gimp/app/base/siox.c

1409 lines
39 KiB
C

/*
* SIOX: Simple Interactive Object Extraction
*
* For algorithm documentation refer to:
* G. Friedland, K. Jantz, L. Knipping, R. Rojas:
* "Image Segmentation by Uniform Color Clustering
* -- Approach and Benchmark Results",
* Technical Report B-05-07, Department of Computer Science,
* Freie Universitaet Berlin, June 2005.
* http://www.inf.fu-berlin.de/inst/pubs/tr-b-05-07.pdf
*
* See http://www.siox.org/ for more information.
*
* Algorithm idea by Gerald Friedland.
* This implementation is Copyright (C) 2005
* by Gerald Friedland <fland@inf.fu-berlin.de>
* and Kristian Jantz <jantz@inf.fu-berlin.de>
* and Tobias Lenz <tlenz@inf.fu-berlin.de>.
*
* Adapted for GIMP by Sven Neumann <sven@gimp.org>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
#include "config.h"
#include <glib-object.h>
#include "libgimpbase/gimpbase.h"
#include "libgimpmath/gimpmath.h"
#include "base-types.h"
#include "paint-funcs/paint-funcs.h"
#include "cpercep.h"
#include "pixel-region.h"
#include "tile.h"
#include "tile-manager.h"
#include "siox.h"
/* Thresholds in the mask:
* pixels < SIOX_LOW are known background
* pixels > SIOX_HIGH are known foreground
*/
#define SIOX_LOW 1
#define SIOX_HIGH 254
/* When clustering:
* use LAB for color images (3 dims),
* use L only for grayscale images (1 dim)
*/
#define SIOX_COLOR_DIMS 3
#define SIOX_GRAY_DIMS 1
/* For findmaxblob:
* Find all blobs with area not smaller than sizefactor of biggest blob
* CHECKME: Should the user decide this with a slider?
*/
#define MULTIBLOB_DEFAULT_SIZEFACTOR 4
#define MULTIBLOB_ONE_BLOB_ONLY 0
/* #define SIOX_DEBUG */
typedef struct
{
gfloat l;
gfloat a;
gfloat b;
gint cardinality;
} lab;
/* A struct that holds SIOX current state */
struct _SioxState
{
TileManager *pixels;
const guchar *colormap;
gint bpp;
gint offset_x;
gint offset_y;
gint x;
gint y;
gint width;
gint height;
GHashTable *cache;
lab *bgsig;
lab *fgsig;
gint bgsiglen;
gint fgsiglen;
gint xsbpp;
};
/* A struct that holds the classification result */
typedef struct
{
gfloat bgdist;
gfloat fgdist;
} classresult;
static void
siox_cache_entry_free (gpointer entry)
{
g_slice_free (classresult, entry);
}
/* Progressbar update callback */
static inline void
siox_progress_update (SioxProgressFunc progress_callback,
gpointer progress_data,
gdouble value)
{
if (progress_data)
progress_callback (progress_data, value);
}
/* Converts any pixel format to LAB */
static void
calc_lab (const guchar *src,
gint bpp,
const guchar *colormap,
lab *pixel)
{
gdouble l, a, b;
switch (bpp)
{
case 3: /* RGB */
case 4: /* RGBA */
cpercep_rgb_to_space (src[RED],
src[GREEN],
src[BLUE], &l, &a, &b);
break;
case 2:
case 1:
if (colormap) /* INDEXED(A) */
{
gint i = *src * 3;
cpercep_rgb_to_space (colormap[i + RED],
colormap[i + GREEN],
colormap[i + BLUE], &l, &a, &b);
}
else /* GRAY(A) */
{
/* FIXME: there should be cpercep_gray_to_space */
cpercep_rgb_to_space (*src, *src, *src, &l, &a, &b);
}
break;
default:
g_return_if_reached ();
}
pixel->l = l;
pixel->a = a;
pixel->b = b;
}
/* assumes that lab starts with an array of floats (l,a,b) */
#define CURRENT_VALUE(points, i, dim) (((const gfloat *) (points + i))[dim])
/* Stage one of modified KD-Tree algorithm (see literature above)*/
static void
stageone (lab *points,
gint left,
gint right,
gint depth,
gint *clusters,
const gfloat *limits,
const gint dims)
{
gint curdim = depth % dims;
gfloat min, max;
gfloat curval;
gint i;
min = CURRENT_VALUE (points, left, curdim);
max = min;
for (i = left+1; i < right; i++)
{
curval = CURRENT_VALUE (points, i, curdim);
if (min > curval)
min = curval;
else if (max < curval)
max = curval;
}
/* Split according to Rubner-Rule */
if (max - min > limits[curdim])
{
gfloat pivot = (min + max) / 2.0;
gint l = left;
gint r = right - 1;
lab tmp;
while (TRUE)
{
while ( CURRENT_VALUE (points, l, curdim) <= pivot )
++l;
while ( CURRENT_VALUE (points, r, curdim) > pivot )
--r;
if (l > r)
break;
tmp = points[l];
points[l] = points[r];
points[r] = tmp;
++l;
--r;
}
/* create subtrees */
stageone (points, left, l, depth + 1, clusters, limits, dims);
stageone (points, l, right, depth + 1, clusters, limits, dims);
}
else
{
/* create leave */
gfloat l = 0;
gfloat a = 0;
gfloat b = 0;
points[*clusters].cardinality = right - left;
for (; left < right; ++left)
{
l += points[left].l;
a += points[left].a;
b += points[left].b;
}
points[*clusters].l = l / points[*clusters].cardinality;
points[*clusters].a = a / points[*clusters].cardinality;
points[*clusters].b = b / points[*clusters].cardinality;
++(*clusters);
}
}
/* Stage two of modified KD-Tree algorithm (see literature above) */
/* This is very similar to stageone... but in future there may be more
* differences => not integrated into method stageone()
*/
static void
stagetwo (lab *points,
gint left,
gint right,
gint depth,
gint *clusters,
const gfloat *limits,
const gfloat threshold,
const gint dims)
{
gint curdim = depth % dims;
gfloat min, max;
gfloat curval;
gint i;
min = CURRENT_VALUE (points, left, curdim);
max = min;
for (i = left+1; i < right; i++)
{
curval = CURRENT_VALUE (points, i, curdim);
if (min > curval)
min = curval;
else if (max < curval)
max = curval;
}
/* Split according to Rubner-Rule */
if (max - min > limits[curdim])
{
gfloat pivot = (min + max) / 2.0;
gint l = left;
gint r = right - 1;
lab tmp;
while (TRUE)
{
while ( CURRENT_VALUE (points, l, curdim) <= pivot )
++l;
while ( CURRENT_VALUE (points, r, curdim) > pivot )
--r;
if (l > r)
break;
tmp = points[l];
points[l] = points[r];
points[r] = tmp;
++l;
--r;
}
/* create subtrees */
stagetwo (points, left, l, depth + 1, clusters, limits, threshold, dims);
stagetwo (points, l, right, depth + 1, clusters, limits, threshold, dims);
}
else /* create leave */
{
gint sum = 0;
for (i = left; i < right; i++)
sum += points[i].cardinality;
if (sum >= threshold)
{
const gint c = right - left;
gfloat l = 0;
gfloat a = 0;
gfloat b = 0;
for (; left < right; ++left)
{
l += points[left].l;
a += points[left].a;
b += points[left].b;
}
points[*clusters].l = l / c;
points[*clusters].a = a / c;
points[*clusters].b = b / c;
++(*clusters);
#ifdef SIOX_DEBUG
g_printerr ("siox.c: cluster=%f, %f, %f sum=%d\n",
l, a, b, sum);
#endif
}
}
}
/* squared euclidean distance */
static inline float
euklid (const lab *p,
const lab *q)
{
return (SQR (p->l - q->l) + SQR (p->a - q->a) + SQR (p->b - q->b));
}
/* Returns squared clustersize */
static gfloat
get_clustersize (const gfloat *limits)
{
return (SQR (limits[0] - (-limits[0])) +
SQR (limits[1] - (-limits[1])) +
SQR (limits[2] - (-limits[2])));
}
/* Creates a color signature for a given set of pixels */
static lab *
create_signature (lab *input,
gint length,
gint *returnlength,
const gfloat *limits,
const gint dims,
SioxProgressFunc progress_callback,
gpointer progress_data,
gdouble progress_value)
{
gint size1 = 0;
gint size2 = 0;
if (length < 1)
{
*returnlength = 0;
return NULL;
}
stageone (input, 0, length, 0, &size1, limits, dims);
#ifdef SIOX_DEBUG
g_printerr ("siox.c: step #1 -> %d clusters\n", size1);
#endif
siox_progress_update (progress_callback, progress_data, progress_value);
stagetwo (input, 0, size1, 0, &size2, limits, length * 0.001, dims);
*returnlength = size2;
#ifdef SIOX_DEBUG
g_printerr ("siox.c: step #2 -> %d clusters\n", *returnlength);
#endif
return g_memdup (input, size2 * sizeof (lab));
}
/* Smoothes mask by delegation to paint-funcs.c */
static void
smooth_mask (TileManager *mask,
gint x,
gint y,
gint width,
gint height)
{
PixelRegion region;
pixel_region_init (&region, mask, x, y, width, height, TRUE);
smooth_region (&region);
}
/* Erodes mask by delegation to paint-funcs.c */
static void
erode_mask (TileManager *mask,
gint x,
gint y,
gint width,
gint height)
{
PixelRegion region;
pixel_region_init (&region, mask, x, y, width, height, TRUE);
erode_region (&region);
}
/* Dilates mask by delegation to paint-funcs.c */
static void
dilate_mask (TileManager *mask,
gint x,
gint y,
gint width,
gint height)
{
PixelRegion region;
pixel_region_init (&region, mask, x, y, width, height, TRUE);
dilate_region (&region);
}
/* Mask settings for threshold_mask
* Do not change these defines! They contain some magic!
* Must all be non-zero and FINAL must be 0xFF!
*/
#define FIND_BLOB_SELECTED 0x1
#define FIND_BLOB_FORCEFG 0x3
#define FIND_BLOB_VISITED 0x7
#define FIND_BLOB_FINAL 0xFF
/* Digitize mask */
static inline void
threshold_mask (TileManager *mask,
gint x,
gint y,
gint width,
gint height)
{
PixelRegion region;
gpointer pr;
gint row, col;
pixel_region_init (&region, mask, x, y, width, height, TRUE);
for (pr = pixel_regions_register (1, &region);
pr != NULL; pr = pixel_regions_process (pr))
{
guchar *data = region.data;
for (row = 0; row < region.h; row++)
{
guchar *d = data;
/* everything that fits the mask is in the image */
for (col = 0; col < region.w; col++, d++)
{
if (*d > SIOX_HIGH)
*d = FIND_BLOB_FORCEFG;
else if (*d >= 0x80)
*d = FIND_BLOB_SELECTED;
else
*d = 0;
}
data += region.rowstride;
}
}
}
/* a struct that contains information about a blob */
struct blob
{
gint seedx;
gint seedy;
gint size;
gboolean mustkeep;
};
/* This method checks out the neighbourhood of the pixel at position
* (x,y) in the TileManager mask, it adds the surrounding pixels to
* the queue to allow further processing it uses maskVal to determine
* if the surrounding pixels have already been visited x,y are passed
* from above.
*/
static void
depth_first_search (TileManager *mask,
gint x,
gint y,
gint xwidth,
gint yheight,
struct blob *b,
guchar mark)
{
GSList *stack = NULL;
gint xx = b->seedx;
gint yy = b->seedy;
gint oldx = -1;
while (TRUE)
{
guchar val;
if (oldx == xx)
{
if (stack == NULL)
break;
xx = GPOINTER_TO_INT (stack->data);
stack = g_slist_delete_link (stack, stack);
yy = GPOINTER_TO_INT (stack->data);
stack = g_slist_delete_link (stack, stack);
}
oldx = xx;
read_pixel_data_1 (mask, xx, yy, &val);
if (val && (val != mark))
{
if (mark == FIND_BLOB_VISITED)
{
++(b->size);
if (val == FIND_BLOB_FORCEFG)
b->mustkeep = TRUE;
}
write_pixel_data_1 (mask, xx, yy, &mark);
if (yy > y)
stack = g_slist_prepend (g_slist_prepend
(stack, GINT_TO_POINTER (yy - 1)),
GINT_TO_POINTER (xx));
if (yy + 1 < yheight)
stack = g_slist_prepend (g_slist_prepend
(stack, GINT_TO_POINTER (yy + 1)),
GINT_TO_POINTER (xx));
if (xx + 1 < xwidth)
{
if (xx > x)
stack = g_slist_prepend (g_slist_prepend (stack,
GINT_TO_POINTER (yy)),
GINT_TO_POINTER (xx - 1));
++xx;
}
else if (xx > x)
{
--xx;
}
}
}
}
/*
* This method finds the biggest connected components in mask, it
* clears everything in mask except the biggest components' Pixels that
* should be considererd set in incoming mask, must fulfill (pixel &
* 0x1) the method uses no further memory, except a queue, it finds
* the biggest components by a 2 phase algorithm 1. in the first phase
* the coordinates of an element of the biggest components are
* identified, during this phase all pixels are visited. In the
* second phase first visitation flags are reset, and afterwards
* connected components starting at the found coordinates are
* determined. These are the biggest components, the result is written
* into mask, all pixels that belong to the biggest components are set
* to 255, any other to 0.
*/
static void
find_max_blob (TileManager *mask,
gint x,
gint y,
gint width,
gint height,
const gint size_factor)
{
GSList *list = NULL;
GSList *iter;
PixelRegion region;
gpointer pr;
gint row, col;
gint maxsize = 0;
guchar val;
threshold_mask (mask, x, y, width, height);
pixel_region_init (&region, mask, x, y, width, height, TRUE);
for (pr = pixel_regions_register (1, &region);
pr != NULL;
pr = pixel_regions_process (pr))
{
gint pos_y = region.y;
guchar *data = region.data;
for (row = 0; row < region.h; row++, pos_y++)
{
guchar *d = data;
for (col = 0; col < region.w; col++, d++)
{
val = *d;
if (val && (val != FIND_BLOB_VISITED))
{
struct blob *b = g_slice_new (struct blob);
b->seedx = region.x + col;
b->seedy = pos_y;
b->size = 0;
b->mustkeep = FALSE;
depth_first_search (mask,
x, y, x + width, y + height,
b, FIND_BLOB_VISITED);
list = g_slist_prepend (list, b);
if (b->size > maxsize)
maxsize = b->size;
}
}
data += region.rowstride;
}
}
for (iter = list; iter; iter = iter->next)
{
struct blob *b = iter->data;
depth_first_search (mask, x, y, x + width, y + height, b,
(b->mustkeep || (b->size * size_factor >= maxsize)) ?
FIND_BLOB_FINAL : 0);
g_slice_free (struct blob, b);
}
g_slist_free (list);
}
/* Creates a key for the hashtable from a given pixel color value */
static inline gint
create_key (const guchar *src,
gint bpp,
const guchar *colormap)
{
switch (bpp)
{
case 3: /* RGB */
case 4: /* RGBA */
return (src[RED] << 16 | src[GREEN] << 8 | src[BLUE]);
case 2:
case 1:
if (colormap) /* INDEXED(A) */
{
gint i = *src * 3;
return (colormap[i + RED] << 16 |
colormap[i + GREEN] << 8 |
colormap[i + BLUE]);
}
else /* GRAY(A) */
{
return *src;
}
default:
return 0;
}
}
/* Clear hashtable entries that get invalid due to refinement */
static gboolean
siox_cache_remove_bg (gpointer key,
gpointer value,
gpointer user_data)
{
classresult *cr = value;
return (cr->bgdist < cr->fgdist);
}
static gboolean
siox_cache_remove_fg (gpointer key,
gpointer value,
gpointer user_data)
{
classresult *cr = value;
return (cr->bgdist >= cr->fgdist);
}
/**
* siox_init:
* @pixels: the tiles to extract the foreground from
* @colormap: colormap in case @pixels are indexed, %NULL otherwise
* @offset_x: horizontal offset of @pixels with respect to the @mask
* @offset_y: vertical offset of @pixels with respect to the @mask
* @x: horizontal offset into the mask
* @y: vertical offset into the mask
* @width: width of working area on mask
* @height: height of working area on mask
*
* Initializes the SIOX segmentator.
* Creates and returns a SioxState struct that has to be passed to all
* function calls of this module as it maintaines the state.
*/
SioxState *
siox_init (TileManager *pixels,
const guchar *colormap,
gint offset_x,
gint offset_y,
gint x,
gint y,
gint width,
gint height)
{
SioxState *state;
g_return_val_if_fail (pixels != NULL, NULL);
g_return_val_if_fail (x >= 0, NULL);
g_return_val_if_fail (y >= 0, NULL);
state = g_slice_new (SioxState);
state->pixels = pixels;
state->colormap = colormap;
state->offset_x = offset_x;
state->offset_y = offset_y;
state->x = x;
state->y = y;
state->width = width;
state->height = height;
state->bgsig = NULL;
state->fgsig = NULL;
state->bgsiglen = 0;
state->fgsiglen = 0;
state->bpp = tile_manager_bpp (pixels);
state->cache = g_hash_table_new_full (g_direct_hash,
NULL, NULL,
(GDestroyNotify) siox_cache_entry_free);
cpercep_init ();
#ifdef SIOX_DEBUG
g_printerr ("siox.c: siox_init (bpp=%d, "
"x=%d, y=%d, width=%d, height=%d, offset_x=%d, offset_y=%d)\n",
state->bpp, x, y, width, height, offset_x, offset_y);
#endif
return state;
}
/**
* siox_foreground_extract:
* @state: current state struct as constructed by siox_init
* @refinement: #SioxRefinementType
* @mask: a mask indicating sure foreground (255), sure background (0)
* and undecided regions ([1..254]).
* @x1: region of interest
* @y1: region of interest
* @x2: region of interest
* @y2: region of interest
* @sensitivity: a double array with three entries specifing the accuracy,
* a good value is: { 0.64, 1.28, 2.56 }
* @smoothness: boundary smoothness (a good value is 3)
* @multiblob: allow multiple blobs (true) or only one (false)
*
* Writes the resulting segmentation into @mask. The region of
* interest as specified using @x1, @y1, @x2 and @y2 defines the
* bounding box of the background and undecided areas. No changes to
* the mask are done outside this rectangle.
*/
void
siox_foreground_extract (SioxState *state,
SioxRefinementType refinement,
TileManager *mask,
gint x1,
gint y1,
gint x2,
gint y2,
gint smoothness,
const gdouble sensitivity[3],
gboolean multiblob,
SioxProgressFunc progress_callback,
gpointer progress_data)
{
PixelRegion srcPR;
PixelRegion mapPR;
gpointer pr;
gint row, col;
gint x, y;
gint width, height;
gfloat clustersize;
lab *surebg = NULL;
lab *surefg = NULL;
gint surebgcount = 0;
gint surefgcount = 0;
gint n;
gint pixels, total;
gfloat limits[3];
g_return_if_fail (state != NULL);
g_return_if_fail (mask != NULL && tile_manager_bpp (mask) == 1);
g_return_if_fail (x1 >= 0);
g_return_if_fail (x2 > x1 && x2 <= tile_manager_width (mask));
g_return_if_fail (y1 >= 0);
g_return_if_fail (y2 > y1 && y2 <= tile_manager_height (mask));
g_return_if_fail (smoothness >= 0);
g_return_if_fail (progress_data == NULL || progress_callback != NULL);
x = state->x;
y = state->y;
width = state->width;
height = state->height;
g_return_if_fail (x + width <= tile_manager_width (mask));
g_return_if_fail (y + height <= tile_manager_height (mask));
limits[0] = sensitivity[0];
limits[1] = sensitivity[1];
limits[2] = sensitivity[2];
clustersize = get_clustersize (limits);
siox_progress_update (progress_callback, progress_data, 0.0);
total = width * height;
if (refinement & SIOX_REFINEMENT_ADD_FOREGROUND)
g_hash_table_foreach_remove (state->cache, siox_cache_remove_bg, NULL);
if (refinement & SIOX_REFINEMENT_ADD_BACKGROUND)
g_hash_table_foreach_remove (state->cache, siox_cache_remove_fg, NULL);
if (refinement & SIOX_REFINEMENT_CHANGE_SENSITIVITY)
{
refinement = SIOX_REFINEMENT_RECALCULATE;
}
else
{
if (! state->bgsig)
refinement |= SIOX_REFINEMENT_ADD_BACKGROUND;
if (! state->fgsig)
refinement |= SIOX_REFINEMENT_ADD_FOREGROUND;
}
if (refinement & (SIOX_REFINEMENT_ADD_FOREGROUND |
SIOX_REFINEMENT_ADD_BACKGROUND))
{
/* count given foreground and background pixels */
pixel_region_init (&mapPR, mask, x, y, width, height, FALSE);
total = width * height;
for (pr = pixel_regions_register (1, &mapPR), pixels = 0, n = 0;
pr != NULL;
pr = pixel_regions_process (pr),n++)
{
const guchar *map = mapPR.data;
for (row = 0; row < mapPR.h; row++)
{
const guchar *m = map;
for (col = 0; col < mapPR.w; col++, m++)
{
if (*m < SIOX_LOW)
{
surebgcount++;
}
else if (*m > SIOX_HIGH)
{
surefgcount++;
}
}
map += mapPR.rowstride;
}
pixels += mapPR.w * mapPR.h;
if (n % 16 == 0)
siox_progress_update (progress_callback, progress_data,
0.1 * ((gdouble) pixels / (gdouble) total));
}
#ifdef SIOX_DEBUG
g_printerr ("siox.c: usermask #surebg=%d #surefg=%d\n",
surebgcount, surefgcount);
#endif
if (refinement & SIOX_REFINEMENT_ADD_FOREGROUND)
surefg = g_new (lab, surefgcount);
if (refinement & SIOX_REFINEMENT_ADD_BACKGROUND)
surebg = g_new (lab, surebgcount);
/* create inputs for color signatures */
pixel_region_init (&srcPR, state->pixels,
x - state->offset_x, y - state->offset_y,
width, height, FALSE);
pixel_region_init (&mapPR, mask,
x, y, width, height, FALSE);
pr = pixel_regions_register (2, &srcPR, &mapPR);
if (! (refinement & SIOX_REFINEMENT_ADD_FOREGROUND))
{
gint i = 0;
for (pixels = 0, n = 0;
pr != NULL;
pr = pixel_regions_process (pr), n++)
{
const guchar *src = srcPR.data;
const guchar *map = mapPR.data;
for (row = 0; row < srcPR.h; row++)
{
const guchar *s = src;
const guchar *m = map;
for (col = 0; col < srcPR.w; col++, m++, s += state->bpp)
{
if (*m < SIOX_LOW)
{
calc_lab (s, state->bpp, state->colormap, surebg + i);
i++;
}
}
src += srcPR.rowstride;
map += mapPR.rowstride;
}
pixels += mapPR.w * mapPR.h;
if (n % 16 == 0)
siox_progress_update (progress_callback, progress_data,
0.1 + 0.1 * ((gdouble) pixels /
(gdouble) total));
}
}
else if (! (refinement & SIOX_REFINEMENT_ADD_BACKGROUND))
{
gint i = 0;
for (pixels = 0, n = 0;
pr != NULL;
pr = pixel_regions_process (pr), n++)
{
const guchar *src = srcPR.data;
const guchar *map = mapPR.data;
for (row = 0; row < srcPR.h; row++)
{
const guchar *s = src;
const guchar *m = map;
for (col = 0; col < srcPR.w; col++, m++, s += state->bpp)
{
if (*m > SIOX_HIGH)
{
calc_lab (s, state->bpp, state->colormap, surefg + i);
i++;
}
}
src += srcPR.rowstride;
map += mapPR.rowstride;
}
pixels += mapPR.w * mapPR.h;
if (n % 16 == 0)
siox_progress_update (progress_callback, progress_data,
0.1 + 0.1 * ((gdouble) pixels /
(gdouble) total));
}
}
else /* both changed */
{
gint i = 0;
gint j = 0;
for (pixels = 0, n = 0;
pr != NULL;
pr = pixel_regions_process (pr), n++)
{
const guchar *src = srcPR.data;
const guchar *map = mapPR.data;
for (row = 0; row < srcPR.h; row++)
{
const guchar *s = src;
const guchar *m = map;
for (col = 0; col < srcPR.w; col++, m++, s += state->bpp)
{
if (*m < SIOX_LOW)
{
calc_lab (s, state->bpp, state->colormap, surebg + i);
i++;
}
else if (*m > SIOX_HIGH)
{
calc_lab (s, state->bpp, state->colormap, surefg + j);
j++;
}
}
src += srcPR.rowstride;
map += mapPR.rowstride;
}
pixels += mapPR.w * mapPR.h;
if (n % 16 == 0)
siox_progress_update (progress_callback, progress_data,
0.1 + 0.1 * ((gdouble) pixels /
(gdouble) total));
}
}
if (refinement & SIOX_REFINEMENT_ADD_BACKGROUND)
{
/* Create color signature for the background */
state->bgsig = create_signature (surebg, surebgcount,
&state->bgsiglen, limits,
state->bpp == 1 ?
SIOX_GRAY_DIMS : SIOX_COLOR_DIMS,
progress_callback,
progress_data,
0.3);
g_free (surebg);
if (state->bgsiglen < 1)
{
g_free (surefg);
return;
}
}
siox_progress_update (progress_callback, progress_data, 0.4);
if (refinement & SIOX_REFINEMENT_ADD_FOREGROUND)
{
/* Create color signature for the foreground */
state->fgsig = create_signature (surefg, surefgcount,
&state->fgsiglen, limits,
state->bpp == 1 ?
SIOX_GRAY_DIMS : SIOX_COLOR_DIMS,
progress_callback,
progress_data,
0.45);
g_free (surefg);
}
}
siox_progress_update (progress_callback, progress_data, 0.5);
/* Reduce the working area to the region of interest */
gimp_rectangle_intersect (x1, y1, x2 - x1, y2 - y1,
x, y, width, height,
&x, &y, &width, &height);
/* Classify - the cached way....Better: Tree traversation? */
#ifdef SIOX_DEBUG
gint hits = 0;
gint miss = 0;
#endif
pixel_region_init (&srcPR, state->pixels,
x - state->offset_x, y - state->offset_y, width, height,
FALSE);
pixel_region_init (&mapPR, mask, x, y, width, height, TRUE);
total = width * height;
for (pr = pixel_regions_register (2, &srcPR, &mapPR), n = 0, pixels = 0;
pr != NULL;
pr = pixel_regions_process (pr), n++)
{
const guchar *src = srcPR.data;
guchar *map = mapPR.data;
for (row = 0; row < srcPR.h; row++)
{
const guchar *s = src;
guchar *m = map;
for (col = 0; col < srcPR.w; col++, m++, s += state->bpp)
{
lab labpixel;
gfloat minbg, minfg, d;
classresult *cr;
gint key;
gint i;
if (*m < SIOX_LOW || *m > SIOX_HIGH)
continue;
key = create_key (s, state->bpp, state->colormap);
cr = g_hash_table_lookup (state->cache, GINT_TO_POINTER (key));
if (cr)
{
*m = (cr->bgdist >= cr->fgdist) ? 254 : 0;
#ifdef SIOX_DEBUG
++hits;
#endif
continue;
}
#ifdef SIOX_DEBUG
++miss;
#endif
cr = g_slice_new0 (classresult);
calc_lab (s, state->bpp, state->colormap, &labpixel);
minbg = euklid (&labpixel, state->bgsig + 0);
for (i = 1; i < state->bgsiglen; i++)
{
d = euklid (&labpixel, state->bgsig + i);
if (d < minbg)
minbg = d;
}
cr->bgdist = minbg;
if (state->fgsiglen == 0)
{
if (minbg < clustersize)
minfg = minbg + clustersize;
else
minfg = 0.00001; /* This is a guess -
now we actually require a foreground
signature, !=0 to avoid div by zero
*/
}
else
{
minfg = euklid (&labpixel, state->fgsig + 0);
for (i = 1; i < state->fgsiglen; i++)
{
d = euklid (&labpixel, state->fgsig + i);
if (d < minfg)
{
minfg = d;
}
}
}
cr->fgdist = minfg;
g_hash_table_insert (state->cache, GINT_TO_POINTER (key), cr);
*m = minbg >= minfg ? 254 : 0;
}
src += srcPR.rowstride;
map += mapPR.rowstride;
}
pixels += mapPR.w * mapPR.h;
if (n % 8 == 0)
siox_progress_update (progress_callback, progress_data,
0.5 + 0.3 * ((gdouble) pixels / (gdouble) total));
}
#ifdef SIOX_DEBUG
g_printerr ("siox.c: Hashtable size %d, misses=%d, hits=%d, ratio=%f\n",
g_hash_table_size (state->cache),
miss,
hits,
((gfloat) hits) / miss);
#endif
/* smooth a bit for error killing */
smooth_mask (mask, x, y, width, height);
/* erode, to make sure only "strongly connected components"
* keep being connected
*/
erode_mask (mask, x, y, width, height);
/* search the biggest connected component */
find_max_blob (mask, x, y, width, height,
multiblob ?
MULTIBLOB_DEFAULT_SIZEFACTOR : MULTIBLOB_ONE_BLOB_ONLY);
siox_progress_update (progress_callback, progress_data, 0.9);
/* smooth again - as user specified */
for (n = 0; n < smoothness; n++)
smooth_mask (mask, x, y, width, height);
/* search the biggest connected component again to kill jitter */
find_max_blob (mask, x, y, width, height,
multiblob ?
MULTIBLOB_DEFAULT_SIZEFACTOR : MULTIBLOB_ONE_BLOB_ONLY);
/* dilate, to fill up boundary pixels killed by erode */
dilate_mask (mask, x, y, width, height);
siox_progress_update (progress_callback, progress_data, 1.0);
}
/**
* siox_drb:
* @state: current state struct as constructed by siox_init
* @mask:
* @x:
* @y:
* @brush_radius: the radius of the brush
* @brush_mode: at this time either SIOX_DRB_ADD or SIOX_DRB_SUBTRACT
* @threshold: a threshold to be defined by the user.
* Range for SIOX_DRB_ADD: ]0..1] default: 1.0,
* range for for SIOX_DRB_SUBTRACT: [0..1[, default: 0.0
*
* drb - detail refinement brush, a brush mask for subpixel classification.
*
* FIXME: Now it is assumed that the brush is a square. Should be able
* to be whatever GIMP offers.
* TODO: This is still an experimental method. There are more tests
* needed to evaluate performance of this!
*/
void
siox_drb (SioxState *state,
TileManager *mask,
gint x,
gint y,
gint brush_radius,
gint brush_mode,
gfloat threshold)
{
PixelRegion srcPR;
PixelRegion mapPR;
gpointer pr;
gint row, col;
g_return_if_fail (state != NULL);
g_return_if_fail (mask != NULL && tile_manager_bpp (mask) == 1);
pixel_region_init (&srcPR, state->pixels,
x - brush_radius, y - brush_radius, brush_radius * 2,
brush_radius * 2, FALSE);
pixel_region_init (&mapPR, mask, x - brush_radius, y - brush_radius,
brush_radius * 2, brush_radius * 2, TRUE);
for (pr = pixel_regions_register (2, &srcPR, &mapPR);
pr != NULL;
pr = pixel_regions_process (pr))
{
const guchar *src = srcPR.data;
guchar *map = mapPR.data;
for (row = 0; row < srcPR.h; row++)
{
const guchar *s = src;
guchar *m = map;
for (col = 0; col < srcPR.w; col++, m++, s += state->bpp)
{
gint key;
classresult *cr;
gfloat mindistbg;
gfloat mindistfg;
gfloat alpha;
key = create_key (s, state->bpp, state->colormap);
cr = g_hash_table_lookup (state->cache, GINT_TO_POINTER (key));
if (! cr)
continue; /* Unknown color -
can only be sure background or sure forground */
mindistbg = (gfloat) sqrt (cr->bgdist);
mindistfg = (gfloat) sqrt (cr->fgdist);
if (brush_mode == SIOX_DRB_ADD)
{
if (*m > SIOX_HIGH)
continue;
if (mindistfg == 0.0)
{
alpha = 1.0; /* avoid div by zero */
}
else
{
gdouble d = mindistbg / mindistfg;
alpha = MIN (d, 1.0);
}
}
else /*if (brush_mode == SIOX_DRB_SUBTRACT)*/
{
if (*m < SIOX_HIGH)
continue;
if (mindistbg == 0.0)
{
alpha = 0.0; /* avoid div by zero */
}
else
{
gdouble d = mindistfg / mindistbg;
alpha = 1.0 - MIN (d, 1.0);
}
}
if (alpha < threshold)
{
/* background with a certain confidence
* to be decided by user.
*/
*m = 0;
}
else
{
*m = (gint) (255.999 * alpha);
}
}
src += srcPR.rowstride;
map += mapPR.rowstride;
}
}
}
/**
* siox_done:
* @state: The state of this tool.
*
* Frees the memory assciated with the state.
*/
void
siox_done (SioxState *state)
{
g_return_if_fail (state != NULL);
g_free (state->fgsig);
g_free (state->bgsig);
g_hash_table_destroy (state->cache);
g_slice_free (SioxState, state);
#ifdef SIOX_DEBUG
g_printerr ("siox.c: siox_done()\n");
#endif
}