, 8, 38, 13, 29, 36, 16, 24, 63, 27, 51, 21, 43, 56, 12, 49, 3, 59, 48, 1, 15, 46, 7, 36, 2, 47, 11, 50, 27, 37, 13, 33, 8, 51, 46, 1, 34, 28, 40, 3, 33, 60, 29, 47, 1, 35, 11, 59, 42, 2, 60, 26, 46, 6, 35 },
|
|
{ 4, 43, 9, 29, 36, 63, 24, 44, 20, 50, 30, 17, 60, 22, 16, 43, 25, 3, 42, 19, 51, 15, 8, 54, 42, 15, 61, 5, 39, 57, 18, 61, 31, 48, 34, 2, 50, 19, 57, 5, 63, 33, 19, 38, 13, 27, 48, 7, 32, 61, 2, 26, 58, 6, 24, 50, 13, 61, 42, 20, 62, 2, 35, 20, 51, 4, 62, 18, 23, 58, 20, 31, 43, 15, 51, 45, 26, 50, 4, 55, 45, 3, 35, 9, 38, 1, 32, 61, 20, 45, 17, 33, 24, 57, 29, 51, 22, 58, 38, 30, 15, 1, 54, 21, 63, 43, 26, 12, 24, 56, 8, 60, 50, 19, 5, 52, 13, 54, 17, 50, 4, 16, 36, 12, 32, 56, 22, 54 },
|
|
{ 51, 25, 40, 53, 12, 49, 15, 57, 34, 7, 38, 47, 2, 36, 55, 8, 61, 30, 56, 7, 28, 59, 48, 11, 27, 35, 21, 45, 28, 36, 9, 38, 6, 16, 24, 63, 10, 32, 28, 43, 21, 53, 5, 60, 8, 57, 3, 45, 11, 37, 15, 54, 40, 20, 62, 36, 27, 34, 11, 48, 30, 15, 54, 8, 30, 42, 22, 34, 48, 13, 35, 63, 4, 37, 22, 2, 59, 9, 41, 23, 13, 41, 49, 18, 59, 24, 40, 5, 37, 30, 9, 61, 44, 6, 37, 11, 33, 17, 5, 55, 41, 60, 23, 39, 17, 5, 30, 62, 41, 16, 46, 25, 11, 56, 39, 26, 20, 38, 29, 39, 22, 52, 44, 20, 48, 1, 38, 14 },
|
|
{ 15, 33, 2, 18, 44, 6, 27, 0, 32, 61, 25, 12, 58, 28, 40, 20, 47, 13, 34, 43, 38, 1, 23, 62, 40, 0, 51, 10, 63, 3, 52, 26, 44, 30, 45, 6, 41, 54, 0, 51, 12, 30, 46, 24, 49, 22, 40, 33, 63, 23, 43, 30, 9, 47, 0, 17, 54, 7, 57, 3, 37, 47, 24, 46, 13, 55, 7, 52, 2, 42, 6, 26, 49, 18, 60, 34, 16, 57, 33, 20, 61, 30, 8, 54, 14, 46, 12, 53, 16, 55, 38, 13, 22, 53, 18, 59, 46, 27, 43, 19, 32, 10, 45, 6, 49, 36, 52, 2, 20, 55, 6, 39, 32, 15, 44, 3, 58, 10, 63, 6, 56, 30, 7, 58, 9, 40, 19, 63 },
|
|
{ 10, 47, 61, 23, 55, 31, 52, 42, 17, 45, 4, 51, 27, 6, 15, 53, 0, 49, 26, 10, 56, 18, 36, 6, 20, 58, 32, 30, 13, 49, 19, 56, 0, 59, 12, 53, 27, 17, 38, 25, 48, 9, 15, 36, 14, 30, 59, 17, 0, 50, 8, 58, 18, 56, 31, 45, 21, 41, 29, 19, 60, 6, 32, 59, 0, 36, 29, 39, 19, 59, 46, 12, 55, 30, 10, 47, 24, 3, 28, 48, 0, 55, 44, 27, 33, 4, 63, 29, 49, 0, 26, 50, 34, 2, 42, 14, 0, 62, 9, 56, 3, 52, 28, 34, 58, 9, 20, 48, 37, 32, 22, 53, 0, 62, 27, 49, 34, 46, 21, 33, 41, 14, 25, 37, 53, 29, 31, 45 },
|
|
{ 56, 28, 7, 37, 11, 36, 20, 9, 54, 14, 39, 19, 34, 63, 45, 37, 24, 17, 60, 31, 21, 45, 53, 29, 47, 15, 7, 55, 40, 23, 34, 14, 42, 20, 37, 35, 15, 59, 7, 62, 34, 40, 59, 1, 51, 42, 10, 28, 54, 21, 35, 5, 38, 13, 36, 4, 59, 12, 39, 53, 15, 43, 9, 21, 39, 62, 16, 56, 25, 9, 32, 38, 0, 41, 14, 51, 40, 53, 43, 11, 37, 17, 5, 22, 57, 39, 19, 7, 42, 21, 60, 10, 31, 63, 25, 52, 30, 49, 36, 25, 48, 17, 61, 14, 22, 42, 29, 13, 60, 11, 47, 18, 35, 41, 7, 23, 4, 16, 51, 11, 0, 48, 61, 3, 17, 50, 5, 24 },
|
|
{ 0, 42, 21, 49, 60, 3, 57, 40, 29, 48, 23, 56, 42, 11, 22, 5, 59, 39, 4, 50, 3, 41, 12, 57, 25, 50, 44, 18, 4, 46, 7, 62, 33, 50, 4, 56, 21, 32, 43, 18, 3, 23, 55, 34, 20, 4, 53, 38, 12, 46, 29, 52, 25, 61, 23, 51, 26, 46, 1, 34, 25, 57, 28, 51, 26, 11, 50, 3, 44, 28, 53, 21, 57, 27, 62, 6, 31, 19, 8, 63, 26, 59, 36, 47, 15, 29, 50, 25, 35, 47, 18, 41, 4, 48, 8, 40, 12, 23, 6, 44, 13, 40, 1, 31, 55, 0, 61, 43, 4, 50, 26, 58, 9, 53, 24, 61, 42, 55, 31, 43, 57, 20, 34, 27, 43, 8, 59, 39 },
|
|
{ 18, 51, 30, 13, 26, 16, 46, 22, 2, 59, 8, 30, 1, 48, 33, 51, 29, 9, 46, 16, 62, 14, 33, 2, 38, 9, 27, 60, 37, 26, 53, 17, 28, 10, 24, 46, 2, 49, 8, 57, 29, 45, 6, 26, 62, 44, 18, 25, 61, 3, 42, 14, 49, 10, 43, 6, 17, 32, 63, 10, 49, 4, 40, 14, 45, 33, 22, 37, 12, 61, 5, 17, 43, 7, 23, 37, 15, 58, 49, 13, 39, 21, 10, 52, 1, 62, 9, 56, 12, 2, 58, 28, 36, 16, 56, 28, 56, 35, 20, 63, 24, 37, 51, 8, 45, 25, 16, 33, 27, 38, 2, 44, 13, 30, 17, 36, 12, 26, 5, 18, 28, 47, 13, 60, 23, 45, 13, 33 },
|
|
{ 55, 4, 62, 34, 52, 38, 7, 63, 32, 37, 13, 53, 25, 62, 18, 12, 55, 41, 27, 35, 24, 49, 31, 52, 17, 63, 34, 1, 56, 12, 41, 2, 48, 58, 39, 16, 61, 27, 41, 52, 13, 19, 50, 39, 11, 31, 57, 6, 32, 40, 20, 55, 1, 28, 33, 57, 48, 8, 37, 22, 44, 18, 53, 1, 61, 5, 54, 16, 47, 36, 50, 24, 55, 34, 48, 45, 1, 30, 33, 46, 2, 50, 32, 42, 25, 34, 43, 21, 38, 52, 23, 45, 14, 54, 21, 4, 44, 16, 53, 29, 10, 47, 19, 57, 12, 54, 39, 10, 51, 15, 63, 21, 57, 40, 51, 1, 48, 57, 37, 62, 2, 38, 9, 52, 1, 35, 58, 22 },
|
|
{ 36, 46, 10, 42, 1, 27, 43, 15, 50, 21, 45, 16, 41, 3, 35, 44, 20, 1, 57, 11, 55, 7, 43, 8, 22, 42, 13, 46, 21, 39, 31, 60, 22, 5, 29, 44, 11, 35, 20, 4, 36, 58, 32, 15, 47, 2, 36, 48, 16, 60, 8, 35, 44, 63, 16, 2, 40, 26, 55, 14, 58, 35, 24, 31, 19, 42, 31, 58, 1, 29, 10, 40, 2, 19, 12, 54, 22, 61, 7, 24, 56, 5, 28, 16, 54, 3, 15, 58, 6, 30, 8, 62, 1, 43, 31, 47, 7, 59, 1, 38, 58, 4, 34, 27, 38, 5, 31, 59, 7, 46, 30, 3, 34, 6, 28, 59, 20, 8, 32, 15, 53, 24, 55, 31, 19, 49, 11, 26 },
|
|
{ 2, 24, 16, 58, 19, 55, 5, 35, 10, 61, 4, 28, 57, 24, 58, 7, 31, 47, 22, 38, 19, 28, 61, 36, 54, 5, 59, 29, 6, 52, 15, 11, 43, 36, 8, 54, 52, 1, 62, 25, 47, 9, 1, 60, 28, 53, 24, 14, 46, 27, 51, 22, 12, 24, 38, 53, 20, 11, 51, 3, 29, 7, 48, 63, 8, 49, 9, 21, 52, 14, 63, 32, 46, 60, 35, 4, 41, 16, 52, 35, 18, 42, 59, 7, 36, 61, 45, 27, 33, 51, 19, 39, 34, 11, 61, 18, 33, 41, 28, 15, 54, 22, 42, 3, 49, 21, 47, 18, 36, 23, 55, 19, 48, 24, 45, 10, 33, 44, 50, 40, 7, 35, 15, 41, 63, 6, 40, 54 },
|
|
{ 62, 41, 32, 8, 47, 28, 60, 24, 44, 30, 38, 49, 9, 33, 14, 40, 50, 14, 60, 2, 54, 40, 0, 20, 25, 39, 16, 49, 24, 35, 57, 47, 19, 61, 33, 18, 23, 37, 13, 55, 31, 43, 22, 41, 17, 8, 42, 58, 0, 37, 5, 56, 31, 54, 7, 30, 60, 33, 42, 17, 59, 39, 12, 27, 38, 17, 35, 41, 27, 45, 20, 7, 25, 15, 29, 58, 27, 47, 11, 40, 14, 54, 23, 46, 19, 31, 11, 40, 13, 49, 5, 58, 24, 51, 26, 6, 50, 20, 49, 9, 32, 46, 17, 60, 14, 63, 24, 1, 57, 41, 9, 43, 14, 62, 16, 52, 3, 27, 14, 22, 61, 45, 4, 28, 9, 47, 29, 17 },
|
|
{ 5, 50, 12, 53, 38, 18, 11, 51, 0, 55, 17, 6, 47, 54, 19, 63, 5, 26, 34, 45, 13, 30, 47, 58, 10, 48, 32, 3, 62, 9, 26, 0, 25, 14, 50, 3, 47, 30, 42, 16, 6, 63, 12, 49, 33, 55, 21, 10, 34, 63, 18, 41, 3, 47, 19, 43, 0, 49, 8, 28, 46, 20, 52, 0, 56, 24, 60, 3, 59, 5, 39, 57, 48, 52, 9, 38, 3, 21, 26, 60, 0, 32, 12, 38, 4, 48, 53, 0, 60, 15, 29, 44, 18, 10, 38, 57, 13, 60, 2, 26, 62, 7, 50, 29, 35, 8, 40, 53, 28, 12, 60, 33, 38, 5, 37, 29, 60, 39, 56, 0, 30, 18, 50, 34, 59, 25, 14, 44 },
|
|
{ 20, 31, 60, 22, 3, 49, 33, 25, 40, 13, 34, 59, 22, 36, 0, 28, 37, 56, 8, 18, 51, 16, 4, 45, 27, 12, 53, 42, 18, 44, 51, 31, 55, 40, 28, 58, 7, 60, 10, 51, 27, 37, 24, 56, 5, 26, 44, 29, 50, 23, 45, 11, 34, 15, 59, 27, 13, 23, 62, 37, 4, 57, 15, 32, 42, 6, 47, 11, 30, 43, 23, 13, 0, 36, 18, 44, 63, 51, 37, 29, 49, 20, 57, 27, 62, 9, 24, 35, 23, 53, 37, 3, 42, 55, 0, 36, 23, 39, 31, 43, 17, 37, 24, 11, 52, 43, 19, 32, 5, 50, 26, 0, 56, 21, 54, 11, 19, 6, 47, 25, 59, 42, 12, 54, 21, 3, 38, 57 },
|
|
{ 48, 0, 35, 27, 44, 14, 59, 7, 57, 46, 26, 2, 42, 12, 52, 43, 10, 27, 53, 42, 32, 62, 37, 21, 34, 61, 7, 23, 36, 4, 38, 12, 41, 5, 17, 45, 22, 27, 39, 21, 59, 0, 45, 18, 39, 62, 3, 38, 14, 7, 54, 26, 61, 39, 9, 52, 45, 36, 18, 50, 10, 34, 44, 22, 50, 14, 36, 55, 17, 34, 53, 62, 33, 26, 56, 6, 31, 12, 6, 53, 9, 44, 2, 50, 20, 40, 55, 17, 47, 7, 26, 63, 22, 32, 48, 16, 46, 8, 52, 12, 57, 41, 0, 56, 25, 3, 61, 14, 45, 35, 18, 44, 12, 46, 23, 42, 32, 51, 35, 10, 17, 36, 23, 1, 45, 52, 32, 10 },
|
|
{ 37, 15, 43, 8, 63, 39, 21, 31, 16, 37, 19, 62, 30, 46, 17, 60, 21, 48, 1, 23, 6, 25, 11, 56, 1, 40, 30, 58, 15, 54, 21, 59, 9, 63, 35, 56, 11, 51, 2, 46, 34, 14, 53, 7, 30, 11, 51, 19, 60, 40, 30, 1, 24, 50, 20, 32, 3, 56, 5, 25, 31, 13, 61, 2, 29, 60, 25, 20, 51, 2, 27, 8, 18, 42, 10, 45, 21, 34, 43, 17, 62, 29, 41, 14, 34, 6, 30, 43, 2, 57, 33, 13, 45, 12, 27, 62, 4, 55, 21, 35, 5, 27, 45, 33, 16, 47, 30, 54, 22, 10, 51, 27, 63, 7, 49, 1, 58, 22, 15, 43, 53, 7, 57, 39, 27, 12, 61, 24 },
|
|
{ 56, 51, 26, 56, 19, 2, 41, 54, 5, 52, 9, 48, 6, 23, 39, 4, 32, 15, 63, 35, 59, 49, 43, 15, 52, 19, 50, 9, 46, 33, 1, 29, 48, 20, 32, 1, 38, 33, 19, 54, 9, 32, 24, 48, 58, 35, 16, 48, 4, 52, 13, 57, 33, 5, 45, 59, 15, 29, 41, 55, 47, 39, 23, 53, 9, 40, 4, 57, 10, 44, 48, 40, 50, 14, 61, 24, 55, 1, 59, 22, 33, 8, 51, 25, 58, 46, 11, 59, 20, 41, 17, 51, 6, 56, 35, 25, 42, 30, 15, 58, 48, 18, 61, 9, 58, 39, 13, 2, 37, 59, 40, 2, 31, 16, 34, 41, 8, 30, 62, 3, 29, 48, 33, 5, 63, 16, 41, 7 },
|
|
{ 22, 4, 46, 11, 33, 51, 29, 10, 62, 24, 43, 27, 15, 58, 50, 25, 54, 44, 9, 38, 18, 3, 29, 57, 32, 5, 26, 43, 17, 61, 24, 52, 8, 42, 23, 53, 15, 61, 7, 28, 57, 43, 4, 40, 20, 2, 43, 25, 32, 35, 21, 43, 17, 48, 10, 22, 38, 54, 11, 21, 1, 58, 16, 30, 48, 18, 46, 32, 38, 13, 22, 4, 59, 35, 2, 51, 30, 39, 15, 47, 4, 56, 13, 37, 1, 28, 16, 52, 32, 9, 61, 29, 38, 19, 3, 52, 10, 48, 1, 32, 11, 40, 20, 36, 6, 22, 49, 29, 55, 6, 20, 56, 36, 52, 19, 60, 26, 46, 18, 54, 40, 13, 20, 46, 35, 19, 49, 29 },
|
|
{ 61, 17, 34, 53, 23, 6, 48, 35, 20, 40, 1, 56, 36, 29, 11, 34, 7, 41, 14, 30, 55, 20, 46, 8, 24, 38, 63, 2, 37, 10, 45, 14, 34, 49, 6, 13, 44, 25, 49, 41, 21, 12, 61, 15, 54, 29, 63, 12, 56, 8, 49, 2, 62, 36, 28, 61, 0, 25, 41, 63, 35, 8, 44, 6, 37, 62, 7, 21, 63, 28, 55, 31, 16, 24, 41, 19, 9, 57, 27, 36, 18, 42, 31, 62, 22, 55, 38, 4, 27, 47, 1, 40, 14, 54, 43, 20, 60, 23, 38, 63, 25, 51, 2, 53, 26, 63, 10, 42, 17, 34, 47, 25, 13, 5, 44, 11, 55, 2, 38, 27, 6, 60, 52, 25, 9, 55, 1, 40 },
|
|
{ 8, 30, 58, 3, 42, 61, 17, 38, 13, 59, 32, 10, 54, 3, 51, 20, 61, 26, 57, 2, 46, 33, 12, 60, 41, 13, 48, 29, 55, 20, 39, 27, 57, 18, 62, 29, 55, 2, 31, 16, 37, 50, 26, 36, 6, 46, 9, 41, 27, 57, 23, 39, 26, 6, 51, 12, 31, 46, 7, 16, 27, 52, 19, 56, 26, 12, 33, 53, 1, 41, 8, 57, 46, 7, 54, 32, 47, 5, 49, 11, 60, 23, 5, 48, 10, 43, 19, 63, 35, 24, 49, 21, 59, 5, 31, 37, 14, 44, 7, 42, 6, 30, 46, 13, 44, 32, 19, 50, 4, 58, 8, 30, 62, 38, 28, 53, 21, 36, 13, 50, 21, 33, 15, 2, 44, 31, 14, 47 },
|
|
{ 37, 13, 39, 16, 28, 9, 57, 0, 25, 49, 21, 45, 18, 47, 12, 42, 0, 49, 22, 39, 16, 53, 25, 36, 0, 52, 22, 16, 6, 60, 4, 51, 0, 26, 37, 47, 10, 36, 63, 5, 57, 0, 18, 59, 23, 33, 51, 19, 0, 44, 15, 11, 54, 17, 42, 35, 53, 18, 58, 33, 49, 4, 34, 42, 0, 50, 43, 25, 16, 49, 34, 20, 37, 28, 12, 63, 16, 38, 25, 44, 0, 40, 52, 17, 35, 3, 50, 14, 8, 53, 11, 36, 25, 45, 9, 62, 0, 54, 28, 17, 50, 55, 15, 24, 57, 0, 53, 34, 23, 41, 15, 45, 0, 49, 16, 4, 48, 9, 63, 45, 0, 42, 58, 37, 61, 22, 54, 26 },
|
|
{ 0, 50, 21, 47, 54, 36, 27, 45, 52, 4, 34, 15, 63, 29, 37, 59, 17, 31, 6, 61, 28, 5, 48, 18, 59, 27, 34, 56, 44, 31, 35, 12, 41, 59, 16, 3, 40, 20, 50, 22, 30, 40, 52, 10, 45, 3, 59, 22, 37, 61, 29, 46, 31, 58, 2, 22, 9, 43, 3, 39, 14, 61, 24, 54, 15, 29, 11, 60, 39, 17, 5, 61, 0, 44, 50, 3, 31, 14, 58, 21, 54, 28, 15, 45, 60, 26, 33, 58, 44, 22, 60, 2, 57, 34, 49, 27, 18, 34, 21, 59, 29, 4, 36, 41, 8, 39, 28, 11, 62, 26, 53, 20, 35, 24, 59, 32, 29, 39, 24, 31, 57, 23, 11, 28, 5, 36, 11, 59 },
|
|
{ 44, 32, 63, 5, 20, 12, 41, 7, 30, 61, 42, 8, 39, 5, 33, 8, 24, 53, 45, 11, 37, 58, 7, 44, 10, 50, 3, 40, 8, 22, 53, 19, 46, 9, 33, 52, 24, 58, 8, 44, 13, 47, 8, 34, 38, 30, 14, 47, 7, 34, 4, 55, 9, 19, 40, 49, 56, 26, 60, 21, 30, 45, 10, 19, 40, 58, 23, 36, 3, 52, 45, 23, 54, 13, 22, 42, 53, 45, 7, 33, 10, 36, 57, 6, 29, 12, 41, 0, 30, 15, 41, 30, 17, 7, 16, 53, 40, 56, 2, 39, 12, 61, 10, 52, 31, 60, 16, 45, 1, 37, 7, 61, 40, 10, 43, 17, 58, 7, 54, 14, 4, 51, 39, 49, 18, 56, 42, 20 },
|
|
{ 14, 6, 24, 36, 56, 49, 22, 60, 18, 14, 23, 51, 26, 57, 21, 52, 41, 14, 35, 50, 19, 31, 40, 23, 33, 14, 63, 17, 32, 47, 7, 62, 23, 30, 56, 11, 42, 27, 14, 60, 35, 19, 28, 61, 17, 55, 25, 39, 53, 17, 42, 21, 38, 63, 25, 5, 14, 36, 12, 50, 1, 37, 59, 32, 2, 51, 6, 56, 27, 32, 11, 30, 38, 26, 60, 8, 26, 19, 62, 39, 50, 2, 21, 39, 53, 23, 56, 19, 49, 39, 5, 46, 55, 23, 42, 4, 31, 11, 47, 26, 45, 22, 48, 18, 21, 5, 48, 25, 57, 14, 47, 30, 3, 56, 12, 50, 1, 42, 19, 47, 35, 17, 8, 30, 45, 25, 4, 51 },
|
|
{ 28, 58, 43, 1, 31, 8, 33, 2, 44, 55, 32, 1, 60, 12, 46, 27, 4, 62, 23, 1, 56, 13, 62, 2, 54, 36, 25, 51, 1, 57, 26, 42, 3, 49, 17, 38, 1, 48, 31, 4, 54, 3, 50, 24, 1, 49, 5, 63, 13, 27, 52, 1, 48, 13, 45, 33, 52, 30, 46, 20, 55, 28, 6, 48, 24, 38, 20, 47, 14, 62, 48, 9, 58, 4, 36, 30, 56, 1, 34, 12, 18, 63, 25, 48, 4, 16, 37, 7, 62, 10, 52, 28, 13, 50, 36, 63, 24, 51, 15, 58, 8, 33, 1, 38, 56, 35, 42, 9, 33, 51, 22, 18, 48, 32, 27, 37, 23, 61, 33, 11, 59, 29, 62, 1, 53, 10, 60, 33 },
|
|
{ 12, 39, 17, 52, 26, 46, 53, 38, 25, 11, 48, 36, 16, 43, 2, 35, 55, 17, 39, 29, 43, 9, 28, 45, 20, 5, 46, 12, 42, 28, 13, 52, 36, 6, 60, 22, 54, 17, 62, 39, 25, 42, 15, 55, 44, 20, 31, 10, 35, 57, 24, 32, 29, 6, 59, 18, 7, 62, 3, 41, 10, 44, 16, 54, 13, 62, 31, 9, 41, 1, 21, 43, 18, 47, 15, 40, 11, 49, 28, 55, 46, 30, 8, 43, 32, 61, 28, 47, 25, 34, 21, 61, 32, 1, 20, 9, 46, 6, 35, 19, 41, 54, 27, 63, 14, 3, 51, 20, 62, 2, 38, 55, 8, 21, 63, 6, 46, 9, 26, 51, 3, 24, 43, 34, 16, 41, 18, 48 },
|
|
{ 62, 23, 55, 9, 15, 62, 19, 13, 58, 40, 6, 30, 54, 19, 50, 31, 10, 44, 6, 59, 21, 47, 51, 15, 60, 39, 30, 54, 21, 61, 19, 33, 14, 29, 43, 11, 34, 45, 7, 21, 10, 56, 36, 6, 38, 11, 58, 42, 2, 47, 11, 60, 50, 16, 41, 28, 38, 23, 47, 17, 35, 63, 22, 33, 42, 5, 45, 17, 53, 35, 25, 56, 33, 6, 51, 19, 60, 23, 43, 15, 5, 40, 58, 13, 51, 1, 45, 11, 54, 3, 43, 8, 37, 48, 59, 29, 39, 21, 61, 43, 3, 31, 10, 44, 24, 29, 60, 12, 28, 40, 11, 25, 43, 52, 14, 41, 16, 57, 44, 20, 40, 55, 12, 21, 57, 27, 35, 2 },
|
|
{ 37, 6, 31, 42, 40, 4, 29, 50, 0, 20, 63, 28, 9, 58, 14, 24, 63, 26, 48, 16, 34, 4, 32, 38, 23, 11, 58, 4, 37, 9, 45, 5, 63, 48, 26, 57, 2, 28, 32, 51, 46, 29, 13, 62, 27, 46, 28, 18, 50, 15, 40, 4, 19, 34, 54, 0, 53, 9, 26, 58, 28, 5, 49, 0, 57, 27, 19, 60, 29, 8, 59, 12, 37, 63, 24, 46, 3, 37, 6, 52, 26, 32, 20, 36, 9, 22, 59, 18, 35, 51, 14, 57, 17, 24, 12, 44, 56, 0, 30, 13, 59, 20, 49, 17, 54, 43, 6, 34, 46, 17, 58, 36, 0, 34, 29, 54, 25, 2, 36, 15, 60, 6, 37, 46, 4, 50, 9, 45 },
|
|
{ 19, 59, 48, 3, 24, 60, 44, 22, 34, 51, 15, 45, 41, 5, 33, 47, 0, 37, 12, 55, 25, 54, 8, 57, 0, 47, 18, 34, 49, 15, 55, 24, 40, 20, 8, 35, 53, 13, 41, 18, 0, 59, 22, 33, 4, 52, 8, 60, 24, 36, 31, 56, 45, 26, 10, 43, 15, 56, 36, 4, 51, 14, 39, 30, 12, 55, 36, 2, 39, 49, 4, 44, 17, 0, 32, 13, 53, 35, 59, 17, 62, 0, 55, 24, 52, 38, 31, 6, 42, 19, 29, 40, 4, 54, 33, 5, 16, 27, 52, 37, 23, 55, 7, 37, 0, 39, 23, 49, 4, 53, 31, 15, 59, 10, 50, 4, 60, 34, 48, 7, 31, 49, 27, 14, 62, 22, 53, 29 },
|
|
{ 46, 21, 14, 51, 36, 17, 7, 57, 10, 32, 3, 37, 22, 60, 39, 18, 56, 20, 42, 3, 36, 10, 44, 26, 41, 29, 53, 27, 2, 39, 30, 52, 0, 59, 15, 48, 23, 61, 6, 58, 37, 12, 40, 49, 16, 39, 20, 44, 0, 62, 8, 21, 3, 59, 23, 32, 49, 31, 12, 44, 22, 59, 18, 50, 24, 7, 43, 52, 15, 23, 41, 26, 51, 28, 55, 39, 21, 27, 10, 42, 12, 45, 27, 47, 3, 15, 63, 26, 55, 0, 60, 26, 45, 18, 62, 38, 58, 49, 8, 47, 4, 33, 46, 29, 57, 13, 56, 16, 59, 21, 5, 47, 23, 39, 18, 44, 13, 22, 28, 53, 19, 0, 58, 32, 41, 7, 26, 13 },
|
|
{ 0, 56, 34, 28, 11, 55, 31, 47, 26, 41, 56, 13, 53, 28, 11, 49, 7, 52, 32, 61, 50, 22, 63, 17, 13, 56, 7, 19, 43, 62, 10, 21, 37, 32, 43, 4, 38, 19, 44, 25, 31, 54, 5, 23, 61, 30, 53, 12, 35, 22, 43, 53, 37, 48, 7, 62, 20, 2, 61, 41, 8, 34, 47, 9, 63, 34, 28, 10, 55, 33, 14, 57, 7, 47, 9, 61, 4, 49, 31, 50, 21, 38, 8, 16, 57, 44, 33, 5, 49, 36, 12, 50, 7, 34, 10, 25, 2, 22, 36, 15, 26, 61, 18, 9, 22, 46, 32, 8, 27, 37, 44, 30, 55, 3, 62, 24, 38, 56, 5, 45, 38, 24, 43, 10, 19, 54, 39, 61 },
|
|
{ 41, 30, 8, 63, 43, 23, 38, 3, 62, 19, 8, 49, 25, 1, 58, 30, 23, 40, 9, 28, 18, 40, 6, 38, 49, 22, 35, 59, 8, 27, 50, 5, 56, 17, 11, 50, 30, 9, 55, 2, 51, 19, 34, 47, 9, 41, 6, 26, 48, 57, 14, 28, 17, 12, 39, 13, 37, 46, 25, 19, 54, 27, 1, 37, 16, 45, 20, 60, 1, 48, 20, 38, 31, 22, 42, 15, 19, 44, 1, 61, 6, 34, 56, 40, 29, 10, 20, 46, 13, 22, 41, 23, 59, 42, 30, 51, 45, 13, 63, 53, 42, 12, 51, 38, 62, 2, 26, 41, 50, 1, 61, 10, 19, 42, 31, 8, 49, 32, 12, 63, 9, 52, 16, 56, 36, 2, 31, 16 },
|
|
{ 52, 5, 47, 20, 1, 53, 12, 50, 16, 35, 43, 21, 33, 43, 16, 44, 3, 59, 14, 46, 1, 30, 60, 33, 2, 45, 12, 42, 31, 47, 14, 33, 46, 25, 55, 27, 60, 36, 16, 42, 14, 46, 26, 1, 55, 15, 63, 32, 2, 38, 5, 47, 33, 61, 30, 52, 4, 57, 6, 38, 11, 43, 61, 24, 52, 3, 31, 22, 42, 10, 62, 3, 59, 11, 35, 57, 33, 54, 24, 14, 29, 48, 18, 2, 60, 41, 53, 24, 32, 62, 3, 53, 15, 1, 55, 17, 32, 40, 6, 31, 1, 40, 28, 5, 35, 52, 19, 63, 13, 33, 17, 41, 52, 26, 15, 57, 1, 20, 42, 17, 35, 27, 48, 5, 25, 50, 44, 11 },
|
|
{ 35, 25, 38, 57, 33, 17, 40, 6, 59, 27, 54, 5, 61, 10, 52, 26, 36, 19, 51, 35, 57, 48, 11, 20, 54, 25, 61, 16, 1, 58, 24, 61, 3, 39, 7, 47, 1, 22, 49, 28, 63, 10, 58, 32, 17, 36, 45, 19, 51, 29, 59, 10, 50, 1, 23, 42, 18, 29, 51, 21, 56, 32, 14, 5, 40, 58, 47, 13, 54, 35, 29, 45, 18, 52, 26, 2, 38, 8, 46, 36, 58, 11, 52, 35, 17, 28, 1, 58, 9, 39, 17, 28, 37, 48, 20, 9, 57, 24, 50, 19, 58, 16, 48, 25, 43, 11, 35, 6, 45, 24, 56, 4, 36, 7, 47, 35, 52, 28, 59, 30, 2, 61, 21, 33, 63, 12, 18, 59 },
|
|
{ 3, 49, 15, 10, 27, 61, 25, 45, 30, 0, 14, 47, 31, 38, 17, 62, 7, 55, 27, 4, 15, 24, 42, 52, 10, 34, 5, 51, 36, 18, 41, 11, 35, 21, 62, 13, 33, 57, 8, 35, 5, 40, 21, 43, 52, 3, 24, 56, 11, 16, 33, 25, 41, 20, 55, 8, 60, 35, 15, 48, 2, 57, 30, 49, 18, 25, 6, 39, 17, 57, 7, 25, 43, 5, 49, 16, 62, 22, 55, 4, 25, 43, 23, 7, 50, 11, 37, 48, 14, 51, 33, 57, 7, 27, 39, 46, 4, 29, 11, 43, 34, 56, 7, 60, 20, 54, 30, 57, 22, 49, 9, 33, 54, 14, 63, 23, 6, 43, 10, 40, 50, 13, 44, 8, 38, 33, 46, 23 },
|
|
{ 55, 39, 22, 50, 44, 4, 36, 9, 52, 23, 37, 59, 21, 2, 46, 13, 31, 41, 11, 45, 62, 29, 6, 37, 19, 48, 30, 23, 44, 7, 53, 28, 54, 16, 41, 29, 44, 18, 52, 24, 60, 15, 48, 7, 27, 59, 9, 34, 42, 54, 7, 63, 4, 46, 31, 27, 45, 0, 40, 26, 34, 17, 37, 10, 53, 29, 36, 50, 2, 27, 51, 11, 61, 37, 23, 41, 30, 7, 18, 50, 39, 14, 63, 32, 45, 61, 19, 30, 25, 44, 2, 47, 23, 63, 11, 34, 59, 37, 60, 3, 22, 14, 44, 30, 15, 0, 47, 15, 3, 38, 61, 20, 27, 45, 11, 39, 51, 16, 55, 3, 22, 54, 29, 58, 1, 57, 6, 29 },
|
|
{ 9, 17, 60, 2, 34, 56, 20, 62, 39, 12, 49, 6, 29, 56, 34, 48, 0, 58, 22, 38, 18, 43, 56, 0, 63, 14, 55, 3, 59, 31, 15, 45, 0, 49, 6, 58, 3, 38, 12, 45, 0, 37, 29, 57, 13, 39, 30, 49, 0, 23, 44, 36, 16, 57, 13, 54, 11, 24, 63, 9, 53, 7, 62, 42, 0, 59, 15, 23, 63, 34, 40, 16, 32, 0, 53, 12, 48, 28, 59, 33, 0, 53, 9, 27, 3, 22, 54, 5, 56, 9, 61, 13, 42, 14, 52, 19, 0, 21, 47, 27, 53, 36, 3, 50, 39, 58, 25, 40, 53, 28, 12, 50, 0, 59, 32, 2, 21, 34, 26, 46, 37, 7, 18, 47, 24, 14, 53, 42 },
|
|
{ 61, 32, 13, 54, 29, 7, 46, 13, 28, 57, 18, 41, 53, 15, 9, 39, 24, 49, 33, 3, 53, 9, 26, 32, 40, 28, 46, 39, 25, 9, 56, 21, 63, 37, 26, 22, 51, 27, 17, 56, 31, 53, 4, 43, 22, 46, 12, 18, 60, 40, 20, 26, 50, 21, 39, 5, 49, 33, 16, 44, 22, 46, 20, 32, 24, 45, 8, 43, 12, 46, 4, 48, 56, 20, 29, 58, 3, 40, 10, 42, 31, 21, 47, 41, 56, 38, 15, 42, 36, 27, 20, 33, 55, 3, 26, 44, 31, 54, 12, 35, 9, 63, 28, 10, 21, 32, 9, 60, 17, 8, 43, 29, 40, 16, 36, 48, 60, 7, 57, 14, 62, 31, 42, 15, 36, 40, 20, 26 },
|
|
{ 0, 37, 47, 23, 41, 18, 32, 48, 1, 35, 8, 25, 4, 26, 63, 20, 54, 8, 16, 61, 35, 23, 51, 15, 58, 7, 12, 20, 50, 34, 42, 4, 38, 10, 32, 47, 8, 60, 41, 20, 9, 25, 50, 19, 62, 1, 37, 56, 28, 8, 53, 11, 3, 58, 34, 43, 19, 60, 38, 4, 58, 31, 3, 51, 11, 55, 38, 30, 21, 58, 19, 26, 9, 44, 36, 13, 46, 20, 62, 24, 13, 60, 5, 28, 12, 34, 7, 59, 0, 53, 45, 6, 38, 30, 50, 7, 62, 16, 41, 5, 46, 18, 55, 42, 51, 5, 45, 23, 34, 48, 19, 58, 5, 25, 54, 19, 13, 41, 28, 21, 0, 49, 10, 60, 4, 51, 9, 45 },
|
|
{ 19, 28, 6, 58, 10, 51, 4, 22, 55, 42, 60, 45, 34, 51, 42, 5, 30, 45, 27, 40, 13, 47, 4, 49, 21, 38, 60, 29, 2, 57, 17, 27, 52, 19, 61, 14, 30, 34, 2, 44, 63, 33, 11, 35, 16, 51, 25, 6, 14, 47, 31, 61, 37, 29, 18, 8, 52, 2, 28, 54, 13, 41, 15, 62, 35, 18, 2, 60, 6, 33, 41, 61, 31, 6, 56, 17, 34, 50, 6, 52, 44, 35, 16, 51, 59, 24, 48, 18, 31, 40, 16, 49, 21, 60, 17, 39, 10, 49, 32, 57, 24, 39, 1, 25, 18, 62, 37, 12, 56, 1, 37, 11, 52, 44, 9, 30, 47, 4, 51, 40, 55, 25, 34, 27, 56, 30, 32, 54 },
|
|
{ 63, 40, 49, 15, 43, 26, 63, 38, 16, 20, 30, 12, 57, 14, 19, 60, 36, 12, 59, 2, 57, 17, 42, 31, 1, 44, 16, 35, 47, 11, 32, 48, 13, 43, 1, 39, 51, 12, 57, 23, 6, 40, 53, 3, 55, 31, 39, 60, 35, 44, 5, 15, 45, 1, 62, 41, 26, 14, 47, 22, 36, 27, 50, 9, 26, 47, 52, 28, 54, 16, 1, 13, 51, 39, 23, 63, 1, 30, 15, 26, 2, 57, 19, 37, 1, 44, 21, 50, 13, 63, 8, 24, 56, 1, 35, 25, 58, 20, 2, 28, 14, 51, 33, 59, 13, 30, 4, 49, 31, 24, 63, 26, 33, 3, 58, 38, 62, 24, 32, 8, 17, 45, 5, 48, 18, 3, 43, 11 },
|
|
{ 21, 4, 24, 34, 59, 1, 37, 11, 53, 5, 47, 2, 22, 40, 32, 1, 24, 50, 21, 29, 38, 25, 63, 8, 55, 24, 53, 6, 62, 23, 59, 3, 54, 20, 58, 24, 5, 46, 15, 38, 48, 14, 27, 42, 23, 7, 46, 10, 17, 58, 25, 52, 23, 32, 49, 12, 55, 30, 40, 7, 59, 1, 56, 21, 39, 4, 23, 15, 37, 46, 55, 42, 21, 4, 48, 8, 45, 54, 37, 55, 32, 8, 46, 10, 30, 54, 4, 41, 25, 29, 36, 48, 11, 43, 14, 47, 5, 43, 53, 36, 61, 10, 45, 6, 41, 54, 27, 43, 16, 55, 6, 46, 18, 42, 23, 15, 1, 45, 12, 60, 37, 22, 62, 12, 39, 59, 16, 52 },
|
|
{ 47, 35, 56, 7, 19, 46, 31, 50, 33, 24, 61, 35, 50, 7, 53, 44, 55, 6, 46, 10, 52, 5, 21, 43, 36, 10, 18, 41, 26, 37, 8, 29, 40, 36, 9, 49, 34, 26, 61, 21, 7, 59, 18, 62, 29, 54, 20, 32, 51, 0, 40, 10, 55, 6, 20, 36, 9, 61, 5, 51, 44, 19, 33, 43, 13, 57, 40, 63, 8, 24, 29, 10, 60, 34, 27, 40, 25, 18, 10, 42, 21, 49, 26, 62, 38, 12, 33, 61, 5, 57, 2, 19, 54, 28, 62, 22, 38, 31, 16, 7, 22, 47, 29, 17, 35, 8, 20, 51, 2, 40, 22, 50, 13, 61, 28, 53, 35, 20, 56, 30, 2, 53, 14, 41, 23, 34, 8, 31 },
|
|
{ 12, 2, 42, 29, 52, 13, 21, 8, 55, 14, 41, 17, 28, 58, 23, 11, 17, 36, 31, 62, 17, 34, 50, 14, 28, 61, 33, 52, 2, 51, 17, 45, 7, 25, 62, 30, 18, 55, 0, 42, 30, 35, 45, 1, 12, 48, 3, 63, 21, 36, 30, 48, 19, 59, 43, 27, 46, 17, 34, 25, 12, 29, 53, 6, 48, 31, 11, 34, 49, 3, 36, 50, 19, 47, 14, 61, 11, 36, 58, 4, 60, 14, 39, 22, 6, 52, 15, 35, 17, 46, 31, 42, 9, 34, 3, 52, 12, 60, 26, 56, 40, 2, 53, 23, 57, 38, 62, 14, 36, 59, 10, 31, 39, 6, 49, 9, 41, 26, 5, 48, 43, 27, 33, 58, 1, 50, 25, 57 },
|
|
{ 61, 37, 15, 61, 3, 39, 58, 43, 26, 0, 44, 10, 47, 3, 37, 63, 28, 43, 13, 39, 3, 57, 30, 59, 0, 48, 5, 43, 13, 22, 60, 33, 55, 15, 42, 4, 52, 10, 45, 13, 54, 4, 24, 49, 37, 26, 41, 14, 42, 9, 61, 13, 38, 23, 3, 53, 0, 58, 21, 42, 63, 10, 17, 61, 25, 0, 58, 28, 17, 44, 57, 12, 27, 0, 55, 5, 52, 28, 23, 47, 29, 0, 43, 17, 58, 28, 47, 23, 55, 10, 58, 23, 51, 40, 18, 33, 45, 0, 49, 8, 32, 61, 19, 48, 0, 26, 7, 47, 29, 18, 44, 0, 56, 34, 20, 59, 15, 51, 37, 18, 10, 52, 7, 20, 46, 9, 38, 17 },
|
|
{ 6, 27, 48, 23, 45, 29, 5, 18, 38, 62, 27, 56, 20, 32, 15, 9, 48, 0, 54, 22, 45, 20, 7, 41, 23, 39, 19, 27, 58, 31, 44, 0, 12, 50, 23, 56, 20, 39, 32, 59, 16, 52, 33, 9, 57, 22, 6, 58, 28, 50, 24, 2, 56, 35, 16, 45, 32, 38, 15, 54, 2, 38, 46, 22, 35, 45, 20, 5, 52, 25, 7, 35, 59, 32, 22, 43, 38, 3, 51, 16, 34, 53, 32, 50, 3, 40, 8, 43, 0, 39, 27, 4, 14, 61, 8, 55, 15, 41, 20, 44, 27, 13, 39, 11, 46, 42, 54, 33, 4, 52, 23, 61, 14, 25, 43, 2, 33, 11, 63, 29, 61, 17, 40, 55, 22, 62, 28, 44 },
|
|
{ 20, 54, 8, 56, 35, 10, 63, 31, 52, 12, 48, 6, 59, 41, 52, 33, 19, 58, 25, 49, 11, 37, 47, 12, 54, 15, 56, 35, 7, 47, 16, 53, 28, 34, 5, 37, 28, 8, 48, 3, 28, 38, 18, 61, 16, 43, 53, 32, 4, 17, 47, 27, 44, 8, 63, 10, 25, 49, 6, 37, 24, 52, 32, 3, 50, 12, 41, 56, 38, 14, 62, 20, 40, 16, 53, 31, 18, 63, 41, 9, 59, 7, 13, 25, 57, 20, 63, 26, 53, 18, 48, 62, 30, 46, 21, 25, 58, 29, 36, 4, 55, 34, 6, 60, 31, 16, 21, 12, 58, 38, 9, 29, 47, 7, 52, 30, 57, 44, 22, 0, 35, 45, 3, 31, 14, 36, 0, 51 },
|
|
{ 42, 14, 33, 24, 16, 49, 40, 2, 22, 33, 16, 36, 25, 1, 21, 61, 38, 8, 33, 4, 62, 26, 29, 60, 6, 46, 30, 11, 63, 4, 36, 40, 19, 57, 46, 11, 41, 63, 22, 25, 58, 10, 46, 2, 34, 27, 11, 38, 56, 34, 12, 53, 18, 33, 41, 51, 13, 28, 60, 20, 47, 14, 29, 59, 16, 62, 8, 22, 32, 47, 9, 49, 2, 44, 7, 12, 45, 6, 20, 27, 45, 24, 62, 42, 36, 11, 33, 15, 37, 7, 32, 10, 37, 1, 35, 50, 6, 11, 63, 24, 52, 15, 50, 24, 3, 37, 56, 27, 34, 22, 49, 16, 36, 62, 17, 39, 4, 15, 54, 24, 50, 8, 58, 26, 49, 54, 11, 30 },
|
|
{ 4, 59, 41, 1, 53, 12, 25, 45, 59, 7, 51, 39, 54, 14, 46, 4, 27, 53, 16, 44, 18, 51, 1, 32, 25, 2, 50, 40, 20, 54, 24, 9, 62, 2, 27, 60, 1, 17, 36, 50, 6, 40, 30, 55, 41, 19, 49, 1, 21, 60, 40, 5, 62, 1, 22, 30, 57, 4, 43, 31, 1, 55, 40, 7, 27, 37, 30, 54, 1, 19, 42, 30, 56, 26, 62, 49, 24, 57, 37, 56, 2, 39, 16, 5, 30, 55, 3, 49, 60, 23, 56, 44, 17, 52, 13, 42, 28, 48, 18, 45, 9, 37, 21, 41, 58, 10, 48, 1, 63, 5, 41, 57, 2, 24, 12, 48, 27, 42, 32, 46, 13, 38, 19, 34, 5, 41, 25, 60 },
|
|
{ 39, 28, 21, 46, 32, 57, 36, 9, 19, 42, 4, 29, 11, 43, 30, 49, 13, 42, 35, 56, 9, 39, 15, 52, 36, 61, 18, 26, 45, 14, 31, 48, 21, 43, 14, 33, 49, 54, 14, 44, 21, 62, 13, 23, 8, 62, 15, 51, 44, 7, 30, 37, 20, 42, 56, 7, 39, 18, 50, 11, 61, 9, 19, 43, 57, 2, 48, 11, 39, 60, 28, 4, 37, 17, 35, 1, 33, 11, 31, 14, 48, 19, 35, 51, 46, 21, 44, 29, 12, 41, 2, 22, 58, 26, 54, 4, 59, 38, 2, 33, 57, 1, 63, 13, 28, 51, 15, 40, 18, 45, 8, 30, 43, 37, 54, 19, 8, 59, 21, 6, 60, 29, 55, 10, 63, 15, 47, 17 },
|
|
{ 3, 50, 10, 62, 18, 5, 27, 49, 60, 23, 55, 18, 62, 24, 56, 10, 59, 28, 2, 23, 34, 59, 43, 20, 10, 42, 8, 49, 1, 37, 57, 6, 51, 29, 53, 7, 23, 31, 5, 32, 51, 0, 35, 54, 45, 31, 5, 26, 36, 24, 55, 15, 48, 29, 14, 48, 26, 60, 21, 41, 36, 26, 50, 33, 14, 44, 17, 24, 52, 15, 46, 23, 54, 6, 47, 21, 60, 50, 4, 53, 29, 61, 8, 23, 1, 60, 19, 6, 53, 16, 47, 34, 6, 39, 16, 31, 12, 20, 53, 22, 30, 43, 25, 46, 35, 6, 44, 32, 53, 26, 55, 19, 11, 59, 5, 33, 51, 1, 35, 53, 25, 3, 42, 23, 44, 32, 7, 53 },
|
|
{ 22, 44, 37, 6, 26, 51, 38, 0, 34, 13, 31, 46, 3, 37, 6, 19, 40, 21, 47, 63, 12, 5, 29, 55, 22, 58, 34, 28, 60, 22, 11, 41, 17, 38, 9, 44, 59, 39, 56, 19, 11, 47, 25, 15, 3, 39, 57, 17, 61, 11, 46, 3, 58, 9, 54, 35, 2, 34, 8, 45, 15, 56, 5, 23, 53, 33, 63, 35, 4, 59, 10, 51, 13, 61, 29, 41, 15, 25, 43, 19, 40, 10, 54, 33, 41, 12, 38, 51, 31, 26, 61, 9, 30, 45, 24, 62, 49, 40, 10, 61, 14, 49, 5, 17, 54, 20, 60, 23, 3, 13, 35, 50, 32, 23, 46, 27, 38, 63, 16, 12, 39, 48, 18, 51, 1, 27, 56, 35 },
|
|
{ 63, 15, 30, 55, 43, 14, 57, 17, 53, 44, 7, 48, 26, 50, 32, 60, 0, 53, 14, 31, 50, 24, 46, 0, 38, 13, 4, 52, 16, 45, 30, 59, 0, 25, 55, 35, 16, 10, 26, 42, 58, 29, 60, 38, 50, 22, 28, 47, 0, 50, 28, 19, 33, 39, 11, 44, 16, 52, 24, 59, 3, 38, 27, 51, 0, 21, 7, 42, 26, 34, 21, 40, 33, 18, 39, 3, 54, 38, 8, 59, 0, 44, 27, 15, 58, 28, 57, 9, 43, 0, 36, 50, 20, 59, 8, 34, 0, 27, 47, 7, 36, 19, 56, 32, 0, 38, 11, 29, 62, 47, 6, 61, 0, 41, 14, 56, 10, 23, 45, 31, 57, 8, 36, 13, 58, 38, 11, 19 },
|
|
{ 0, 34, 12, 47, 21, 2, 40, 30, 11, 25, 61, 20, 40, 15, 35, 22, 45, 36, 7, 41, 17, 57, 9, 48, 32, 62, 44, 24, 35, 3, 54, 13, 33, 63, 19, 4, 48, 22, 62, 2, 37, 8, 33, 6, 20, 52, 9, 32, 43, 13, 39, 63, 25, 4, 49, 23, 62, 32, 9, 30, 48, 18, 63, 12, 46, 29, 58, 13, 48, 8, 57, 31, 0, 51, 9, 58, 12, 22, 47, 29, 35, 22, 49, 5, 46, 4, 34, 20, 63, 24, 56, 11, 41, 3, 51, 19, 56, 35, 17, 58, 28, 42, 9, 45, 59, 26, 51, 42, 17, 36, 25, 15, 53, 21, 44, 3, 30, 55, 5, 50, 21, 28, 61, 32, 6, 49, 28, 46 },
|
|
{ 58, 42, 60, 4, 31, 59, 22, 63, 35, 38, 9, 54, 1, 57, 8, 51, 16, 58, 27, 53, 3, 38, 30, 15, 27, 6, 19, 56, 10, 50, 21, 36, 47, 5, 43, 28, 51, 32, 13, 46, 18, 54, 16, 43, 63, 12, 36, 59, 22, 34, 5, 52, 17, 59, 27, 41, 0, 19, 55, 37, 13, 43, 6, 34, 41, 10, 36, 55, 19, 44, 3, 16, 58, 27, 49, 25, 32, 62, 17, 55, 13, 63, 18, 52, 25, 37, 17, 48, 13, 32, 5, 46, 28, 37, 14, 43, 25, 5, 51, 39, 3, 52, 33, 22, 8, 40, 12, 4, 57, 9, 46, 39, 28, 58, 13, 62, 17, 42, 19, 36, 0, 47, 16, 43, 24, 21, 54, 13 },
|
|
{ 25, 9, 23, 50, 36, 8, 45, 14, 3, 51, 16, 28, 44, 12, 42, 29, 4, 26, 10, 47, 22, 61, 18, 54, 51, 39, 46, 13, 41, 26, 58, 7, 18, 39, 12, 57, 15, 1, 52, 27, 41, 23, 48, 1, 27, 45, 18, 2, 57, 26, 55, 8, 43, 31, 6, 58, 14, 51, 40, 5, 61, 31, 24, 54, 17, 60, 22, 1, 39, 30, 53, 45, 36, 13, 43, 5, 45, 2, 37, 6, 34, 42, 2, 39, 10, 62, 7, 54, 40, 18, 60, 15, 52, 21, 63, 8, 55, 46, 15, 30, 23, 13, 62, 16, 50, 24, 58, 31, 48, 21, 34, 2, 49, 7, 31, 37, 26, 48, 9, 61, 40, 11, 52, 2, 60, 40, 4, 37 },
|
|
{ 52, 28, 39, 16, 54, 19, 29, 55, 42, 20, 58, 33, 24, 63, 18, 55, 39, 62, 43, 34, 12, 40, 6, 35, 2, 25, 8, 62, 34, 1, 31, 42, 61, 27, 53, 24, 40, 61, 34, 8, 59, 4, 30, 56, 40, 6, 53, 42, 10, 48, 16, 37, 12, 46, 21, 36, 47, 11, 28, 45, 22, 10, 57, 2, 49, 31, 14, 44, 61, 11, 25, 6, 23, 63, 18, 36, 28, 56, 20, 51, 11, 48, 27, 56, 32, 22, 45, 30, 2, 42, 27, 39, 1, 44, 23, 31, 38, 22, 11, 61, 43, 54, 4, 47, 35, 2, 44, 16, 28, 54, 12, 62, 18, 43, 10, 52, 1, 58, 33, 15, 29, 56, 20, 34, 9, 30, 48, 17 },
|
|
{ 46, 2, 56, 11, 41, 1, 49, 6, 27, 47, 2, 48, 5, 32, 37, 3, 13, 19, 32, 1, 55, 28, 60, 17, 43, 59, 32, 20, 49, 16, 55, 23, 14, 46, 2, 36, 6, 30, 20, 49, 12, 47, 35, 14, 21, 60, 29, 14, 35, 24, 46, 1, 56, 29, 53, 8, 33, 23, 56, 1, 35, 46, 20, 39, 26, 4, 53, 28, 17, 38, 60, 34, 48, 9, 55, 15, 46, 7, 41, 31, 60, 24, 16, 36, 1, 59, 19, 52, 35, 6, 55, 11, 59, 33, 7, 57, 4, 29, 48, 1, 19, 26, 37, 30, 18, 63, 37, 6, 59, 1, 40, 24, 56, 33, 46, 22, 35, 7, 24, 53, 39, 5, 26, 45, 55, 18, 62, 7 },
|
|
{ 20, 60, 29, 34, 20, 62, 33, 52, 10, 36, 13, 60, 41, 21, 50, 27, 56, 49, 8, 51, 21, 45, 11, 48, 8, 23, 53, 3, 29, 44, 5, 52, 9, 32, 50, 17, 43, 56, 3, 38, 24, 10, 62, 25, 51, 9, 33, 49, 61, 7, 30, 62, 22, 19, 2, 42, 63, 5, 49, 18, 60, 15, 52, 7, 43, 56, 23, 50, 5, 50, 2, 20, 41, 30, 1, 52, 22, 61, 14, 26, 3, 43, 53, 7, 47, 28, 11, 14, 23, 58, 33, 25, 47, 13, 50, 17, 40, 54, 34, 60, 41, 6, 59, 14, 50, 7, 25, 55, 20, 42, 51, 8, 27, 4, 16, 60, 28, 50, 44, 3, 22, 49, 63, 12, 33, 1, 43, 31 },
|
|
{ 36, 5, 46, 8, 44, 24, 13, 39, 25, 57, 31, 18, 8, 52, 10, 45, 6, 30, 36, 24, 63, 4, 33, 26, 57, 40, 15, 56, 37, 12, 40, 25, 37, 58, 11, 63, 21, 45, 16, 60, 31, 53, 18, 33, 3, 45, 23, 0, 20, 54, 40, 15, 50, 38, 60, 16, 25, 42, 29, 38, 7, 41, 25, 62, 18, 33, 8, 35, 42, 16, 32, 56, 12, 39, 59, 19, 34, 9, 49, 38, 57, 12, 21, 50, 14, 40, 61, 44, 50, 9, 49, 19, 3, 29, 35, 62, 12, 24, 7, 18, 52, 32, 10, 46, 21, 41, 32, 11, 36, 29, 14, 34, 60, 38, 54, 11, 41, 14, 19, 57, 32, 16, 7, 41, 51, 25, 14, 57 },
|
|
{ 53, 18, 26, 50, 15, 58, 4, 63, 17, 43, 7, 40, 61, 35, 15, 41, 23, 60, 16, 38, 14, 42, 19, 50, 0, 31, 10, 46, 27, 63, 18, 60, 0, 20, 29, 39, 8, 26, 37, 5, 42, 0, 44, 39, 57, 17, 58, 41, 28, 37, 4, 32, 9, 44, 12, 31, 54, 10, 59, 14, 27, 53, 12, 36, 0, 47, 13, 63, 21, 58, 10, 24, 50, 27, 4, 26, 44, 53, 31, 0, 18, 42, 29, 33, 57, 4, 32, 26, 0, 38, 16, 61, 41, 53, 20, 0, 42, 44, 49, 27, 10, 56, 39, 0, 57, 15, 53, 49, 3, 61, 22, 47, 17, 5, 49, 26, 2, 63, 39, 10, 47, 27, 37, 23, 4, 59, 38, 10 },
|
|
{ 23, 39, 61, 3, 37, 28, 48, 31, 0, 34, 51, 23, 2, 26, 58, 0, 53, 11, 46, 1, 57, 29, 52, 14, 37, 61, 21, 35, 2, 49, 7, 34, 47, 55, 4, 33, 54, 13, 58, 52, 19, 50, 22, 7, 13, 29, 36, 11, 51, 17, 60, 25, 55, 4, 34, 51, 0, 35, 20, 48, 32, 3, 51, 30, 59, 28, 40, 3, 46, 29, 54, 43, 7, 62, 47, 11, 39, 4, 23, 46, 55, 8, 63, 5, 25, 37, 18, 46, 21, 56, 31, 5, 36, 8, 45, 58, 26, 15, 2, 36, 47, 21, 29, 44, 25, 34, 3, 27, 43, 10, 52, 0, 45, 30, 24, 36, 43, 18, 34, 59, 0, 52, 61, 15, 44, 19, 30, 49 },
|
|
{ 0, 27, 12, 43, 54, 9, 22, 53, 21, 46, 15, 55, 29, 47, 20, 33, 39, 28, 59, 35, 9, 44, 5, 24, 47, 7, 52, 17, 56, 22, 30, 42, 14, 26, 45, 18, 49, 1, 24, 34, 11, 27, 55, 32, 61, 47, 2, 56, 6, 44, 13, 47, 36, 27, 58, 22, 16, 47, 40, 4, 57, 38, 21, 45, 16, 9, 56, 26, 11, 38, 0, 22, 36, 17, 33, 57, 16, 30, 62, 15, 35, 40, 20, 45, 59, 10, 54, 8, 63, 13, 52, 27, 22, 57, 28, 12, 32, 51, 55, 22, 63, 4, 16, 54, 12, 62, 45, 19, 58, 13, 32, 40, 20, 56, 7, 57, 9, 54, 6, 29, 42, 21, 8, 55, 35, 47, 6, 41 },
|
|
{ 56, 33, 58, 32, 19, 35, 42, 6, 59, 11, 38, 5, 49, 12, 62, 7, 52, 17, 5, 25, 54, 20, 61, 31, 54, 27, 41, 11, 44, 5, 59, 12, 36, 51, 10, 61, 28, 41, 48, 9, 43, 63, 5, 40, 20, 8, 49, 26, 34, 21, 58, 1, 18, 45, 7, 39, 61, 26, 8, 50, 23, 10, 63, 5, 55, 37, 19, 49, 52, 15, 59, 47, 13, 54, 1, 25, 42, 58, 10, 48, 3, 27, 50, 1, 17, 48, 34, 41, 16, 40, 2, 45, 10, 39, 17, 61, 5, 38, 19, 9, 41, 31, 60, 38, 5, 23, 36, 8, 30, 55, 24, 63, 12, 48, 14, 51, 31, 20, 45, 25, 12, 50, 32, 2, 28, 11, 62, 14 },
|
|
{ 44, 16, 7, 48, 1, 62, 16, 50, 27, 33, 61, 25, 17, 44, 31, 14, 22, 43, 32, 48, 18, 40, 8, 36, 3, 16, 33, 62, 23, 38, 25, 53, 2, 21, 41, 6, 22, 15, 59, 29, 16, 37, 26, 15, 52, 42, 23, 15, 54, 39, 10, 30, 53, 11, 49, 24, 2, 43, 55, 17, 34, 44, 15, 31, 24, 44, 2, 32, 7, 35, 25, 5, 40, 45, 29, 51, 6, 21, 37, 52, 24, 60, 13, 31, 53, 23, 2, 28, 49, 24, 31, 60, 20, 51, 1, 34, 48, 14, 59, 33, 50, 1, 18, 33, 48, 60, 17, 51, 39, 6, 38, 2, 35, 29, 40, 23, 1, 62, 15, 53, 37, 17, 46, 57, 40, 51, 24, 22 },
|
|
{ 5, 37, 52, 24, 45, 13, 40, 3, 45, 9, 19, 42, 56, 4, 37, 46, 56, 2, 63, 11, 51, 1, 49, 13, 59, 45, 39, 1, 48, 15, 58, 9, 46, 31, 54, 35, 57, 38, 3, 46, 56, 4, 47, 57, 1, 30, 38, 63, 3, 46, 28, 63, 41, 14, 33, 62, 19, 32, 13, 28, 61, 1, 53, 42, 11, 60, 22, 62, 27, 42, 61, 31, 19, 8, 61, 12, 32, 55, 2, 18, 33, 12, 43, 36, 9, 62, 30, 55, 6, 58, 35, 7, 43, 29, 54, 23, 43, 30, 3, 25, 11, 45, 52, 28, 7, 14, 42, 1, 22, 50, 16, 53, 19, 59, 4, 46, 33, 41, 4, 35, 58, 5, 26, 13, 20, 2, 34, 54 },
|
|
{ 30, 63, 21, 10, 26, 55, 29, 59, 23, 39, 53, 1, 36, 24, 59, 27, 10, 34, 23, 38, 30, 60, 22, 42, 28, 19, 9, 57, 30, 19, 43, 33, 13, 63, 3, 19, 11, 50, 31, 20, 14, 34, 10, 35, 17, 59, 7, 31, 19, 25, 50, 5, 20, 57, 29, 6, 52, 41, 4, 46, 20, 37, 26, 17, 49, 6, 39, 18, 53, 14, 3, 49, 57, 23, 34, 48, 14, 41, 28, 38, 56, 6, 58, 25, 39, 19, 43, 15, 37, 11, 47, 18, 53, 4, 37, 9, 62, 21, 53, 40, 57, 24, 13, 40, 56, 26, 47, 31, 59, 25, 45, 27, 10, 43, 21, 61, 13, 27, 48, 9, 23, 43, 31, 62, 38, 59, 9, 47 },
|
|
{ 25, 4, 40, 60, 34, 6, 18, 36, 8, 57, 12, 30, 49, 14, 6, 54, 41, 16, 50, 6, 43, 15, 34, 4, 53, 24, 50, 35, 4, 51, 7, 55, 28, 24, 39, 44, 60, 7, 25, 62, 42, 53, 24, 61, 28, 45, 52, 12, 48, 37, 9, 35, 43, 3, 37, 48, 12, 58, 30, 52, 9, 59, 6, 57, 33, 29, 48, 4, 37, 45, 20, 34, 10, 39, 0, 60, 22, 45, 8, 63, 21, 42, 14, 49, 3, 56, 11, 46, 21, 61, 0, 42, 25, 13, 63, 17, 36, 8, 46, 16, 6, 35, 63, 0, 21, 37, 4, 57, 9, 34, 5, 61, 48, 32, 8, 37, 54, 17, 56, 30, 60, 0, 50, 16, 7, 29, 42, 17 },
|
|
{ 32, 50, 15, 48, 2, 43, 52, 25, 47, 16, 32, 63, 21, 52, 40, 19, 0, 61, 29, 58, 20, 56, 26, 46, 12, 55, 6, 22, 62, 32, 17, 40, 0, 49, 34, 8, 27, 32, 48, 0, 21, 39, 5, 44, 12, 6, 22, 40, 0, 57, 16, 60, 23, 17, 54, 22, 36, 15, 24, 39, 19, 34, 47, 23, 0, 54, 13, 51, 24, 9, 55, 16, 52, 27, 44, 20, 4, 54, 26, 49, 0, 30, 46, 16, 29, 51, 34, 4, 52, 28, 33, 15, 57, 39, 26, 49, 0, 56, 27, 31, 48, 20, 43, 29, 53, 11, 46, 19, 41, 13, 55, 18, 0, 57, 26, 51, 2, 44, 6, 38, 14, 40, 22, 45, 36, 53, 3, 57 },
|
|
{ 44, 12, 37, 28, 22, 57, 11, 38, 0, 51, 9, 41, 4, 29, 11, 47, 33, 45, 12, 26, 3, 36, 9, 63, 31, 16, 38, 44, 14, 47, 25, 61, 20, 58, 15, 47, 17, 57, 13, 36, 9, 51, 18, 29, 50, 36, 54, 20, 61, 27, 32, 13, 53, 44, 9, 27, 0, 63, 45, 2, 56, 10, 14, 43, 41, 28, 58, 11, 35, 60, 30, 41, 6, 63, 11, 51, 37, 32, 15, 10, 35, 53, 5, 61, 22, 7, 26, 59, 23, 9, 44, 48, 21, 3, 51, 32, 24, 41, 12, 61, 2, 55, 9, 15, 35, 58, 28, 15, 62, 30, 37, 23, 42, 29, 11, 17, 35, 24, 63, 20, 52, 28, 8, 55, 11, 23, 47, 19 },
|
|
{ 0, 56, 8, 53, 14, 31, 61, 20, 55, 28, 62, 18, 35, 60, 25, 57, 7, 23, 39, 54, 47, 17, 43, 0, 40, 59, 29, 2, 56, 10, 37, 5, 43, 11, 29, 52, 1, 23, 54, 41, 59, 30, 55, 1, 62, 15, 33, 4, 43, 10, 47, 39, 1, 31, 40, 60, 49, 33, 7, 55, 26, 50, 31, 61, 8, 18, 21, 32, 44, 1, 25, 47, 18, 36, 30, 23, 59, 7, 40, 59, 27, 19, 38, 32, 44, 54, 40, 17, 38, 60, 27, 6, 35, 55, 10, 14, 44, 5, 50, 17, 38, 26, 42, 50, 18, 3, 44, 52, 2, 49, 7, 52, 15, 46, 62, 39, 55, 10, 31, 48, 3, 58, 33, 18, 61, 34, 13, 59 },
|
|
{ 39, 27, 63, 20, 35, 41, 4, 45, 26, 5, 38, 13, 44, 2, 50, 17, 37, 52, 2, 13, 28, 58, 24, 51, 21, 8, 34, 48, 27, 42, 18, 51, 31, 56, 5, 36, 38, 44, 4, 17, 26, 11, 38, 23, 42, 8, 56, 39, 24, 51, 5, 56, 21, 59, 14, 6, 18, 42, 22, 35, 16, 37, 3, 25, 39, 46, 63, 5, 50, 17, 58, 8, 55, 3, 50, 12, 43, 17, 47, 2, 51, 9, 62, 12, 1, 35, 13, 50, 1, 37, 12, 51, 19, 29, 46, 59, 22, 58, 33, 45, 22, 60, 10, 32, 61, 39, 8, 33, 25, 36, 20, 60, 38, 4, 21, 5, 28, 45, 12, 18, 42, 11, 49, 1, 27, 40, 6, 30 },
|
|
{ 24, 16, 42, 1, 50, 10, 48, 17, 33, 43, 24, 48, 21, 55, 31, 42, 10, 21, 63, 35, 49, 6, 33, 13, 41, 53, 10, 20, 60, 6, 53, 26, 12, 41, 22, 60, 14, 28, 63, 33, 49, 3, 45, 16, 48, 26, 14, 46, 18, 30, 35, 26, 8, 50, 29, 51, 25, 57, 12, 47, 53, 9, 62, 20, 54, 2, 36, 15, 40, 28, 33, 13, 38, 24, 46, 1, 29, 56, 33, 20, 44, 24, 41, 26, 57, 20, 63, 8, 30, 55, 5, 41, 62, 8, 34, 2, 37, 10, 19, 6, 37, 1, 53, 23, 5, 27, 58, 22, 43, 12, 50, 26, 9, 34, 54, 32, 49, 1, 59, 37, 22, 46, 25, 36, 51, 15, 54, 46 },
|
|
{ 52, 7, 45, 33, 26, 58, 14, 60, 7, 54, 3, 58, 8, 34, 14, 5, 59, 30, 18, 44, 8, 22, 48, 62, 3, 26, 55, 38, 23, 16, 39, 1, 62, 24, 49, 9, 53, 19, 46, 7, 19, 60, 31, 58, 2, 34, 53, 7, 59, 2, 62, 42, 46, 19, 36, 11, 44, 4, 38, 28, 1, 43, 32, 51, 12, 29, 56, 22, 52, 2, 62, 49, 22, 60, 14, 35, 63, 5, 25, 57, 14, 53, 4, 46, 18, 31, 42, 22, 47, 20, 58, 31, 16, 43, 23, 54, 30, 42, 52, 57, 29, 49, 30, 13, 45, 48, 16, 55, 6, 63, 1, 44, 14, 58, 19, 47, 15, 24, 51, 34, 6, 55, 5, 63, 20, 41, 21, 9 },
|
|
{ 30, 62, 18, 55, 5, 23, 39, 29, 49, 30, 15, 36, 28, 46, 60, 25, 39, 46, 4, 32, 61, 40, 15, 30, 36, 45, 14, 2, 49, 33, 57, 45, 18, 32, 3, 45, 30, 2, 35, 52, 40, 27, 13, 21, 38, 63, 20, 28, 37, 23, 16, 10, 13, 55, 2, 62, 21, 32, 60, 17, 58, 23, 5, 40, 16, 48, 7, 45, 10, 26, 43, 19, 6, 31, 52, 21, 39, 16, 48, 9, 37, 28, 36, 55, 7, 48, 3, 59, 15, 45, 25, 1, 53, 13, 47, 7, 62, 15, 4, 25, 12, 41, 18, 60, 38, 11, 34, 19, 39, 31, 29, 56, 23, 42, 3, 27, 60, 41, 8, 16, 61, 29, 43, 9, 32, 2, 60, 34 },
|
|
{ 3, 38, 13, 37, 52, 44, 2, 19, 12, 42, 63, 19, 40, 1, 20, 50, 12, 55, 15, 56, 27, 1, 54, 11, 57, 18, 32, 63, 44, 4, 29, 13, 37, 61, 35, 16, 42, 57, 12, 22, 6, 55, 43, 10, 50, 5, 44, 11, 48, 52, 34, 58, 28, 41, 38, 30, 7, 52, 11, 49, 30, 14, 45, 27, 59, 34, 21, 38, 32, 58, 11, 36, 56, 42, 9, 41, 3, 54, 31, 42, 0, 60, 16, 11, 39, 24, 52, 33, 6, 36, 10, 40, 32, 60, 26, 20, 39, 28, 47, 34, 63, 8, 54, 3, 24, 56, 0, 51, 13, 47, 16, 40, 7, 35, 52, 11, 36, 4, 57, 30, 39, 13, 18, 50, 58, 28, 12, 48 },
|
|
{ 57, 24, 49, 21, 10, 31, 61, 36, 56, 0, 22, 53, 11, 56, 32, 7, 36, 27, 41, 9, 46, 19, 34, 42, 25, 7, 50, 9, 28, 21, 54, 8, 50, 7, 27, 59, 10, 25, 48, 62, 37, 0, 33, 58, 25, 18, 32, 61, 0, 15, 45, 5, 50, 3, 23, 55, 47, 17, 40, 6, 60, 34, 53, 8, 41, 0, 61, 13, 54, 4, 46, 28, 0, 17, 48, 27, 58, 13, 23, 61, 33, 21, 50, 30, 62, 8, 14, 29, 56, 27, 61, 49, 17, 2, 44, 11, 51, 0, 59, 17, 40, 20, 32, 47, 36, 21, 42, 28, 60, 4, 54, 10, 59, 17, 30, 62, 21, 43, 26, 48, 0, 56, 36, 25, 8, 44, 39, 17 },
|
|
{ 10, 42, 4, 59, 27, 47, 8, 23, 51, 32, 45, 6, 37, 26, 48, 43, 62, 0, 21, 53, 38, 12, 51, 5, 60, 47, 24, 37, 59, 15, 35, 47, 22, 55, 0, 50, 21, 40, 6, 29, 15, 52, 24, 8, 41, 55, 13, 29, 40, 56, 24, 31, 19, 33, 61, 15, 0, 35, 24, 42, 21, 2, 19, 57, 24, 15, 30, 50, 20, 25, 40, 16, 57, 34, 61, 8, 29, 45, 6, 49, 11, 47, 2, 44, 19, 57, 38, 50, 12, 42, 21, 4, 35, 52, 28, 56, 23, 36, 13, 45, 4, 52, 27, 14, 6, 62, 9, 45, 21, 37, 25, 46, 33, 49, 0, 44, 7, 53, 13, 19, 53, 31, 3, 47, 15, 56, 22, 51 },
|
|
{ 35, 28, 53, 32, 1, 16, 54, 40, 9, 17, 25, 58, 14, 59, 3, 22, 16, 51, 31, 5, 23, 58, 28, 17, 35, 20, 0, 42, 11, 52, 3, 31, 41, 17, 43, 13, 32, 54, 18, 60, 32, 45, 17, 49, 2, 36, 51, 22, 7, 36, 9, 63, 48, 12, 46, 26, 43, 28, 63, 13, 48, 37, 51, 33, 5, 47, 55, 9, 42, 63, 7, 51, 24, 12, 37, 19, 55, 34, 18, 38, 15, 28, 54, 34, 5, 43, 22, 0, 48, 14, 54, 24, 58, 9, 38, 5, 32, 55, 21, 30, 49, 9, 59, 43, 30, 51, 35, 26, 7, 53, 2, 22, 14, 27, 57, 18, 38, 24, 33, 45, 10, 41, 20, 60, 37, 5, 32, 0 },
|
|
{ 63, 19, 15, 40, 62, 35, 14, 28, 46, 61, 4, 49, 35, 10, 29, 54, 33, 8, 45, 62, 37, 1, 43, 55, 10, 52, 61, 30, 19, 40, 25, 62, 11, 38, 27, 58, 36, 3, 46, 8, 39, 4, 62, 28, 47, 20, 4, 54, 47, 27, 43, 1, 21, 38, 8, 58, 10, 54, 4, 56, 9, 26, 12, 39, 60, 27, 18, 37, 1, 31, 35, 5, 45, 50, 2, 43, 26, 1, 59, 23, 56, 40, 7, 26, 58, 17, 32, 63, 25, 39, 7, 31, 45, 19, 63, 15, 48, 8, 37, 61, 16, 34, 1, 56, 18, 3, 15, 58, 49, 32, 63, 41, 55, 5, 40, 22, 50, 6, 59, 2, 63, 23, 52, 11, 26, 61, 44, 23 },
|
|
{ 11, 56, 46, 6, 22, 43, 58, 3, 34, 21, 38, 30, 18, 44, 52, 13, 41, 57, 17, 28, 14, 49, 25, 7, 33, 39, 26, 6, 56, 48, 1, 20, 56, 5, 46, 9, 19, 51, 30, 25, 56, 21, 35, 14, 57, 42, 16, 33, 10, 57, 17, 59, 41, 25, 53, 37, 20, 40, 30, 18, 31, 62, 44, 22, 3, 44, 11, 48, 23, 53, 18, 60, 29, 22, 62, 15, 53, 47, 10, 41, 3, 19, 52, 36, 13, 46, 10, 35, 3, 61, 41, 16, 1, 50, 26, 42, 18, 46, 2, 25, 54, 20, 39, 23, 47, 31, 41, 12, 38, 17, 8, 19, 31, 48, 12, 61, 9, 54, 29, 35, 15, 38, 6, 43, 34, 14, 7, 47 },
|
|
{ 39, 2, 33, 26, 53, 8, 18, 50, 41, 12, 53, 1, 63, 24, 19, 39, 2, 24, 47, 10, 60, 38, 19, 63, 48, 4, 15, 45, 32, 14, 60, 36, 29, 53, 23, 63, 34, 12, 61, 1, 43, 11, 53, 30, 1, 26, 60, 45, 23, 39, 3, 29, 12, 50, 4, 16, 51, 3, 45, 36, 50, 1, 16, 54, 35, 14, 57, 30, 58, 9, 46, 14, 41, 10, 32, 38, 4, 30, 21, 51, 32, 63, 25, 1, 60, 27, 53, 18, 51, 22, 28, 55, 34, 12, 40, 3, 60, 29, 57, 41, 6, 44, 11, 53, 8, 61, 24, 57, 1, 28, 44, 59, 36, 3, 34, 25, 41, 31, 16, 44, 22, 47, 28, 58, 1, 49, 54, 29 },
|
|
{ 58, 25, 50, 13, 38, 30, 60, 24, 6, 57, 27, 42, 9, 45, 6, 61, 30, 50, 4, 34, 29, 3, 46, 13, 22, 42, 58, 28, 9, 39, 23, 44, 7, 15, 44, 2, 40, 15, 47, 41, 23, 37, 7, 59, 38, 11, 34, 6, 62, 14, 52, 35, 55, 19, 32, 61, 33, 24, 57, 6, 22, 59, 29, 7, 49, 25, 40, 3, 17, 39, 27, 52, 0, 55, 16, 57, 24, 61, 36, 6, 29, 12, 48, 39, 20, 44, 6, 40, 33, 5, 48, 10, 57, 36, 22, 51, 33, 9, 24, 12, 62, 29, 50, 35, 14, 43, 5, 33, 47, 52, 13, 23, 10, 51, 56, 16, 46, 1, 49, 4, 61, 9, 52, 18, 31, 21, 36, 17 },
|
|
{ 19, 42, 9, 48, 2, 44, 11, 37, 48, 20, 33, 16, 55, 35, 49, 15, 37, 20, 59, 16, 53, 22, 56, 31, 50, 11, 34, 54, 16, 51, 4, 49, 33, 53, 21, 28, 56, 24, 31, 9, 52, 16, 48, 24, 44, 13, 51, 20, 31, 49, 18, 6, 34, 2, 44, 14, 47, 8, 15, 43, 13, 41, 33, 52, 20, 61, 7, 51, 34, 62, 4, 20, 36, 33, 43, 8, 46, 13, 53, 17, 45, 42, 9, 31, 52, 11, 30, 56, 13, 59, 17, 44, 27, 6, 62, 11, 43, 17, 49, 38, 26, 2, 16, 27, 58, 21, 54, 18, 26, 5, 35, 61, 43, 27, 7, 39, 14, 58, 37, 55, 20, 33, 13, 40, 62, 10, 55, 5 },
|
|
{ 51, 14, 61, 29, 59, 20, 55, 31, 0, 49, 11, 60, 3, 26, 22, 56, 0, 40, 12, 43, 41, 8, 36, 0, 17, 57, 24, 2, 46, 26, 61, 18, 0, 38, 12, 59, 6, 49, 3, 57, 19, 63, 5, 33, 18, 54, 28, 56, 0, 43, 26, 46, 63, 27, 56, 22, 27, 54, 38, 28, 63, 24, 10, 45, 0, 31, 42, 21, 12, 25, 44, 49, 59, 6, 26, 50, 3, 34, 27, 59, 0, 35, 62, 16, 4, 58, 47, 0, 43, 24, 37, 2, 54, 20, 46, 31, 0, 56, 34, 5, 55, 45, 60, 37, 0, 40, 10, 38, 63, 46, 15, 20, 0, 53, 21, 62, 30, 11, 24, 27, 40, 0, 57, 26, 3, 45, 27, 35 },
|
|
};
|
|
|
|
typedef struct _Color Color;
|
|
typedef struct _QuantizeObj QuantizeObj;
|
|
typedef void (* Pass1_Func) (QuantizeObj *);
|
|
typedef void (* Pass2i_Func) (QuantizeObj *);
|
|
typedef void (* Pass2_Func) (QuantizeObj *, Layer *, TileManager *);
|
|
typedef void (* Cleanup_Func) (QuantizeObj *);
|
|
typedef unsigned long ColorFreq;
|
|
typedef ColorFreq *Histogram;
|
|
|
|
struct _Color
|
|
{
|
|
int red;
|
|
int green;
|
|
int blue;
|
|
};
|
|
|
|
struct _QuantizeObj
|
|
{
|
|
Pass1_Func first_pass; /* first pass over image data creates colormap */
|
|
Pass2i_Func second_pass_init; /* Initialize data which persists over invocations */
|
|
Pass2_Func second_pass; /* second pass maps from image data to colormap */
|
|
Cleanup_Func delete_func; /* function to clean up data associated with private */
|
|
|
|
int desired_number_of_colors; /* Number of colors we will allow */
|
|
int actual_number_of_colors; /* Number of colors actually needed */
|
|
Color cmap[256]; /* colormap created by quantization */
|
|
unsigned long index_used_count[256]; /* how many times an index was used */
|
|
Histogram histogram; /* holds the histogram */
|
|
|
|
int want_alpha_dither;
|
|
int error_freedom; /* 0=much bleed, 1=controlled bleed */
|
|
};
|
|
|
|
typedef struct
|
|
{
|
|
/* The bounds of the box (inclusive); expressed as histogram indexes */
|
|
int Rmin, Rmax;
|
|
int Rhalferror;
|
|
int Gmin, Gmax;
|
|
int Ghalferror;
|
|
int Bmin, Bmax;
|
|
int Bhalferror;
|
|
|
|
/* The volume (actually 2-norm) of the box */
|
|
int volume;
|
|
|
|
/* The number of nonzero histogram cells within this box */
|
|
long colorcount;
|
|
|
|
/* The sum of the weighted error within this box */
|
|
guint64 error;
|
|
/* The sum of the unweighted error within this box */
|
|
guint64 rerror;
|
|
guint64 gerror;
|
|
guint64 berror;
|
|
|
|
} box, *boxptr;
|
|
|
|
typedef struct
|
|
{
|
|
long ncolors;
|
|
long dither;
|
|
} Options;
|
|
|
|
typedef struct
|
|
{
|
|
GtkWidget* shell;
|
|
GtkWidget* custom_palette_button;
|
|
GimpImage* gimage;
|
|
PaletteSelect* palette_select;
|
|
int nodither_flag;
|
|
int fsdither_flag;
|
|
int fslowbleeddither_flag;
|
|
int fixeddither_flag;
|
|
int alphadither; /* flag */
|
|
int remdups; /* flag */
|
|
int num_cols;
|
|
int palette;
|
|
int makepal_flag;
|
|
int webpal_flag;
|
|
int custompal_flag;
|
|
int monopal_flag;
|
|
int reusepal_flag;
|
|
} IndexedDialog;
|
|
|
|
static void indexed_ok_callback (GtkWidget *, gpointer);
|
|
static void indexed_cancel_callback (GtkWidget *, gpointer);
|
|
|
|
static void indexed_custom_palette_button_callback (GtkWidget *widget, gpointer data);
|
|
static void indexed_palette_select_destroy_callback (GtkWidget *widget, gpointer data);
|
|
|
|
static void rgb_converter (Layer *, TileManager *, int);
|
|
static void grayscale_converter (Layer *, TileManager *, int);
|
|
|
|
static void zero_histogram_gray (Histogram);
|
|
static void zero_histogram_rgb (Histogram);
|
|
static void generate_histogram_gray (Histogram, Layer *, int alpha_dither);
|
|
static void generate_histogram_rgb (Histogram, Layer *, int col_limit, int alpha_dither);
|
|
|
|
static QuantizeObj* initialize_median_cut (int, int, ConvertDitherType,
|
|
ConvertPaletteType, int);
|
|
|
|
static void
|
|
compute_color_rgb (QuantizeObj *quantobj,
|
|
Histogram histogram,
|
|
boxptr boxp,
|
|
int icolor);
|
|
|
|
static unsigned char found_cols[MAXNUMCOLORS][3];
|
|
static int num_found_cols;
|
|
static gboolean needs_quantize;
|
|
|
|
static GtkWidget *build_palette_button (void);
|
|
|
|
static gboolean UserHasWebPal = FALSE;
|
|
|
|
PaletteEntries *theCustomPalette = NULL;
|
|
|
|
|
|
/* Defaults */
|
|
static int snum_cols = 256;
|
|
static gboolean sfsdither_flag = TRUE;
|
|
static gboolean sfslowbleeddither_flag = TRUE;
|
|
static gboolean snodither_flag = FALSE;
|
|
static gboolean sfixeddither_flag = FALSE;
|
|
static gboolean smakepal_flag = TRUE;
|
|
static gboolean salphadither_flag = FALSE;
|
|
static gboolean sremdups_flag = TRUE;
|
|
static gboolean swebpal_flag = FALSE;
|
|
static gboolean scustompal_flag = FALSE;
|
|
static gboolean smonopal_flag = FALSE;
|
|
static gboolean sreusepal_flag = FALSE;
|
|
|
|
|
|
void
|
|
convert_to_rgb (GimpImage *gimage)
|
|
{
|
|
convert_image (gimage, RGB, 0, 0, 0, 0, 0);
|
|
gdisplays_flush ();
|
|
}
|
|
|
|
void
|
|
convert_to_grayscale (GimpImage* gimage)
|
|
{
|
|
convert_image (gimage, GRAY, 0, 0, 0, 0, 0);
|
|
gdisplays_flush ();
|
|
}
|
|
|
|
void
|
|
convert_to_indexed (GimpImage *gimage)
|
|
{
|
|
IndexedDialog *dialog;
|
|
GtkWidget *main_vbox;
|
|
GtkWidget *vbox;
|
|
GtkWidget *hbox;
|
|
GtkWidget *label;
|
|
GtkObject *adjustment;
|
|
GtkWidget *spinbutton;
|
|
GtkWidget *frame;
|
|
GtkWidget *custom_frame = NULL;
|
|
GtkWidget *toggle;
|
|
GSList *group = NULL;
|
|
|
|
dialog = g_new (IndexedDialog, 1);
|
|
dialog->gimage = gimage;
|
|
|
|
dialog->custom_palette_button = NULL;
|
|
dialog->palette_select = NULL;
|
|
|
|
dialog->num_cols = snum_cols;
|
|
dialog->nodither_flag = snodither_flag;
|
|
dialog->fsdither_flag = sfsdither_flag;
|
|
dialog->fslowbleeddither_flag = sfslowbleeddither_flag;
|
|
dialog->fixeddither_flag = sfixeddither_flag;
|
|
dialog->alphadither = salphadither_flag;
|
|
dialog->remdups = sremdups_flag;
|
|
dialog->makepal_flag = smakepal_flag;
|
|
dialog->webpal_flag = swebpal_flag;
|
|
dialog->custompal_flag = scustompal_flag;
|
|
dialog->monopal_flag = smonopal_flag;
|
|
dialog->reusepal_flag = sreusepal_flag;
|
|
|
|
dialog->shell =
|
|
gimp_dialog_new (_("Indexed Color Conversion"), "indexed_color_conversion",
|
|
gimp_standard_help_func,
|
|
"dialogs/convert_to_indexed.html",
|
|
GTK_WIN_POS_NONE,
|
|
FALSE, FALSE, TRUE,
|
|
|
|
_("OK"), indexed_ok_callback,
|
|
dialog, NULL, NULL, TRUE, FALSE,
|
|
_("Cancel"), indexed_cancel_callback,
|
|
dialog, NULL, NULL, FALSE, TRUE,
|
|
|
|
NULL);
|
|
|
|
main_vbox = gtk_vbox_new (FALSE, 2);
|
|
gtk_container_set_border_width (GTK_CONTAINER (main_vbox), 4);
|
|
gtk_container_add (GTK_CONTAINER (GTK_DIALOG (dialog->shell)->vbox),
|
|
main_vbox);
|
|
gtk_widget_show (main_vbox);
|
|
|
|
frame = gtk_frame_new (_("General Palette Options"));
|
|
gtk_box_pack_start (GTK_BOX (main_vbox), frame, FALSE, FALSE, 0);
|
|
gtk_widget_show (frame);
|
|
|
|
vbox = gtk_vbox_new (FALSE, 1);
|
|
gtk_container_set_border_width (GTK_CONTAINER (vbox), 2);
|
|
gtk_container_add (GTK_CONTAINER (frame), vbox);
|
|
gtk_widget_show (vbox);
|
|
|
|
/* 'generate palette' */
|
|
hbox = gtk_hbox_new (FALSE, 4);
|
|
gtk_box_pack_start (GTK_BOX (vbox), hbox, FALSE, FALSE, 0);
|
|
|
|
toggle = gtk_radio_button_new_with_label (NULL, _("Generate Optimal Palette:"));
|
|
group = gtk_radio_button_group (GTK_RADIO_BUTTON (toggle));
|
|
gtk_box_pack_start (GTK_BOX (hbox), toggle, FALSE, FALSE, 0);
|
|
gtk_signal_connect (GTK_OBJECT (toggle), "toggled",
|
|
GTK_SIGNAL_FUNC (gimp_toggle_button_update),
|
|
&(dialog->makepal_flag));
|
|
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (toggle),
|
|
dialog->makepal_flag);
|
|
gtk_widget_show (toggle);
|
|
|
|
if (dialog->num_cols == 256)
|
|
{
|
|
if ((!gimage_is_empty (gimage))
|
|
&&
|
|
(
|
|
gimage->layers->next
|
|
||
|
|
layer_has_alpha ((Layer *) gimage->layers->data)
|
|
)
|
|
)
|
|
{
|
|
dialog->num_cols = 255;
|
|
}
|
|
}
|
|
|
|
spinbutton = gimp_spin_button_new (&adjustment, dialog->num_cols,
|
|
2, 256, 1, 5, 0, 1, 0);
|
|
gtk_signal_connect (GTK_OBJECT (adjustment), "value_changed",
|
|
GTK_SIGNAL_FUNC (gimp_int_adjustment_update),
|
|
&(dialog->num_cols));
|
|
gtk_box_pack_end (GTK_BOX (hbox), spinbutton, FALSE, FALSE, 0);
|
|
gtk_widget_show (spinbutton);
|
|
|
|
label = gtk_label_new (_("# of Colors:"));
|
|
gtk_box_pack_end (GTK_BOX (hbox), label, FALSE, FALSE, 0);
|
|
gtk_widget_show (label);
|
|
|
|
gtk_widget_set_sensitive (GTK_WIDGET (spinbutton), dialog->num_cols);
|
|
gtk_widget_set_sensitive (GTK_WIDGET (label), dialog->num_cols);
|
|
gtk_object_set_data (GTK_OBJECT (toggle), "set_sensitive", spinbutton);
|
|
gtk_object_set_data (GTK_OBJECT (spinbutton), "set_sensitive", label);
|
|
|
|
gtk_widget_show (hbox);
|
|
|
|
/* 'custom' palette from dialog */
|
|
dialog->custom_palette_button = build_palette_button ();
|
|
if (dialog->custom_palette_button)
|
|
{
|
|
/* create the custom_frame here, it'll be added later */
|
|
custom_frame = gtk_frame_new (_("Custom Palette Options"));
|
|
gtk_container_set_border_width (GTK_CONTAINER (custom_frame), 2);
|
|
|
|
/* The remove-duplicates toggle */
|
|
hbox = gtk_hbox_new (FALSE, 1);
|
|
gtk_container_add (GTK_CONTAINER (custom_frame), hbox);
|
|
toggle = gtk_check_button_new_with_label (_("Remove Unused Colors from Final Palette"));
|
|
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (toggle), dialog->remdups);
|
|
gtk_box_pack_start (GTK_BOX (hbox), toggle, FALSE, FALSE, 0);
|
|
gtk_signal_connect (GTK_OBJECT (toggle), "toggled",
|
|
GTK_SIGNAL_FUNC (gimp_toggle_button_update),
|
|
&(dialog->remdups));
|
|
gtk_widget_show (toggle);
|
|
gtk_widget_show (hbox);
|
|
|
|
/* 'custom' palette from dialog */
|
|
hbox = gtk_hbox_new (FALSE, 4);
|
|
gtk_box_pack_start (GTK_BOX (vbox), hbox, FALSE, FALSE, 0);
|
|
toggle = gtk_radio_button_new_with_label (group, _("Use Custom Palette:"));
|
|
group = gtk_radio_button_group (GTK_RADIO_BUTTON (toggle));
|
|
gtk_box_pack_start (GTK_BOX (hbox), toggle, FALSE, FALSE, 0);
|
|
gtk_signal_connect (GTK_OBJECT (toggle), "toggled",
|
|
GTK_SIGNAL_FUNC (gimp_toggle_button_update),
|
|
&(dialog->custompal_flag));
|
|
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (toggle),
|
|
dialog->custompal_flag);
|
|
gtk_object_set_data (GTK_OBJECT (toggle), "set_sensitive", custom_frame);
|
|
gtk_widget_show (toggle);
|
|
|
|
gtk_signal_connect (GTK_OBJECT (dialog->custom_palette_button), "clicked",
|
|
GTK_SIGNAL_FUNC (indexed_custom_palette_button_callback),
|
|
dialog);
|
|
gtk_box_pack_end (GTK_BOX (hbox), dialog->custom_palette_button, TRUE, TRUE, 0);
|
|
gtk_widget_show (dialog->custom_palette_button);
|
|
gtk_widget_show (hbox);
|
|
|
|
gtk_widget_set_sensitive (GTK_WIDGET (custom_frame), dialog->custompal_flag);
|
|
gtk_widget_set_sensitive (GTK_WIDGET (dialog->custom_palette_button), dialog->custompal_flag);
|
|
gtk_object_set_data (GTK_OBJECT (toggle), "set_sensitive", custom_frame);
|
|
gtk_object_set_data (GTK_OBJECT (custom_frame), "set_sensitive", dialog->custom_palette_button);
|
|
}
|
|
|
|
if (!UserHasWebPal)
|
|
{
|
|
/* 'web palette'
|
|
* Only presented as an option to the user if they do not
|
|
* already have the 'Web' GIMP palette installed on their
|
|
* system.
|
|
*/
|
|
hbox = gtk_hbox_new (FALSE, 0);
|
|
gtk_box_pack_start (GTK_BOX (vbox), hbox, FALSE, FALSE, 0);
|
|
toggle =
|
|
gtk_radio_button_new_with_label (group, _("Use WWW-Optimized Palette"));
|
|
group = gtk_radio_button_group (GTK_RADIO_BUTTON (toggle));
|
|
gtk_box_pack_start (GTK_BOX (hbox), toggle, FALSE, FALSE, 0);
|
|
gtk_signal_connect (GTK_OBJECT (toggle), "toggled",
|
|
GTK_SIGNAL_FUNC (gimp_toggle_button_update),
|
|
&(dialog->webpal_flag));
|
|
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (toggle),
|
|
dialog->webpal_flag);
|
|
gtk_widget_show (toggle);
|
|
gtk_widget_show (hbox);
|
|
}
|
|
|
|
/* 'mono palette' */
|
|
hbox = gtk_hbox_new (FALSE, 0);
|
|
gtk_box_pack_start (GTK_BOX (vbox), hbox, FALSE, FALSE, 0);
|
|
toggle =
|
|
gtk_radio_button_new_with_label (group, _("Use Black/White (1-Bit) Palette"));
|
|
group = gtk_radio_button_group (GTK_RADIO_BUTTON (toggle));
|
|
gtk_box_pack_start (GTK_BOX (hbox), toggle, FALSE, FALSE, 0);
|
|
gtk_signal_connect (GTK_OBJECT (toggle), "toggled",
|
|
GTK_SIGNAL_FUNC (gimp_toggle_button_update),
|
|
&(dialog->monopal_flag));
|
|
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (toggle),
|
|
dialog->monopal_flag);
|
|
gtk_widget_show (toggle);
|
|
gtk_widget_show (hbox);
|
|
|
|
frame = gtk_frame_new (_("Dither Options"));
|
|
gtk_box_pack_start (GTK_BOX (main_vbox), frame, FALSE, FALSE, 0);
|
|
gtk_widget_show (frame);
|
|
|
|
vbox = gtk_vbox_new (FALSE, 1);
|
|
gtk_container_set_border_width (GTK_CONTAINER (vbox), 2);
|
|
gtk_container_add (GTK_CONTAINER (frame), vbox);
|
|
gtk_widget_show(vbox);
|
|
|
|
/* The dither radio buttons */
|
|
hbox = gtk_hbox_new (FALSE, 0);
|
|
gtk_box_pack_start (GTK_BOX (vbox), hbox, FALSE, FALSE, 0);
|
|
|
|
toggle = gtk_radio_button_new_with_label (NULL, _("No Color Dithering"));
|
|
group = gtk_radio_button_group (GTK_RADIO_BUTTON (toggle));
|
|
gtk_box_pack_start (GTK_BOX (hbox), toggle, FALSE, FALSE, 0);
|
|
gtk_signal_connect (GTK_OBJECT (toggle), "toggled",
|
|
GTK_SIGNAL_FUNC (gimp_toggle_button_update),
|
|
&(dialog->nodither_flag));
|
|
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (toggle),
|
|
dialog->nodither_flag);
|
|
gtk_widget_show (toggle);
|
|
gtk_widget_show (hbox);
|
|
|
|
hbox = gtk_hbox_new (FALSE, 0);
|
|
gtk_box_pack_start (GTK_BOX (vbox), hbox, FALSE, FALSE, 0);
|
|
|
|
toggle = gtk_radio_button_new_with_label (group, _("Positioned Color Dithering"));
|
|
group = gtk_radio_button_group (GTK_RADIO_BUTTON (toggle));
|
|
gtk_box_pack_start (GTK_BOX (hbox), toggle, FALSE, FALSE, 0);
|
|
gtk_signal_connect (GTK_OBJECT (toggle), "toggled",
|
|
GTK_SIGNAL_FUNC (gimp_toggle_button_update),
|
|
&(dialog->fixeddither_flag));
|
|
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (toggle),
|
|
dialog->fixeddither_flag);
|
|
gtk_widget_show (toggle);
|
|
gtk_widget_show (hbox);
|
|
|
|
hbox = gtk_hbox_new (FALSE, 0);
|
|
gtk_box_pack_start (GTK_BOX (vbox), hbox, FALSE, FALSE, 0);
|
|
|
|
toggle = gtk_radio_button_new_with_label (group, _("Floyd-Steinberg Color Dithering (Reduced Color Bleeding)"));
|
|
group = gtk_radio_button_group (GTK_RADIO_BUTTON (toggle));
|
|
gtk_box_pack_start (GTK_BOX (hbox), toggle, FALSE, FALSE, 0);
|
|
gtk_signal_connect (GTK_OBJECT (toggle), "toggled",
|
|
GTK_SIGNAL_FUNC (gimp_toggle_button_update),
|
|
&(dialog->fslowbleeddither_flag));
|
|
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (toggle),
|
|
dialog->fslowbleeddither_flag);
|
|
gtk_widget_show (toggle);
|
|
gtk_widget_show (hbox);
|
|
|
|
hbox = gtk_hbox_new (FALSE, 0);
|
|
gtk_box_pack_start (GTK_BOX (vbox), hbox, FALSE, FALSE, 0);
|
|
toggle = gtk_radio_button_new_with_label (group, _("Floyd-Steinberg Color Dithering (Normal)"));
|
|
group = gtk_radio_button_group (GTK_RADIO_BUTTON (toggle));
|
|
gtk_box_pack_start (GTK_BOX (hbox), toggle, FALSE, FALSE, 0);
|
|
gtk_signal_connect (GTK_OBJECT (toggle), "toggled",
|
|
GTK_SIGNAL_FUNC (gimp_toggle_button_update),
|
|
&(dialog->fsdither_flag));
|
|
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (toggle),
|
|
dialog->fsdither_flag);
|
|
gtk_widget_show (toggle);
|
|
gtk_widget_show (hbox);
|
|
|
|
/* The alpha-dither toggle */
|
|
hbox = gtk_hbox_new (FALSE, 0);
|
|
gtk_box_pack_start (GTK_BOX (vbox), hbox, FALSE, FALSE, 0);
|
|
toggle = gtk_check_button_new_with_label (_("Enable Dithering of Transparency"));
|
|
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (toggle),
|
|
dialog->alphadither);
|
|
gtk_box_pack_start (GTK_BOX (hbox), toggle, FALSE, FALSE, 0);
|
|
gtk_signal_connect (GTK_OBJECT (toggle), "toggled",
|
|
GTK_SIGNAL_FUNC (gimp_toggle_button_update),
|
|
&(dialog->alphadither));
|
|
gtk_widget_show (toggle);
|
|
gtk_widget_show (hbox);
|
|
|
|
/* now add the custom_frame */
|
|
if (custom_frame)
|
|
{
|
|
gtk_box_pack_start (GTK_BOX (main_vbox), custom_frame, FALSE, FALSE, 0);
|
|
gtk_widget_show (custom_frame);
|
|
}
|
|
|
|
/* if the image isn't non-alpha/layered, set the default number of
|
|
colours to one less than max, to leave room for a transparent index
|
|
for transparent/animated GIFs */
|
|
if ((!gimage_is_empty (gimage))
|
|
&&
|
|
(
|
|
gimage->layers->next
|
|
||
|
|
layer_has_alpha ((Layer *) gimage->layers->data)
|
|
)
|
|
)
|
|
{
|
|
frame = gtk_frame_new (_("[ Warning ]"));
|
|
gtk_box_pack_start (GTK_BOX (main_vbox), frame, FALSE, FALSE, 0);
|
|
gtk_widget_show (frame);
|
|
|
|
vbox = gtk_vbox_new (FALSE, 1);
|
|
gtk_container_set_border_width (GTK_CONTAINER (vbox), 2);
|
|
gtk_container_add (GTK_CONTAINER (frame), vbox);
|
|
gtk_widget_show (vbox);
|
|
|
|
label = gtk_label_new
|
|
(_("You are attempting to convert an image with alpha/layers "
|
|
"from RGB/GRAY to INDEXED.\nYou should not generate a "
|
|
"palette of more than 255 colors if you intend to create "
|
|
"a transparent or animated GIF file from this image."));
|
|
gtk_label_set_justify (GTK_LABEL (label), GTK_JUSTIFY_LEFT);
|
|
gtk_label_set_line_wrap (GTK_LABEL (label), TRUE);
|
|
gtk_container_add (GTK_CONTAINER (vbox), label);
|
|
gtk_widget_show (label);
|
|
|
|
}
|
|
|
|
gtk_widget_show (dialog->shell);
|
|
}
|
|
|
|
|
|
static GtkWidget *
|
|
build_palette_button (void)
|
|
{
|
|
GSList *list;
|
|
PaletteEntries *entries;
|
|
int i, default_palette;
|
|
|
|
UserHasWebPal = FALSE;
|
|
|
|
if (!palette_entries_list)
|
|
{
|
|
palettes_init (FALSE);
|
|
}
|
|
|
|
list = palette_entries_list;
|
|
|
|
if (!list)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
for (i = 0, list = palette_entries_list, default_palette = -1;
|
|
list;
|
|
i++, list = g_slist_next (list))
|
|
{
|
|
entries = (PaletteEntries *) list->data;
|
|
|
|
/* Preferentially, the initial default is 'Web' if available */
|
|
if (default_palette==-1 &&
|
|
g_strcasecmp (entries->name, "Web")==0)
|
|
{
|
|
theCustomPalette = entries;
|
|
UserHasWebPal = TRUE;
|
|
}
|
|
|
|
/* We can't dither to > 256 colors */
|
|
if (entries->n_colors <= 256)
|
|
{
|
|
if (theCustomPalette == entries)
|
|
{
|
|
default_palette = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* default to first one with <= 256 colors (only used if 'web' palette not avail.) */
|
|
if (default_palette == -1)
|
|
{
|
|
for (i = 0, list = palette_entries_list;
|
|
list && default_palette == -1;
|
|
i++, list = g_slist_next (list))
|
|
{
|
|
entries = (PaletteEntries *) list->data;
|
|
|
|
if (entries->n_colors <= 256)
|
|
{
|
|
theCustomPalette = entries;
|
|
default_palette = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (default_palette == -1)
|
|
return NULL;
|
|
else
|
|
return gtk_button_new_with_label (theCustomPalette->name);
|
|
}
|
|
|
|
|
|
static void
|
|
indexed_ok_callback (GtkWidget *widget,
|
|
gpointer data)
|
|
{
|
|
IndexedDialog *dialog;
|
|
ConvertPaletteType palette_type;
|
|
ConvertDitherType dither_type;
|
|
|
|
dialog = (IndexedDialog *) data;
|
|
|
|
if (dialog->webpal_flag) palette_type = WEB_PALETTE;
|
|
else
|
|
if (dialog->custompal_flag) palette_type = CUSTOM_PALETTE;
|
|
else
|
|
if (dialog->monopal_flag) palette_type = MONO_PALETTE;
|
|
else
|
|
if (dialog->makepal_flag) palette_type = MAKE_PALETTE;
|
|
else
|
|
palette_type = REUSE_PALETTE;
|
|
|
|
if (dialog->nodither_flag) dither_type = NO_DITHER;
|
|
else
|
|
if (dialog->fsdither_flag) dither_type = FS_DITHER;
|
|
else
|
|
if (dialog->fslowbleeddither_flag) dither_type = FSLOWBLEED_DITHER;
|
|
else
|
|
dither_type = FIXED_DITHER;
|
|
|
|
/* Convert the image to indexed color */
|
|
convert_image (dialog->gimage, INDEXED, dialog->num_cols,
|
|
dither_type, dialog->alphadither,
|
|
dialog->remdups, palette_type);
|
|
gdisplays_flush ();
|
|
|
|
/* Save defaults for next time */
|
|
snum_cols = dialog->num_cols;
|
|
snodither_flag = dialog->nodither_flag;
|
|
sfsdither_flag = dialog->fsdither_flag;
|
|
sfslowbleeddither_flag = dialog->fslowbleeddither_flag;
|
|
sfixeddither_flag = dialog->fixeddither_flag;
|
|
salphadither_flag = dialog->alphadither;
|
|
sremdups_flag = dialog->remdups;
|
|
smakepal_flag = dialog->makepal_flag;
|
|
swebpal_flag = dialog->webpal_flag;
|
|
scustompal_flag = dialog->custompal_flag;
|
|
smonopal_flag = dialog->monopal_flag;
|
|
sreusepal_flag = dialog->reusepal_flag;
|
|
|
|
if (dialog->palette_select)
|
|
gtk_widget_destroy (dialog->palette_select->shell);
|
|
gtk_widget_destroy (dialog->shell);
|
|
g_free (dialog);
|
|
dialog = NULL;
|
|
}
|
|
|
|
static void
|
|
indexed_cancel_callback (GtkWidget *widget,
|
|
gpointer data)
|
|
{
|
|
IndexedDialog *dialog;
|
|
|
|
dialog = (IndexedDialog *) data;
|
|
|
|
if (dialog->palette_select)
|
|
gtk_widget_destroy (dialog->palette_select->shell);
|
|
gtk_widget_destroy (dialog->shell);
|
|
g_free (dialog);
|
|
dialog = NULL;
|
|
}
|
|
|
|
static void
|
|
indexed_palette_select_destroy_callback (GtkWidget *widget,
|
|
gpointer data)
|
|
{
|
|
IndexedDialog *dialog = (IndexedDialog *)data;
|
|
|
|
if (dialog)
|
|
dialog->palette_select = NULL;
|
|
}
|
|
|
|
static gint
|
|
indexed_palette_select_row_callback (GtkCList *clist,
|
|
gint row,
|
|
gint column,
|
|
GdkEventButton *event,
|
|
gpointer data)
|
|
{
|
|
IndexedDialog *dialog = (IndexedDialog *)data;
|
|
PaletteEntries *p_entries;
|
|
|
|
p_entries = (PaletteEntries *) gtk_clist_get_row_data (clist, row);
|
|
if (p_entries)
|
|
{
|
|
if (p_entries->n_colors <= 256)
|
|
{
|
|
theCustomPalette = p_entries;
|
|
gtk_label_set_text (GTK_LABEL (GTK_BIN(dialog->custom_palette_button)->child),
|
|
theCustomPalette->name);
|
|
}
|
|
else
|
|
{
|
|
gtk_clist_unselect_row (clist, row, column);
|
|
}
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
static void
|
|
indexed_custom_palette_button_callback (GtkWidget *widget,
|
|
gpointer data)
|
|
{
|
|
IndexedDialog *dialog = (IndexedDialog *)data;
|
|
|
|
if (dialog->palette_select == NULL)
|
|
{
|
|
dialog->palette_select = palette_select_new (_("Select Custom Palette"),
|
|
theCustomPalette->name);
|
|
|
|
gtk_signal_connect (GTK_OBJECT (dialog->palette_select->shell), "destroy",
|
|
GTK_SIGNAL_FUNC (indexed_palette_select_destroy_callback),
|
|
dialog);
|
|
gtk_signal_connect (GTK_OBJECT (dialog->palette_select->clist), "select_row",
|
|
GTK_SIGNAL_FUNC (indexed_palette_select_row_callback),
|
|
dialog);
|
|
}
|
|
else
|
|
{
|
|
gdk_window_raise (dialog->palette_select->shell->window);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/**********************************************************/
|
|
typedef struct
|
|
{
|
|
signed long used_count;
|
|
unsigned char initial_index;
|
|
} palentryStruct;
|
|
|
|
static int
|
|
mapping_compare (const void *a, const void *b)
|
|
{
|
|
palentryStruct *m1 = (palentryStruct*)a;
|
|
palentryStruct *m2 = (palentryStruct*)b;
|
|
|
|
return (m2->used_count - m1->used_count);
|
|
}
|
|
|
|
/* FWIW, the make_remap_table() and mapping_compare() function source
|
|
and palentryStruct may be re-used under the XFree86-style license.
|
|
<adam@gimp.org> */
|
|
static void
|
|
make_remap_table (const unsigned char old_palette[],
|
|
unsigned char new_palette[],
|
|
const unsigned long index_used_count[],
|
|
unsigned char remap_table[],
|
|
int* num_entries)
|
|
{
|
|
int i,j,k;
|
|
unsigned char temppal[256 * 3];
|
|
unsigned long tempuse[256];
|
|
unsigned long transmap[256];
|
|
palentryStruct *palentries;
|
|
int used = 0;
|
|
|
|
memset(temppal, 0, 256 * 3);
|
|
memset(tempuse, 0, 256 * sizeof(unsigned long));
|
|
memset(transmap, 255, 256 * sizeof(unsigned long));
|
|
|
|
/* First pass - only collect entries which are marked as
|
|
being used at all in index_used_count. */
|
|
for (i = 0; i < *num_entries; i++)
|
|
{
|
|
if (index_used_count[i])
|
|
{
|
|
temppal[used*3 + 0] = old_palette[i*3 + 0];
|
|
temppal[used*3 + 1] = old_palette[i*3 + 1];
|
|
temppal[used*3 + 2] = old_palette[i*3 + 2];
|
|
|
|
tempuse[used] = index_used_count[i];
|
|
transmap[i] = used;
|
|
|
|
used++;
|
|
}
|
|
}
|
|
|
|
/* Second pass - remove duplicates. (O(n^3), could do better!) */
|
|
for (i = 0; i < used; i++)
|
|
{
|
|
for (j = 0; j < i; j++)
|
|
{
|
|
if ((temppal[i*3 + 1] == temppal[j*3 + 1]) &&
|
|
(temppal[i*3 + 0] == temppal[j*3 + 0]) &&
|
|
(temppal[i*3 + 2] == temppal[j*3 + 2]) &&
|
|
tempuse[j] &&
|
|
tempuse[i])
|
|
{
|
|
/* Move the 'used' tally from one to the other. */
|
|
tempuse[i] += tempuse[j];
|
|
/* zero one of them, deactivating its entry. */
|
|
tempuse[j] = 0;
|
|
|
|
/* change all mappings from this dead index
|
|
to the live one. */
|
|
for (k = 0; k < *num_entries; k++)
|
|
{
|
|
if (index_used_count[k] && (transmap[k] == j))
|
|
transmap[k] = i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Third pass - rank all used indicies to the beginning of the
|
|
palette. */
|
|
palentries = g_malloc(used * sizeof(palentryStruct));
|
|
for (i = 0; i < used; i++)
|
|
{
|
|
palentries[i].initial_index = i;
|
|
palentries[i].used_count = tempuse[i];
|
|
}
|
|
qsort(palentries, used, sizeof(palentryStruct),
|
|
&mapping_compare);
|
|
for (i = 0; i < *num_entries; i++)
|
|
{
|
|
if (index_used_count[i])
|
|
{
|
|
for (j = 0; j < used; j++)
|
|
{
|
|
if ((transmap[i] == palentries[j].initial_index)
|
|
&& (palentries[j].used_count))
|
|
{
|
|
remap_table[i] = j;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (i = 0; i < *num_entries; i++)
|
|
{
|
|
if (index_used_count[i])
|
|
{
|
|
new_palette[remap_table[i]*3 + 0] = old_palette[i*3 + 0];
|
|
new_palette[remap_table[i]*3 + 1] = old_palette[i*3 + 1];
|
|
new_palette[remap_table[i]*3 + 2] = old_palette[i*3 + 2];
|
|
}
|
|
}
|
|
*num_entries = 0;
|
|
for (j = 0; j < used; j++)
|
|
{
|
|
if (palentries[j].used_count)
|
|
{
|
|
(*num_entries)++;
|
|
}
|
|
}
|
|
|
|
g_free (palentries);
|
|
}
|
|
|
|
static void
|
|
remap_indexed_layer (Layer *layer,
|
|
unsigned char *remap_table,
|
|
int num_entries)
|
|
{
|
|
PixelRegion srcPR, destPR;
|
|
void* pr;
|
|
int has_alpha;
|
|
int pixels;
|
|
unsigned char* src;
|
|
unsigned char* dest;
|
|
|
|
has_alpha = layer_has_alpha (layer) ? 1 : 0;
|
|
pixel_region_init (&srcPR,
|
|
GIMP_DRAWABLE(layer)->tiles, 0, 0,
|
|
GIMP_DRAWABLE(layer)->width, GIMP_DRAWABLE(layer)->height,
|
|
FALSE);
|
|
pixel_region_init (&destPR,
|
|
GIMP_DRAWABLE(layer)->tiles, 0, 0,
|
|
GIMP_DRAWABLE(layer)->width, GIMP_DRAWABLE(layer)->height,
|
|
TRUE);
|
|
|
|
for (pr = pixel_regions_register (2, &srcPR, &destPR);
|
|
pr != NULL;
|
|
pr = pixel_regions_process (pr))
|
|
{
|
|
src = srcPR.data;
|
|
dest = destPR.data;
|
|
pixels = srcPR.h * srcPR.w;
|
|
|
|
while (pixels--)
|
|
{
|
|
if ((!has_alpha) || (has_alpha && src[ALPHA_I_PIX]))
|
|
{
|
|
dest[INDEXED_PIX] = remap_table[src[INDEXED_PIX]];
|
|
}
|
|
|
|
src += srcPR.bytes;
|
|
dest += destPR.bytes;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
convert_image (GImage *gimage,
|
|
GimpImageBaseType new_type,
|
|
/* The following three params used only for
|
|
* new_type == INDEXED
|
|
*/
|
|
int num_cols,
|
|
ConvertDitherType dither,
|
|
int alpha_dither,
|
|
int remdups,
|
|
ConvertPaletteType palette_type)
|
|
{
|
|
QuantizeObj *quantobj;
|
|
Layer *layer;
|
|
Layer *floating_layer;
|
|
GimpImageBaseType old_type;
|
|
GSList *list;
|
|
GimpImageType new_layer_type;
|
|
int new_layer_bytes;
|
|
int has_alpha;
|
|
TileManager *new_tiles;
|
|
|
|
quantobj = NULL;
|
|
new_layer_type = RGBA_GIMAGE;
|
|
new_layer_bytes = 4;
|
|
|
|
gimp_add_busy_cursors();
|
|
|
|
/* Get the floating layer if one exists */
|
|
floating_layer = gimage_floating_sel (gimage);
|
|
|
|
undo_push_group_start (gimage, GIMAGE_MOD_UNDO);
|
|
|
|
/* Relax the floating selection */
|
|
if (floating_layer)
|
|
floating_sel_relax (floating_layer, TRUE);
|
|
|
|
/* Push the image size to the stack */
|
|
undo_push_gimage_mod (gimage);
|
|
|
|
/* Set the new base type */
|
|
old_type = gimage->base_type;
|
|
gimage->base_type = new_type;
|
|
|
|
/* Convert to indexed? Build histogram if necessary. */
|
|
if (new_type == INDEXED)
|
|
{
|
|
int i;
|
|
|
|
/* don't dither if the input is grayscale and we are simply mapping every color */
|
|
if (old_type == GRAY && num_cols == 256 && palette_type == MAKE_PALETTE)
|
|
dither = NO_DITHER;
|
|
|
|
quantobj = initialize_median_cut (old_type, num_cols, dither,
|
|
palette_type, alpha_dither);
|
|
|
|
if (palette_type == MAKE_PALETTE)
|
|
{
|
|
if (old_type == GRAY)
|
|
zero_histogram_gray (quantobj->histogram);
|
|
else
|
|
zero_histogram_rgb (quantobj->histogram);
|
|
|
|
/* To begin, assume that there are fewer colours in
|
|
* the image than the user actually asked for. In that
|
|
* case, we don't need to quantize or colour-dither.
|
|
*/
|
|
needs_quantize = FALSE;
|
|
num_found_cols = 0;
|
|
|
|
/* Build the histogram */
|
|
list = gimage->layers;
|
|
while (list)
|
|
{
|
|
layer = (Layer *) list->data;
|
|
list = g_slist_next (list);
|
|
if (old_type == GRAY)
|
|
generate_histogram_gray (quantobj->histogram, layer, alpha_dither);
|
|
else
|
|
generate_histogram_rgb (quantobj->histogram, layer, num_cols, alpha_dither);
|
|
/*
|
|
* Note: generate_histogram_rgb may set needs_quantize if
|
|
* the image contains more colours than the limit specified
|
|
* by the user.
|
|
*/
|
|
}
|
|
}
|
|
|
|
if (
|
|
(old_type == RGB) &&
|
|
(!needs_quantize) &&
|
|
(palette_type == MAKE_PALETTE)
|
|
)
|
|
|
|
{
|
|
/* If this is an RGB image, and the user wanted a custom-built
|
|
* generated palette, and this image has no more colours than
|
|
* the user asked for, we don't need the first pass (quantization).
|
|
*
|
|
* There's also no point in dithering, since there's no error to
|
|
* spread. So we destroy the old quantobj and make a new one
|
|
* with the remapping function set to a special LUT-based
|
|
* no-dither remapper.
|
|
*/
|
|
|
|
quantobj->delete_func (quantobj);
|
|
quantobj = initialize_median_cut (old_type, num_cols,
|
|
NODESTRUCT_DITHER, palette_type,
|
|
alpha_dither);
|
|
/* We can skip the first pass (palette creation) */
|
|
|
|
quantobj->actual_number_of_colors = num_found_cols;
|
|
for (i = 0; i < num_found_cols; i++)
|
|
{
|
|
quantobj->cmap[i].red = found_cols[i][0];
|
|
quantobj->cmap[i].green = found_cols[i][1];
|
|
quantobj->cmap[i].blue = found_cols[i][2];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
(* quantobj->first_pass) (quantobj);
|
|
}
|
|
}
|
|
|
|
/* Initialise data which must persist across indexed layer iterations */
|
|
switch (new_type)
|
|
{
|
|
case INDEXED:
|
|
if (quantobj->second_pass_init)
|
|
(* quantobj->second_pass_init) (quantobj);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Convert all layers */
|
|
list = gimage->layers;
|
|
while (list)
|
|
{
|
|
layer = (Layer *) list->data;
|
|
list = g_slist_next (list);
|
|
|
|
has_alpha = layer_has_alpha (layer);
|
|
switch (new_type)
|
|
{
|
|
case RGB:
|
|
new_layer_type = (has_alpha) ? RGBA_GIMAGE : RGB_GIMAGE;
|
|
new_layer_bytes = (has_alpha) ? 4 : 3;
|
|
break;
|
|
case GRAY:
|
|
new_layer_type = (has_alpha) ? GRAYA_GIMAGE : GRAY_GIMAGE;
|
|
new_layer_bytes = (has_alpha) ? 2 : 1;
|
|
break;
|
|
case INDEXED:
|
|
new_layer_type = (has_alpha) ? INDEXEDA_GIMAGE : INDEXED_GIMAGE;
|
|
new_layer_bytes = (has_alpha) ? 2 : 1;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
new_tiles = tile_manager_new (GIMP_DRAWABLE(layer)->width,
|
|
GIMP_DRAWABLE(layer)->height,
|
|
new_layer_bytes);
|
|
|
|
switch (new_type)
|
|
{
|
|
case RGB:
|
|
rgb_converter (layer, new_tiles, old_type);
|
|
break;
|
|
case GRAY:
|
|
grayscale_converter (layer, new_tiles, old_type);
|
|
break;
|
|
case INDEXED:
|
|
(* quantobj->second_pass) (quantobj, layer, new_tiles);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Push the layer on the undo stack */
|
|
undo_push_layer_mod (gimage, layer);
|
|
|
|
GIMP_DRAWABLE(layer)->tiles = new_tiles;
|
|
GIMP_DRAWABLE(layer)->bytes = new_layer_bytes;
|
|
GIMP_DRAWABLE(layer)->type = new_layer_type;
|
|
GIMP_DRAWABLE(layer)->has_alpha = TYPE_HAS_ALPHA(new_layer_type);
|
|
}
|
|
|
|
/* colourmap stuff */
|
|
if (new_type == INDEXED)
|
|
{
|
|
if (gimage->cmap)
|
|
g_free (gimage->cmap);
|
|
gimage->cmap = (unsigned char *) g_malloc (COLORMAP_SIZE);
|
|
|
|
if (remdups &&
|
|
((palette_type == WEB_PALETTE) || (palette_type == CUSTOM_PALETTE)))
|
|
{
|
|
int i,j;
|
|
unsigned char old_palette [256 * 3];
|
|
unsigned char new_palette [256 * 3];
|
|
unsigned char remap_table [256];
|
|
int num_entries;
|
|
|
|
for (i = 0, j = 0; i < quantobj->actual_number_of_colors; i++)
|
|
{
|
|
old_palette[j++] = quantobj->cmap[i].red;
|
|
old_palette[j++] = quantobj->cmap[i].green;
|
|
old_palette[j++] = quantobj->cmap[i].blue;
|
|
}
|
|
|
|
num_entries = quantobj->actual_number_of_colors;
|
|
|
|
#if 1
|
|
/* Generate a remapping table */
|
|
make_remap_table (old_palette, new_palette,
|
|
quantobj->index_used_count, remap_table, &num_entries);
|
|
|
|
/* Convert all layers */
|
|
list = gimage->layers;
|
|
while (list)
|
|
{
|
|
layer = (Layer *) list->data;
|
|
list = g_slist_next (list);
|
|
|
|
remap_indexed_layer (layer, remap_table, num_entries);
|
|
}
|
|
#else
|
|
memcpy(new_palette, old_palette, 256*3);
|
|
#endif
|
|
|
|
for (i = 0, j = 0; i < num_entries; i++)
|
|
{
|
|
gimage->cmap[j] = new_palette[j]; j++;
|
|
gimage->cmap[j] = new_palette[j]; j++;
|
|
gimage->cmap[j] = new_palette[j]; j++;
|
|
}
|
|
gimage->num_cols = num_entries;
|
|
}
|
|
else
|
|
{
|
|
int i,j;
|
|
|
|
for (i = 0, j = 0; i < quantobj->actual_number_of_colors; i++)
|
|
{
|
|
gimage->cmap[j++] = quantobj->cmap[i].red;
|
|
gimage->cmap[j++] = quantobj->cmap[i].green;
|
|
gimage->cmap[j++] = quantobj->cmap[i].blue;
|
|
}
|
|
gimage->num_cols = quantobj->actual_number_of_colors;
|
|
}
|
|
}
|
|
|
|
/* Delete the quantizer object, if there is one */
|
|
if (quantobj)
|
|
quantobj->delete_func (quantobj);
|
|
|
|
/* Make sure the projection is up to date */
|
|
gimage_projection_realloc (gimage);
|
|
|
|
/* Rigor the floating selection */
|
|
if (floating_layer)
|
|
floating_sel_rigor (floating_layer, TRUE);
|
|
|
|
undo_push_group_end (gimage);
|
|
|
|
/* shrink wrap and update all views */
|
|
layer_invalidate_previews (gimage);
|
|
gimage_invalidate_preview (gimage);
|
|
gdisplays_update_title (gimage);
|
|
gdisplays_update_full (gimage);
|
|
|
|
gimp_image_colormap_changed (gimage, -1);
|
|
|
|
gimp_remove_busy_cursors(NULL);
|
|
}
|
|
|
|
static void
|
|
rgb_converter (Layer *layer,
|
|
TileManager *new_tiles,
|
|
int old_type)
|
|
{
|
|
PixelRegion srcPR, destPR;
|
|
int row, col;
|
|
int offset;
|
|
int has_alpha;
|
|
unsigned char *src, *s;
|
|
unsigned char *dest, *d;
|
|
unsigned char *cmap;
|
|
void *pr;
|
|
|
|
has_alpha = layer_has_alpha (layer);
|
|
pixel_region_init (&srcPR, GIMP_DRAWABLE(layer)->tiles, 0, 0, GIMP_DRAWABLE(layer)->width, GIMP_DRAWABLE(layer)->height, FALSE);
|
|
pixel_region_init (&destPR, new_tiles, 0, 0, GIMP_DRAWABLE(layer)->width, GIMP_DRAWABLE(layer)->height, TRUE);
|
|
|
|
for (pr = pixel_regions_register (2, &srcPR, &destPR); pr != NULL; pr = pixel_regions_process (pr))
|
|
{
|
|
src = srcPR.data;
|
|
dest = destPR.data;
|
|
|
|
switch (old_type)
|
|
{
|
|
case GRAY:
|
|
for (row = 0; row < srcPR.h; row++)
|
|
{
|
|
s = src;
|
|
d = dest;
|
|
for (col = 0; col < srcPR.w; col++)
|
|
{
|
|
d[RED_PIX] = *s;
|
|
d[GREEN_PIX] = *s;
|
|
d[BLUE_PIX] = *s;
|
|
|
|
d += 3;
|
|
s++;
|
|
if (has_alpha)
|
|
*d++ = *s++;
|
|
}
|
|
|
|
src += srcPR.rowstride;
|
|
dest += destPR.rowstride;
|
|
}
|
|
break;
|
|
case INDEXED:
|
|
cmap = drawable_cmap (GIMP_DRAWABLE(layer));
|
|
for (row = 0; row < srcPR.h; row++)
|
|
{
|
|
s = src;
|
|
d = dest;
|
|
for (col = 0; col < srcPR.w; col++)
|
|
{
|
|
offset = *s++ * 3;
|
|
d[RED_PIX] = cmap[offset + 0];
|
|
d[GREEN_PIX] = cmap[offset + 1];
|
|
d[BLUE_PIX] = cmap[offset + 2];
|
|
|
|
d += 3;
|
|
if (has_alpha)
|
|
*d++ = *s++;
|
|
}
|
|
|
|
src += srcPR.rowstride;
|
|
dest += destPR.rowstride;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
grayscale_converter (Layer *layer,
|
|
TileManager *new_tiles,
|
|
int old_type)
|
|
{
|
|
PixelRegion srcPR, destPR;
|
|
int row, col;
|
|
int offset, val;
|
|
int has_alpha;
|
|
unsigned char *src, *s;
|
|
unsigned char *dest, *d;
|
|
unsigned char *cmap;
|
|
void *pr;
|
|
|
|
has_alpha = layer_has_alpha (layer);
|
|
pixel_region_init (&srcPR, GIMP_DRAWABLE(layer)->tiles, 0, 0, GIMP_DRAWABLE(layer)->width, GIMP_DRAWABLE(layer)->height, FALSE);
|
|
pixel_region_init (&destPR, new_tiles, 0, 0, GIMP_DRAWABLE(layer)->width, GIMP_DRAWABLE(layer)->height, TRUE);
|
|
|
|
for (pr = pixel_regions_register (2, &srcPR, &destPR); pr != NULL; pr = pixel_regions_process (pr))
|
|
{
|
|
src = srcPR.data;
|
|
dest = destPR.data;
|
|
|
|
switch (old_type)
|
|
{
|
|
case RGB:
|
|
for (row = 0; row < srcPR.h; row++)
|
|
{
|
|
s = src;
|
|
d = dest;
|
|
for (col = 0; col < srcPR.w; col++)
|
|
{
|
|
val = INTENSITY (s[RED_PIX], s[GREEN_PIX], s[BLUE_PIX]);
|
|
*d++ = (unsigned char) val;
|
|
s += 3;
|
|
if (has_alpha)
|
|
*d++ = *s++;
|
|
}
|
|
|
|
src += srcPR.rowstride;
|
|
dest += destPR.rowstride;
|
|
}
|
|
break;
|
|
case INDEXED:
|
|
cmap = drawable_cmap (GIMP_DRAWABLE(layer));
|
|
for (row = 0; row < srcPR.h; row++)
|
|
{
|
|
s = src;
|
|
d = dest;
|
|
for (col = 0; col < srcPR.w; col++)
|
|
{
|
|
offset = *s++ * 3;
|
|
val = INTENSITY (cmap[offset+0], cmap[offset+1], cmap[offset+2]);
|
|
*d++ = (unsigned char) val;
|
|
if (has_alpha)
|
|
*d++ = *s++;
|
|
}
|
|
|
|
src += srcPR.rowstride;
|
|
dest += destPR.rowstride;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Indexed color conversion machinery
|
|
*/
|
|
|
|
static void
|
|
zero_histogram_gray (Histogram histogram)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 256; i++)
|
|
histogram[i] = 0;
|
|
}
|
|
|
|
|
|
static void
|
|
zero_histogram_rgb (Histogram histogram)
|
|
{
|
|
int r, g, b;
|
|
|
|
for (r = 0; r < HIST_R_ELEMS; r++)
|
|
for (g = 0; g < HIST_G_ELEMS; g++)
|
|
for (b = 0; b < HIST_B_ELEMS; b++)
|
|
histogram[r*MR + g*MG + b] = 0;
|
|
}
|
|
|
|
|
|
static void
|
|
generate_histogram_gray (Histogram histogram,
|
|
Layer *layer,
|
|
int alpha_dither)
|
|
{
|
|
PixelRegion srcPR;
|
|
unsigned char *data;
|
|
int size;
|
|
void *pr;
|
|
gboolean has_alpha;
|
|
|
|
has_alpha = (gboolean) layer_has_alpha(layer);
|
|
|
|
pixel_region_init (&srcPR, GIMP_DRAWABLE(layer)->tiles, 0, 0, GIMP_DRAWABLE(layer)->width, GIMP_DRAWABLE(layer)->height, FALSE);
|
|
for (pr = pixel_regions_register (1, &srcPR);
|
|
pr != NULL;
|
|
pr = pixel_regions_process (pr))
|
|
{
|
|
data = srcPR.data;
|
|
size = srcPR.w * srcPR.h;
|
|
while (size--)
|
|
{
|
|
histogram[*data] ++;
|
|
data += srcPR.bytes;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
generate_histogram_rgb (Histogram histogram,
|
|
Layer *layer,
|
|
int col_limit,
|
|
int alpha_dither)
|
|
{
|
|
PixelRegion srcPR;
|
|
unsigned char *data;
|
|
int size;
|
|
void *pr;
|
|
ColorFreq *colfreq;
|
|
gboolean has_alpha;
|
|
int nfc_iter;
|
|
int row, col, coledge;
|
|
int offsetx, offsety;
|
|
|
|
has_alpha = (gboolean) layer_has_alpha(layer);
|
|
|
|
drawable_offsets (GIMP_DRAWABLE(layer), &offsetx, &offsety);
|
|
|
|
/* g_print ("col_limit = %d, nfc = %d\n", col_limit, num_found_cols);*/
|
|
|
|
pixel_region_init (&srcPR, GIMP_DRAWABLE(layer)->tiles, 0, 0,
|
|
GIMP_DRAWABLE(layer)->width,
|
|
GIMP_DRAWABLE(layer)->height,
|
|
FALSE);
|
|
for (pr = pixel_regions_register (1, &srcPR);
|
|
pr != NULL;
|
|
pr = pixel_regions_process (pr))
|
|
{
|
|
data = srcPR.data;
|
|
size = srcPR.w * srcPR.h;
|
|
|
|
/*fprintf(stderr, " [%d,%d - %d,%d]", srcPR.x, srcPR.y, offsetx, offsety);*/
|
|
|
|
if (needs_quantize)
|
|
{
|
|
if (alpha_dither)
|
|
{
|
|
/* if alpha-dithering, we need to be deterministic w.r.t. offsets */
|
|
col = srcPR.x + offsetx;
|
|
coledge = col + srcPR.w;
|
|
row = srcPR.y + offsety;
|
|
|
|
while (size--)
|
|
{
|
|
if (
|
|
(
|
|
has_alpha && (
|
|
(data[ALPHA_PIX] << 6) >
|
|
(255 * DM[col&DM_WIDTHMASK][row&DM_HEIGHTMASK])
|
|
)
|
|
)
|
|
|| (!has_alpha))
|
|
{
|
|
colfreq = & histogram[(data[RED_PIX] >> R_SHIFT) * MR +
|
|
(data[GREEN_PIX] >> G_SHIFT) * MG +
|
|
(data[BLUE_PIX] >> B_SHIFT)];
|
|
(*colfreq)++;
|
|
}
|
|
|
|
col++;
|
|
if (col == coledge)
|
|
{
|
|
col = srcPR.x + offsetx;
|
|
row++;
|
|
}
|
|
|
|
data += srcPR.bytes;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
while (size--)
|
|
{
|
|
if (
|
|
(
|
|
has_alpha && (
|
|
(data[ALPHA_PIX] > 127)
|
|
)
|
|
)
|
|
|| (!has_alpha))
|
|
{
|
|
colfreq = & histogram[(data[RED_PIX] >> R_SHIFT) * MR +
|
|
(data[GREEN_PIX] >> G_SHIFT) * MG +
|
|
(data[BLUE_PIX] >> B_SHIFT)];
|
|
(*colfreq)++;
|
|
}
|
|
data += srcPR.bytes;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* if alpha-dithering, we need to be deterministic w.r.t. offsets */
|
|
col = srcPR.x + offsetx;
|
|
coledge = col + srcPR.w;
|
|
row = srcPR.y + offsety;
|
|
|
|
while (size--)
|
|
{
|
|
if ((has_alpha && (alpha_dither ?
|
|
((data[ALPHA_PIX] << 6) > (255 * DM[col&DM_WIDTHMASK][row&DM_HEIGHTMASK])) :
|
|
(data[ALPHA_PIX] > 127))) || (!has_alpha))
|
|
{
|
|
colfreq = & histogram[(data[RED_PIX] >> R_SHIFT) * MR +
|
|
(data[GREEN_PIX] >> G_SHIFT) * MG +
|
|
(data[BLUE_PIX] >> B_SHIFT)];
|
|
(*colfreq)++;
|
|
|
|
if (!needs_quantize)
|
|
{
|
|
for (nfc_iter = 0;
|
|
nfc_iter < num_found_cols;
|
|
nfc_iter++)
|
|
{
|
|
if (
|
|
(data[RED_PIX] == found_cols[nfc_iter][0])
|
|
&&
|
|
(data[GREEN_PIX] == found_cols[nfc_iter][1])
|
|
&&
|
|
(data[BLUE_PIX] == found_cols[nfc_iter][2])
|
|
)
|
|
goto already_found;
|
|
}
|
|
|
|
/* Colour was not in the table of
|
|
* existing colours
|
|
*/
|
|
|
|
num_found_cols++;
|
|
|
|
if (num_found_cols > col_limit)
|
|
{
|
|
/* There are more colours in the image
|
|
* than were allowed. We switch to plain
|
|
* histogram calculation with a view to
|
|
* quantizing at a later stage.
|
|
*/
|
|
needs_quantize = TRUE;
|
|
/* g_print (_("\nmax colours exceeded - needs quantize.\n"));*/
|
|
goto already_found;
|
|
}
|
|
else
|
|
{
|
|
/* Remember the new colour we just found.
|
|
*/
|
|
found_cols[num_found_cols-1][0] = data[RED_PIX];
|
|
found_cols[num_found_cols-1][1] = data[GREEN_PIX];
|
|
found_cols[num_found_cols-1][2] = data[BLUE_PIX];
|
|
}
|
|
}
|
|
}
|
|
already_found:
|
|
|
|
col++;
|
|
if (col == coledge)
|
|
{
|
|
col = srcPR.x + offsetx;
|
|
row++;
|
|
}
|
|
|
|
data += srcPR.bytes;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* g_print ("O: col_limit = %d, nfc = %d\n", col_limit, num_found_cols);*/
|
|
}
|
|
|
|
|
|
static boxptr
|
|
find_split_candidate (boxptr boxlist,
|
|
int numboxes)
|
|
{
|
|
boxptr boxp;
|
|
int i;
|
|
guint64 maxc = 0;
|
|
boxptr which = NULL;
|
|
|
|
for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++)
|
|
{
|
|
if (boxp->volume > 0)
|
|
{
|
|
if (boxp->gerror*G_SCALE > maxc)
|
|
{
|
|
which = boxp;
|
|
maxc = boxp->gerror*G_SCALE;
|
|
}
|
|
if (boxp->rerror*R_SCALE > maxc)
|
|
{
|
|
which = boxp;
|
|
maxc = boxp->rerror*R_SCALE;
|
|
}
|
|
if (boxp->berror*B_SCALE > maxc)
|
|
{
|
|
which = boxp;
|
|
maxc = boxp->berror*B_SCALE;
|
|
}
|
|
}
|
|
}
|
|
|
|
return which;
|
|
}
|
|
|
|
|
|
#if 0
|
|
static boxptr
|
|
find_biggest_color_pop (boxptr boxlist,
|
|
int numboxes)
|
|
/* Find the splittable box with the largest color population */
|
|
/* Returns NULL if no splittable boxes remain */
|
|
{
|
|
|
|
}
|
|
#endif
|
|
|
|
static boxptr
|
|
find_biggest_volume (boxptr boxlist,
|
|
int numboxes)
|
|
/* Find the splittable box with the largest (scaled) volume */
|
|
/* Returns NULL if no splittable boxes remain */
|
|
{
|
|
boxptr boxp;
|
|
int i;
|
|
int maxv = 0;
|
|
boxptr which = NULL;
|
|
|
|
for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++)
|
|
{
|
|
if (boxp->volume > maxv)
|
|
{
|
|
which = boxp;
|
|
maxv = boxp->volume;
|
|
}
|
|
}
|
|
|
|
return which;
|
|
}
|
|
|
|
|
|
static void
|
|
update_box_gray (Histogram histogram,
|
|
boxptr boxp)
|
|
/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
|
|
/* and recompute its volume and population */
|
|
{
|
|
int i, min, max, dist;
|
|
long ccount;
|
|
|
|
min = boxp->Rmin;
|
|
max = boxp->Rmax;
|
|
|
|
if (max > min)
|
|
for (i = min; i <= max; i++)
|
|
{
|
|
if (histogram[i] != 0)
|
|
{
|
|
boxp->Rmin = min = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (max > min)
|
|
for (i = max; i >= min; i--)
|
|
{
|
|
if (histogram[i] != 0)
|
|
{
|
|
boxp->Rmax = max = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Update box volume.
|
|
* We use 2-norm rather than real volume here; this biases the method
|
|
* against making long narrow boxes, and it has the side benefit that
|
|
* a box is splittable iff norm > 0.
|
|
* Since the differences are expressed in histogram-cell units,
|
|
* we have to shift back to JSAMPLE units to get consistent distances;
|
|
* after which, we scale according to the selected distance scale factors.
|
|
*/
|
|
dist = max - min;
|
|
boxp->volume = dist * dist;
|
|
|
|
/* Now scan remaining volume of box and compute population */
|
|
ccount = 0;
|
|
for (i = min; i <= max; i++)
|
|
if (histogram[i] != 0)
|
|
ccount++;
|
|
|
|
boxp->colorcount = ccount;
|
|
}
|
|
|
|
static void
|
|
update_box_rgb (Histogram histogram,
|
|
boxptr boxp)
|
|
/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
|
|
/* and recompute its volume, population and error */
|
|
{
|
|
ColorFreq * histp;
|
|
int R,G,B;
|
|
int Rmin,Rmax,Gmin,Gmax,Bmin,Bmax;
|
|
int dist0,dist1,dist2;
|
|
long ccount;
|
|
guint64 tempRerror;
|
|
guint64 tempGerror;
|
|
guint64 tempBerror;
|
|
QuantizeObj dummyqo;
|
|
box dummybox;
|
|
|
|
Rmin = boxp->Rmin; Rmax = boxp->Rmax;
|
|
Gmin = boxp->Gmin; Gmax = boxp->Gmax;
|
|
Bmin = boxp->Bmin; Bmax = boxp->Bmax;
|
|
|
|
if (Rmax > Rmin)
|
|
for (R = Rmin; R <= Rmax; R++)
|
|
for (G = Gmin; G <= Gmax; G++)
|
|
{
|
|
histp = histogram + R*MR + G*MG + Bmin;
|
|
for (B = Bmin; B <= Bmax; B++)
|
|
if (*histp++ != 0)
|
|
{
|
|
boxp->Rmin = Rmin = R;
|
|
goto have_Rmin;
|
|
}
|
|
}
|
|
have_Rmin:
|
|
if (Rmax > Rmin)
|
|
for (R = Rmax; R >= Rmin; R--)
|
|
for (G = Gmin; G <= Gmax; G++)
|
|
{
|
|
histp = histogram + R*MR + G*MG + Bmin;
|
|
for (B = Bmin; B <= Bmax; B++)
|
|
if (*histp++ != 0)
|
|
{
|
|
boxp->Rmax = Rmax = R;
|
|
goto have_Rmax;
|
|
}
|
|
}
|
|
have_Rmax:
|
|
if (Gmax > Gmin)
|
|
for (G = Gmin; G <= Gmax; G++)
|
|
for (R = Rmin; R <= Rmax; R++)
|
|
{
|
|
histp = histogram + R*MR + G*MG + Bmin;
|
|
for (B = Bmin; B <= Bmax; B++)
|
|
if (*histp++ != 0)
|
|
{
|
|
boxp->Gmin = Gmin = G;
|
|
goto have_Gmin;
|
|
}
|
|
}
|
|
have_Gmin:
|
|
if (Gmax > Gmin)
|
|
for (G = Gmax; G >= Gmin; G--)
|
|
for (R = Rmin; R <= Rmax; R++)
|
|
{
|
|
histp = histogram + R*MR + G*MG + Bmin;
|
|
for (B = Bmin; B <= Bmax; B++)
|
|
if (*histp++ != 0)
|
|
{
|
|
boxp->Gmax = Gmax = G;
|
|
goto have_Gmax;
|
|
}
|
|
}
|
|
have_Gmax:
|
|
if (Bmax > Bmin)
|
|
for (B = Bmin; B <= Bmax; B++)
|
|
for (R = Rmin; R <= Rmax; R++)
|
|
{
|
|
histp = histogram + R*MR + Gmin*MG + B;
|
|
for (G = Gmin; G <= Gmax; G++, histp += MG)
|
|
if (*histp != 0)
|
|
{
|
|
boxp->Bmin = Bmin = B;
|
|
goto have_Bmin;
|
|
}
|
|
}
|
|
have_Bmin:
|
|
if (Bmax > Bmin)
|
|
for (B = Bmax; B >= Bmin; B--)
|
|
for (R = Rmin; R <= Rmax; R++)
|
|
{
|
|
histp = histogram + R*MR + Gmin*MG + B;
|
|
for (G = Gmin; G <= Gmax; G++, histp += MG)
|
|
if (*histp != 0)
|
|
{
|
|
boxp->Bmax = Bmax = B;
|
|
goto have_Bmax;
|
|
}
|
|
}
|
|
have_Bmax:
|
|
|
|
/* Update box volume.
|
|
* We use 2-norm rather than real volume here; this biases the method
|
|
* against making long narrow boxes, and it has the side benefit that
|
|
* a box is splittable iff norm > 0.
|
|
* Since the differences are expressed in histogram-cell units,
|
|
* we have to shift back to JSAMPLE units to get consistent distances;
|
|
* after which, we scale according to the selected distance scale factors.
|
|
*/
|
|
dist0 = (( + Rmax - Rmin) << R_SHIFT) * R_SCALE;
|
|
dist1 = (( + Gmax - Gmin) << G_SHIFT) * G_SCALE;
|
|
dist2 = (( + Bmax - Bmin) << B_SHIFT) * B_SCALE;
|
|
boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
|
|
|
|
compute_color_rgb(&dummyqo, histogram, boxp, 0);
|
|
|
|
/*printf("(%d %d %d)\n", dummyqo.cmap[0].red,dummyqo.cmap[0].green,dummyqo.cmap[0].blue);
|
|
fflush(stdout);*/
|
|
|
|
/* Now scan remaining volume of box and compute population */
|
|
ccount = 0;
|
|
boxp->error = 0;
|
|
boxp->rerror = 0;
|
|
boxp->gerror = 0;
|
|
boxp->berror = 0;
|
|
for (R = Rmin; R <= Rmax; R++)
|
|
for (G = Gmin; G <= Gmax; G++)
|
|
{
|
|
histp = histogram + R*MR + G*MG + Bmin;
|
|
for (B = Bmin; B <= Bmax; B++, histp++)
|
|
if (*histp != 0)
|
|
{
|
|
int ge, be, re;
|
|
|
|
dummybox.Rmin = dummybox.Rmax = R;
|
|
dummybox.Gmin = dummybox.Gmax = G;
|
|
dummybox.Bmin = dummybox.Bmax = B;
|
|
compute_color_rgb(&dummyqo, histogram, &dummybox, 1);
|
|
|
|
re = dummyqo.cmap[0].red - dummyqo.cmap[1].red;
|
|
ge = dummyqo.cmap[0].green - dummyqo.cmap[1].green;
|
|
be = dummyqo.cmap[0].blue - dummyqo.cmap[1].blue;
|
|
|
|
boxp->rerror += (*histp) * re*re;
|
|
boxp->gerror += (*histp) * ge*ge;
|
|
boxp->berror += (*histp) * be*be;
|
|
|
|
boxp->error += (*histp) *
|
|
(
|
|
re*re*R_SCALE + ge*ge*G_SCALE + be*be*B_SCALE
|
|
);
|
|
|
|
ccount += *histp;
|
|
}
|
|
}
|
|
|
|
/* Scan again, taking note of halfway error point for red axis */
|
|
tempRerror = 0;
|
|
boxp->Rhalferror = Rmin;
|
|
for (R = Rmin; R < Rmax; R++)
|
|
{
|
|
dummybox.Rmin = dummybox.Rmax = R;
|
|
for (G = Gmin; G <= Gmax; G++)
|
|
{
|
|
dummybox.Gmin = dummybox.Gmax = G;
|
|
histp = histogram + R*MR + G*MG + Bmin;
|
|
for (B = Bmin; B <= Bmax; B++, histp++)
|
|
if (*histp != 0)
|
|
{
|
|
int re;
|
|
dummybox.Bmin = dummybox.Bmax = B;
|
|
compute_color_rgb(&dummyqo, histogram, &dummybox, 1);
|
|
|
|
re = dummyqo.cmap[0].red - dummyqo.cmap[1].red;
|
|
|
|
tempRerror += (*histp)*re*re;
|
|
|
|
if (tempRerror*2 > boxp->rerror)
|
|
goto green_axisscan;
|
|
else
|
|
boxp->Rhalferror = R;
|
|
}
|
|
}
|
|
}
|
|
|
|
green_axisscan:
|
|
/* Scan again, taking note of halfway error point for green axis */
|
|
tempGerror = 0;
|
|
boxp->Ghalferror = Gmin;
|
|
for (G = Gmin; G < Gmax; G++)
|
|
{
|
|
dummybox.Gmin = dummybox.Gmax = G;
|
|
for (R = Rmin; R <= Rmax; R++)
|
|
{
|
|
dummybox.Rmin = dummybox.Rmax = R;
|
|
histp = histogram + R*MR + G*MG + Bmin;
|
|
for (B = Bmin; B <= Bmax; B++, histp++)
|
|
if (*histp != 0)
|
|
{
|
|
int ge;
|
|
dummybox.Bmin = dummybox.Bmax = B;
|
|
compute_color_rgb(&dummyqo, histogram, &dummybox, 1);
|
|
|
|
ge = dummyqo.cmap[0].green - dummyqo.cmap[1].green;
|
|
|
|
tempGerror += (*histp)*ge*ge;
|
|
|
|
if (tempGerror*2 > boxp->gerror)
|
|
goto blue_axisscan;
|
|
else
|
|
boxp->Ghalferror = G;
|
|
}
|
|
}
|
|
}
|
|
|
|
blue_axisscan:
|
|
/* Scan again, taking note of halfway error point for blue axis */
|
|
tempBerror = 0;
|
|
boxp->Bhalferror = Bmin;
|
|
for (B = Bmin; B < Bmax; B++)
|
|
{
|
|
dummybox.Bmin = dummybox.Bmax = B;
|
|
for (R = Rmin; R <= Rmax; R++)
|
|
{
|
|
dummybox.Rmin = dummybox.Rmax = R;
|
|
for (G = Gmin; G <= Gmax; G++)
|
|
{
|
|
histp = histogram + R*MR + G*MG + B;
|
|
if (*histp != 0)
|
|
{
|
|
int be;
|
|
dummybox.Gmin = dummybox.Gmax = G;
|
|
compute_color_rgb(&dummyqo, histogram, &dummybox, 1);
|
|
|
|
be = dummyqo.cmap[0].blue - dummyqo.cmap[1].blue;
|
|
|
|
tempBerror += (*histp)*be*be;
|
|
|
|
if (tempBerror*2 > boxp->berror)
|
|
goto finished_axesscan;
|
|
else
|
|
boxp->Bhalferror = B;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
finished_axesscan:
|
|
|
|
/*
|
|
// boxp->Rhalferror = (Rmin+Rmax)/2;
|
|
// boxp->Ghalferror = (Gmin+Gmax)/2;
|
|
// boxp->Bhalferror = (Bmin+Bmax)/2;
|
|
*/
|
|
|
|
/*boxp->error = (sqrt((double)(boxp->error/ccount)));*/
|
|
/* boxp->rerror = (sqrt((double)((boxp->rerror)/ccount)));
|
|
boxp->gerror = (sqrt((double)((boxp->gerror)/ccount)));
|
|
boxp->berror = (sqrt((double)((boxp->berror)/ccount)));*/
|
|
/*printf(":%lld / %ld: ", boxp->error, ccount);
|
|
printf("(%d-%d-%d)(%d-%d-%d)(%d-%d-%d)\n",
|
|
Rmin, boxp->Rhalferror, Rmax,
|
|
Gmin, boxp->Ghalferror, Gmax,
|
|
Bmin, boxp->Bhalferror, Bmax
|
|
);
|
|
fflush(stdout);*/
|
|
|
|
boxp->colorcount = ccount;
|
|
}
|
|
|
|
|
|
static int
|
|
median_cut_gray (Histogram histogram,
|
|
boxptr boxlist,
|
|
int numboxes,
|
|
int desired_colors)
|
|
/* Repeatedly select and split the largest box until we have enough boxes */
|
|
{
|
|
int lb;
|
|
boxptr b1, b2;
|
|
|
|
while (numboxes < desired_colors)
|
|
{
|
|
/* Select box to split.
|
|
* Current algorithm: by population for first half, then by volume.
|
|
*/
|
|
#if 0
|
|
if (numboxes*2 <= desired_colors)
|
|
{
|
|
b1 = find_biggest_color_pop (boxlist, numboxes);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
b1 = find_biggest_volume (boxlist, numboxes);
|
|
}
|
|
|
|
if (b1 == NULL) /* no splittable boxes left! */
|
|
break;
|
|
|
|
b2 = boxlist + numboxes; /* where new box will go */
|
|
/* Copy the color bounds to the new box. */
|
|
b2->Rmax = b1->Rmax;
|
|
b2->Rmin = b1->Rmin;
|
|
|
|
/* Current algorithm: split at halfway point.
|
|
* (Since the box has been shrunk to minimum volume,
|
|
* any split will produce two nonempty subboxes.)
|
|
* Note that lb value is max for lower box, so must be < old max.
|
|
*/
|
|
lb = (b1->Rmax + b1->Rmin) / 2;
|
|
b1->Rmax = lb;
|
|
b2->Rmin = lb + 1;
|
|
|
|
/* Update stats for boxes */
|
|
update_box_gray (histogram, b1);
|
|
update_box_gray (histogram, b2);
|
|
numboxes++;
|
|
}
|
|
|
|
return numboxes;
|
|
}
|
|
|
|
static int
|
|
median_cut_rgb (Histogram histogram,
|
|
boxptr boxlist,
|
|
int numboxes,
|
|
int desired_colors)
|
|
/* Repeatedly select and split the largest box until we have enough boxes */
|
|
{
|
|
int n,lb;
|
|
guint64 R,G,B,cmax;
|
|
boxptr b1,b2;
|
|
|
|
while (numboxes < desired_colors) {
|
|
#if 0
|
|
/* Select box to split.
|
|
* Current algorithm: by population for first half, then by volume.
|
|
*/
|
|
if (1 || numboxes*2 <= desired_colors)
|
|
{
|
|
g_print ("O ");
|
|
b1 = find_biggest_color_pop (boxlist, numboxes);
|
|
}
|
|
else
|
|
{
|
|
g_print (". ");
|
|
b1 = find_biggest_volume (boxlist, numboxes);
|
|
}
|
|
#endif
|
|
b1 = find_split_candidate (boxlist, numboxes);
|
|
|
|
if (b1 == NULL) /* no splittable boxes left! */
|
|
break;
|
|
b2 = boxlist + numboxes; /* where new box will go */
|
|
/* Copy the color bounds to the new box. */
|
|
b2->Rmax = b1->Rmax; b2->Gmax = b1->Gmax; b2->Bmax = b1->Bmax;
|
|
b2->Rmin = b1->Rmin; b2->Gmin = b1->Gmin; b2->Bmin = b1->Bmin;
|
|
/* Choose which axis to split the box on.
|
|
* See notes in update_box about scaling distances.
|
|
*/
|
|
/*
|
|
// R = ((b1->Rmax - b1->Rmin) << R_SHIFT) * R_SCALE;
|
|
// G = ((b1->Gmax - b1->Gmin) << G_SHIFT) * G_SCALE;
|
|
//B = ((b1->Bmax - b1->Bmin) << B_SHIFT) * B_SCALE;
|
|
*/
|
|
R = R_SCALE*b1->rerror;/* * (((b1->Rmax - b1->Rmin) << R_SHIFT)) * R_SCALE; */
|
|
G = G_SCALE*b1->gerror;/* * (((b1->Gmax - b1->Gmin) << G_SHIFT)) * G_SCALE; */
|
|
B = B_SCALE*b1->berror;/* * (((b1->Bmax - b1->Bmin) << B_SHIFT)) * B_SCALE; */
|
|
/* We want to break any ties in favor of green, then red, blue last.
|
|
*/
|
|
cmax = G; n = 1;
|
|
if (R > cmax) { cmax = R; n = 0; }
|
|
if (B > cmax) { n = 2; }
|
|
|
|
/* Choose split point along selected axis, and update box bounds.
|
|
* Note that lb value is max for lower box, so must be < old max.
|
|
*/
|
|
switch (n)
|
|
{
|
|
case 0:
|
|
lb = b1->Rhalferror;/* *0 + (b1->Rmax + b1->Rmin) / 2; */
|
|
b1->Rmax = lb;
|
|
b2->Rmin = lb+1;
|
|
g_assert(b1->Rmax >= b1->Rmin);
|
|
g_assert(b2->Rmax >= b2->Rmin);
|
|
break;
|
|
case 1:
|
|
lb = b1->Ghalferror;/* *0 + (b1->Gmax + b1->Gmin) / 2; */
|
|
b1->Gmax = lb;
|
|
b2->Gmin = lb+1;
|
|
g_assert(b1->Gmax >= b1->Gmin);
|
|
g_assert(b2->Gmax >= b2->Gmin);
|
|
break;
|
|
case 2:
|
|
lb = b1->Bhalferror;/* *0 + (b1->Bmax + b1->Bmin) / 2; */
|
|
b1->Bmax = lb;
|
|
b2->Bmin = lb+1;
|
|
g_assert(b1->Bmax >= b1->Bmin);
|
|
g_assert(b2->Bmax >= b2->Bmin);
|
|
break;
|
|
}
|
|
/* Update stats for boxes */
|
|
update_box_rgb (histogram, b1);
|
|
update_box_rgb (histogram, b2);
|
|
numboxes++;
|
|
}
|
|
return numboxes;
|
|
}
|
|
|
|
|
|
static void
|
|
compute_color_gray (QuantizeObj *quantobj,
|
|
Histogram histogram,
|
|
boxptr boxp,
|
|
int icolor)
|
|
/* Compute representative color for a box, put it in colormap[icolor] */
|
|
{
|
|
int i, min, max;
|
|
long count;
|
|
long total;
|
|
long gtotal;
|
|
|
|
min = boxp->Rmin;
|
|
max = boxp->Rmax;
|
|
|
|
total = 0;
|
|
gtotal = 0;
|
|
|
|
for (i = min; i <= max; i++)
|
|
{
|
|
count = histogram[i];
|
|
if (count != 0)
|
|
{
|
|
total += count;
|
|
gtotal += i * count;
|
|
}
|
|
}
|
|
|
|
if (total != 0)
|
|
{
|
|
quantobj->cmap[icolor].red = (gtotal + (total >> 1)) / total;
|
|
quantobj->cmap[icolor].green = quantobj->cmap[icolor].red;
|
|
quantobj->cmap[icolor].blue = quantobj->cmap[icolor].red;
|
|
}
|
|
else /* The only situation where total==0 is if the image was null or
|
|
* all-transparent. In that case we just put a dummy value in
|
|
* the colourmap.
|
|
*/
|
|
{
|
|
quantobj->cmap[icolor].red =
|
|
quantobj->cmap[icolor].green =
|
|
quantobj->cmap[icolor].blue = 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
compute_color_rgb (QuantizeObj *quantobj,
|
|
Histogram histogram,
|
|
boxptr boxp,
|
|
int icolor)
|
|
/* Compute representative color for a box, put it in colormap[icolor] */
|
|
{
|
|
/* Current algorithm: mean weighted by pixels (not colors) */
|
|
/* Note it is important to get the rounding correct! */
|
|
ColorFreq * histp;
|
|
int R, G, B;
|
|
int Rmin, Rmax;
|
|
int Gmin, Gmax;
|
|
int Bmin, Bmax;
|
|
long count;
|
|
long total = 0;
|
|
long Rtotal = 0;
|
|
long Gtotal = 0;
|
|
long Btotal = 0;
|
|
|
|
Rmin = boxp->Rmin; Rmax = boxp->Rmax;
|
|
Gmin = boxp->Gmin; Gmax = boxp->Gmax;
|
|
Bmin = boxp->Bmin; Bmax = boxp->Bmax;
|
|
|
|
for (R = Rmin; R <= Rmax; R++)
|
|
for (G = Gmin; G <= Gmax; G++)
|
|
{
|
|
histp = histogram + R*MR + G*MG + Bmin;
|
|
for (B = Bmin; B <= Bmax; B++)
|
|
{
|
|
if ((count = *histp++) != 0)
|
|
{
|
|
total += count;
|
|
Rtotal += ((R << R_SHIFT) + ((1<<R_SHIFT)>>1)) * count;
|
|
Gtotal += ((G << G_SHIFT) + ((1<<G_SHIFT)>>1)) * count;
|
|
Btotal += ((B << B_SHIFT) + ((1<<B_SHIFT)>>1)) * count;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (total != 0)
|
|
{
|
|
quantobj->cmap[icolor].red = (Rtotal + (total>>1)) / total;
|
|
quantobj->cmap[icolor].green = (Gtotal + (total>>1)) / total;
|
|
quantobj->cmap[icolor].blue = (Btotal + (total>>1)) / total;
|
|
}
|
|
else /* The only situation where total==0 is if the image was null or
|
|
* all-transparent. In that case we just put a dummy value in
|
|
* the colourmap.
|
|
*/
|
|
{
|
|
quantobj->cmap[icolor].red =
|
|
quantobj->cmap[icolor].green =
|
|
quantobj->cmap[icolor].blue = 0;
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
select_colors_gray (QuantizeObj *quantobj,
|
|
Histogram histogram)
|
|
/* Master routine for color selection */
|
|
{
|
|
boxptr boxlist;
|
|
int numboxes;
|
|
int desired = quantobj->desired_number_of_colors;
|
|
int i;
|
|
|
|
/* Allocate workspace for box list */
|
|
boxlist = (boxptr) g_malloc ( desired * sizeof(box) );
|
|
|
|
/* Initialize one box containing whole space */
|
|
numboxes = 1;
|
|
boxlist[0].Rmin = 0;
|
|
boxlist[0].Rmax = 255;
|
|
/* Shrink it to actually-used volume and set its statistics */
|
|
update_box_gray (histogram, boxlist);
|
|
/* Perform median-cut to produce final box list */
|
|
numboxes = median_cut_gray (histogram, boxlist, numboxes, desired);
|
|
|
|
quantobj->actual_number_of_colors = numboxes;
|
|
/* Compute the representative color for each box, fill colormap */
|
|
for (i = 0; i < numboxes; i++)
|
|
compute_color_gray (quantobj, histogram, boxlist + i, i);
|
|
}
|
|
|
|
|
|
static void
|
|
select_colors_rgb (QuantizeObj *quantobj,
|
|
Histogram histogram)
|
|
/* Master routine for color selection */
|
|
{
|
|
boxptr boxlist;
|
|
int numboxes;
|
|
int desired = quantobj->desired_number_of_colors;
|
|
int i;
|
|
|
|
/* Allocate workspace for box list */
|
|
boxlist = (boxptr) g_malloc ( desired * sizeof(box) );
|
|
|
|
/* Initialize one box containing whole space */
|
|
numboxes = 1;
|
|
boxlist[0].Rmin = 0;
|
|
boxlist[0].Rmax = (1 << PRECISION_R) - 1;
|
|
boxlist[0].Gmin = 0;
|
|
boxlist[0].Gmax = (1 << PRECISION_G) - 1;
|
|
boxlist[0].Bmin = 0;
|
|
boxlist[0].Bmax = (1 << PRECISION_B) - 1;
|
|
/* Shrink it to actually-used volume and set its statistics */
|
|
update_box_rgb (histogram, boxlist);
|
|
/* Perform median-cut to produce final box list */
|
|
numboxes = median_cut_rgb (histogram, boxlist, numboxes, desired);
|
|
|
|
quantobj->actual_number_of_colors = numboxes;
|
|
/* Compute the representative color for each box, fill colormap */
|
|
for (i = 0; i < numboxes; i++)
|
|
compute_color_rgb (quantobj, histogram, boxlist + i, i);
|
|
}
|
|
|
|
|
|
/*
|
|
* These routines are concerned with the time-critical task of mapping input
|
|
* colors to the nearest color in the selected colormap.
|
|
*
|
|
* We re-use the histogram space as an "inverse color map", essentially a
|
|
* cache for the results of nearest-color searches. All colors within a
|
|
* histogram cell will be mapped to the same colormap entry, namely the one
|
|
* closest to the cell's center. This may not be quite the closest entry to
|
|
* the actual input color, but it's almost as good. A zero in the cache
|
|
* indicates we haven't found the nearest color for that cell yet; the array
|
|
* is cleared to zeroes before starting the mapping pass. When we find the
|
|
* nearest color for a cell, its colormap index plus one is recorded in the
|
|
* cache for future use. The pass2 scanning routines call fill_inverse_cmap
|
|
* when they need to use an unfilled entry in the cache.
|
|
*
|
|
* Our method of efficiently finding nearest colors is based on the "locally
|
|
* sorted search" idea described by Heckbert and on the incremental distance
|
|
* calculation described by Spencer W. Thomas in chapter III.1 of Graphics
|
|
* Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
|
|
* the distances from a given colormap entry to each cell of the histogram can
|
|
* be computed quickly using an incremental method: the differences between
|
|
* distances to adjacent cells themselves differ by a constant. This allows a
|
|
* fairly fast implementation of the "brute force" approach of computing the
|
|
* distance from every colormap entry to every histogram cell. Unfortunately,
|
|
* it needs a work array to hold the best-distance-so-far for each histogram
|
|
* cell (because the inner loop has to be over cells, not colormap entries).
|
|
* The work array elements have to be ints, so the work array would need
|
|
* 256Kb at our recommended precision. This is not feasible in DOS machines.
|
|
*
|
|
* To get around these problems, we apply Thomas' method to compute the
|
|
* nearest colors for only the cells within a small subbox of the histogram.
|
|
* The work array need be only as big as the subbox, so the memory usage
|
|
* problem is solved. Furthermore, we need not fill subboxes that are never
|
|
* referenced in pass2; many images use only part of the color gamut, so a
|
|
* fair amount of work is saved. An additional advantage of this
|
|
* approach is that we can apply Heckbert's locality criterion to quickly
|
|
* eliminate colormap entries that are far away from the subbox; typically
|
|
* three-fourths of the colormap entries are rejected by Heckbert's criterion,
|
|
* and we need not compute their distances to individual cells in the subbox.
|
|
* The speed of this approach is heavily influenced by the subbox size: too
|
|
* small means too much overhead, too big loses because Heckbert's criterion
|
|
* can't eliminate as many colormap entries. Empirically the best subbox
|
|
* size seems to be about 1/512th of the histogram (1/8th in each direction).
|
|
*
|
|
* Thomas' article also describes a refined method which is asymptotically
|
|
* faster than the brute-force method, but it is also far more complex and
|
|
* cannot efficiently be applied to small subboxes. It is therefore not
|
|
* useful for programs intended to be portable to DOS machines. On machines
|
|
* with plenty of memory, filling the whole histogram in one shot with Thomas'
|
|
* refined method might be faster than the present code --- but then again,
|
|
* it might not be any faster, and it's certainly more complicated.
|
|
*/
|
|
|
|
|
|
/* log2(histogram cells in update box) for each axis; this can be adjusted */
|
|
#define BOX_R_LOG (PRECISION_R-3)
|
|
#define BOX_G_LOG (PRECISION_G-3)
|
|
#define BOX_B_LOG (PRECISION_B-3)
|
|
|
|
#define BOX_R_ELEMS (1<<BOX_R_LOG) /* # of hist cells in update box */
|
|
#define BOX_G_ELEMS (1<<BOX_G_LOG)
|
|
#define BOX_B_ELEMS (1<<BOX_B_LOG)
|
|
|
|
#define BOX_R_SHIFT (R_SHIFT + BOX_R_LOG)
|
|
#define BOX_G_SHIFT (G_SHIFT + BOX_G_LOG)
|
|
#define BOX_B_SHIFT (B_SHIFT + BOX_B_LOG)
|
|
|
|
|
|
/*
|
|
* The next three routines implement inverse colormap filling. They could
|
|
* all be folded into one big routine, but splitting them up this way saves
|
|
* some stack space (the mindist[] and bestdist[] arrays need not coexist)
|
|
* and may allow some compilers to produce better code by registerizing more
|
|
* inner-loop variables.
|
|
*/
|
|
|
|
static int
|
|
find_nearby_colors (QuantizeObj *quantobj,
|
|
int minR,
|
|
int minG,
|
|
int minB,
|
|
int colorlist[])
|
|
/* Locate the colormap entries close enough to an update box to be candidates
|
|
* for the nearest entry to some cell(s) in the update box. The update box
|
|
* is specified by the center coordinates of its first cell. The number of
|
|
* candidate colormap entries is returned, and their colormap indexes are
|
|
* placed in colorlist[].
|
|
* This routine uses Heckbert's "locally sorted search" criterion to select
|
|
* the colors that need further consideration.
|
|
*/
|
|
{
|
|
int numcolors = quantobj->actual_number_of_colors;
|
|
int maxR, maxG, maxB;
|
|
int centerR, centerG, centerB;
|
|
int i, x, ncolors;
|
|
int minmaxdist, min_dist, max_dist, tdist;
|
|
int mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
|
|
|
|
/* Compute true coordinates of update box's upper corner and center.
|
|
* Actually we compute the coordinates of the center of the upper-corner
|
|
* histogram cell, which are the upper bounds of the volume we care about.
|
|
* Note that since ">>" rounds down, the "center" values may be closer to
|
|
* min than to max; hence comparisons to them must be "<=", not "<".
|
|
*/
|
|
maxR = minR + ((1 << BOX_R_SHIFT) - (1 << R_SHIFT));
|
|
centerR = (minR + maxR) >> 1;
|
|
maxG = minG + ((1 << BOX_G_SHIFT) - (1 << G_SHIFT));
|
|
centerG = (minG + maxG) >> 1;
|
|
maxB = minB + ((1 << BOX_B_SHIFT) - (1 << B_SHIFT));
|
|
centerB = (minB + maxB) >> 1;
|
|
|
|
/* For each color in colormap, find:
|
|
* 1. its minimum squared-distance to any point in the update box
|
|
* (zero if color is within update box);
|
|
* 2. its maximum squared-distance to any point in the update box.
|
|
* Both of these can be found by considering only the corners of the box.
|
|
* We save the minimum distance for each color in mindist[];
|
|
* only the smallest maximum distance is of interest.
|
|
*/
|
|
minmaxdist = 0x7FFFFFFFL;
|
|
|
|
for (i = 0; i < numcolors; i++) {
|
|
/* We compute the squared-R-distance term, then add in the other two. */
|
|
x = quantobj->cmap[i].red;
|
|
if (x < minR) {
|
|
tdist = (x - minR) * R_SCALE;
|
|
min_dist = tdist*tdist;
|
|
tdist = (x - maxR) * R_SCALE;
|
|
max_dist = tdist*tdist;
|
|
} else if (x > maxR) {
|
|
tdist = (x - maxR) * R_SCALE;
|
|
min_dist = tdist*tdist;
|
|
tdist = (x - minR) * R_SCALE;
|
|
max_dist = tdist*tdist;
|
|
} else {
|
|
/* within cell range so no contribution to min_dist */
|
|
min_dist = 0;
|
|
if (x <= centerR) {
|
|
tdist = (x - maxR) * R_SCALE;
|
|
max_dist = tdist*tdist;
|
|
} else {
|
|
tdist = (x - minR) * R_SCALE;
|
|
max_dist = tdist*tdist;
|
|
}
|
|
}
|
|
|
|
x = quantobj->cmap[i].green;
|
|
if (x < minG) {
|
|
tdist = (x - minG) * G_SCALE;
|
|
min_dist += tdist*tdist;
|
|
tdist = (x - maxG) * G_SCALE;
|
|
max_dist += tdist*tdist;
|
|
} else if (x > maxG) {
|
|
tdist = (x - maxG) * G_SCALE;
|
|
min_dist += tdist*tdist;
|
|
tdist = (x - minG) * G_SCALE;
|
|
max_dist += tdist*tdist;
|
|
} else {
|
|
/* within cell range so no contribution to min_dist */
|
|
if (x <= centerG) {
|
|
tdist = (x - maxG) * G_SCALE;
|
|
max_dist += tdist*tdist;
|
|
} else {
|
|
tdist = (x - minG) * G_SCALE;
|
|
max_dist += tdist*tdist;
|
|
}
|
|
}
|
|
|
|
x = quantobj->cmap[i].blue;
|
|
if (x < minB) {
|
|
tdist = (x - minB) * B_SCALE;
|
|
min_dist += tdist*tdist;
|
|
tdist = (x - maxB) * B_SCALE;
|
|
max_dist += tdist*tdist;
|
|
} else if (x > maxB) {
|
|
tdist = (x - maxB) * B_SCALE;
|
|
min_dist += tdist*tdist;
|
|
tdist = (x - minB) * B_SCALE;
|
|
max_dist += tdist*tdist;
|
|
} else {
|
|
/* within cell range so no contribution to min_dist */
|
|
if (x <= centerB) {
|
|
tdist = (x - maxB) * B_SCALE;
|
|
max_dist += tdist*tdist;
|
|
} else {
|
|
tdist = (x - minB) * B_SCALE;
|
|
max_dist += tdist*tdist;
|
|
}
|
|
}
|
|
|
|
mindist[i] = min_dist; /* save away the results */
|
|
if (max_dist < minmaxdist)
|
|
minmaxdist = max_dist;
|
|
}
|
|
|
|
/* Now we know that no cell in the update box is more than minmaxdist
|
|
* away from some colormap entry. Therefore, only colors that are
|
|
* within minmaxdist of some part of the box need be considered.
|
|
*/
|
|
ncolors = 0;
|
|
for (i = 0; i < numcolors; i++) {
|
|
if (mindist[i] <= minmaxdist)
|
|
colorlist[ncolors++] = i;
|
|
}
|
|
return ncolors;
|
|
}
|
|
|
|
|
|
static void
|
|
find_best_colors (QuantizeObj *quantobj,
|
|
int minR,
|
|
int minG,
|
|
int minB,
|
|
int numcolors,
|
|
int colorlist[],
|
|
int bestcolor[])
|
|
/* Find the closest colormap entry for each cell in the update box,
|
|
* given the list of candidate colors prepared by find_nearby_colors.
|
|
* Return the indexes of the closest entries in the bestcolor[] array.
|
|
* This routine uses Thomas' incremental distance calculation method to
|
|
* find the distance from a colormap entry to successive cells in the box.
|
|
*/
|
|
{
|
|
int iR, iG, iB;
|
|
int i, icolor;
|
|
int * bptr; /* pointer into bestdist[] array */
|
|
int * cptr; /* pointer into bestcolor[] array */
|
|
int dist0, dist1; /* initial distance values */
|
|
int dist2; /* current distance in inner loop */
|
|
int xx0, xx1; /* distance increments */
|
|
int xx2;
|
|
int inR, inG, inB; /* initial values for increments */
|
|
|
|
/* This array holds the distance to the nearest-so-far color for each cell */
|
|
int bestdist[BOX_R_ELEMS * BOX_G_ELEMS * BOX_B_ELEMS];
|
|
|
|
/* Initialize best-distance for each cell of the update box */
|
|
bptr = bestdist;
|
|
for (i = BOX_R_ELEMS*BOX_G_ELEMS*BOX_B_ELEMS-1; i >= 0; i--)
|
|
*bptr++ = 0x7FFFFFFFL;
|
|
|
|
/* For each color selected by find_nearby_colors,
|
|
* compute its distance to the center of each cell in the box.
|
|
* If that's less than best-so-far, update best distance and color number.
|
|
*/
|
|
|
|
/* Nominal steps between cell centers ("x" in Thomas article) */
|
|
#define STEP_R ((1 << R_SHIFT) * R_SCALE)
|
|
#define STEP_G ((1 << G_SHIFT) * G_SCALE)
|
|
#define STEP_B ((1 << B_SHIFT) * B_SCALE)
|
|
|
|
for (i = 0; i < numcolors; i++) {
|
|
icolor = colorlist[i];
|
|
/* Compute (square of) distance from minR/G/B to this color */
|
|
inR = (minR - quantobj->cmap[icolor].red) * R_SCALE;
|
|
dist0 = inR*inR;
|
|
inG = (minG - quantobj->cmap[icolor].green) * G_SCALE;
|
|
dist0 += inG*inG;
|
|
inB = (minB - quantobj->cmap[icolor].blue) * B_SCALE;
|
|
dist0 += inB*inB;
|
|
/* Form the initial difference increments */
|
|
inR = inR * (2 * STEP_R) + STEP_R * STEP_R;
|
|
inG = inG * (2 * STEP_G) + STEP_G * STEP_G;
|
|
inB = inB * (2 * STEP_B) + STEP_B * STEP_B;
|
|
/* Now loop over all cells in box, updating distance per Thomas method */
|
|
bptr = bestdist;
|
|
cptr = bestcolor;
|
|
xx0 = inR;
|
|
for (iR = BOX_R_ELEMS-1; iR >= 0; iR--) {
|
|
dist1 = dist0;
|
|
xx1 = inG;
|
|
for (iG = BOX_G_ELEMS-1; iG >= 0; iG--) {
|
|
dist2 = dist1;
|
|
xx2 = inB;
|
|
for (iB = BOX_B_ELEMS-1; iB >= 0; iB--) {
|
|
if (dist2 < *bptr) {
|
|
*bptr = dist2;
|
|
*cptr = icolor;
|
|
}
|
|
dist2 += xx2;
|
|
xx2 += 2 * STEP_B * STEP_B;
|
|
bptr++;
|
|
cptr++;
|
|
}
|
|
dist1 += xx1;
|
|
xx1 += 2 * STEP_G * STEP_G;
|
|
}
|
|
dist0 += xx0;
|
|
xx0 += 2 * STEP_R * STEP_R;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
fill_inverse_cmap_gray (QuantizeObj *quantobj,
|
|
Histogram histogram,
|
|
int pixel)
|
|
/* Fill the inverse-colormap entries in the update box that contains */
|
|
/* histogram cell R/G/B. (Only that one cell MUST be filled, but */
|
|
/* we can fill as many others as we wish.) */
|
|
{
|
|
Color *cmap;
|
|
long dist;
|
|
long mindist;
|
|
int mindisti;
|
|
int i;
|
|
|
|
cmap = quantobj->cmap;
|
|
|
|
mindist = 65536;
|
|
mindisti = -1;
|
|
|
|
for (i = 0; i < quantobj->actual_number_of_colors; i++)
|
|
{
|
|
dist = pixel - cmap[i].red;
|
|
dist *= dist;
|
|
|
|
if (dist < mindist)
|
|
{
|
|
mindist = dist;
|
|
mindisti = i;
|
|
}
|
|
}
|
|
|
|
if (i >= 0)
|
|
histogram[pixel] = mindisti + 1;
|
|
}
|
|
|
|
|
|
static void
|
|
fill_inverse_cmap_rgb (QuantizeObj *quantobj,
|
|
Histogram histogram,
|
|
int R,
|
|
int G,
|
|
int B)
|
|
/* Fill the inverse-colormap entries in the update box that contains */
|
|
/* histogram cell R/G/B. (Only that one cell MUST be filled, but */
|
|
/* we can fill as many others as we wish.) */
|
|
{
|
|
int minR, minG, minB; /* lower left corner of update box */
|
|
int iR, iG, iB;
|
|
int * cptr; /* pointer into bestcolor[] array */
|
|
ColorFreq * cachep; /* pointer into main cache array */
|
|
/* This array lists the candidate colormap indexes. */
|
|
int colorlist[MAXNUMCOLORS];
|
|
int numcolors; /* number of candidate colors */
|
|
/* This array holds the actually closest colormap index for each cell. */
|
|
int bestcolor[BOX_R_ELEMS * BOX_G_ELEMS * BOX_B_ELEMS];
|
|
|
|
/* Convert cell coordinates to update box id */
|
|
R >>= BOX_R_LOG;
|
|
G >>= BOX_G_LOG;
|
|
B >>= BOX_B_LOG;
|
|
|
|
/* Compute true coordinates of update box's origin corner.
|
|
* Actually we compute the coordinates of the center of the corner
|
|
* histogram cell, which are the lower bounds of the volume we care about.
|
|
*/
|
|
minR = (R << BOX_R_SHIFT) + ((1 << R_SHIFT) >> 1);
|
|
minG = (G << BOX_G_SHIFT) + ((1 << G_SHIFT) >> 1);
|
|
minB = (B << BOX_B_SHIFT) + ((1 << B_SHIFT) >> 1);
|
|
|
|
/* Determine which colormap entries are close enough to be candidates
|
|
* for the nearest entry to some cell in the update box.
|
|
*/
|
|
numcolors = find_nearby_colors (quantobj, minR, minG, minB, colorlist);
|
|
|
|
/* Determine the actually nearest colors. */
|
|
find_best_colors (quantobj, minR, minG, minB, numcolors, colorlist,
|
|
bestcolor);
|
|
|
|
/* Save the best color numbers (plus 1) in the main cache array */
|
|
R <<= BOX_R_LOG; /* convert id back to base cell indexes */
|
|
G <<= BOX_G_LOG;
|
|
B <<= BOX_B_LOG;
|
|
cptr = bestcolor;
|
|
for (iR = 0; iR < BOX_R_ELEMS; iR++) {
|
|
for (iG = 0; iG < BOX_G_ELEMS; iG++) {
|
|
cachep = & histogram[(R+iR)*MR+(G+iG)*MG+B];
|
|
for (iB = 0; iB < BOX_B_ELEMS; iB++) {
|
|
*cachep++ = (*cptr++) + 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* This is pass 1 */
|
|
|
|
static void
|
|
median_cut_pass1_gray (QuantizeObj *quantobj)
|
|
{
|
|
select_colors_gray (quantobj, quantobj->histogram);
|
|
}
|
|
|
|
|
|
static void
|
|
median_cut_pass1_rgb (QuantizeObj *quantobj)
|
|
{
|
|
select_colors_rgb (quantobj, quantobj->histogram);
|
|
}
|
|
|
|
|
|
static void
|
|
monopal_pass1 (QuantizeObj *quantobj)
|
|
{
|
|
quantobj -> actual_number_of_colors = 2;
|
|
quantobj -> cmap[0].red = 0;
|
|
quantobj -> cmap[0].green = 0;
|
|
quantobj -> cmap[0].blue = 0;
|
|
quantobj -> cmap[1].red = 255;
|
|
quantobj -> cmap[1].green = 255;
|
|
quantobj -> cmap[1].blue = 255;
|
|
}
|
|
static void
|
|
webpal_pass1 (QuantizeObj *quantobj)
|
|
{
|
|
int i;
|
|
quantobj -> actual_number_of_colors = 216;
|
|
for (i=0;i<216;i++)
|
|
{
|
|
quantobj->cmap[i].red = webpal[i*3];
|
|
quantobj->cmap[i].green = webpal[i*3 +1];
|
|
quantobj->cmap[i].blue = webpal[i*3 +2];
|
|
}
|
|
}
|
|
static void
|
|
custompal_pass1 (QuantizeObj *quantobj)
|
|
{
|
|
int i;
|
|
GSList *list;
|
|
PaletteEntry *entry;
|
|
|
|
/* fprintf(stderr, "custompal_pass1: using (theCustomPalette %s) from (file %s)\n",
|
|
theCustomPalette->name, theCustomPalette->filename); */
|
|
|
|
for (i=0,list=theCustomPalette->colors;
|
|
list;
|
|
i++,list=g_slist_next(list))
|
|
{
|
|
entry = (PaletteEntry *) list->data;
|
|
quantobj->cmap[i].red = entry->color[0];
|
|
quantobj->cmap[i].green = entry->color[1];
|
|
quantobj->cmap[i].blue = entry->color[2];
|
|
}
|
|
quantobj -> actual_number_of_colors = i;
|
|
}
|
|
|
|
/*
|
|
* Map some rows of pixels to the output colormapped representation.
|
|
*/
|
|
|
|
static void
|
|
median_cut_pass2_no_dither_gray (QuantizeObj *quantobj,
|
|
Layer *layer,
|
|
TileManager *new_tiles)
|
|
{
|
|
PixelRegion srcPR, destPR;
|
|
Histogram histogram = quantobj->histogram;
|
|
ColorFreq * cachep;
|
|
unsigned char *src, *dest;
|
|
int row, col;
|
|
int pixel;
|
|
int has_alpha;
|
|
unsigned long* index_used_count = quantobj->index_used_count;
|
|
int alpha_dither = quantobj->want_alpha_dither;
|
|
int offsetx, offsety;
|
|
void *pr;
|
|
|
|
drawable_offsets (GIMP_DRAWABLE(layer), &offsetx, &offsety);
|
|
|
|
has_alpha = layer_has_alpha (layer);
|
|
pixel_region_init (&srcPR, GIMP_DRAWABLE(layer)->tiles, 0, 0, GIMP_DRAWABLE(layer)->width, GIMP_DRAWABLE(layer)->height, FALSE);
|
|
pixel_region_init (&destPR, new_tiles, 0, 0, GIMP_DRAWABLE(layer)->width, GIMP_DRAWABLE(layer)->height, TRUE);
|
|
for (pr = pixel_regions_register (2, &srcPR, &destPR); pr != NULL; pr = pixel_regions_process (pr))
|
|
{
|
|
src = srcPR.data;
|
|
dest = destPR.data;
|
|
for (row = 0; row < srcPR.h; row++)
|
|
{
|
|
for (col = 0; col < srcPR.w; col++)
|
|
{
|
|
/* get pixel value and index into the cache */
|
|
pixel = src[GRAY_PIX];
|
|
cachep = &histogram[pixel];
|
|
/* If we have not seen this color before, find nearest colormap entry */
|
|
/* and update the cache */
|
|
if (*cachep == 0)
|
|
fill_inverse_cmap_gray (quantobj, histogram, pixel);
|
|
|
|
if (has_alpha)
|
|
{
|
|
if ((dest[ALPHA_I_PIX] =
|
|
(
|
|
(alpha_dither ?
|
|
((src[ALPHA_G_PIX] << 6) > (255 * DM[(col+offsetx+srcPR.x)&DM_WIDTHMASK][(row+offsety+srcPR.y)&DM_HEIGHTMASK])) :
|
|
(src[ALPHA_G_PIX] > 127)
|
|
) ? 255 : 0)))
|
|
index_used_count[dest[INDEXED_PIX] = *cachep - 1]++;
|
|
}
|
|
else
|
|
{
|
|
/* Now emit the colormap index for this cell */
|
|
index_used_count[dest[INDEXED_PIX] = *cachep - 1]++;
|
|
}
|
|
|
|
src += srcPR.bytes;
|
|
dest += destPR.bytes;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
median_cut_pass2_fixed_dither_gray (QuantizeObj *quantobj,
|
|
Layer *layer,
|
|
TileManager *new_tiles)
|
|
{
|
|
PixelRegion srcPR, destPR;
|
|
Histogram histogram = quantobj->histogram;
|
|
ColorFreq* cachep;
|
|
Color* color;
|
|
unsigned char *src, *dest;
|
|
int row, col;
|
|
int pixel;
|
|
int re, R;
|
|
unsigned long* index_used_count = quantobj->index_used_count;
|
|
int has_alpha;
|
|
int alpha_dither = quantobj->want_alpha_dither;
|
|
int offsetx, offsety;
|
|
void *pr;
|
|
|
|
drawable_offsets (GIMP_DRAWABLE(layer), &offsetx, &offsety);
|
|
|
|
has_alpha = layer_has_alpha (layer);
|
|
pixel_region_init (&srcPR, GIMP_DRAWABLE(layer)->tiles, 0, 0, GIMP_DRAWABLE(layer)->width, GIMP_DRAWABLE(layer)->height, FALSE);
|
|
pixel_region_init (&destPR, new_tiles, 0, 0, GIMP_DRAWABLE(layer)->width, GIMP_DRAWABLE(layer)->height, TRUE);
|
|
for (pr = pixel_regions_register (2, &srcPR, &destPR); pr != NULL; pr = pixel_regions_process (pr))
|
|
{
|
|
src = srcPR.data;
|
|
dest = destPR.data;
|
|
for (row = 0; row < srcPR.h; row++)
|
|
{
|
|
for (col = 0; col < srcPR.w; col++)
|
|
{
|
|
int dmval =
|
|
DM[(col+offsetx+srcPR.x)&DM_WIDTHMASK]
|
|
[(row+offsety+srcPR.y)&DM_HEIGHTMASK];
|
|
|
|
/* get pixel value and index into the cache */
|
|
pixel = src[GRAY_PIX];
|
|
cachep = &histogram[pixel];
|
|
/* If we have not seen this color before, find nearest colormap entry */
|
|
/* and update the cache */
|
|
if (*cachep == 0)
|
|
fill_inverse_cmap_gray (quantobj, histogram, pixel);
|
|
|
|
color = &quantobj->cmap[*cachep - 1];
|
|
re = src[GRAY_PIX] - color->red;
|
|
re = (re * dmval * 2) / 63;
|
|
R = (CLAMP0255(color->red + re));
|
|
|
|
cachep = &histogram[R];
|
|
/* If we have not seen this color before, find nearest
|
|
colormap entry and update the cache */
|
|
if (*cachep == 0)
|
|
fill_inverse_cmap_gray (quantobj, histogram, R);
|
|
|
|
if (has_alpha)
|
|
{
|
|
if ((dest[ALPHA_I_PIX] =
|
|
((alpha_dither ?
|
|
((src[ALPHA_G_PIX] << 6) > (255 * dmval)) :
|
|
(src[ALPHA_G_PIX] > 127)
|
|
) ? 255 : 0)))
|
|
index_used_count[dest[INDEXED_PIX] = *cachep - 1]++;
|
|
}
|
|
else
|
|
{
|
|
/* Now emit the colormap index for this cell, barfbarf */
|
|
index_used_count[dest[INDEXED_PIX] = *cachep - 1]++;
|
|
}
|
|
|
|
src += srcPR.bytes;
|
|
dest += destPR.bytes;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
median_cut_pass2_no_dither_rgb (QuantizeObj *quantobj,
|
|
Layer *layer,
|
|
TileManager *new_tiles)
|
|
{
|
|
PixelRegion srcPR, destPR;
|
|
Histogram histogram = quantobj->histogram;
|
|
ColorFreq * cachep;
|
|
unsigned char *src, *dest;
|
|
int R, G, B;
|
|
int row, col;
|
|
int has_alpha;
|
|
void *pr;
|
|
int red_pix = RED_PIX;
|
|
int green_pix = GREEN_PIX;
|
|
int blue_pix = BLUE_PIX;
|
|
int alpha_pix = ALPHA_PIX;
|
|
int alpha_dither = quantobj->want_alpha_dither;
|
|
int offsetx, offsety;
|
|
unsigned long* index_used_count = quantobj->index_used_count;
|
|
|
|
drawable_offsets (GIMP_DRAWABLE(layer), &offsetx, &offsety);
|
|
|
|
/* In the case of web/mono palettes, we actually force
|
|
* grayscale drawables through the rgb pass2 functions
|
|
*/
|
|
if (drawable_gray (GIMP_DRAWABLE(layer)))
|
|
red_pix = green_pix = blue_pix = GRAY_PIX;
|
|
|
|
has_alpha = layer_has_alpha (layer);
|
|
pixel_region_init (&srcPR, GIMP_DRAWABLE(layer)->tiles, 0, 0, GIMP_DRAWABLE(layer)->width, GIMP_DRAWABLE(layer)->height, FALSE);
|
|
pixel_region_init (&destPR, new_tiles, 0, 0, GIMP_DRAWABLE(layer)->width, GIMP_DRAWABLE(layer)->height, TRUE);
|
|
for (pr = pixel_regions_register (2, &srcPR, &destPR); pr != NULL; pr = pixel_regions_process (pr))
|
|
{
|
|
src = srcPR.data;
|
|
dest = destPR.data;
|
|
for (row = 0; row < srcPR.h; row++)
|
|
{
|
|
for (col = 0; col < srcPR.w; col++)
|
|
{
|
|
if (has_alpha)
|
|
{
|
|
if ((dest[ALPHA_I_PIX] =
|
|
(alpha_dither ?
|
|
((src[alpha_pix] << 6) > (255 * DM[(col+offsetx+srcPR.x)&DM_WIDTHMASK][(row+offsety+srcPR.y)&DM_HEIGHTMASK])) :
|
|
(src[alpha_pix] > 127)
|
|
) ? 255 : 0)
|
|
== 0)
|
|
{
|
|
goto next_pixel;
|
|
}
|
|
}
|
|
|
|
/* get pixel value and index into the cache */
|
|
R = (src[red_pix]) >> R_SHIFT;
|
|
G = (src[green_pix]) >> G_SHIFT;
|
|
B = (src[blue_pix]) >> B_SHIFT;
|
|
cachep = &histogram[R*MR + G*MG + B];
|
|
/* If we have not seen this color before, find nearest
|
|
colormap entry and update the cache */
|
|
if (*cachep == 0)
|
|
fill_inverse_cmap_rgb (quantobj, histogram, R, G, B);
|
|
|
|
/* Now emit the colormap index for this cell, barfbarf */
|
|
index_used_count[dest[INDEXED_PIX] = *cachep - 1]++;
|
|
|
|
next_pixel:
|
|
|
|
src += srcPR.bytes;
|
|
dest += destPR.bytes;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
median_cut_pass2_fixed_dither_rgb (QuantizeObj *quantobj,
|
|
Layer *layer,
|
|
TileManager *new_tiles)
|
|
{
|
|
PixelRegion srcPR, destPR;
|
|
Histogram histogram = quantobj->histogram;
|
|
ColorFreq* cachep;
|
|
Color* color;
|
|
unsigned char *src, *dest;
|
|
int R, G, B;
|
|
int row, col;
|
|
int has_alpha;
|
|
int re, ge, be;
|
|
void* pr;
|
|
int red_pix = RED_PIX;
|
|
int green_pix = GREEN_PIX;
|
|
int blue_pix = BLUE_PIX;
|
|
int alpha_pix = ALPHA_PIX;
|
|
int alpha_dither = quantobj->want_alpha_dither;
|
|
int offsetx, offsety;
|
|
unsigned long* index_used_count = quantobj->index_used_count;
|
|
|
|
drawable_offsets (GIMP_DRAWABLE(layer), &offsetx, &offsety);
|
|
|
|
/* In the case of web/mono palettes, we actually force
|
|
* grayscale drawables through the rgb pass2 functions
|
|
*/
|
|
if (drawable_gray (GIMP_DRAWABLE(layer)))
|
|
red_pix = green_pix = blue_pix = GRAY_PIX;
|
|
|
|
has_alpha = layer_has_alpha (layer);
|
|
pixel_region_init (&srcPR, GIMP_DRAWABLE(layer)->tiles, 0, 0, GIMP_DRAWABLE(layer)->width, GIMP_DRAWABLE(layer)->height, FALSE);
|
|
pixel_region_init (&destPR, new_tiles, 0, 0, GIMP_DRAWABLE(layer)->width, GIMP_DRAWABLE(layer)->height, TRUE);
|
|
for (pr = pixel_regions_register (2, &srcPR, &destPR); pr != NULL; pr = pixel_regions_process (pr))
|
|
{
|
|
src = srcPR.data;
|
|
dest = destPR.data;
|
|
for (row = 0; row < srcPR.h; row++)
|
|
{
|
|
for (col = 0; col < srcPR.w; col++)
|
|
{
|
|
int dmval =
|
|
DM[(col+offsetx+srcPR.x)&DM_WIDTHMASK]
|
|
[(row+offsety+srcPR.y)&DM_HEIGHTMASK];
|
|
|
|
if (has_alpha)
|
|
{
|
|
if ((dest[ALPHA_I_PIX] =
|
|
(alpha_dither ?
|
|
((src[alpha_pix] << 6) > (255 * dmval)) :
|
|
(src[alpha_pix] > 127)
|
|
) ? 255 : 0)
|
|
== 0)
|
|
{
|
|
goto next_pixel;
|
|
}
|
|
}
|
|
|
|
/* get pixel value and index into the cache */
|
|
R = (src[red_pix]) >> R_SHIFT;
|
|
G = (src[green_pix]) >> G_SHIFT;
|
|
B = (src[blue_pix]) >> B_SHIFT;
|
|
cachep = &histogram[R*MR + G*MG + B];
|
|
/* If we have not seen this color before, find nearest
|
|
colormap entry and update the cache */
|
|
if (*cachep == 0)
|
|
fill_inverse_cmap_rgb (quantobj, histogram, R, G, B);
|
|
|
|
/* Get the error and modulate it between 0x and 2x according
|
|
to the fixed dither matrix, then add it back to the 0x colour
|
|
and look up the new histogram entry. To do better fixed
|
|
dithering, I believe that we need to be able to find the
|
|
closest colour match on the 'other side' of the desired colour,
|
|
which is not information which we have cheap access to. */
|
|
color = &quantobj->cmap[*cachep - 1];
|
|
re = src[red_pix] - color->red;
|
|
ge = src[green_pix] - color->green;
|
|
be = src[blue_pix] - color->blue;
|
|
|
|
re = (re * dmval * 2) / 63;
|
|
ge = (ge * dmval * 2) / 63;
|
|
be = (be * dmval * 2) / 63;
|
|
|
|
R = (CLAMP0255(color->red + re)) >> R_SHIFT;
|
|
G = (CLAMP0255(color->green + ge)) >> G_SHIFT;
|
|
B = (CLAMP0255(color->blue + be)) >> B_SHIFT;
|
|
|
|
cachep = &histogram[R*MR + G*MG + B];
|
|
/* If we have not seen this color before, find nearest
|
|
colormap entry and update the cache */
|
|
if (*cachep == 0)
|
|
fill_inverse_cmap_rgb (quantobj, histogram, R, G, B);
|
|
|
|
/* Now emit the colormap index for this cell, barfbarf */
|
|
index_used_count[dest[INDEXED_PIX] = *cachep - 1]++;
|
|
|
|
next_pixel:
|
|
|
|
src += srcPR.bytes;
|
|
dest += destPR.bytes;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
median_cut_pass2_nodestruct_dither_rgb (QuantizeObj *quantobj,
|
|
Layer *layer,
|
|
TileManager *new_tiles)
|
|
{
|
|
PixelRegion srcPR, destPR;
|
|
unsigned char *src, *dest;
|
|
int row, col;
|
|
int has_alpha;
|
|
int alpha_dither = quantobj->want_alpha_dither;
|
|
void *pr;
|
|
int red_pix = RED_PIX;
|
|
int green_pix = GREEN_PIX;
|
|
int blue_pix = BLUE_PIX;
|
|
int alpha_pix = ALPHA_PIX;
|
|
int i;
|
|
int lastindex = 0;
|
|
int lastred = -1;
|
|
int lastgreen = -1;
|
|
int lastblue = -1;
|
|
int offsetx, offsety;
|
|
|
|
drawable_offsets (GIMP_DRAWABLE(layer), &offsetx, &offsety);
|
|
|
|
has_alpha = layer_has_alpha (layer);
|
|
pixel_region_init (&srcPR, GIMP_DRAWABLE(layer)->tiles, 0, 0, GIMP_DRAWABLE(layer)->width, GIMP_DRAWABLE(layer)->height, FALSE);
|
|
pixel_region_init (&destPR, new_tiles, 0, 0, GIMP_DRAWABLE(layer)->width, GIMP_DRAWABLE(layer)->height, TRUE);
|
|
for (pr = pixel_regions_register (2, &srcPR, &destPR); pr != NULL; pr = pixel_regions_process (pr))
|
|
{
|
|
src = srcPR.data;
|
|
dest = destPR.data;
|
|
for (row = 0; row < srcPR.h; row++)
|
|
{
|
|
for (col = 0; col < srcPR.w; col++)
|
|
{
|
|
if ((has_alpha && (alpha_dither ?
|
|
((src[alpha_pix] << 6) > (255 * DM[(col+srcPR.x+offsetx)&DM_WIDTHMASK][(row+srcPR.y+offsety)&DM_HEIGHTMASK])) :
|
|
(src[alpha_pix] > 127)))
|
|
|| !has_alpha)
|
|
{
|
|
if ((lastred == src[red_pix]) &&
|
|
(lastgreen == src[green_pix]) &&
|
|
(lastblue == src[blue_pix]))
|
|
{
|
|
/* same pixel colour as last time */
|
|
dest[INDEXED_PIX] = lastindex;
|
|
if (has_alpha)
|
|
dest[ALPHA_I_PIX] = 255;
|
|
}
|
|
else
|
|
{
|
|
for (i = 0 ;
|
|
i < quantobj->actual_number_of_colors;
|
|
i++)
|
|
{
|
|
if (
|
|
(quantobj->cmap[i].red == src[red_pix]) &&
|
|
(quantobj->cmap[i].green == src[green_pix]) &&
|
|
(quantobj->cmap[i].blue == src[blue_pix])
|
|
)
|
|
{
|
|
lastred = src[red_pix];
|
|
lastgreen = src[green_pix];
|
|
lastblue = src[blue_pix];
|
|
lastindex = i;
|
|
goto got_colour;
|
|
}
|
|
}
|
|
g_error ("Non-existant colour was expected to "
|
|
"be in non-destructive colourmap.");
|
|
got_colour:
|
|
dest[INDEXED_PIX] = lastindex;
|
|
if (has_alpha)
|
|
dest[ALPHA_I_PIX] = 255;
|
|
}
|
|
}
|
|
else
|
|
{ /* have alpha, and transparent */
|
|
dest[ALPHA_I_PIX] = 0;
|
|
}
|
|
|
|
src += srcPR.bytes;
|
|
dest += destPR.bytes;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Initialize the error-limiting transfer function (lookup table).
|
|
* The raw F-S error computation can potentially compute error values of up to
|
|
* +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be
|
|
* much less, otherwise obviously wrong pixels will be created. (Typical
|
|
* effects include weird fringes at color-area boundaries, isolated bright
|
|
* pixels in a dark area, etc.) The standard advice for avoiding this problem
|
|
* is to ensure that the "corners" of the color cube are allocated as output
|
|
* colors; then repeated errors in the same direction cannot cause cascading
|
|
* error buildup. However, that only prevents the error from getting
|
|
* completely out of hand; Aaron Giles reports that error limiting improves
|
|
* the results even with corner colors allocated.
|
|
* A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
|
|
* well, but the smoother transfer function used below is even better. Thanks
|
|
* to Aaron Giles for this idea.
|
|
*/
|
|
|
|
static int *
|
|
init_error_limit (const int error_freedom)
|
|
/* Allocate and fill in the error_limiter table */
|
|
{
|
|
int *table;
|
|
int in, out;
|
|
|
|
/* #define STEPSIZE 16 */
|
|
/* #define STEPSIZE 200 */
|
|
|
|
table = g_malloc (sizeof (int) * (255 * 2 + 1));
|
|
table += 255; /* so we can index -255 ... +255 */
|
|
|
|
if (error_freedom == 0)
|
|
{
|
|
/* Coarse function, much bleeding. */
|
|
|
|
const int STEPSIZE = 190;
|
|
|
|
for (in = 0; in < STEPSIZE; in++)
|
|
{
|
|
table[in] = in;
|
|
table[-in] = -in;
|
|
}
|
|
for (; in <= 255; in++)
|
|
{
|
|
table[in] = STEPSIZE;
|
|
table[-in] = -STEPSIZE;
|
|
}
|
|
return (table);
|
|
}
|
|
else
|
|
{
|
|
/* Smooth function, bleeding more constrained */
|
|
|
|
const int STEPSIZE = 24;
|
|
|
|
/* Map errors 1:1 up to +- STEPSIZE */
|
|
out = 0;
|
|
for (in = 0; in < STEPSIZE; in++, out++)
|
|
{
|
|
table[in] = out;
|
|
table[-in] = -out;
|
|
}
|
|
|
|
/* Map errors 1:2 up to +- 3*STEPSIZE */
|
|
for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1)
|
|
{
|
|
table[in] = out;
|
|
table[-in] = -out;
|
|
}
|
|
|
|
/* Clamp the rest to final out value (which is STEPSIZE*2) */
|
|
for (; in <= 255; in++)
|
|
{
|
|
table[in] = out;
|
|
table[-in] = -out;
|
|
}
|
|
|
|
return table;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Map some rows of pixels to the output colormapped representation.
|
|
* Perform floyd-steinberg dithering.
|
|
*/
|
|
|
|
static void
|
|
median_cut_pass2_fs_dither_gray (QuantizeObj *quantobj,
|
|
Layer *layer,
|
|
TileManager *new_tiles)
|
|
{
|
|
PixelRegion srcPR, destPR;
|
|
Histogram histogram = quantobj->histogram;
|
|
ColorFreq *cachep;
|
|
Color *color;
|
|
int *error_limiter;
|
|
const short *fs_err1, *fs_err2;
|
|
const short *fs_err3, *fs_err4;
|
|
const short *range_limiter;
|
|
int src_bytes, dest_bytes;
|
|
unsigned char *src, *dest;
|
|
unsigned char *src_buf, *dest_buf;
|
|
int *next_row, *prev_row;
|
|
int *nr, *pr;
|
|
int *tmp;
|
|
int pixel;
|
|
int pixele;
|
|
int row, col;
|
|
int index;
|
|
int step_dest, step_src;
|
|
int odd_row;
|
|
int has_alpha;
|
|
int offsetx, offsety;
|
|
int alpha_dither = quantobj->want_alpha_dither;
|
|
int width, height;
|
|
unsigned long* index_used_count = quantobj->index_used_count;
|
|
|
|
drawable_offsets (GIMP_DRAWABLE(layer), &offsetx, &offsety);
|
|
|
|
has_alpha = layer_has_alpha (layer);
|
|
pixel_region_init (&srcPR, GIMP_DRAWABLE(layer)->tiles, 0, 0, GIMP_DRAWABLE(layer)->width, GIMP_DRAWABLE(layer)->height, FALSE);
|
|
pixel_region_init (&destPR, new_tiles, 0, 0, GIMP_DRAWABLE(layer)->width, GIMP_DRAWABLE(layer)->height, TRUE);
|
|
src_bytes = GIMP_DRAWABLE(layer)->bytes;
|
|
dest_bytes = new_tiles->bpp;
|
|
width = GIMP_DRAWABLE(layer)->width;
|
|
height = GIMP_DRAWABLE(layer)->height;
|
|
|
|
error_limiter = init_error_limit (quantobj->error_freedom);
|
|
range_limiter = range_array + 256;
|
|
|
|
src_buf = g_malloc (width * src_bytes);
|
|
dest_buf = g_malloc (width * dest_bytes);
|
|
next_row = g_malloc (sizeof (int) * (width + 2));
|
|
prev_row = g_malloc (sizeof (int) * (width + 2));
|
|
|
|
memset (prev_row, 0, (width + 2) * sizeof (int));
|
|
|
|
fs_err1 = floyd_steinberg_error1 + 511;
|
|
fs_err2 = floyd_steinberg_error2 + 511;
|
|
fs_err3 = floyd_steinberg_error3 + 511;
|
|
fs_err4 = floyd_steinberg_error4 + 511;
|
|
|
|
odd_row = 0;
|
|
|
|
for (row = 0; row < height; row++)
|
|
{
|
|
pixel_region_get_row (&srcPR, 0, row, width, src_buf, 1);
|
|
|
|
src = src_buf;
|
|
dest = dest_buf;
|
|
|
|
nr = next_row;
|
|
pr = prev_row + 1;
|
|
|
|
if (odd_row)
|
|
{
|
|
step_dest = -dest_bytes;
|
|
step_src = -src_bytes;
|
|
|
|
src += (width * src_bytes) - src_bytes;
|
|
dest += (width * dest_bytes) - dest_bytes;
|
|
|
|
nr += width + 1;
|
|
pr += width;
|
|
|
|
*(nr - 1) = 0;
|
|
}
|
|
else
|
|
{
|
|
step_dest = dest_bytes;
|
|
step_src = src_bytes;
|
|
|
|
*(nr + 1) = 0;
|
|
}
|
|
|
|
*nr = 0;
|
|
|
|
for (col = 0; col < width; col++)
|
|
{
|
|
pixel = range_limiter[src[GRAY_PIX] + error_limiter[*pr]];
|
|
|
|
cachep = &histogram[pixel];
|
|
/* If we have not seen this color before, find nearest colormap entry */
|
|
/* and update the cache */
|
|
if (*cachep == 0)
|
|
fill_inverse_cmap_gray (quantobj, histogram, pixel);
|
|
|
|
if (has_alpha)
|
|
{
|
|
if (odd_row)
|
|
{
|
|
if ((dest[ALPHA_I_PIX] =
|
|
(alpha_dither ?
|
|
((src[ALPHA_G_PIX] << 6) > (255 * DM[((width-col)+offsetx-1)&DM_WIDTHMASK][(row+offsety)&DM_HEIGHTMASK])) :
|
|
(src[ALPHA_G_PIX] > 127)
|
|
) ? 255 : 0)
|
|
== 0)
|
|
{
|
|
pr--;
|
|
nr--;
|
|
*(nr - 1) = 0;
|
|
goto next_pixel;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ((dest[ALPHA_I_PIX] =
|
|
(alpha_dither ?
|
|
((src[ALPHA_G_PIX] << 6) > (255 * DM[(col+offsetx)&DM_WIDTHMASK][(row+offsety)&DM_HEIGHTMASK])) :
|
|
(src[ALPHA_G_PIX] > 127)
|
|
) ? 255 : 0)
|
|
== 0)
|
|
{
|
|
pr++;
|
|
nr++;
|
|
*(nr + 1) = 0;
|
|
goto next_pixel;
|
|
}
|
|
}
|
|
}
|
|
|
|
index = *cachep - 1;
|
|
index_used_count[dest[INDEXED_PIX] = index]++;
|
|
|
|
color = &quantobj->cmap[index];
|
|
pixele = pixel - color->red;
|
|
|
|
if (odd_row)
|
|
{
|
|
*(--pr) += fs_err1[pixele];
|
|
*nr-- += fs_err2[pixele];
|
|
*nr += fs_err3[pixele];
|
|
*(nr-1) = fs_err4[pixele];
|
|
}
|
|
else
|
|
{
|
|
*(++pr) += fs_err1[pixele];
|
|
*nr++ += fs_err2[pixele];
|
|
*nr += fs_err3[pixele];
|
|
*(nr+1) = fs_err4[pixele];
|
|
}
|
|
|
|
next_pixel:
|
|
|
|
dest += step_dest;
|
|
src += step_src;
|
|
}
|
|
|
|
tmp = next_row;
|
|
next_row = prev_row;
|
|
prev_row = tmp;
|
|
|
|
odd_row = !odd_row;
|
|
|
|
pixel_region_set_row (&destPR, 0, row, width, dest_buf);
|
|
}
|
|
|
|
g_free (error_limiter - 255); /* good lord. */
|
|
g_free (next_row);
|
|
g_free (prev_row);
|
|
g_free (src_buf);
|
|
g_free (dest_buf);
|
|
}
|
|
|
|
static void
|
|
median_cut_pass2_rgb_init (QuantizeObj *quantobj)
|
|
{
|
|
zero_histogram_rgb (quantobj->histogram);
|
|
|
|
/* Mark all indices as currently unused */
|
|
memset (quantobj->index_used_count, 0, 256 * sizeof(unsigned long));
|
|
}
|
|
|
|
static void
|
|
median_cut_pass2_gray_init (QuantizeObj *quantobj)
|
|
{
|
|
zero_histogram_gray (quantobj->histogram);
|
|
|
|
/* Mark all indices as currently unused */
|
|
memset (quantobj->index_used_count, 0, 256 * sizeof(unsigned long));
|
|
}
|
|
|
|
static void
|
|
median_cut_pass2_fs_dither_rgb (QuantizeObj *quantobj,
|
|
Layer *layer,
|
|
TileManager *new_tiles)
|
|
{
|
|
PixelRegion srcPR, destPR;
|
|
Histogram histogram = quantobj->histogram;
|
|
ColorFreq *cachep;
|
|
Color *color;
|
|
int *error_limiter;
|
|
const short *fs_err1, *fs_err2;
|
|
const short *fs_err3, *fs_err4;
|
|
const short *range_limiter;
|
|
int src_bytes, dest_bytes;
|
|
unsigned char *src, *dest;
|
|
unsigned char *src_buf, *dest_buf;
|
|
int *red_n_row, *red_p_row;
|
|
int *grn_n_row, *grn_p_row;
|
|
int *blu_n_row, *blu_p_row;
|
|
int *rnr, *rpr;
|
|
int *gnr, *gpr;
|
|
int *bnr, *bpr;
|
|
int *tmp;
|
|
int r, g, b;
|
|
int re, ge, be;
|
|
int row, col;
|
|
int index;
|
|
int step_dest, step_src;
|
|
int odd_row;
|
|
int has_alpha;
|
|
int width, height;
|
|
int red_pix = RED_PIX;
|
|
int green_pix = GREEN_PIX;
|
|
int blue_pix = BLUE_PIX;
|
|
int alpha_pix = ALPHA_PIX;
|
|
int offsetx, offsety;
|
|
int alpha_dither = quantobj->want_alpha_dither;
|
|
unsigned long *index_used_count = quantobj->index_used_count;
|
|
|
|
drawable_offsets (GIMP_DRAWABLE(layer), &offsetx, &offsety);
|
|
|
|
/* In the case of web/mono palettes, we actually force
|
|
* grayscale drawables through the rgb pass2 functions
|
|
*/
|
|
if (drawable_gray (GIMP_DRAWABLE(layer)))
|
|
red_pix = green_pix = blue_pix = GRAY_PIX;
|
|
|
|
has_alpha = layer_has_alpha (layer);
|
|
pixel_region_init (&srcPR, GIMP_DRAWABLE(layer)->tiles, 0, 0, GIMP_DRAWABLE(layer)->width, GIMP_DRAWABLE(layer)->height, FALSE);
|
|
pixel_region_init (&destPR, new_tiles, 0, 0, GIMP_DRAWABLE(layer)->width, GIMP_DRAWABLE(layer)->height, TRUE);
|
|
src_bytes = GIMP_DRAWABLE(layer)->bytes;
|
|
dest_bytes = new_tiles->bpp;
|
|
width = GIMP_DRAWABLE(layer)->width;
|
|
height = GIMP_DRAWABLE(layer)->height;
|
|
|
|
error_limiter = init_error_limit (quantobj->error_freedom);
|
|
range_limiter = range_array + 256;
|
|
|
|
src_buf = g_malloc (width * src_bytes);
|
|
dest_buf = g_malloc (width * dest_bytes);
|
|
red_n_row = g_malloc (sizeof (int) * (width + 2));
|
|
red_p_row = g_malloc (sizeof (int) * (width + 2));
|
|
grn_n_row = g_malloc (sizeof (int) * (width + 2));
|
|
grn_p_row = g_malloc (sizeof (int) * (width + 2));
|
|
blu_n_row = g_malloc (sizeof (int) * (width + 2));
|
|
blu_p_row = g_malloc (sizeof (int) * (width + 2));
|
|
|
|
memset (red_p_row, 0, (width + 2) * sizeof (int));
|
|
memset (grn_p_row, 0, (width + 2) * sizeof (int));
|
|
memset (blu_p_row, 0, (width + 2) * sizeof (int));
|
|
|
|
fs_err1 = floyd_steinberg_error1 + 511;
|
|
fs_err2 = floyd_steinberg_error2 + 511;
|
|
fs_err3 = floyd_steinberg_error3 + 511;
|
|
fs_err4 = floyd_steinberg_error4 + 511;
|
|
|
|
odd_row = 0;
|
|
|
|
for (row = 0; row < height; row++)
|
|
{
|
|
pixel_region_get_row (&srcPR, 0, row, width, src_buf, 1);
|
|
|
|
src = src_buf;
|
|
dest = dest_buf;
|
|
|
|
rnr = red_n_row;
|
|
gnr = grn_n_row;
|
|
bnr = blu_n_row;
|
|
rpr = red_p_row + 1;
|
|
gpr = grn_p_row + 1;
|
|
bpr = blu_p_row + 1;
|
|
|
|
if (odd_row)
|
|
{
|
|
step_dest = -dest_bytes;
|
|
step_src = -src_bytes;
|
|
|
|
src += (width * src_bytes) - src_bytes;
|
|
dest += (width * dest_bytes) - dest_bytes;
|
|
|
|
rnr += width + 1;
|
|
gnr += width + 1;
|
|
bnr += width + 1;
|
|
rpr += width;
|
|
gpr += width;
|
|
bpr += width;
|
|
|
|
*(rnr - 1) = *(gnr - 1) = *(bnr - 1) = 0;
|
|
}
|
|
else
|
|
{
|
|
step_dest = dest_bytes;
|
|
step_src = src_bytes;
|
|
|
|
*(rnr + 1) = *(gnr + 1) = *(bnr + 1) = 0;
|
|
}
|
|
|
|
*rnr = *gnr = *bnr = 0;
|
|
|
|
for (col = 0; col < width; col++)
|
|
{
|
|
if (has_alpha)
|
|
{
|
|
if (odd_row)
|
|
{
|
|
/* I get goosebumps over this expression. */
|
|
if ((dest[ALPHA_I_PIX] =
|
|
(alpha_dither ?
|
|
((src[alpha_pix] << 6) > (255 * DM[((width-col)+offsetx-1)&DM_WIDTHMASK][(row+offsety)&DM_HEIGHTMASK])) :
|
|
(src[alpha_pix] > 127)
|
|
) ? 255 : 0)
|
|
== 0)
|
|
{
|
|
rpr--; gpr--; bpr--;
|
|
rnr--; gnr--; bnr--;
|
|
*(rnr - 1) = *(gnr - 1) = *(bnr - 1) = 0;
|
|
goto next_pixel;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ((dest[ALPHA_I_PIX] =
|
|
(alpha_dither ?
|
|
((src[alpha_pix] << 6) > (255 * DM[(col+offsetx)&DM_WIDTHMASK][(row+offsety)&DM_HEIGHTMASK])) :
|
|
(src[alpha_pix] > 127)
|
|
) ? 255 : 0)
|
|
== 0)
|
|
{
|
|
rpr++; gpr++; bpr++;
|
|
rnr++; gnr++; bnr++;
|
|
*(rnr + 1) = *(gnr + 1) = *(bnr + 1) = 0;
|
|
goto next_pixel;
|
|
}
|
|
}
|
|
}
|
|
|
|
r = range_limiter[src[red_pix] + error_limiter[*rpr]];
|
|
g = range_limiter[src[green_pix] + error_limiter[*gpr]];
|
|
b = range_limiter[src[blue_pix] + error_limiter[*bpr]];
|
|
|
|
re = r >> R_SHIFT;
|
|
ge = g >> G_SHIFT;
|
|
be = b >> B_SHIFT;
|
|
|
|
cachep = &histogram[re*MR + ge*MG + be];
|
|
/* If we have not seen this color before, find nearest
|
|
colormap entry and update the cache */
|
|
if (*cachep == 0)
|
|
fill_inverse_cmap_rgb (quantobj, histogram, re, ge, be);
|
|
|
|
index = *cachep - 1;
|
|
index_used_count[index]++;
|
|
dest[INDEXED_PIX] = index;
|
|
|
|
color = &quantobj->cmap[index];
|
|
re = r - color->red;
|
|
ge = g - color->green;
|
|
be = b - color->blue;
|
|
|
|
if (odd_row)
|
|
{
|
|
*(--rpr) += fs_err1[re];
|
|
*(--gpr) += fs_err1[ge];
|
|
*(--bpr) += fs_err1[be];
|
|
|
|
*rnr-- += fs_err2[re];
|
|
*gnr-- += fs_err2[ge];
|
|
*bnr-- += fs_err2[be];
|
|
|
|
*rnr += fs_err3[re];
|
|
*gnr += fs_err3[ge];
|
|
*bnr += fs_err3[be];
|
|
|
|
*(rnr-1) = fs_err4[re];
|
|
*(gnr-1) = fs_err4[ge];
|
|
*(bnr-1) = fs_err4[be];
|
|
}
|
|
else
|
|
{
|
|
*(++rpr) += fs_err1[re];
|
|
*(++gpr) += fs_err1[ge];
|
|
*(++bpr) += fs_err1[be];
|
|
|
|
*rnr++ += fs_err2[re];
|
|
*gnr++ += fs_err2[ge];
|
|
*bnr++ += fs_err2[be];
|
|
|
|
*rnr += fs_err3[re];
|
|
*gnr += fs_err3[ge];
|
|
*bnr += fs_err3[be];
|
|
|
|
*(rnr+1) = fs_err4[re];
|
|
*(gnr+1) = fs_err4[ge];
|
|
*(bnr+1) = fs_err4[be];
|
|
}
|
|
|
|
next_pixel:
|
|
|
|
dest += step_dest;
|
|
src += step_src;
|
|
}
|
|
|
|
tmp = red_n_row;
|
|
red_n_row = red_p_row;
|
|
red_p_row = tmp;
|
|
|
|
tmp = grn_n_row;
|
|
grn_n_row = grn_p_row;
|
|
grn_p_row = tmp;
|
|
|
|
tmp = blu_n_row;
|
|
blu_n_row = blu_p_row;
|
|
blu_p_row = tmp;
|
|
|
|
odd_row = !odd_row;
|
|
|
|
pixel_region_set_row (&destPR, 0, row, width, dest_buf);
|
|
}
|
|
|
|
g_free (error_limiter - 255);
|
|
g_free (red_n_row);
|
|
g_free (red_p_row);
|
|
g_free (grn_n_row);
|
|
g_free (grn_p_row);
|
|
g_free (blu_n_row);
|
|
g_free (blu_p_row);
|
|
g_free (src_buf);
|
|
g_free (dest_buf);
|
|
}
|
|
|
|
|
|
static void
|
|
delete_median_cut (QuantizeObj *quantobj)
|
|
{
|
|
g_free (quantobj->histogram);
|
|
g_free (quantobj);
|
|
}
|
|
|
|
|
|
/**************************************************************/
|
|
|
|
|
|
static QuantizeObj*
|
|
initialize_median_cut (int type,
|
|
int num_colors,
|
|
ConvertDitherType dither_type,
|
|
ConvertPaletteType palette_type,
|
|
int want_alpha_dither)
|
|
{
|
|
QuantizeObj * quantobj;
|
|
|
|
/* Initialize the data structures */
|
|
quantobj = g_malloc (sizeof (QuantizeObj));
|
|
|
|
if (type == GRAY && palette_type == MAKE_PALETTE)
|
|
quantobj->histogram = g_malloc (sizeof (ColorFreq) * 256);
|
|
else
|
|
quantobj->histogram = g_malloc (sizeof (ColorFreq) *
|
|
HIST_R_ELEMS *
|
|
HIST_G_ELEMS *
|
|
HIST_B_ELEMS);
|
|
|
|
quantobj->desired_number_of_colors = num_colors;
|
|
quantobj->want_alpha_dither = want_alpha_dither;
|
|
|
|
switch (type)
|
|
{
|
|
case GRAY:
|
|
switch (palette_type)
|
|
{
|
|
case MAKE_PALETTE:
|
|
quantobj->first_pass = median_cut_pass1_gray;
|
|
break;
|
|
case WEB_PALETTE:
|
|
quantobj->first_pass = webpal_pass1;
|
|
break;
|
|
case CUSTOM_PALETTE:
|
|
quantobj->first_pass = custompal_pass1;
|
|
needs_quantize=TRUE;
|
|
break;
|
|
case MONO_PALETTE:
|
|
default:
|
|
quantobj->first_pass = monopal_pass1;
|
|
}
|
|
if (palette_type == WEB_PALETTE ||
|
|
palette_type == MONO_PALETTE || palette_type == CUSTOM_PALETTE)
|
|
switch (dither_type)
|
|
{
|
|
case NODESTRUCT_DITHER:
|
|
default:
|
|
g_warning("Uh-oh, bad dither type, W1");
|
|
case NO_DITHER:
|
|
quantobj->second_pass_init = median_cut_pass2_rgb_init;
|
|
quantobj->second_pass = median_cut_pass2_no_dither_rgb;
|
|
break;
|
|
case FS_DITHER:
|
|
quantobj->error_freedom = 0;
|
|
quantobj->second_pass_init = median_cut_pass2_rgb_init;
|
|
quantobj->second_pass = median_cut_pass2_fs_dither_rgb;
|
|
break;
|
|
case FSLOWBLEED_DITHER:
|
|
quantobj->error_freedom = 1;
|
|
quantobj->second_pass_init = median_cut_pass2_rgb_init;
|
|
quantobj->second_pass = median_cut_pass2_fs_dither_rgb;
|
|
break;
|
|
case FIXED_DITHER:
|
|
quantobj->second_pass_init = median_cut_pass2_rgb_init;
|
|
quantobj->second_pass = median_cut_pass2_fixed_dither_rgb;
|
|
break;
|
|
}
|
|
else
|
|
switch (dither_type)
|
|
{
|
|
case NODESTRUCT_DITHER:
|
|
default:
|
|
g_warning("Uh-oh, bad dither type, W2");
|
|
case NO_DITHER:
|
|
quantobj->second_pass_init = median_cut_pass2_gray_init;
|
|
quantobj->second_pass = median_cut_pass2_no_dither_gray;
|
|
break;
|
|
case FS_DITHER:
|
|
quantobj->error_freedom = 0;
|
|
quantobj->second_pass_init = median_cut_pass2_gray_init;
|
|
quantobj->second_pass = median_cut_pass2_fs_dither_gray;
|
|
break;
|
|
case FSLOWBLEED_DITHER:
|
|
quantobj->error_freedom = 1;
|
|
quantobj->second_pass_init = median_cut_pass2_gray_init;
|
|
quantobj->second_pass = median_cut_pass2_fs_dither_gray;
|
|
break;
|
|
case FIXED_DITHER:
|
|
quantobj->second_pass_init = median_cut_pass2_gray_init;
|
|
quantobj->second_pass = median_cut_pass2_fixed_dither_gray;
|
|
break;
|
|
}
|
|
break;
|
|
case RGB:
|
|
switch (palette_type)
|
|
{
|
|
case MAKE_PALETTE:
|
|
quantobj->first_pass = median_cut_pass1_rgb;
|
|
break;
|
|
case WEB_PALETTE:
|
|
quantobj->first_pass = webpal_pass1;
|
|
needs_quantize=TRUE;
|
|
break;
|
|
case CUSTOM_PALETTE:
|
|
quantobj->first_pass = custompal_pass1;
|
|
needs_quantize=TRUE;
|
|
break;
|
|
case MONO_PALETTE:
|
|
default:
|
|
quantobj->first_pass = monopal_pass1;
|
|
}
|
|
switch (dither_type)
|
|
{
|
|
case NO_DITHER:
|
|
quantobj->second_pass_init = median_cut_pass2_rgb_init;
|
|
quantobj->second_pass = median_cut_pass2_no_dither_rgb;
|
|
break;
|
|
case FS_DITHER:
|
|
quantobj->error_freedom = 0;
|
|
quantobj->second_pass_init = median_cut_pass2_rgb_init;
|
|
quantobj->second_pass = median_cut_pass2_fs_dither_rgb;
|
|
break;
|
|
case FSLOWBLEED_DITHER:
|
|
quantobj->error_freedom = 1;
|
|
quantobj->second_pass_init = median_cut_pass2_rgb_init;
|
|
quantobj->second_pass = median_cut_pass2_fs_dither_rgb;
|
|
break;
|
|
case NODESTRUCT_DITHER:
|
|
quantobj->second_pass_init = NULL;
|
|
quantobj->second_pass = median_cut_pass2_nodestruct_dither_rgb;
|
|
break;
|
|
case FIXED_DITHER:
|
|
quantobj->second_pass_init = median_cut_pass2_rgb_init;
|
|
quantobj->second_pass = median_cut_pass2_fixed_dither_rgb;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
quantobj->delete_func = delete_median_cut;
|
|
|
|
return quantobj;
|
|
}
|