gimp/app/core/cpercep.c

627 lines
14 KiB
C

/*
Copyright (C) 1999-2002 Adam D. Moss (the "Author"). All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is fur-
nished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CON-
NECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of the Author of the
Software shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Software without prior written authorization
from the Author.
*/
/*
cpercep.c: The CPercep Functions v0.9: 2002-02-10
Adam D. Moss: adam@gimp.org <http://www.foxbox.org/adam/code/cpercep/>
This code module concerns itself with conversion from a hard-coded
RGB colour space (sRGB by default) to CIE L*a*b* and back again with
(primarily) precision and (secondarily) speed, oriented largely
towards the purposes of quantifying the PERCEPTUAL difference between
two arbitrary RGB colours with a minimum of fuss.
Motivation One: The author is disheartened at the amount of graphics
processing software around which uses weighted or non-weighted
Euclidean distance between co-ordinates within a (poorly-defined) RGB
space as the basis of what should really be an estimate of perceptual
difference to the human eye. Certainly it's fast to do it that way,
but please think carefully about whether your particular application
should be tolerating sloppy results for the sake of real-time response.
Motivation Two: Lack of tested, re-usable and free code available
for this purpose. The difficulty in finding something similar to
CPercep with a free license motivated this project; I hope that this
code also serves to illustrate how to perform the
R'G'B'->XYZ->L*a*b*->XYZ->R'G'B' transformation correctly since I
was distressed to note how many of the equations and code snippets
on the net were omitting the reverse transform and/or were using
incorrectly-derived or just plain wrong constants.
TODO: document functions, rename erroneously-named arguments
*/
#include <stdlib.h>
#include <math.h>
#ifndef __GLIBC__
/* cbrt() is a GNU extension */
#define cbrt(x) (pow(x, 1.0/3.0))
#endif
#ifdef GIMP_COMPILATION
#include <glib.h> /* to get working 'inline' */
#endif
/* defines:
SANITY: emits warnings when passed non-sane colours (and usually
corrects them) -- useful when debugging.
APPROX: speeds up the conversion from RGB to the colourspace by
assuming that the RGB values passed in are integral and definitely
in the range 0->255
SRGB: assumes that the RGB values being passed in (and out) are
destined for an sRGB-alike display device (a typical modern monitor)
-- if you change this then you'll probably want to change ASSUMED_GAMMA,
the phosphor colours and the white point definition.
*/
/* #define SANITY */
#define APPROX
#define SRGB
#include "cpercep.h"
#ifdef SRGB
#define ASSUMED_GAMMA (2.2F)
#else
/*#define ASSUMED_GAMMA (2.591F)*/
#define ASSUMED_GAMMA (2.2F)
#endif
#define REV_GAMMA ((1.0F / ASSUMED_GAMMA))
/* define characteristics of the source RGB space (and the space
within which we try to behave linearly). */
/* Phosphor colours: */
/* sRGB/HDTV phosphor colours */
static const double pxr = 0.64F;
static const double pyr = 0.33F;
static const double pxg = 0.30F;
static const double pyg = 0.60F;
static const double pxb = 0.15F;
static const double pyb = 0.06F;
/* White point: */
/* D65 (6500K) (recommended but not a common display default) */
static const double lxn = 0.312713F;
static const double lyn = 0.329016F;
/* D50 (5000K) */
/*static const double lxn = 0.3457F; */
/*static const double lyn = 0.3585F; */
/* D55 (5500K) */
/*static const double lxn = 0.3324F; */
/*static const double lyn = 0.3474F; */
/* D93 (9300K) (a common monitor default, but poor colour reproduction) */
/* static const double lxn = 0.2848F; */
/* static const double lyn = 0.2932F; */
/* illum E (normalized) */
/*static const double lxn = 1.0/3.0F; */
/*static const double lyn = 1.0/3.0F; */
/* illum C (average sunlight) */
/*static const double lxn = 0.3101F; */
/*static const double lyn = 0.3162F; */
/* illum B (direct sunlight) */
/*static const double lxn = 0.3484F; */
/*static const double lyn = 0.3516F; */
/* illum A (tungsten lamp) */
/*static const double lxn = 0.4476F; */
/*static const double lyn = 0.4074F; */
static const double LRAMP = 7.99959199F;
static double xnn, znn;
static double powtable[256];
#ifndef CLAMP
#define CLAMP(x,l,u) ((x)<(l)?(l):((x)>(u)?(u):(x)))
#endif
static void
init_powtable(const double gamma)
{
int i;
#ifndef SRGB
/* pure gamma function */
for (i=0; i<256; i++)
{
powtable[i] = pow((i)/255.0F, gamma);
}
#else
/* sRGB gamma curve */
for (i=0; i<11 /* 0.03928 * 255 */; i++)
{
powtable[i] = (i) / (255.0F * 12.92F);
}
for (; i<256; i++)
{
powtable[i] = pow( (((i) / 255.0F) + 0.055F) / 1.055F, 2.4F);
}
#endif
}
typedef double CMatrix[3][3];
typedef double CVector[3];
static CMatrix Mrgb_to_xyz, Mxyz_to_rgb;
static int
Minvert (CMatrix src, CMatrix dest)
{
double det;
dest[0][0] = src[1][1] * src[2][2] - src[1][2] * src[2][1];
dest[0][1] = src[0][2] * src[2][1] - src[0][1] * src[2][2];
dest[0][2] = src[0][1] * src[1][2] - src[0][2] * src[1][1];
dest[1][0] = src[1][2] * src[2][0] - src[1][0] * src[2][2];
dest[1][1] = src[0][0] * src[2][2] - src[0][2] * src[2][0];
dest[1][2] = src[0][2] * src[1][0] - src[0][0] * src[1][2];
dest[2][0] = src[1][0] * src[2][1] - src[1][1] * src[2][0];
dest[2][1] = src[0][1] * src[2][0] - src[0][0] * src[2][1];
dest[2][2] = src[0][0] * src[1][1] - src[0][1] * src[1][0];
det =
src[0][0] * dest[0][0] +
src[0][1] * dest[1][0] +
src[0][2] * dest[2][0];
if (det <= 0.0F)
{
#ifdef SANITY
g_printerr ("\n\007 XXXX det: %f\n", det);
#endif
return 0;
}
dest[0][0] /= det;
dest[0][1] /= det;
dest[0][2] /= det;
dest[1][0] /= det;
dest[1][1] /= det;
dest[1][2] /= det;
dest[2][0] /= det;
dest[2][1] /= det;
dest[2][2] /= det;
return 1;
}
static void
rgbxyzrgb_init(void)
{
init_powtable (ASSUMED_GAMMA);
xnn = lxn / lyn;
/* ynn taken as 1.0 */
znn = (1.0F - (lxn + lyn)) / lyn;
{
CMatrix MRC, MRCi;
double C1,C2,C3;
MRC[0][0] = pxr;
MRC[0][1] = pxg;
MRC[0][2] = pxb;
MRC[1][0] = pyr;
MRC[1][1] = pyg;
MRC[1][2] = pyb;
MRC[2][0] = 1.0F - (pxr + pyr);
MRC[2][1] = 1.0F - (pxg + pyg);
MRC[2][2] = 1.0F - (pxb + pyb);
Minvert (MRC, MRCi);
C1 = MRCi[0][0]*xnn + MRCi[0][1] + MRCi[0][2]*znn;
C2 = MRCi[1][0]*xnn + MRCi[1][1] + MRCi[1][2]*znn;
C3 = MRCi[2][0]*xnn + MRCi[2][1] + MRCi[2][2]*znn;
Mrgb_to_xyz[0][0] = MRC[0][0] * C1;
Mrgb_to_xyz[0][1] = MRC[0][1] * C2;
Mrgb_to_xyz[0][2] = MRC[0][2] * C3;
Mrgb_to_xyz[1][0] = MRC[1][0] * C1;
Mrgb_to_xyz[1][1] = MRC[1][1] * C2;
Mrgb_to_xyz[1][2] = MRC[1][2] * C3;
Mrgb_to_xyz[2][0] = MRC[2][0] * C1;
Mrgb_to_xyz[2][1] = MRC[2][1] * C2;
Mrgb_to_xyz[2][2] = MRC[2][2] * C3;
Minvert (Mrgb_to_xyz, Mxyz_to_rgb);
}
}
static void
xyz_to_rgb (double *inx_outr,
double *iny_outg,
double *inz_outb)
{
const double x = *inx_outr;
const double y = *iny_outg;
const double z = *inz_outb;
*inx_outr = Mxyz_to_rgb[0][0]*x + Mxyz_to_rgb[0][1]*y + Mxyz_to_rgb[0][2]*z;
*iny_outg = Mxyz_to_rgb[1][0]*x + Mxyz_to_rgb[1][1]*y + Mxyz_to_rgb[1][2]*z;
*inz_outb = Mxyz_to_rgb[2][0]*x + Mxyz_to_rgb[2][1]*y + Mxyz_to_rgb[2][2]*z;
}
static void
rgb_to_xyz (double *inr_outx,
double *ing_outy,
double *inb_outz)
{
const double r = *inr_outx;
const double g = *ing_outy;
const double b = *inb_outz;
*inr_outx = Mrgb_to_xyz[0][0]*r + Mrgb_to_xyz[0][1]*g + Mrgb_to_xyz[0][2]*b;
*ing_outy = Mrgb_to_xyz[1][0]*r + Mrgb_to_xyz[1][1]*g + Mrgb_to_xyz[1][2]*b;
*inb_outz = Mrgb_to_xyz[2][0]*r + Mrgb_to_xyz[2][1]*g + Mrgb_to_xyz[2][2]*b;
}
/* call this before using the CPercep function */
void
cpercep_init_conversions(void)
{
rgbxyzrgb_init();
}
const static inline double
ffunc(const double t)
{
if (t > 0.008856F)
{
return (cbrt(t));
}
else
{
return (7.787F * t + 16.0F/116.0F);
}
}
const static inline double
ffunc_inv(const double t)
{
if (t > 0.206893F)
{
return (t * t * t);
}
else
{
return ((t - 16.0F/116.0F) / 7.787F);
}
}
static void
xyz_to_lab (double *inx,
double *iny,
double *inz)
{
double L,a,b;
double ffuncY;
const double X = *inx;
const double Y = *iny;
const double Z = *inz;
if (Y > 0.0F)
{
if (Y > 0.008856F)
{
L = (116.0F * cbrt(Y)) - 16.0F;
}
else
{
L = (Y * 903.3F);
}
#ifdef SANITY
if (L < 0.0F)
{
g_printerr (" <eek1>%f \007",(float)L);
}
if (L > 100.0F)
{
g_printerr (" <eek2>%f \007",(float)L);
}
#endif
}
else
{
L = 0.0;
}
ffuncY = ffunc(Y);
a = 500.0F * (ffunc(X/xnn) - ffuncY);
b = 200.0F * (ffuncY - ffunc(Z/znn));
*inx = L;
*iny = a;
*inz = b;
}
static void
lab_to_xyz (double *inl,
double *ina,
double *inb)
{
double X,Y,Z;
double P;
const double L = *inl;
const double a = *ina;
const double b = *inb;
if (L > LRAMP)
{
P = Y = (L + 16.0F) / 116.0F;
Y = Y * Y * Y;
}
else
{
Y = L / 903.3F;
P = 7.787F * Y + 16.0F/116.0F;
}
X = (P + a / 500.0F);
X = xnn * ffunc_inv(X);
Z = (P - b / 200.0F);
Z = znn * ffunc_inv(Z);
#ifdef SANITY
if (X<-0.00000F)
{
if (X<-0.0001F)
g_printerr ("{badX %f {%f,%f,%f}}",X,L,a,b);
X = 0.0F;
}
if (Y<-0.00000F)
{
if (Y<-0.0001F)
g_printerr ("{badY %f}",Y);
Y = 0.0F;
}
if (Z<-0.00000F)
{
if (Z<-0.1F)
g_printerr ("{badZ %f}",Z);
Z = 0.0F;
}
#endif
*inl = X;
*ina = Y;
*inb = Z;
}
void
cpercep_rgb_to_space (double inr, double ing, double inb,
double* outr, double* outg, double* outb)
{
#ifdef APPROX
#ifdef SANITY
/* ADM extra sanity */
if ((inr) > 255.0F ||
(ing) > 255.0F ||
(inb) > 255.0F ||
(inr) < -0.0F ||
(ing) < -0.0F ||
(inb) < -0.0F
)
abort();
#endif /* SANITY */
inr = powtable[(int)inr];
ing = powtable[(int)ing];
inb = powtable[(int)inb];
#else
#ifdef SRGB
/* sRGB gamma curve */
if (inr <= (0.03928F * 255.0F))
inr = inr / (255.0F * 12.92F);
else
inr = pow( (inr + (0.055F * 255.0F)) / (1.055F * 255.0F), 2.4F);
if (ing <= (0.03928F * 255.0F))
ing = ing / (255.0F * 12.92F);
else
ing = pow( (ing + (0.055F * 255.0F)) / (1.055F * 255.0F), 2.4F);
if (inb <= (0.03928F * 255.0F))
inb = inb / (255.0F * 12.92F);
else
inb = pow( (inb + (0.055F * 255.0F)) / (1.055F * 255.0F), 2.4F);
#else
/* pure gamma function */
inr = pow((inr)/255.0F, ASSUMED_GAMMA);
ing = pow((ing)/255.0F, ASSUMED_GAMMA);
inb = pow((inb)/255.0F, ASSUMED_GAMMA);
#endif /* SRGB */
#endif /* APPROX */
#ifdef SANITY
/* ADM extra sanity */
if ((inr) > 1.0F ||
(ing) > 1.0F ||
(inb) > 1.0F ||
(inr) < 0.0F ||
(ing) < 0.0F ||
(inb) < 0.0F
)
{
g_printerr ("%%");
/* abort(); */
}
#endif /* SANITY */
rgb_to_xyz(&inr, &ing, &inb);
#ifdef SANITY
if (inr < 0.0F || ing < 0.0F || inb < 0.0F)
{
g_printerr (" [BAD2 XYZ: %f,%f,%f]\007 ",
inr,ing,inb);
}
#endif /* SANITY */
xyz_to_lab(&inr, &ing, &inb);
*outr = inr;
*outg = ing;
*outb = inb;
}
void
cpercep_space_to_rgb (double inr, double ing, double inb,
double* outr, double* outg, double* outb)
{
lab_to_xyz(&inr, &ing, &inb);
#ifdef SANITY
if (inr<-0.0F || ing<-0.0F || inb<-0.0F)
{
g_printerr (" [BAD1 XYZ: %f,%f,%f]\007 ",
inr,ing,inb);
}
#endif
xyz_to_rgb(&inr, &ing, &inb);
/* yes, essential. :( */
inr = CLAMP(inr,0.0F,1.0F);
ing = CLAMP(ing,0.0F,1.0F);
inb = CLAMP(inb,0.0F,1.0F);
#ifdef SRGB
if (inr <= 0.0030402477F)
inr = inr * (12.92F * 255.0F);
else
inr = pow(inr, 1.0F/2.4F) * (1.055F * 255.0F) - (0.055F * 255.0F);
if (ing <= 0.0030402477F)
ing = ing * (12.92F * 255.0F);
else
ing = pow(ing, 1.0F/2.4F) * (1.055F * 255.0F) - (0.055F * 255.0F);
if (inb <= 0.0030402477F)
inb = inb * (12.92F * 255.0F);
else
inb = pow(inb, 1.0F/2.4F) * (1.055F * 255.0F) - (0.055F * 255.0F);
#else
inr = 255.0F * pow(inr, REV_GAMMA);
ing = 255.0F * pow(ing, REV_GAMMA);
inb = 255.0F * pow(inb, REV_GAMMA);
#endif
*outr = inr;
*outg = ing;
*outb = inb;
}
#if 0
/* EXPERIMENTAL SECTION */
const double
xscaler(const double start, const double end,
const double me, const double him)
{
return start + ((end-start) * him) / (me + him);
}
void
mix_colours (const double L1, const double a1, const double b1,
const double L2, const double a2, const double b2,
double *rtnL, double *rtna, double *rtnb,
double mass1, double mass2)
{
double w1, w2;
#if 0
*rtnL = xscaler (L1, L2, mass1, mass2);
*rtna = xscaler (a1, a2, mass1, mass2);
*rtnb = xscaler (b1, b2, mass1, mass2);
#else
#if 1
w1 = mass1 * L1;
w2 = mass2 * L2;
#else
w1 = mass1 * (L1*L1*L1);
w2 = mass2 * (L2*L2*L2);
#endif
*rtnL = xscaler (L1, L2, mass1, mass2);
if (w1 <= 0.0 &&
w2 <= 0.0)
{
*rtna =
*rtnb = 0.0;
#ifdef SANITY
/* g_printerr ("\007OUCH. "); */
#endif
}
else
{
*rtna = xscaler(a1, a2, w1, w2);
*rtnb = xscaler(b1, b2, w1, w2);
}
#endif
}
#endif /* EXPERIMENTAL SECTION */