mirror of https://github.com/GNOME/gimp.git
1044 lines
34 KiB
C
1044 lines
34 KiB
C
/**************************************************
|
|
* file: nlfilt/nlfilt.c
|
|
*
|
|
* Copyright (c) 1997 Eric L. Hernes (erich@rrnet.com)
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. The name of the author may not be used to endorse or promote products
|
|
* derived from this software withough specific prior written permission
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $Id$
|
|
*/
|
|
|
|
/* add any necessary includes */
|
|
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
|
|
#include <libgimp/gimp.h>
|
|
#include <gtk/gtk.h>
|
|
#include <plug-ins/megawidget/megawidget.h>
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
static mw_preview_t nlfilt_do_preview;
|
|
|
|
struct Grgb {
|
|
guint8 red;
|
|
guint8 green;
|
|
guint8 blue;
|
|
};
|
|
|
|
struct GRegion {
|
|
gint32 x;
|
|
gint32 y;
|
|
gint32 width;
|
|
gint32 height;
|
|
};
|
|
|
|
struct piArgs {
|
|
gint32 img;
|
|
gint32 drw;
|
|
gdouble alpha;
|
|
gdouble radius;
|
|
gint filter;
|
|
};
|
|
|
|
typedef enum {
|
|
filter_alpha_trim,
|
|
filter_opt_est,
|
|
filter_edge_enhance
|
|
} FilterType;
|
|
|
|
/* other structure declarations */
|
|
|
|
static struct mwPreview *thePreview;
|
|
|
|
/* function protos */
|
|
|
|
static void query(void);
|
|
static void run(char *name, gint nparam, GParam *param,
|
|
gint *nretvals, GParam **retvals);
|
|
|
|
gint pluginCore(struct piArgs *argp);
|
|
gint pluginCoreIA(struct piArgs *argp);
|
|
|
|
static inline gint nlfiltInit(gdouble alpha, gdouble radius,
|
|
FilterType filter);
|
|
static inline void nlfiltRow(guchar *src, guchar *dst, gint width,
|
|
gint Bpp, gint filtno);
|
|
|
|
GPlugInInfo PLUG_IN_INFO = {
|
|
NULL, /* init */
|
|
NULL, /* quit */
|
|
query, /* query */
|
|
run, /* run */
|
|
};
|
|
|
|
MAIN()
|
|
|
|
static void
|
|
query(void){
|
|
static GParamDef args[] = {
|
|
{ PARAM_INT32, "run_mode", "Interactive, non-interactive" },
|
|
{ PARAM_IMAGE, "img", "The Image to Filter" },
|
|
{ PARAM_DRAWABLE, "drw", "The Drawable" },
|
|
{ PARAM_FLOAT, "alpha", "The amount of the filter to apply" },
|
|
{ PARAM_FLOAT, "radius", "The filter radius" },
|
|
{ PARAM_INT32, "filter", "The Filter to Run, 0 - alpha trimmed mean; 1 - optimal estimation (alpha controls noise variance); 2 - edge enhancement" },
|
|
};
|
|
static gint nargs = 6;
|
|
|
|
static GParamDef *rets = NULL;
|
|
static gint nrets = 0;
|
|
|
|
gimp_install_procedure("plug_in_nlfilt",
|
|
"Nonlinear swiss army knife filter",
|
|
"This is the pnmnlfilt, in gimp's clothing. See the pnmnlfilt manpage for details.",
|
|
"Graeme W. Gill, gimp 0.99 plugin by Eric L. Hernes",
|
|
"Graeme W. Gill, Eric L. Hernes",
|
|
"1997",
|
|
"<Image>/Filters/Enhance/NL Filter",
|
|
"RGB,GRAY",
|
|
PROC_PLUG_IN,
|
|
nargs, nrets,
|
|
args, rets);
|
|
}
|
|
|
|
static void
|
|
run(char *name, gint nparam, GParam *param,
|
|
gint *nretvals, GParam **retvals){
|
|
static GParam rvals[1];
|
|
|
|
struct piArgs args;
|
|
|
|
*nretvals = 1;
|
|
*retvals = rvals;
|
|
|
|
memset(&args,(int)0,sizeof(struct piArgs));
|
|
|
|
args.radius=-1.0;
|
|
gimp_get_data("plug_in_nlfilt", &args);
|
|
args.img = param[1].data.d_image;
|
|
args.drw = param[2].data.d_drawable;
|
|
|
|
rvals[0].type = PARAM_STATUS;
|
|
rvals[0].data.d_status = STATUS_SUCCESS;
|
|
switch (param[0].data.d_int32) {
|
|
GDrawable *drw;
|
|
case RUN_INTERACTIVE:
|
|
/* XXX: add code here for interactive running */
|
|
if (args.radius == -1) {
|
|
args.alpha = (gdouble)0.3;
|
|
args.radius = (gdouble)0.3;
|
|
args.filter = 0;
|
|
}
|
|
drw = gimp_drawable_get(args.drw);
|
|
thePreview = mw_preview_build(drw);
|
|
|
|
if (pluginCoreIA(&args)==-1) {
|
|
rvals[0].data.d_status = STATUS_EXECUTION_ERROR;
|
|
} else {
|
|
gimp_set_data("plug_in_nlfilt", &args, sizeof(struct piArgs));
|
|
}
|
|
|
|
break;
|
|
|
|
case RUN_NONINTERACTIVE:
|
|
/* XXX: add code here for non-interactive running */
|
|
if (nparam != 6) {
|
|
rvals[0].data.d_status = STATUS_CALLING_ERROR;
|
|
break;
|
|
}
|
|
args.alpha = param[3].data.d_float;
|
|
args.radius = param[4].data.d_float;
|
|
args.filter = param[5].data.d_int32;
|
|
|
|
if (pluginCore(&args)==-1) {
|
|
rvals[0].data.d_status = STATUS_EXECUTION_ERROR;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case RUN_WITH_LAST_VALS:
|
|
/* XXX: add code here for last-values running */
|
|
if (pluginCore(&args)==-1) {
|
|
rvals[0].data.d_status = STATUS_EXECUTION_ERROR;
|
|
}
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
gint pluginCore(struct piArgs *argp) {
|
|
GDrawable *drw;
|
|
GPixelRgn srcPr, dstPr;
|
|
guchar *srcbuf, *dstbuf;
|
|
guint width, height, Bpp;
|
|
gint filtno, y, rowsize, p_update;
|
|
|
|
drw = gimp_drawable_get(argp->drw);
|
|
|
|
width = drw->width;
|
|
height = drw->height;
|
|
Bpp = drw->bpp;
|
|
rowsize = width * Bpp;
|
|
p_update = width / 20;
|
|
|
|
gimp_pixel_rgn_init (&srcPr, drw, 0, 0, width, height, FALSE, FALSE);
|
|
gimp_pixel_rgn_init (&dstPr, drw, 0, 0, width, height, TRUE, TRUE);
|
|
|
|
srcbuf=(guchar*)malloc(width*Bpp*3);
|
|
dstbuf=(guchar*)malloc(width*Bpp);
|
|
|
|
memset(srcbuf,(int)0,(size_t)(rowsize*3));
|
|
memset(dstbuf,(int)0,(size_t)rowsize);
|
|
|
|
filtno=nlfiltInit(argp->alpha, argp->radius, argp->filter);
|
|
gimp_progress_init("NL Filter");
|
|
|
|
/* first row */
|
|
gimp_pixel_rgn_get_rect(&srcPr, srcbuf, 0, 0, width, 3);
|
|
memcpy(srcbuf, srcbuf+width*Bpp, rowsize);
|
|
nlfiltRow(srcbuf, dstbuf, width, Bpp, filtno);
|
|
gimp_pixel_rgn_set_row(&dstPr, dstbuf, 0, 0, width);
|
|
|
|
/* last row */
|
|
gimp_pixel_rgn_get_rect(&srcPr, srcbuf, 0, height-3, width, 3);
|
|
memcpy(srcbuf+rowsize*2, srcbuf+rowsize, rowsize);
|
|
nlfiltRow(srcbuf, dstbuf, width, Bpp, filtno);
|
|
gimp_pixel_rgn_set_row(&dstPr, dstbuf, 0, height-1, width);
|
|
|
|
for(y=0 ;y<height-2; y++){
|
|
if (y%p_update==0) gimp_progress_update((gdouble)y/(gdouble)height);
|
|
gimp_pixel_rgn_get_rect(&srcPr, srcbuf, 0, y, width, 3);
|
|
nlfiltRow(srcbuf, dstbuf, width, Bpp, filtno);
|
|
gimp_pixel_rgn_set_row(&dstPr, dstbuf, 0, y, width);
|
|
}
|
|
|
|
free(srcbuf);
|
|
free(dstbuf);
|
|
|
|
gimp_drawable_flush(drw);
|
|
gimp_drawable_merge_shadow (drw->id, TRUE);
|
|
gimp_drawable_update(drw->id, 0, 0, width, height);
|
|
gimp_displays_flush();
|
|
|
|
return 0;
|
|
}
|
|
|
|
gint pluginCoreIA(struct piArgs *argp) {
|
|
gint retval=-1; /* default to error return */
|
|
GtkWidget *dlg;
|
|
GtkWidget *frame;
|
|
GtkWidget *hbox;
|
|
GtkWidget *table;
|
|
GtkWidget *preview;
|
|
gint runp;
|
|
struct mwRadioGroup filter[] = {
|
|
{ "Alpha Trimmed Mean", 0 },
|
|
{ "Optimal Estimation", 0 },
|
|
{ "Edge Enhancement", 0 },
|
|
{ NULL, 0 }
|
|
};
|
|
gchar **argv;
|
|
gint argc;
|
|
|
|
/* Set args */
|
|
argc = 1;
|
|
argv = g_new(gchar *, 1);
|
|
argv[0] = g_strdup("nlfilt");
|
|
gtk_init(&argc, &argv);
|
|
gtk_rc_parse(gimp_gtkrc());
|
|
filter[argp->filter].var = 1;
|
|
|
|
dlg = mw_app_new("plug_in_nlfilt", "NL Filter", &runp);
|
|
|
|
hbox = gtk_hbox_new(FALSE, 5);
|
|
gtk_container_border_width(GTK_CONTAINER(hbox), 5);
|
|
gtk_box_pack_start(GTK_BOX(GTK_DIALOG(dlg)->vbox), hbox, TRUE, TRUE, 0);
|
|
gtk_widget_show(hbox);
|
|
|
|
preview = mw_preview_new(hbox, thePreview, &nlfilt_do_preview);
|
|
gtk_object_set_data(GTK_OBJECT(preview), "piArgs", argp);
|
|
gtk_object_set_data(GTK_OBJECT(preview), "mwRadioGroup", &filter);
|
|
nlfilt_do_preview(preview);
|
|
|
|
mw_radio_group_new(hbox, "Filter", filter);
|
|
|
|
frame = gtk_frame_new("Parameters");
|
|
gtk_frame_set_shadow_type(GTK_FRAME(frame), GTK_SHADOW_ETCHED_IN);
|
|
gtk_container_border_width(GTK_CONTAINER(frame), 5);
|
|
gtk_box_pack_start(GTK_BOX(GTK_DIALOG(dlg)->vbox), frame, FALSE, FALSE, 0);
|
|
gtk_widget_show(frame);
|
|
|
|
table = gtk_table_new(4, 2, FALSE);
|
|
gtk_container_border_width(GTK_CONTAINER (table), 5);
|
|
gtk_container_add(GTK_CONTAINER(frame), table);
|
|
|
|
mw_fscale_entry_new(table, "Alpha", 0.0, 1.0, 0.05, 0.1, 0.0,
|
|
0, 1, 1, 2, &argp->alpha);
|
|
mw_fscale_entry_new(table, "Radius", 0.3333333, 1.0, 0.05, 0.1, 0.0,
|
|
0, 1, 2, 3, &argp->radius);
|
|
gtk_widget_show(table);
|
|
|
|
gtk_widget_show(table);
|
|
gtk_widget_show(dlg);
|
|
gtk_main();
|
|
gdk_flush();
|
|
|
|
argp->filter = mw_radio_result(filter);
|
|
|
|
if(runp){
|
|
#if 0
|
|
fprintf(stderr, "running:\n");
|
|
fprintf(stderr, "\t(image %d)\n", argp->img);
|
|
fprintf(stderr, "\t(drawable %d)\n", argp->drw);
|
|
fprintf(stderr, "\t(alpha %f)\n", argp->alpha);
|
|
fprintf(stderr, "\t(radius %f)\n", argp->radius);
|
|
#endif
|
|
return pluginCore(argp);
|
|
} else {
|
|
return retval;
|
|
}
|
|
}
|
|
|
|
static void
|
|
nlfilt_do_preview(GtkWidget *w) {
|
|
static GtkWidget *theWidget = NULL;
|
|
struct piArgs *ap;
|
|
struct mwRadioGroup *rgp;
|
|
guchar *dst, *c;
|
|
gint y, rowsize, filtno;
|
|
|
|
if(theWidget==NULL){
|
|
theWidget=w;
|
|
}
|
|
|
|
ap = gtk_object_get_data(GTK_OBJECT(theWidget), "piArgs");
|
|
rgp = gtk_object_get_data(GTK_OBJECT(theWidget), "mwRadioGroup");
|
|
ap->filter = mw_radio_result(rgp);
|
|
|
|
rowsize=thePreview->width*thePreview->bpp;
|
|
dst = malloc(rowsize);
|
|
c = malloc(rowsize*3);
|
|
memcpy(c, thePreview->bits, rowsize);
|
|
memcpy(c+rowsize, thePreview->bits, rowsize*2);
|
|
filtno = nlfiltInit(ap->alpha, ap->radius, ap->filter);
|
|
nlfiltRow(c, dst, thePreview->width, thePreview->bpp, filtno);
|
|
gtk_preview_draw_row(GTK_PREVIEW(theWidget),
|
|
dst, 0, 0, thePreview->width);
|
|
|
|
memcpy(c, thePreview->bits+((thePreview->height-2)*rowsize), rowsize*2);
|
|
memcpy(c+(rowsize*2), thePreview->bits+((thePreview->height-1)*rowsize),
|
|
rowsize);
|
|
gtk_preview_draw_row(GTK_PREVIEW(theWidget),
|
|
dst, 0, thePreview->height-1, thePreview->width);
|
|
free(c);
|
|
for(y=0, c=thePreview->bits;y<thePreview->height-2; y++, c+=rowsize){
|
|
nlfiltRow(c, dst, thePreview->width, thePreview->bpp, filtno);
|
|
gtk_preview_draw_row(GTK_PREVIEW(theWidget),
|
|
dst, 0, y, thePreview->width);
|
|
}
|
|
|
|
gtk_widget_draw(theWidget, NULL);
|
|
gdk_flush();
|
|
free(dst);
|
|
}
|
|
|
|
/* pnmnlfilt.c - 4 in 1 (2 non-linear) filter
|
|
** - smooth an anyimage
|
|
** - do alpha trimmed mean filtering on an anyimage
|
|
** - do optimal estimation smoothing on an anyimage
|
|
** - do edge enhancement on an anyimage
|
|
**
|
|
** Version 1.0
|
|
**
|
|
** The implementation of an alpha-trimmed mean filter
|
|
** is based on the description in IEEE CG&A May 1990
|
|
** Page 23 by Mark E. Lee and Richard A. Redner.
|
|
**
|
|
** The paper recommends using a hexagon sampling region around each
|
|
** pixel being processed, allowing an effective sub pixel radius to be
|
|
** specified. The hexagon values are sythesised by area sampling the
|
|
** rectangular pixels with a hexagon grid. The seven hexagon values
|
|
** obtained from the 3x3 pixel grid are used to compute the alpha
|
|
** trimmed mean. Note that an alpha value of 0.0 gives a conventional
|
|
** mean filter (where the radius controls the contribution of
|
|
** surrounding pixels), while a value of 0.5 gives a median filter.
|
|
** Although there are only seven values to trim from before finding
|
|
** the mean, the algorithm has been extended from that described in
|
|
** CG&A by using interpolation, to allow a continuous selection of
|
|
** alpha value between and including 0.0 to 0.5 The useful values
|
|
** for radius are between 0.3333333 (where the filter will have no
|
|
** effect because only one pixel is sampled), to 1.0, where all
|
|
** pixels in the 3x3 grid are sampled.
|
|
**
|
|
** The optimal estimation filter is taken from an article "Converting Dithered
|
|
** Images Back to Gray Scale" by Allen Stenger, Dr Dobb's Journal, November
|
|
** 1992, and this article references "Digital Image Enhancement andNoise Filtering by
|
|
** Use of Local Statistics", Jong-Sen Lee, IEEE Transactions on Pattern Analysis and
|
|
** Machine Intelligence, March 1980.
|
|
**
|
|
** Also borrow the technique used in pgmenhance(1) to allow edge
|
|
** enhancement if the alpha value is negative.
|
|
**
|
|
** Author:
|
|
** Graeme W. Gill, 30th Jan 1993
|
|
** graeme@labtam.oz.au
|
|
**
|
|
** Permission to use, copy, modify, and distribute this software and its
|
|
** documentation for any purpose and without fee is hereby granted, provided
|
|
** that the above copyright notice appear in all copies and that both that
|
|
** copyright notice and this permission notice appear in supporting
|
|
** documentation. This software is provided "as is" without express or
|
|
** implied warranty.
|
|
*/
|
|
|
|
/* ************************************************** */
|
|
/* Hexagon intersecting square area functions */
|
|
/* Compute the area of the intersection of a triangle */
|
|
/* and a rectangle */
|
|
|
|
gdouble triang_area(gdouble, gdouble, gdouble, gdouble, gdouble,
|
|
gdouble, gdouble, gdouble, gint);
|
|
gdouble rectang_area(gdouble, gdouble, gdouble, gdouble,
|
|
gdouble, gdouble, gdouble, gdouble);
|
|
gdouble hex_area(gdouble, gdouble, gdouble, gdouble, gdouble);
|
|
|
|
gint atfilt0(gint *p);
|
|
gint atfilt1(gint *p);
|
|
gint atfilt2(gint *p);
|
|
gint atfilt3(gint *p);
|
|
gint atfilt4(gint *p);
|
|
gint atfilt5(gint *p);
|
|
gint (*atfuncs[6])(gint *) = {
|
|
atfilt0,
|
|
atfilt1,
|
|
atfilt2,
|
|
atfilt3,
|
|
atfilt4,
|
|
atfilt5
|
|
};
|
|
|
|
gint noisevariance; /* global so that pixel processing code can get at it quickly */
|
|
|
|
#define MXIVAL 255 /* maximum input value */
|
|
#define NOIVAL (MXIVAL + 1) /* number of possible input values */
|
|
|
|
#define SCALEB 8 /* scale bits */
|
|
#define SCALE (1 << SCALEB) /* scale factor */
|
|
#define MXSVAL (MXIVAL * SCALE) /* maximum scaled values */
|
|
|
|
#define CSCALEB 2 /* coarse scale bits */
|
|
#define CSCALE (1 << CSCALEB) /* coarse scale factor */
|
|
#define MXCSVAL (MXIVAL * CSCALE) /* maximum coarse scaled values */
|
|
#define NOCSVAL (MXCSVAL + 1) /* number of coarse scaled values */
|
|
#define SCTOCSC(x) ((x) >> (SCALEB - CSCALEB)) /* convert from scaled to coarse scaled */
|
|
#define CSCTOSC(x) ((x) << (SCALEB - CSCALEB)) /* convert from course scaled to scaled */
|
|
|
|
#ifndef MAXINT
|
|
# define MAXINT 0x7fffffff /* assume this is a 32 bit machine */
|
|
#endif
|
|
|
|
/* round and scale floating point to scaled integer */
|
|
#define SROUND(x) ((gint)(((x) * (gdouble)SCALE) + 0.5))
|
|
/* round and un-scale scaled integer value */
|
|
#define RUNSCALE(x) (((x) + (1 << (SCALEB-1))) >> SCALEB) /* rounded un-scale */
|
|
#define UNSCALE(x) ((x) >> SCALEB)
|
|
|
|
static void
|
|
nlfiltRow(guchar *src, guchar *dst, gint width, gint Bpp, gint filtno) {
|
|
gint x, po, no;
|
|
gint pf[9];
|
|
guchar *r0, *r1, *r2;
|
|
guchar *ip0, *ip1, *ip2, *or;
|
|
|
|
r0=src;
|
|
r1=src+(width*Bpp);
|
|
r2=src+(width*Bpp*2);
|
|
or=dst;
|
|
for (x=(width-1)*Bpp, ip0=r0, ip1=r1, ip2=r2, po=x>0?1:0, no=0;
|
|
x>0;
|
|
x--, ip0++, ip1++, ip2++, or++, po=(x!=0), no|=1) {
|
|
pf[0] = *ip1;
|
|
pf[1] = *(ip1-no);
|
|
pf[2] = *(ip2-no);
|
|
pf[3] = *(ip2);
|
|
pf[4] = *(ip2+po);
|
|
pf[5] = *(ip1+po);
|
|
pf[6] = *(ip0+po);
|
|
pf[7] = *(ip0);
|
|
pf[8] = *(ip0-no);
|
|
*or=(atfuncs[filtno])(pf);
|
|
}
|
|
}
|
|
|
|
/* We restrict radius to the values: 0.333333 <= radius <= 1.0 */
|
|
/* so that no fewer and no more than a 3x3 grid of pixels around */
|
|
/* the pixel in question needs to be read. Given this, we only */
|
|
/* need 3 or 4 weightings per hexagon, as follows: */
|
|
/* _ _ */
|
|
/* Virtical hex: |_|_| 1 2 */
|
|
/* |X|_| 0 3 */
|
|
/* _ */
|
|
/* _ _|_| 1 */
|
|
/* Middle hex: |_| 1 Horizontal hex: |X|_| 0 2 */
|
|
/* |X| 0 |_| 3 */
|
|
/* |_| 2 */
|
|
|
|
/* all filters */
|
|
gint V0[NOIVAL],V1[NOIVAL],V2[NOIVAL],V3[NOIVAL]; /* vertical hex */
|
|
gint M0[NOIVAL],M1[NOIVAL],M2[NOIVAL]; /* middle hex */
|
|
gint H0[NOIVAL],H1[NOIVAL],H2[NOIVAL],H3[NOIVAL]; /* horizontal hex */
|
|
|
|
/* alpha trimmed and edge enhancement only */
|
|
gint ALFRAC[NOIVAL * 8]; /* fractional alpha divider table */
|
|
|
|
/* optimal estimation only */
|
|
gint AVEDIV[7 * NOCSVAL]; /* divide by 7 to give average value */
|
|
gint SQUARE[2 * NOCSVAL]; /* scaled square lookup table */
|
|
|
|
/* Table initialisation function - return alpha range */
|
|
static inline gint
|
|
nlfiltInit(gdouble alpha, gdouble radius, FilterType filter) {
|
|
gint alpharange; /* alpha range value 0 - 3 */
|
|
gdouble meanscale; /* scale for finding mean */
|
|
gdouble mmeanscale; /* scale for finding mean - midle hex */
|
|
gdouble alphafraction; /* fraction of next largest/smallest
|
|
* to subtract from sum
|
|
*/
|
|
switch (filter) {
|
|
case filter_alpha_trim: {
|
|
gdouble noinmean;
|
|
/* number of elements (out of a possible 7) used in the mean */
|
|
noinmean = ((0.5 - alpha) * 12.0) + 1.0;
|
|
mmeanscale = meanscale = 1.0/noinmean;
|
|
if (alpha == 0.0) { /* mean filter */
|
|
alpharange = 0;
|
|
alphafraction = 0.0; /* not used */
|
|
} else if (alpha < (1.0/6.0)) { /* mean of 5 to 7 middle values */
|
|
alpharange = 1;
|
|
alphafraction = (7.0 - noinmean)/2.0;
|
|
} else if (alpha < (1.0/3.0)) { /* mean of 3 to 5 middle values */
|
|
alpharange = 2;
|
|
alphafraction = (5.0 - noinmean)/2.0;
|
|
} else { /* mean of 1 to 3 middle values */
|
|
/* alpha==0.5 => median filter */
|
|
alpharange = 3;
|
|
alphafraction = (3.0 - noinmean)/2.0;
|
|
}
|
|
}
|
|
break;
|
|
case filter_opt_est: {
|
|
gint i;
|
|
gdouble noinmean = 7.0;
|
|
|
|
/* edge enhancement function */
|
|
alpharange = 5;
|
|
|
|
/* compute scaled hex values */
|
|
mmeanscale=meanscale=1.0;
|
|
|
|
/* Set up 1:1 division lookup - not used */
|
|
alphafraction=1.0/noinmean;
|
|
|
|
/* estimate of noise variance */
|
|
noisevariance = alpha * (gdouble)255;
|
|
noisevariance = noisevariance * noisevariance / 8.0;
|
|
|
|
/* set yp optimal estimation specific stuff */
|
|
|
|
for (i=0;i<(7*NOCSVAL);i++) { /* divide scaled value by 7 lookup */
|
|
AVEDIV[i] = CSCTOSC(i)/7; /* scaled divide by 7 */
|
|
}
|
|
/* compute square and rescale by
|
|
* (val >> (2 * SCALEB + 2)) table
|
|
*/
|
|
for (i=0;i<(2*NOCSVAL);i++) {
|
|
gint val;
|
|
/* NOCSVAL offset to cope with -ve input values */
|
|
val = CSCTOSC(i - NOCSVAL);
|
|
SQUARE[i] = (val * val) >> (2 * SCALEB + 2);
|
|
}
|
|
}
|
|
break;
|
|
case filter_edge_enhance: {
|
|
if (alpha == 1.0) alpha = 0.99;
|
|
alpharange = 4;
|
|
/* mean of 7 and scaled by -alpha/(1-alpha) */
|
|
meanscale = 1.0 * (-alpha/((1.0 - alpha) * 7.0));
|
|
|
|
/* middle pixel has 1/(1-alpha) as well */
|
|
mmeanscale = 1.0 * (1.0/(1.0 - alpha) + meanscale);
|
|
alphafraction = 0.0; /* not used */
|
|
}
|
|
break;
|
|
default:
|
|
fprintf(stderr, "unknown filter %d\n", filter);
|
|
return -1;
|
|
}
|
|
/*
|
|
* Setup pixel weighting tables -
|
|
* note we pre-compute mean division here too.
|
|
*/
|
|
{
|
|
gint i;
|
|
gdouble hexhoff,hexvoff;
|
|
gdouble tabscale,mtabscale;
|
|
gdouble v0,v1,v2,v3,m0,m1,m2,h0,h1,h2,h3;
|
|
|
|
/* horizontal offset of virtical hex centers */
|
|
hexhoff = radius/2;
|
|
|
|
/* vertical offset of virtical hex centers */
|
|
hexvoff = 3.0 * radius/sqrt(12.0);
|
|
|
|
/*
|
|
* scale tables to normalise by hexagon
|
|
* area, and number of hexes used in mean
|
|
*/
|
|
tabscale = meanscale / (radius * hexvoff);
|
|
mtabscale = mmeanscale / (radius * hexvoff);
|
|
v0 = hex_area(0.0,0.0,hexhoff,hexvoff,radius) * tabscale;
|
|
v1 = hex_area(0.0,1.0,hexhoff,hexvoff,radius) * tabscale;
|
|
v2 = hex_area(1.0,1.0,hexhoff,hexvoff,radius) * tabscale;
|
|
v3 = hex_area(1.0,0.0,hexhoff,hexvoff,radius) * tabscale;
|
|
m0 = hex_area(0.0,0.0,0.0,0.0,radius) * mtabscale;
|
|
m1 = hex_area(0.0,1.0,0.0,0.0,radius) * mtabscale;
|
|
m2 = hex_area(0.0,-1.0,0.0,0.0,radius) * mtabscale;
|
|
h0 = hex_area(0.0,0.0,radius,0.0,radius) * tabscale;
|
|
h1 = hex_area(1.0,1.0,radius,0.0,radius) * tabscale;
|
|
h2 = hex_area(1.0,0.0,radius,0.0,radius) * tabscale;
|
|
h3 = hex_area(1.0,-1.0,radius,0.0,radius) * tabscale;
|
|
|
|
for (i=0; i <= MXIVAL; i++) {
|
|
gdouble fi;
|
|
fi = (gdouble)i;
|
|
V0[i] = SROUND(fi * v0);
|
|
V1[i] = SROUND(fi * v1);
|
|
V2[i] = SROUND(fi * v2);
|
|
V3[i] = SROUND(fi * v3);
|
|
M0[i] = SROUND(fi * m0);
|
|
M1[i] = SROUND(fi * m1);
|
|
M2[i] = SROUND(fi * m2);
|
|
H0[i] = SROUND(fi * h0);
|
|
H1[i] = SROUND(fi * h1);
|
|
H2[i] = SROUND(fi * h2);
|
|
H3[i] = SROUND(fi * h3);
|
|
}
|
|
/* set up alpha fraction lookup table used on big/small */
|
|
for (i=0; i < (NOIVAL * 8); i++) {
|
|
ALFRAC[i] = SROUND((gdouble)i * alphafraction);
|
|
}
|
|
}
|
|
return alpharange;
|
|
}
|
|
|
|
/* Core pixel processing function - hand it 3x3 pixels and return result. */
|
|
/* Mean filter */
|
|
gint
|
|
atfilt0(gint32 *p) {
|
|
gint retv;
|
|
/* map to scaled hexagon values */
|
|
retv = M0[p[0]] + M1[p[3]] + M2[p[7]];
|
|
retv += H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
|
|
retv += V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
|
|
retv += V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
|
|
retv += H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
|
|
retv += V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
|
|
retv += V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
|
|
return UNSCALE(retv);
|
|
}
|
|
|
|
/* Mean of 5 - 7 middle values */
|
|
gint
|
|
atfilt1(gint32 *p) {
|
|
gint h0,h1,h2,h3,h4,h5,h6; /* hexagon values 2 3 */
|
|
/* 1 0 4 */
|
|
/* 6 5 */
|
|
gint big,small;
|
|
/* map to scaled hexagon values */
|
|
h0 = M0[p[0]] + M1[p[3]] + M2[p[7]];
|
|
h1 = H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
|
|
h2 = V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
|
|
h3 = V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
|
|
h4 = H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
|
|
h5 = V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
|
|
h6 = V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
|
|
/* sum values and also discover the largest and smallest */
|
|
big = small = h0;
|
|
#define CHECK(xx) \
|
|
h0 += xx; \
|
|
if (xx > big) \
|
|
big = xx; \
|
|
else if (xx < small) \
|
|
small = xx;
|
|
CHECK(h1)
|
|
CHECK(h2)
|
|
CHECK(h3)
|
|
CHECK(h4)
|
|
CHECK(h5)
|
|
CHECK(h6)
|
|
#undef CHECK
|
|
/* Compute mean of middle 5-7 values */
|
|
return UNSCALE(h0 -ALFRAC[(big + small)>>SCALEB]);
|
|
}
|
|
|
|
/* Mean of 3 - 5 middle values */
|
|
gint
|
|
atfilt2(gint32 *p) {
|
|
gint h0,h1,h2,h3,h4,h5,h6; /* hexagon values 2 3 */
|
|
/* 1 0 4 */
|
|
/* 6 5 */
|
|
gint big0,big1,small0,small1;
|
|
/* map to scaled hexagon values */
|
|
h0 = M0[p[0]] + M1[p[3]] + M2[p[7]];
|
|
h1 = H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
|
|
h2 = V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
|
|
h3 = V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
|
|
h4 = H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
|
|
h5 = V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
|
|
h6 = V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
|
|
/* sum values and also discover the 2 largest and 2 smallest */
|
|
big0 = small0 = h0;
|
|
small1 = MAXINT;
|
|
big1 = 0;
|
|
#define CHECK(xx) \
|
|
h0 += xx; \
|
|
if (xx > big1) \
|
|
{ \
|
|
if (xx > big0) \
|
|
{ \
|
|
big1 = big0; \
|
|
big0 = xx; \
|
|
} \
|
|
else \
|
|
big1 = xx; \
|
|
} \
|
|
if (xx < small1) \
|
|
{ \
|
|
if (xx < small0) \
|
|
{ \
|
|
small1 = small0; \
|
|
small0 = xx; \
|
|
} \
|
|
else \
|
|
small1 = xx; \
|
|
}
|
|
CHECK(h1)
|
|
CHECK(h2)
|
|
CHECK(h3)
|
|
CHECK(h4)
|
|
CHECK(h5)
|
|
CHECK(h6)
|
|
#undef CHECK
|
|
/* Compute mean of middle 3-5 values */
|
|
return UNSCALE(h0 -big0 -small0 -ALFRAC[(big1 + small1)>>SCALEB]);
|
|
}
|
|
|
|
/*
|
|
* Mean of 1 - 3 middle values.
|
|
* If only 1 value, then this is a median filter.
|
|
*/
|
|
gint32
|
|
atfilt3(gint32 *p) {
|
|
gint h0,h1,h2,h3,h4,h5,h6; /* hexagon values 2 3 */
|
|
/* 1 0 4 */
|
|
/* 6 5 */
|
|
gint big0,big1,big2,small0,small1,small2;
|
|
/* map to scaled hexagon values */
|
|
h0 = M0[p[0]] + M1[p[3]] + M2[p[7]];
|
|
h1 = H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
|
|
h2 = V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
|
|
h3 = V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
|
|
h4 = H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
|
|
h5 = V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
|
|
h6 = V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
|
|
/* sum values and also discover the 3 largest and 3 smallest */
|
|
big0 = small0 = h0;
|
|
small1 = small2 = MAXINT;
|
|
big1 = big2 = 0;
|
|
#define CHECK(xx) \
|
|
h0 += xx; \
|
|
if (xx > big2) \
|
|
{ \
|
|
if (xx > big1) \
|
|
{ \
|
|
if (xx > big0) \
|
|
{ \
|
|
big2 = big1; \
|
|
big1 = big0; \
|
|
big0 = xx; \
|
|
} \
|
|
else \
|
|
{ \
|
|
big2 = big1; \
|
|
big1 = xx; \
|
|
} \
|
|
} \
|
|
else \
|
|
big2 = xx; \
|
|
} \
|
|
if (xx < small2) \
|
|
{ \
|
|
if (xx < small1) \
|
|
{ \
|
|
if (xx < small0) \
|
|
{ \
|
|
small2 = small1; \
|
|
small1 = small0; \
|
|
small0 = xx; \
|
|
} \
|
|
else \
|
|
{ \
|
|
small2 = small1; \
|
|
small1 = xx; \
|
|
} \
|
|
} \
|
|
else \
|
|
small2 = xx; \
|
|
}
|
|
CHECK(h1)
|
|
CHECK(h2)
|
|
CHECK(h3)
|
|
CHECK(h4)
|
|
CHECK(h5)
|
|
CHECK(h6)
|
|
#undef CHECK
|
|
/* Compute mean of middle 1-3 values */
|
|
return UNSCALE(h0-big0-big1-small0-small1-ALFRAC[(big2+small2)>>SCALEB]);
|
|
}
|
|
|
|
/* Edge enhancement */
|
|
gint
|
|
atfilt4(gint *p) {
|
|
gint hav;
|
|
/* map to scaled hexagon values and compute enhance value */
|
|
hav = M0[p[0]] + M1[p[3]] + M2[p[7]];
|
|
hav += H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
|
|
hav += V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
|
|
hav += V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
|
|
hav += H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
|
|
hav += V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
|
|
hav += V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
|
|
if (hav < 0)
|
|
hav = 0;
|
|
hav = UNSCALE(hav);
|
|
if (hav > (gdouble)255)
|
|
hav = (gdouble)255;
|
|
return hav;
|
|
}
|
|
|
|
/* Optimal estimation - do smoothing in inverse proportion */
|
|
/* to the local variance. */
|
|
/* notice we use the globals noisevariance */
|
|
gint
|
|
atfilt5(gint *p) {
|
|
gint mean,variance,temp;
|
|
gint h0,h1,h2,h3,h4,h5,h6; /* hexagon values 2 3 */
|
|
/* 1 0 4 */
|
|
/* 6 5 */
|
|
/* map to scaled hexagon values */
|
|
h0 = M0[p[0]] + M1[p[3]] + M2[p[7]];
|
|
h1 = H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
|
|
h2 = V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
|
|
h3 = V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
|
|
h4 = H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
|
|
h5 = V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
|
|
h6 = V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
|
|
mean = h0 + h1 + h2 + h3 + h4 + h5 + h6;
|
|
/* compute scaled mean by dividing by 7 */
|
|
mean = AVEDIV[SCTOCSC(mean)];
|
|
|
|
/* compute scaled variance */
|
|
temp = (h1 - mean); variance = SQUARE[NOCSVAL + SCTOCSC(temp)];
|
|
|
|
/* and rescale to keep */
|
|
temp = (h2 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)];
|
|
|
|
/* within 32 bit limits */
|
|
temp = (h3 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)];
|
|
temp = (h4 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)];
|
|
temp = (h5 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)];
|
|
temp = (h6 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)];
|
|
/* (temp = h0 - mean) */
|
|
temp = (h0 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)];
|
|
if (variance != 0) /* avoid possible divide by 0 */
|
|
/* optimal estimate */
|
|
temp = mean + (variance * temp) / (variance + noisevariance);
|
|
else temp = h0;
|
|
if (temp < 0)
|
|
temp = 0;
|
|
temp = RUNSCALE(temp);
|
|
if (temp > (gdouble)255) temp = (gdouble)255;
|
|
return temp;
|
|
}
|
|
|
|
|
|
/* Triangle orientation is per geometric axes (not graphical axies) */
|
|
|
|
#define NW 0 /* North west triangle /| */
|
|
#define NE 1 /* North east triangle |\ */
|
|
#define SW 2 /* South west triangle \| */
|
|
#define SE 3 /* South east triangle |/ */
|
|
#define STH 2
|
|
#define EST 1
|
|
|
|
#define SWAPI(a,b) (t = a, a = -b, b = -t)
|
|
|
|
/* compute the area of overlap of a hexagon diameter d, */
|
|
/* centered at hx,hy, with a unit square of center sx,sy. */
|
|
gdouble
|
|
hex_area(gdouble sx, gdouble sy, gdouble hx, gdouble hy, gdouble d) {
|
|
gdouble hx0,hx1,hx2,hy0,hy1,hy2,hy3;
|
|
gdouble sx0,sx1,sy0,sy1;
|
|
|
|
/* compute square co-ordinates */
|
|
sx0 = sx - 0.5;
|
|
sy0 = sy - 0.5;
|
|
sx1 = sx + 0.5;
|
|
sy1 = sy + 0.5;
|
|
/* compute hexagon co-ordinates */
|
|
hx0 = hx - d/2.0;
|
|
hx1 = hx;
|
|
hx2 = hx + d/2.0;
|
|
hy0 = hy - 0.5773502692 * d; /* d / sqrt(3) */
|
|
hy1 = hy - 0.2886751346 * d; /* d / sqrt(12) */
|
|
hy2 = hy + 0.2886751346 * d; /* d / sqrt(12) */
|
|
hy3 = hy + 0.5773502692 * d; /* d / sqrt(3) */
|
|
|
|
return
|
|
triang_area(sx0,sy0,sx1,sy1,hx0,hy2,hx1,hy3,NW) +
|
|
triang_area(sx0,sy0,sx1,sy1,hx1,hy2,hx2,hy3,NE) +
|
|
rectang_area(sx0,sy0,sx1,sy1,hx0,hy1,hx2,hy2) +
|
|
triang_area(sx0,sy0,sx1,sy1,hx0,hy0,hx1,hy1,SW) +
|
|
triang_area(sx0,sy0,sx1,sy1,hx1,hy0,hx2,hy1,SE);
|
|
}
|
|
|
|
gdouble
|
|
triang_area(gdouble rx0, gdouble ry0, gdouble rx1, gdouble ry1, gdouble tx0,
|
|
gdouble ty0, gdouble tx1, gdouble ty1, gint tt) {
|
|
gdouble a,b,c,d;
|
|
gdouble lx0,ly0,lx1,ly1;
|
|
/* Convert everything to a NW triangle */
|
|
if (tt & STH) {
|
|
gdouble t;
|
|
SWAPI(ry0,ry1);
|
|
SWAPI(ty0,ty1);
|
|
} if (tt & EST) {
|
|
gdouble t;
|
|
SWAPI(rx0,rx1);
|
|
SWAPI(tx0,tx1);
|
|
}
|
|
/* Compute overlapping box */
|
|
if (tx0 > rx0)
|
|
rx0 = tx0;
|
|
if (ty0 > ry0)
|
|
ry0 = ty0;
|
|
if (tx1 < rx1)
|
|
rx1 = tx1;
|
|
if (ty1 < ry1)
|
|
ry1 = ty1;
|
|
if (rx1 <= rx0 || ry1 <= ry0)
|
|
return 0.0;
|
|
/* Need to compute diagonal line intersection with the box */
|
|
/* First compute co-efficients to formulas x = a + by and y = c + dx */
|
|
b = (tx1 - tx0)/(ty1 - ty0);
|
|
a = tx0 - b * ty0;
|
|
d = (ty1 - ty0)/(tx1 - tx0);
|
|
c = ty0 - d * tx0;
|
|
|
|
/* compute top or right intersection */
|
|
tt = 0;
|
|
ly1 = ry1;
|
|
lx1 = a + b * ly1;
|
|
if (lx1 <= rx0)
|
|
return (rx1 - rx0) * (ry1 - ry0);
|
|
else if (lx1 > rx1) { /* could be right hand side */
|
|
lx1 = rx1;
|
|
ly1 = c + d * lx1;
|
|
if (ly1 <= ry0)
|
|
return (rx1 - rx0) * (ry1 - ry0);
|
|
tt = 1; /* right hand side intersection */
|
|
}
|
|
/* compute left or bottom intersection */
|
|
lx0 = rx0;
|
|
ly0 = c + d * lx0;
|
|
if (ly0 >= ry1)
|
|
return (rx1 - rx0) * (ry1 - ry0);
|
|
else if (ly0 < ry0) { /* could be right hand side */
|
|
ly0 = ry0;
|
|
lx0 = a + b * ly0;
|
|
if (lx0 >= rx1)
|
|
return (rx1 - rx0) * (ry1 - ry0);
|
|
tt |= 2; /* bottom intersection */
|
|
}
|
|
|
|
if (tt == 0) { /* top and left intersection */
|
|
/* rectangle minus triangle */
|
|
return ((rx1 - rx0) * (ry1 - ry0))
|
|
- (0.5 * (lx1 - rx0) * (ry1 - ly0));
|
|
}
|
|
else if (tt == 1) { /* right and left intersection */
|
|
return ((rx1 - rx0) * (ly0 - ry0))
|
|
+ (0.5 * (rx1 - rx0) * (ly1 - ly0));
|
|
} else if (tt == 2) { /* top and bottom intersection */
|
|
return ((rx1 - lx1) * (ry1 - ry0))
|
|
+ (0.5 * (lx1 - lx0) * (ry1 - ry0));
|
|
} else { /* tt == 3 */ /* right and bottom intersection */
|
|
/* triangle */
|
|
return (0.5 * (rx1 - lx0) * (ly1 - ry0));
|
|
}
|
|
}
|
|
|
|
/* Compute rectangle area */
|
|
gdouble
|
|
rectang_area(gdouble rx0, gdouble ry0, gdouble rx1, gdouble ry1, gdouble tx0,
|
|
gdouble ty0, gdouble tx1, gdouble ty1) {
|
|
/* Compute overlapping box */
|
|
if (tx0 > rx0)
|
|
rx0 = tx0;
|
|
if (ty0 > ry0)
|
|
ry0 = ty0;
|
|
if (tx1 < rx1)
|
|
rx1 = tx1;
|
|
if (ty1 < ry1)
|
|
ry1 = ty1;
|
|
if (rx1 <= rx0 || ry1 <= ry0)
|
|
return 0.0;
|
|
return (rx1 - rx0) * (ry1 - ry0);
|
|
}
|
|
|
|
/*
|
|
* Local Variables:
|
|
* mode: C
|
|
* c-auto-newline: t
|
|
* c-indent-level: 3
|
|
*
|
|
* End:
|
|
*/
|
|
|
|
/* end of file: nlfilt/nlfilt.c */
|