mirror of https://github.com/GNOME/gimp.git
919 lines
22 KiB
C
919 lines
22 KiB
C
/* The GIMP -- an image manipulation program
|
|
* Copyright (C) 1995 Spencer Kimball and Peter Mattis
|
|
*
|
|
* IfsCompose is a interface for creating IFS fractals by
|
|
* direct manipulation.
|
|
* Copyright (C) 1997 Owen Taylor
|
|
*
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include <gdk/gdk.h>
|
|
|
|
#include <libgimp/gimp.h>
|
|
|
|
#include "ifscompose.h"
|
|
|
|
typedef struct {
|
|
GdkPoint point;
|
|
gdouble angle;
|
|
} SortPoint;
|
|
|
|
/* local functions */
|
|
static void
|
|
aff_element_compute_click_boundary(AffElement *elem, int num_elements,
|
|
gdouble *points_x, gdouble *points_y);
|
|
static guchar *
|
|
create_brush(IfsComposeVals *ifsvals, gint *brush_size, gdouble *brush_offset);
|
|
|
|
void
|
|
aff2_translate(Aff2 *naff, gdouble x, gdouble y)
|
|
{
|
|
naff->a11 = 1.0;
|
|
naff->a12 = 0;
|
|
naff->a21 = 0;
|
|
naff->a22 = 1.0;
|
|
naff->b1 = x;
|
|
naff->b2 = y;
|
|
}
|
|
|
|
void
|
|
aff2_rotate(Aff2 *naff, gdouble theta)
|
|
{
|
|
naff->a11 = cos(theta);
|
|
naff->a12 = sin(theta);
|
|
naff->a21 = -naff->a12;
|
|
naff->a22 = naff->a11;
|
|
naff->b1 = 0;
|
|
naff->b2 = 0;
|
|
}
|
|
|
|
void
|
|
aff2_scale(Aff2 *naff, gdouble s, gint flip)
|
|
{
|
|
if (flip)
|
|
naff->a11 = -s;
|
|
else
|
|
naff->a11 = s;
|
|
naff->a12 = 0;
|
|
naff->a21 = 0;
|
|
naff->a22 = s;
|
|
naff->b1 = 0;
|
|
naff->b2 = 0;
|
|
}
|
|
|
|
/* Create a unitary transform with given x-y asymmetry and shear */
|
|
void
|
|
aff2_distort(Aff2 *naff, gdouble asym, gdouble shear)
|
|
{
|
|
naff->a11 = asym;
|
|
naff->a22 = 1/asym;
|
|
naff->a12 = shear;
|
|
naff->a21 = 0;
|
|
naff->b1 = 0;
|
|
naff->b2 = 0;
|
|
}
|
|
|
|
/* Find a pure stretch in some directon that brings xo,yo to xn,yn */
|
|
void
|
|
aff2_compute_stretch(Aff2 *naff,
|
|
gdouble xo, gdouble yo,
|
|
gdouble xn, gdouble yn)
|
|
{
|
|
gdouble denom = xo*xn + yo*yn;
|
|
|
|
if (denom == 0.0) /* singular */
|
|
{
|
|
naff->a11 = 1.0;
|
|
naff->a12 = 0.0;
|
|
naff->a21 = 0.0;
|
|
naff->a22 = 1.0;
|
|
}
|
|
else
|
|
{
|
|
naff->a11 = (SQR(xn) + SQR(yo))/denom;
|
|
naff->a22 = (SQR(xo) + SQR(yn))/denom;
|
|
naff->a12 = naff->a21 = (xn*yn - xo*yo)/denom;
|
|
}
|
|
|
|
naff->b1 = 0.0;
|
|
naff->b2 = 0.0;
|
|
}
|
|
|
|
void
|
|
aff2_compose(Aff2 *naff, Aff2 *aff1, Aff2 *aff2)
|
|
{
|
|
naff->a11 = aff1->a11*aff2->a11 + aff1->a12*aff2->a21;
|
|
naff->a12 = aff1->a11*aff2->a12 + aff1->a12*aff2->a22;
|
|
naff->b1 = aff1->a11*aff2->b1 + aff1->a12*aff2->b2 + aff1->b1;
|
|
naff->a21 = aff1->a21*aff2->a11 + aff1->a22*aff2->a21;
|
|
naff->a22 = aff1->a21*aff2->a12 + aff1->a22*aff2->a22;
|
|
naff->b2 = aff1->a21*aff2->b1 + aff1->a22*aff2->b2 + aff1->b2;
|
|
}
|
|
|
|
/* Returns the identity matrix if the original matrix was singular */
|
|
void
|
|
aff2_invert(Aff2 *naff, Aff2 *aff)
|
|
{
|
|
gdouble det = aff->a11*aff->a22 - aff->a12*aff->a21;
|
|
|
|
if (det==0)
|
|
{
|
|
aff2_scale(naff,1.0,0);
|
|
}
|
|
else
|
|
{
|
|
naff->a11 = aff->a22 / det;
|
|
naff->a22 = aff->a11 / det;
|
|
naff->a21 = - aff->a21 / det;
|
|
naff->a12 = - aff->a12 / det;
|
|
naff->b1 = - naff->a11*aff->b1 - naff->a12*aff->b2;
|
|
naff->b2 = - naff->a21*aff->b1 - naff->a22*aff->b2;
|
|
}
|
|
}
|
|
|
|
void
|
|
aff2_apply(Aff2 *aff, gdouble x, gdouble y,
|
|
gdouble *xf, gdouble *yf)
|
|
{
|
|
gdouble xt = aff->a11*x + aff->a12*y + aff->b1;
|
|
gdouble yt = aff->a21*x + aff->a22*y + aff->b2;
|
|
*xf = xt;
|
|
*yf = yt;
|
|
}
|
|
|
|
/* Find the fixed point of an affine transformation
|
|
(Will return garbage for pure translations) */
|
|
|
|
void
|
|
aff2_fixed_point(Aff2 *aff, gdouble *xf, gdouble *yf)
|
|
{
|
|
Aff2 t1,t2;
|
|
|
|
t1.a11 = 1-aff->a11;
|
|
t1.a22 = 1-aff->a22;
|
|
t1.a12 = -aff->a12;
|
|
t1.a21 = -aff->a21;
|
|
t1.b1 = 0;
|
|
t1.b2 = 0;
|
|
|
|
aff2_invert(&t2,&t1);
|
|
aff2_apply(&t2,aff->b1,aff->b2,xf,yf);
|
|
}
|
|
|
|
void
|
|
aff3_apply (Aff3 *t, gdouble x, gdouble y, gdouble z,
|
|
gdouble *xf, gdouble *yf, gdouble *zf)
|
|
{
|
|
double xt = t->vals[0][0]*x + t->vals[0][1]*y + t->vals[0][2]*z + t->vals[0][3];
|
|
double yt = t->vals[1][0]*x + t->vals[1][1]*y + t->vals[1][2]*z + t->vals[1][3];
|
|
double zt = t->vals[2][0]*x + t->vals[2][1]*y + t->vals[2][2]*z + t->vals[2][3];
|
|
|
|
*xf = xt;
|
|
*yf = yt;
|
|
*zf = zt;
|
|
}
|
|
|
|
static int
|
|
ipolygon_sort_func(const void *a, const void *b)
|
|
{
|
|
if (((SortPoint *)a)->angle < ((SortPoint *)b)->angle)
|
|
return -1;
|
|
else if (((SortPoint *)a)->angle > ((SortPoint *)b)->angle)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* Return a newly-allocated polygon which is the convex hull
|
|
of the given polygon.
|
|
|
|
Uses the Graham scan. see
|
|
http://www.cs.curtin.edu.au/units/cg201/notes/node77.html
|
|
|
|
for a description
|
|
*/
|
|
|
|
IPolygon *
|
|
ipolygon_convex_hull(IPolygon *poly)
|
|
{
|
|
gint num_new = poly->npoints;
|
|
GdkPoint *new_points = g_new(GdkPoint,num_new);
|
|
SortPoint *sort_points = g_new(SortPoint,num_new);
|
|
IPolygon *new_poly = g_new(IPolygon,1);
|
|
|
|
gint i,j;
|
|
gint x1,x2,y1,y2;
|
|
gint lowest;
|
|
GdkPoint lowest_pt;
|
|
|
|
new_poly->points = new_points;
|
|
if (num_new <= 3)
|
|
{
|
|
memcpy(new_points,poly->points,num_new*sizeof(GdkPoint));
|
|
new_poly->npoints = num_new;
|
|
return new_poly;
|
|
}
|
|
|
|
/* scan for the lowest point */
|
|
lowest_pt = poly->points[0];
|
|
lowest = 0;
|
|
|
|
for (i=1;i<num_new;i++)
|
|
if (poly->points[i].y < lowest_pt.y)
|
|
{
|
|
lowest_pt = poly->points[i];
|
|
lowest = i;
|
|
}
|
|
|
|
/* sort by angle from lowest point */
|
|
|
|
for (i=0,j=0;i<num_new;i++,j++)
|
|
{
|
|
if (i==lowest)
|
|
j--;
|
|
else
|
|
{
|
|
gdouble dy = poly->points[i].y - lowest_pt.y;
|
|
gdouble dx = poly->points[i].x - lowest_pt.x;
|
|
|
|
if (dy==0 && dx==0)
|
|
{
|
|
j--;
|
|
num_new--;
|
|
continue;
|
|
}
|
|
sort_points[j].point = poly->points[i];
|
|
sort_points[j].angle = atan2(dy,dx);
|
|
}
|
|
}
|
|
|
|
qsort(sort_points,num_new-1,sizeof(SortPoint),ipolygon_sort_func);
|
|
|
|
/* now ensure that all turns as we trace the perimiter are
|
|
counter-clockwise */
|
|
|
|
new_points[0] = lowest_pt;
|
|
new_points[1] = sort_points[0].point;
|
|
x1 = new_points[1].x - new_points[0].x;
|
|
y1 = new_points[1].y - new_points[0].y;
|
|
|
|
for (i=1,j=2;j<num_new;i++,j++)
|
|
{
|
|
x2 = sort_points[i].point.x - new_points[j-1].x;
|
|
y2 = sort_points[i].point.y - new_points[j-1].y;
|
|
|
|
if (x2==0 && y2==0)
|
|
{
|
|
num_new--;
|
|
j--;
|
|
continue;
|
|
}
|
|
|
|
while (x1*y2 - x2*y1 < 0) /* clockwise rotation */
|
|
{
|
|
num_new--;
|
|
j--;
|
|
x1 = new_points[j-1].x - new_points[j-2].x;
|
|
y1 = new_points[j-1].y - new_points[j-2].y;
|
|
x2 = sort_points[i].point.x - new_points[j-1].x;
|
|
y2 = sort_points[i].point.y - new_points[j-1].y;
|
|
}
|
|
new_points[j] = sort_points[i].point;
|
|
x1 = x2;
|
|
y1 = y2;
|
|
}
|
|
|
|
g_free(sort_points);
|
|
|
|
new_poly->npoints = num_new;
|
|
return new_poly;
|
|
}
|
|
|
|
/* Determines whether a specified point is in the given polygon.
|
|
Based on
|
|
|
|
inpoly.c by Bob Stein and Craig Yap.
|
|
|
|
(Linux Journal, Issue 35 (March 1997), p 68)
|
|
*/
|
|
|
|
gint
|
|
ipolygon_contains(IPolygon *poly, gint xt, gint yt)
|
|
{
|
|
gint xnew, ynew;
|
|
gint xold, yold;
|
|
gint x1,y1;
|
|
gint x2,y2;
|
|
|
|
gint i;
|
|
gint inside = 0;
|
|
|
|
if (poly->npoints < 3)
|
|
return 0;
|
|
|
|
xold=poly->points[poly->npoints-1].x;
|
|
yold=poly->points[poly->npoints-1].y;
|
|
for (i=0;i<poly->npoints;i++)
|
|
{
|
|
xnew = poly->points[i].x;
|
|
ynew = poly->points[i].y;
|
|
if (xnew > xold)
|
|
{
|
|
x1 = xold;
|
|
x2 = xnew;
|
|
y1 = yold;
|
|
y2 = ynew;
|
|
}
|
|
else
|
|
{
|
|
x1 = xnew;
|
|
x2 = xold;
|
|
y1 = ynew;
|
|
y2 = yold;
|
|
}
|
|
if ((xnew < xt) == (xt <= xold) &&
|
|
(yt - y1)*(x2 - x1) < (y2 - y1)*(xt - x1))
|
|
inside = !inside;
|
|
xold = xnew;
|
|
yold = ynew;
|
|
}
|
|
return inside;
|
|
}
|
|
|
|
void
|
|
aff_element_compute_color_trans(AffElement *elem)
|
|
{
|
|
int i,j;
|
|
|
|
if (elem->v.simple_color)
|
|
{
|
|
gdouble mag2 = 0;
|
|
for (i=0;i<3;i++)
|
|
mag2 += SQR(elem->v.target_color.vals[i]);
|
|
|
|
/* For mag2 == 0, the transformation blows up in general
|
|
but is well defined for hue_scale == value_scale, so
|
|
we assume that special case. */
|
|
if (mag2 == 0)
|
|
for (i=0;i<3;i++)
|
|
{
|
|
for (j=0;j<4;j++)
|
|
elem->color_trans.vals[i][j] = 0.0;
|
|
elem->color_trans.vals[i][i] = elem->v.hue_scale;
|
|
}
|
|
else
|
|
for (i=0;i<3;i++)
|
|
{
|
|
for (j=0;j<3;j++)
|
|
{
|
|
elem->color_trans.vals[i][j] = elem->v.target_color.vals[i]
|
|
/ mag2 * (elem->v.value_scale - elem->v.hue_scale);
|
|
if (i==j)
|
|
elem->color_trans.vals[i][j] += elem->v.hue_scale;
|
|
}
|
|
elem->color_trans.vals[i][3] =
|
|
(1-elem->v.value_scale)*elem->v.target_color.vals[i];
|
|
}
|
|
aff3_apply(&elem->color_trans,1.0,0.0,0.0,&elem->v.red_color.vals[0],
|
|
&elem->v.red_color.vals[1],&elem->v.red_color.vals[2]);
|
|
aff3_apply(&elem->color_trans,0.0,1.0,0.0,&elem->v.green_color.vals[0],
|
|
&elem->v.green_color.vals[1],&elem->v.green_color.vals[2]);
|
|
aff3_apply(&elem->color_trans,0.0,0.0,1.0,&elem->v.blue_color.vals[0],
|
|
&elem->v.blue_color.vals[1],&elem->v.blue_color.vals[2]);
|
|
aff3_apply(&elem->color_trans,0.0,0.0,0.0,&elem->v.black_color.vals[0],
|
|
&elem->v.black_color.vals[1],&elem->v.black_color.vals[2]);
|
|
}
|
|
else
|
|
{
|
|
for (i=0;i<3;i++)
|
|
elem->color_trans.vals[i][0] = elem->v.red_color.vals[i]
|
|
- elem->v.black_color.vals[i];
|
|
for (i=0;i<3;i++)
|
|
elem->color_trans.vals[i][1] = elem->v.green_color.vals[i]
|
|
- elem->v.black_color.vals[i];
|
|
for (i=0;i<3;i++)
|
|
elem->color_trans.vals[i][2] = elem->v.blue_color.vals[i]
|
|
- elem->v.black_color.vals[i];
|
|
for (i=0;i<3;i++)
|
|
elem->color_trans.vals[i][3] = elem->v.black_color.vals[i];
|
|
}
|
|
}
|
|
|
|
void
|
|
aff_element_compute_trans(AffElement *elem, gdouble width, gdouble height,
|
|
gdouble center_x, gdouble center_y)
|
|
{
|
|
Aff2 t1, t2, t3;
|
|
|
|
/* create the rotation, scaling and shearing part of the transform */
|
|
aff2_distort(&t1, elem->v.asym, elem->v.shear);
|
|
aff2_scale(&t2, elem->v.scale, elem->v.flip);
|
|
aff2_compose(&t3, &t2, &t1);
|
|
aff2_rotate(&t2, elem->v.theta);
|
|
aff2_compose(&t1, &t2, &t3);
|
|
|
|
/* now create the translational part */
|
|
aff2_translate(&t2, -center_x*width, -center_y*width);
|
|
aff2_compose(&t3, &t1, &t2);
|
|
aff2_translate(&t2, elem->v.x*width, elem->v.y*width);
|
|
aff2_compose(&elem->trans, &t2, &t3);
|
|
}
|
|
|
|
void
|
|
aff_element_decompose_trans(AffElement *elem, Aff2 *aff, gdouble width,
|
|
gdouble height, gdouble center_x,
|
|
gdouble center_y)
|
|
{
|
|
Aff2 t1,t2;
|
|
gdouble det,scale,sign;
|
|
|
|
/* pull of the translational parts */
|
|
aff2_translate(&t1,center_x*width,center_y*width);
|
|
aff2_compose(&t2,aff,&t1);
|
|
|
|
elem->v.x = t2.b1 / width;
|
|
elem->v.y = t2.b2 / width;
|
|
|
|
det = t2.a11*t2.a22 - t2.a12*t2.a21;
|
|
|
|
if (det == 0.0)
|
|
{
|
|
elem->v.scale = 0.0;
|
|
elem->v.theta = 0.0;
|
|
elem->v.asym = 1.0;
|
|
elem->v.shear = 0.0;
|
|
elem->v.flip = 0;
|
|
}
|
|
else
|
|
{
|
|
if (det >= 0)
|
|
{
|
|
scale = elem->v.scale = sqrt(det);
|
|
sign = 1;
|
|
elem->v.flip = 0;
|
|
}
|
|
else
|
|
{
|
|
scale = elem->v.scale = sqrt(-det);
|
|
sign = -1;
|
|
elem->v.flip = 1;
|
|
}
|
|
|
|
elem->v.theta = atan2(-t2.a21,t2.a11);
|
|
|
|
if (cos(elem->v.theta) == 0.0)
|
|
{
|
|
elem->v.asym = - t2.a21 / scale / sin(elem->v.theta);
|
|
elem->v.shear = - sign * t2.a22 / scale / sin(elem->v.theta);
|
|
}
|
|
else
|
|
{
|
|
elem->v.asym = sign * t2.a11 / scale / cos(elem->v.theta);
|
|
elem->v.shear = sign *
|
|
(t2.a12/scale - sin(elem->v.theta)/elem->v.asym)
|
|
/ cos(elem->v.theta);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
aff_element_compute_click_boundary(AffElement *elem, int num_elements,
|
|
gdouble *points_x, gdouble *points_y)
|
|
{
|
|
gint i;
|
|
gdouble xtot = 0;
|
|
gdouble ytot = 0;
|
|
gdouble xc, yc;
|
|
gdouble theta;
|
|
gdouble sth,cth; /* sin(theta), cos(theta) */
|
|
gdouble axis1,axis2;
|
|
gdouble axis1max, axis2max, axis1min, axis2min;
|
|
|
|
/* compute the center of mass of the points */
|
|
for (i=0; i<num_elements; i++)
|
|
{
|
|
xtot += points_x[i];
|
|
ytot += points_y[i];
|
|
}
|
|
xc = xtot/num_elements;
|
|
yc = ytot/num_elements;
|
|
|
|
/* compute the sum of the (x+iy)^2, and take half the the resulting
|
|
angle (xtot+iytot = A*exp(2i*theta)), to get an average direction */
|
|
|
|
xtot = 0;
|
|
ytot = 0;
|
|
for (i=0; i<num_elements; i++)
|
|
{
|
|
xtot += SQR(points_x[i]-xc)-SQR(points_y[i]-yc);
|
|
ytot += 2*(points_x[i]-xc)*(points_y[i]-yc);
|
|
}
|
|
theta = 0.5*atan2(ytot,xtot);
|
|
sth = sin(theta);
|
|
cth = cos(theta);
|
|
|
|
/* compute the minimum rectangle at angle theta that bounds the points,
|
|
1/2 side lenghs left in axis1, axis2, center in xc, yc */
|
|
|
|
axis1max = axis1min = 0.0;
|
|
axis2max = axis2min = 0.0;
|
|
for (i=0; i<num_elements; i++)
|
|
{
|
|
gdouble proj1 = (points_x[i]-xc)*cth + (points_y[i]-yc)*sth;
|
|
gdouble proj2 = -(points_x[i]-xc)*sth + (points_y[i]-yc)*cth;
|
|
if (proj1 < axis1min)
|
|
axis1min = proj1;
|
|
if (proj1 > axis1max)
|
|
axis1max = proj1;
|
|
if (proj2 < axis2min)
|
|
axis2min = proj2;
|
|
if (proj2 > axis2max)
|
|
axis2max = proj2;
|
|
}
|
|
axis1 = 0.5*(axis1max - axis1min);
|
|
axis2 = 0.5*(axis2max - axis2min);
|
|
xc += 0.5*((axis1max + axis1min)*cth - (axis2max+axis2min)*sth);
|
|
yc += 0.5*((axis1max + axis1min)*sth + (axis2max+axis2min)*cth);
|
|
|
|
/* if the the rectangle is less than 10 pixels in any dimension,
|
|
make it click_boundary, otherwise set click_boundary = draw_boundary */
|
|
|
|
if (axis1 < 8.0 || axis2 < 8.0)
|
|
{
|
|
GdkPoint *points = g_new(GdkPoint,4);
|
|
|
|
elem->click_boundary = g_new(IPolygon,1);
|
|
elem->click_boundary->points = points;
|
|
elem->click_boundary->npoints = 4;
|
|
|
|
if (axis1 < 8.0) axis1 = 8.0;
|
|
if (axis2 < 8.0) axis2 = 8.0;
|
|
|
|
points[0].x = xc + axis1*cth - axis2*sth;
|
|
points[0].y = yc + axis1*sth + axis2*cth;
|
|
points[1].x = xc - axis1*cth - axis2*sth;
|
|
points[1].y = yc - axis1*sth + axis2*cth;
|
|
points[2].x = xc - axis1*cth + axis2*sth;
|
|
points[2].y = yc - axis1*sth - axis2*cth;
|
|
points[3].x = xc + axis1*cth + axis2*sth;
|
|
points[3].y = yc + axis1*sth - axis2*cth;
|
|
}
|
|
else
|
|
elem->click_boundary = elem->draw_boundary;
|
|
}
|
|
|
|
void
|
|
aff_element_compute_boundary(AffElement *elem, gint width,
|
|
gint height,
|
|
AffElement **elements,
|
|
int num_elements)
|
|
{
|
|
int i;
|
|
IPolygon tmp_poly;
|
|
gdouble *points_x;
|
|
gdouble *points_y;
|
|
|
|
if (elem->click_boundary && elem->click_boundary != elem->draw_boundary)
|
|
g_free(elem->click_boundary);
|
|
if (elem->draw_boundary)
|
|
g_free(elem->draw_boundary);
|
|
|
|
tmp_poly.npoints = num_elements;
|
|
tmp_poly.points = g_new(GdkPoint,num_elements);
|
|
points_x = g_new(gdouble,num_elements);
|
|
points_y = g_new(gdouble,num_elements);
|
|
|
|
for (i=0;i<num_elements;i++)
|
|
{
|
|
aff2_apply(&elem->trans,elements[i]->v.x*width,elements[i]->v.y*width,
|
|
&points_x[i],&points_y[i]);
|
|
tmp_poly.points[i].x = (gint)points_x[i];
|
|
tmp_poly.points[i].y = (gint)points_y[i];
|
|
}
|
|
|
|
elem->draw_boundary = ipolygon_convex_hull(&tmp_poly);
|
|
aff_element_compute_click_boundary(elem,num_elements,points_x,points_y);
|
|
|
|
g_free(tmp_poly.points);
|
|
}
|
|
|
|
void
|
|
aff_element_draw(AffElement *elem, gint selected,
|
|
gint width, gint height,
|
|
GdkDrawable *win,
|
|
GdkGC *normal_gc,GdkGC *selected_gc,
|
|
GdkFont *font)
|
|
{
|
|
GdkGC *gc;
|
|
gint string_width = gdk_string_width (font,elem->name);
|
|
gint string_height = font->ascent + font->descent + 2;
|
|
|
|
if (selected)
|
|
gc = selected_gc;
|
|
else
|
|
gc = normal_gc;
|
|
|
|
gdk_draw_string(win,font,gc,
|
|
elem->v.x*width-string_width/2,
|
|
elem->v.y*width+string_height/2,elem->name);
|
|
|
|
if (elem->click_boundary != elem->draw_boundary)
|
|
gdk_draw_polygon(win,normal_gc,FALSE,elem->click_boundary->points,
|
|
elem->click_boundary->npoints);
|
|
|
|
gdk_draw_polygon(win,gc,FALSE,elem->draw_boundary->points,
|
|
elem->draw_boundary->npoints);
|
|
}
|
|
|
|
AffElement *
|
|
aff_element_new(gdouble x, gdouble y, IfsColor color, gint count)
|
|
{
|
|
AffElement *elem = g_new(AffElement, 1);
|
|
char buffer[16];
|
|
|
|
elem->v.x = x;
|
|
elem->v.y = y;
|
|
elem->v.theta = 0.0;
|
|
elem->v.scale = 0.5;
|
|
elem->v.asym = 1.0;
|
|
elem->v.shear = 0.0;
|
|
elem->v.flip = 0;
|
|
|
|
elem->v.red_color = color;
|
|
elem->v.blue_color = color;
|
|
elem->v.green_color = color;
|
|
elem->v.black_color = color;
|
|
|
|
elem->v.target_color = color;
|
|
elem->v.hue_scale = 0.5;
|
|
elem->v.value_scale = 0.5;
|
|
|
|
elem->v.simple_color = TRUE;
|
|
|
|
elem->draw_boundary = NULL;
|
|
elem->click_boundary = NULL;
|
|
|
|
aff_element_compute_color_trans(elem);
|
|
|
|
elem->v.prob = 1.0;
|
|
|
|
sprintf(buffer,"%d",count);
|
|
elem->name = g_strdup(buffer);
|
|
|
|
return elem;
|
|
}
|
|
|
|
void
|
|
aff_element_free(AffElement *elem)
|
|
{
|
|
if (elem->click_boundary != elem->draw_boundary)
|
|
g_free(elem->click_boundary);
|
|
g_free(elem->draw_boundary);
|
|
g_free(elem);
|
|
}
|
|
|
|
#ifdef DEBUG_BRUSH
|
|
static brush_chars[] = {' ',':','*','@'};
|
|
#endif
|
|
|
|
static guchar *
|
|
create_brush(IfsComposeVals *ifsvals, gint *brush_size, gdouble *brush_offset)
|
|
{
|
|
gint i,j;
|
|
gint ii,jj;
|
|
guchar *brush;
|
|
#ifdef DEBUG_BRUSH
|
|
gdouble totpix = 0.0;
|
|
#endif
|
|
|
|
gdouble radius = ifsvals->radius * ifsvals->subdivide;
|
|
*brush_size = ceil(2*radius);
|
|
*brush_offset = 0.5 * (*brush_size-1);
|
|
|
|
brush = g_new(guchar,SQR(*brush_size));
|
|
|
|
for (i=0;i<*brush_size;i++)
|
|
{
|
|
for (j=0;j<*brush_size;j++)
|
|
{
|
|
gdouble d = sqrt(SQR(i-*brush_offset)+SQR(j-*brush_offset));
|
|
gdouble pixel = 0.0;
|
|
|
|
if (d-0.5*sqrt(2) > radius)
|
|
pixel = 0.0;
|
|
else if (d+0.5*sqrt(2) < radius)
|
|
pixel = 1.0;
|
|
else
|
|
for (ii=0;ii<10;ii++)
|
|
for (jj=0;jj<10;jj++)
|
|
{
|
|
d = sqrt(SQR(i-*brush_offset+ii*0.1-0.45)
|
|
+SQR(j-*brush_offset+jj*0.1-0.45));
|
|
pixel += (d<radius)/100.0;
|
|
}
|
|
brush[i**brush_size+j] = 255.999*pixel;
|
|
#ifdef DEBUG_BRUSH
|
|
putchar(brush_chars[(int)(pixel*3.999)]);
|
|
totpix += pixel;
|
|
#endif /* DEBUG_BRUSH */
|
|
}
|
|
#ifdef DEBUG_BRUSH
|
|
putchar('\n');
|
|
#endif /* DEBUG_BRUSH */
|
|
}
|
|
#ifdef DEBUG_BRUSH
|
|
printf("Brush total / area = %f\n",totpix/SQR(ifsvals->subdivide));
|
|
#endif /* DEBUG_BRUSH */
|
|
return brush;
|
|
}
|
|
|
|
void
|
|
ifs_render(AffElement **elements, gint num_elements,
|
|
gint width, gint height, gint nsteps,
|
|
IfsComposeVals *vals, gint band_y, gint band_height,
|
|
guchar *data, guchar *mask, guchar *nhits, gint preview)
|
|
{
|
|
gint i,k;
|
|
gdouble x,y;
|
|
gdouble r,g,b;
|
|
gint ri,gi,bi;
|
|
gint p0,psum;
|
|
gdouble pt;
|
|
guchar *ptr;
|
|
gint *prob;
|
|
gdouble *fprob;
|
|
gint subdivide;
|
|
|
|
guchar *brush = NULL;
|
|
gint brush_size;
|
|
gdouble brush_offset;
|
|
|
|
if (preview)
|
|
subdivide = 1;
|
|
else
|
|
subdivide = vals->subdivide;
|
|
|
|
/* compute the probabilities and transforms */
|
|
fprob = g_new(gdouble,num_elements);
|
|
prob = g_new(gint,num_elements);
|
|
pt = 0.0;
|
|
for (i=0;i<num_elements;i++)
|
|
{
|
|
aff_element_compute_trans(elements[i],width*subdivide,height*subdivide,
|
|
vals->center_x, vals->center_y);
|
|
fprob[i] = fabs(
|
|
elements[i]->trans.a11 * elements[i]->trans.a22
|
|
- elements[i]->trans.a12 * elements[i]->trans.a21);
|
|
/* As a heuristic, if the determinant is really small, it's
|
|
probably a line element, so increase the probability so
|
|
it gets rendered */
|
|
/* FIXME: figure out what 0.01 really should be */
|
|
if (fprob[i] < 0.01) fprob[i] = 0.01;
|
|
fprob[i] *= elements[i]->v.prob;
|
|
|
|
pt += fprob[i];
|
|
}
|
|
|
|
psum = 0;
|
|
for (i=0;i<num_elements;i++)
|
|
{
|
|
psum += G_MAXRAND * (fprob[i]/pt);
|
|
prob[i] = psum;
|
|
}
|
|
prob[i-1] = G_MAXRAND; /* make sure we don't get bitten
|
|
by roundoff*/
|
|
/* create the brush */
|
|
if (!preview)
|
|
brush = create_brush(vals,&brush_size,&brush_offset);
|
|
|
|
x = y = 0;
|
|
r = g = b = 0;
|
|
|
|
/* now run the iteration */
|
|
for (i=0;i<nsteps;i++)
|
|
{
|
|
if (!preview && !(i % 5000))
|
|
gimp_progress_update ((gdouble) i / (gdouble) nsteps);
|
|
p0 = rand();
|
|
k=0;
|
|
while (p0 > prob[k])
|
|
k++;
|
|
|
|
aff2_apply(&elements[k]->trans,x,y,&x,&y);
|
|
aff3_apply(&elements[k]->color_trans,r,g,b,&r,&g,&b);
|
|
if (i<50) continue;
|
|
|
|
ri= (gint)(255.999*r);
|
|
gi = (gint)(255.999*g);
|
|
bi = (gint)(255.999*b);
|
|
|
|
if (preview)
|
|
{
|
|
if ((x<width) && (y<(band_y+band_height)) &&
|
|
(x >= 0) && (y >= band_y) &&
|
|
(ri >= 0) && (ri < 256) &&
|
|
(gi >= 0) && (gi < 256) &&
|
|
(bi >= 0) && (bi < 256))
|
|
{
|
|
ptr = data + 3 * (((gint)(y-band_y))*width + (gint)x);
|
|
*ptr++ = ri;
|
|
*ptr++ = gi;
|
|
*ptr = bi;
|
|
}
|
|
}
|
|
else
|
|
if ((ri >= 0) && (ri < 256) &&
|
|
(gi >= 0) && (gi < 256) &&
|
|
(bi >= 0) && (bi < 256))
|
|
{
|
|
guint m_old;
|
|
guint m_new;
|
|
guint m_pix;
|
|
guint n_hits;
|
|
guint old_scale;
|
|
guint pix_scale;
|
|
|
|
gint index;
|
|
gint ii,jj;
|
|
gint jj0 = floor(y-brush_offset-band_y*subdivide);
|
|
gint ii0 = floor(x-brush_offset);
|
|
gint jjmax,iimax;
|
|
gint jjmin = 0;
|
|
gint iimin = 0;
|
|
|
|
if (ii0 < 0)
|
|
iimin = - ii0;
|
|
else
|
|
iimin = 0;
|
|
|
|
if (jj0 < 0)
|
|
jjmin = - jj0;
|
|
else
|
|
jjmin = 0;
|
|
|
|
if (jj0+brush_size >= subdivide*band_height)
|
|
jjmax = subdivide*band_height - jj0;
|
|
else
|
|
jjmax = brush_size;
|
|
|
|
if (ii0+brush_size >= subdivide*width)
|
|
iimax = subdivide*width - ii0;
|
|
else
|
|
iimax = brush_size;
|
|
|
|
for (jj=jjmin;jj<jjmax;jj++)
|
|
for (ii=iimin;ii<iimax;ii++)
|
|
{
|
|
index = (jj0+jj)*width*subdivide + ii0 + ii;
|
|
n_hits = nhits[index];
|
|
if (n_hits == 255)
|
|
continue;
|
|
|
|
m_pix = brush[jj*brush_size+ii];
|
|
if (!m_pix)
|
|
continue;
|
|
nhits[index] = ++n_hits;
|
|
m_old = mask[index];
|
|
m_new = m_old + m_pix - m_old*m_pix/255;
|
|
mask[index] = m_new;
|
|
|
|
/* relative probability that old colored pixel is on top */
|
|
old_scale = m_old*(255*n_hits-m_pix);
|
|
/* relative probability that new colored pixel is on top */
|
|
pix_scale = m_pix*((255-m_old)*n_hits+m_old);
|
|
|
|
ptr = data + 3*index;
|
|
*ptr = ( old_scale * (*ptr) + pix_scale * ri ) /
|
|
( old_scale + pix_scale );
|
|
ptr++;
|
|
*ptr = ( old_scale * (*ptr) + pix_scale * gi ) /
|
|
( old_scale + pix_scale );
|
|
ptr++;
|
|
*ptr = ( old_scale * (*ptr) + pix_scale * bi ) /
|
|
( old_scale + pix_scale );
|
|
}
|
|
}
|
|
} /* main iteration */
|
|
|
|
if (brush)
|
|
g_free(brush);
|
|
g_free(prob);
|
|
g_free(fprob);
|
|
}
|