gimp/app/paint-funcs/paint-funcs.c

4648 lines
126 KiB
C

/* GIMP - The GNU Image Manipulation Program
* Copyright (C) 1995 Spencer Kimball and Peter Mattis
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <string.h>
#include <glib-object.h>
#include "libgimpcolor/gimpcolor.h"
#include "libgimpmath/gimpmath.h"
#include "paint-funcs-types.h"
#include "base/pixel-processor.h"
#include "base/pixel-region.h"
#include "base/temp-buf.h"
#include "base/tile-manager.h"
#include "base/tile-rowhints.h"
#include "base/tile.h"
#include "composite/gimp-composite.h"
#include "paint-funcs.h"
#include "layer-modes.h"
#include "paint-funcs-utils.h"
#include "paint-funcs-generic.h"
#define EPSILON 0.0001
#define LOG_1_255 -5.541263545 /* log (1.0 / 255.0) */
/* Layer modes information */
typedef struct _LayerMode LayerMode;
struct _LayerMode
{
const guint affect_alpha : 1; /* does the layer mode affect the
alpha channel */
const guint increase_opacity : 1; /* layer mode can increase opacity */
const guint decrease_opacity : 1; /* layer mode can decrease opacity */
};
static const LayerMode layer_modes[] =
/* This must be in the same order as the
* corresponding values in GimpLayerModeEffects.
*/
{
{ TRUE, TRUE, FALSE, }, /* GIMP_NORMAL_MODE */
{ TRUE, TRUE, FALSE, }, /* GIMP_DISSOLVE_MODE */
{ TRUE, TRUE, FALSE, }, /* GIMP_BEHIND_MODE */
{ FALSE, FALSE, FALSE, }, /* GIMP_MULTIPLY_MODE */
{ FALSE, FALSE, FALSE, }, /* GIMP_SCREEN_MODE */
{ FALSE, FALSE, FALSE, }, /* GIMP_OVERLAY_MODE */
{ FALSE, FALSE, FALSE, }, /* GIMP_DIFFERENCE_MODE */
{ FALSE, FALSE, FALSE, }, /* GIMP_ADDITION_MODE */
{ FALSE, FALSE, FALSE, }, /* GIMP_SUBTRACT_MODE */
{ FALSE, FALSE, FALSE, }, /* GIMP_DARKEN_ONLY_MODE */
{ FALSE, FALSE, FALSE, }, /* GIMP_LIGHTEN_ONLY_MODE */
{ FALSE, FALSE, FALSE, }, /* GIMP_HUE_MODE */
{ FALSE, FALSE, FALSE, }, /* GIMP_SATURATION_MODE */
{ FALSE, FALSE, FALSE, }, /* GIMP_COLOR_MODE */
{ FALSE, FALSE, FALSE, }, /* GIMP_VALUE_MODE */
{ FALSE, FALSE, FALSE, }, /* GIMP_DIVIDE_MODE */
{ FALSE, FALSE, FALSE, }, /* GIMP_DODGE_MODE */
{ FALSE, FALSE, FALSE, }, /* GIMP_BURN_MODE */
{ FALSE, FALSE, FALSE, }, /* GIMP_HARDLIGHT_MODE */
{ FALSE, FALSE, FALSE, }, /* GIMP_SOFTLIGHT_MODE */
{ FALSE, FALSE, FALSE, }, /* GIMP_GRAIN_EXTRACT_MODE */
{ FALSE, FALSE, FALSE, }, /* GIMP_GRAIN_MERGE_MODE */
{ TRUE, FALSE, TRUE, }, /* GIMP_COLOR_ERASE_MODE */
{ TRUE, FALSE, TRUE, }, /* GIMP_ERASE_MODE */
{ TRUE, TRUE, TRUE, }, /* GIMP_REPLACE_MODE */
{ TRUE, TRUE, FALSE, } /* GIMP_ANTI_ERASE_MODE */
};
typedef void (* LayerModeFunc) (struct apply_layer_mode_struct *);
static const LayerModeFunc layer_mode_funcs[] =
{
layer_normal_mode,
layer_dissolve_mode,
layer_behind_mode,
layer_multiply_mode,
layer_screen_mode,
layer_overlay_mode,
layer_difference_mode,
layer_addition_mode,
layer_subtract_mode,
layer_darken_only_mode,
layer_lighten_only_mode,
layer_hue_mode,
layer_saturation_mode,
layer_color_mode,
layer_value_mode,
layer_divide_mode,
layer_dodge_mode,
layer_burn_mode,
layer_hardlight_mode,
layer_softlight_mode,
layer_grain_extract_mode,
layer_grain_merge_mode,
layer_color_erase_mode,
layer_erase_mode,
layer_replace_mode,
layer_anti_erase_mode
};
static const guchar no_mask = OPAQUE_OPACITY;
/* Local function prototypes */
static gint * make_curve (gdouble sigma_square,
gint *length);
static gdouble cubic (gdouble dx,
gint jm1,
gint j,
gint jp1,
gint jp2);
static void apply_layer_mode_replace (const guchar *src1,
const guchar *src2,
guchar *dest,
const guchar *mask,
gint x,
gint y,
guint opacity,
guint length,
guint bytes1,
guint bytes2,
const gboolean *affect);
static inline void rotate_pointers (guchar **p,
guint32 n);
/*
* The equations: g(r) = exp (- r^2 / (2 * sigma^2))
* r = sqrt (x^2 + y^2)
*/
static gint *
make_curve (gdouble sigma_square,
gint *length)
{
const gdouble sigma2 = 2 * sigma_square;
const gdouble l = sqrt (-sigma2 * LOG_1_255);
gint *curve;
gint i, n;
n = ceil (l) * 2;
if ((n % 2) == 0)
n += 1;
curve = g_new (gint, n);
*length = n / 2;
curve += *length;
curve[0] = 255;
for (i = 1; i <= *length; i++)
{
gint temp = (gint) (exp (- SQR (i) / sigma2) * 255);
curve[-i] = temp;
curve[i] = temp;
}
return curve;
}
static inline void
run_length_encode (const guchar *src,
guint *dest,
guint w,
guint bytes)
{
guint start;
guint i;
guint j;
guchar last;
last = *src;
src += bytes;
start = 0;
for (i = 1; i < w; i++)
{
if (*src != last)
{
for (j = start; j < i; j++)
{
*dest++ = (i - j);
*dest++ = last;
}
start = i;
last = *src;
}
src += bytes;
}
for (j = start; j < i; j++)
{
*dest++ = (i - j);
*dest++ = last;
}
}
/* Note: cubic function no longer clips result */
static inline gdouble
cubic (gdouble dx,
gint jm1,
gint j,
gint jp1,
gint jp2)
{
/* Catmull-Rom - not bad */
return (gdouble) ((( ( - jm1 + 3 * j - 3 * jp1 + jp2 ) * dx +
( 2 * jm1 - 5 * j + 4 * jp1 - jp2 ) ) * dx +
( - jm1 + jp1 ) ) * dx + (j + j) ) / 2.0;
}
/*********************/
/* FUNCTIONS */
/*********************/
void
paint_funcs_setup (void)
{
layer_modes_setup ();
}
void
paint_funcs_free (void)
{
}
void
combine_indexed_and_indexed_pixels (const guchar *src1,
const guchar *src2,
guchar *dest,
const guchar *mask,
const guint opacity,
const gboolean *affect,
guint length,
const guint bytes)
{
if (mask)
{
const guchar *m = mask;
while (length --)
{
register gulong tmp;
const guchar new_alpha = INT_MULT (*m , opacity, tmp);
guint b;
for (b = 0; b < bytes; b++)
dest[b] = (affect[b] && new_alpha > 127) ? src2[b] : src1[b];
m++;
src1 += bytes;
src2 += bytes;
dest += bytes;
}
}
else
{
while (length --)
{
guint b;
for (b = 0; b < bytes; b++)
dest[b] = (affect[b] && opacity > 127) ? src2[b] : src1[b];
src1 += bytes;
src2 += bytes;
dest += bytes;
}
}
}
void
combine_indexed_and_indexed_a_pixels (const guchar *src1,
const guchar *src2,
guchar *dest,
const guchar *mask,
const guint opacity,
const gboolean *affect,
guint length,
const guint bytes)
{
const gint alpha = 1;
const gint src2_bytes = 2;
if (mask)
{
const guchar *m = mask;
while (length --)
{
register gulong tmp;
const guchar new_alpha = INT_MULT3 (src2[alpha], *m, opacity, tmp);
guint b;
for (b = 0; b < bytes; b++)
dest[b] = (affect[b] && new_alpha > 127) ? src2[b] : src1[b];
m++;
src1 += bytes;
src2 += src2_bytes;
dest += bytes;
}
}
else
{
while (length --)
{
register gulong tmp;
const guchar new_alpha = INT_MULT (src2[alpha], opacity, tmp);
guint b;
for (b = 0; b < bytes; b++)
dest[b] = (affect[b] && new_alpha > 127) ? src2[b] : src1[b];
src1 += bytes;
src2 += src2_bytes;
dest += bytes;
}
}
}
void
combine_indexed_a_and_indexed_a_pixels (const guchar *src1,
const guchar *src2,
guchar *dest,
const guchar *mask,
const guint opacity,
const gboolean *affect,
guint length,
const guint bytes)
{
const gint alpha = 1;
if (mask)
{
const guchar *m = mask;
while (length --)
{
register gulong tmp;
const guchar new_alpha = INT_MULT3 (src2[alpha], *m, opacity, tmp);
guint b;
for (b = 0; b < alpha; b++)
dest[b] = (affect[b] && new_alpha > 127) ? src2[b] : src1[b];
dest[alpha] = (affect[alpha] && new_alpha > 127) ?
OPAQUE_OPACITY : src1[alpha];
m++;
src1 += bytes;
src2 += bytes;
dest += bytes;
}
}
else
{
while (length --)
{
register gulong tmp;
const guchar new_alpha = INT_MULT (src2[alpha], opacity, tmp);
guint b;
for (b = 0; b < alpha; b++)
dest[b] = (affect[b] && new_alpha > 127) ? src2[b] : src1[b];
dest[alpha] = (affect[alpha] && new_alpha > 127) ?
OPAQUE_OPACITY : src1[alpha];
src1 += bytes;
src2 += bytes;
dest += bytes;
}
}
}
void
combine_inten_a_and_indexed_pixels (const guchar *src1,
const guchar *src2,
guchar *dest,
const guchar *mask,
const guchar *cmap,
const guint opacity,
guint length,
const guint bytes)
{
const gint src2_bytes = 1;
if (mask)
{
const guchar *m = mask;
while (length --)
{
register gulong tmp;
const guint index = src2[0] * 3;
const guchar new_alpha = INT_MULT3 (255, *m, opacity, tmp);
guint b;
for (b = 0; b < bytes - 1; b++)
dest[b] = (new_alpha > 127) ? cmap[index + b] : src1[b];
dest[b] = (new_alpha > 127) ? OPAQUE_OPACITY : src1[b];
/* alpha channel is opaque */
m++;
src1 += bytes;
src2 += src2_bytes;
dest += bytes;
}
}
else
{
while (length --)
{
register gulong tmp;
const guint index = src2[0] * 3;
const guchar new_alpha = INT_MULT (255, opacity, tmp);
guint b;
for (b = 0; b < bytes - 1; b++)
dest[b] = (new_alpha > 127) ? cmap[index + b] : src1[b];
dest[b] = (new_alpha > 127) ? OPAQUE_OPACITY : src1[b];
/* alpha channel is opaque */
src1 += bytes;
src2 += src2_bytes;
dest += bytes;
}
}
}
void
combine_inten_a_and_indexed_a_pixels (const guchar *src1,
const guchar *src2,
guchar *dest,
const guchar *mask,
const guchar *cmap,
const guint opacity,
guint length,
const guint bytes)
{
const gint alpha = 1;
const gint src2_bytes = 2;
if (mask)
{
const guchar *m = mask;
while (length --)
{
register gulong tmp;
guint index = src2[0] * 3;
const guchar new_alpha = INT_MULT3 (src2[alpha], *m, opacity, tmp);
guint b;
for (b = 0; b < bytes - 1; b++)
dest[b] = (new_alpha > 127) ? cmap[index + b] : src1[b];
dest[b] = (new_alpha > 127) ? OPAQUE_OPACITY : src1[b];
/* alpha channel is opaque */
m++;
src1 += bytes;
src2 += src2_bytes;
dest += bytes;
}
}
else
{
while (length --)
{
register gulong tmp;
guint index = src2[0] * 3;
const guchar new_alpha = INT_MULT (src2[alpha], opacity, tmp);
guint b;
for (b = 0; b < bytes - 1; b++)
dest[b] = (new_alpha > 127) ? cmap[index + b] : src1[b];
dest[b] = (new_alpha > 127) ? OPAQUE_OPACITY : src1[b];
/* alpha channel is opaque */
src1 += bytes;
src2 += src2_bytes;
dest += bytes;
}
}
}
void
combine_inten_and_inten_pixels (const guchar *src1,
const guchar *src2,
guchar *dest,
const guchar *mask,
const guint opacity,
const gboolean *affect,
guint length,
const guint bytes)
{
if (mask)
{
const guchar *m = mask;
while (length --)
{
register gulong tmp;
const guchar new_alpha = INT_MULT (*m, opacity, tmp);
guint b;
for (b = 0; b < bytes; b++)
dest[b] = (affect[b] ?
INT_BLEND (src2[b], src1[b], new_alpha, tmp) : src1[b]);
m++;
src1 += bytes;
src2 += bytes;
dest += bytes;
}
}
else
{
while (length --)
{
register gulong tmp;
guint b;
for (b = 0; b < bytes; b++)
dest[b] = (affect[b] ?
INT_BLEND (src2[b], src1[b], opacity, tmp) : src1[b]);
src1 += bytes;
src2 += bytes;
dest += bytes;
}
}
}
void
combine_inten_and_inten_a_pixels (const guchar *src1,
const guchar *src2,
guchar *dest,
const guchar *mask,
const guint opacity,
const gboolean *affect,
guint length,
const guint bytes)
{
const gint alpha = bytes;
const gint src2_bytes = bytes + 1;
if (mask)
{
const guchar *m = mask;
while (length --)
{
register glong t1;
const guchar new_alpha = INT_MULT3 (src2[alpha], *m, opacity, t1);
guint b;
for (b = 0; b < bytes; b++)
dest[b] = (affect[b] ?
INT_BLEND (src2[b], src1[b], new_alpha, t1) : src1[b]);
m++;
src1 += bytes;
src2 += src2_bytes;
dest += bytes;
}
}
else
{
if (bytes == 3 && affect[0] && affect[1] && affect[2])
{
while (length --)
{
register glong t1;
const guchar new_alpha = INT_MULT (src2[alpha], opacity, t1);
dest[0] = INT_BLEND (src2[0], src1[0], new_alpha, t1);
dest[1] = INT_BLEND (src2[1], src1[1], new_alpha, t1);
dest[2] = INT_BLEND (src2[2], src1[2], new_alpha, t1);
src1 += bytes;
src2 += src2_bytes;
dest += bytes;
}
}
else
{
while (length --)
{
register glong t1;
const guchar new_alpha = INT_MULT (src2[alpha], opacity, t1);
guint b;
for (b = 0; b < bytes; b++)
dest[b] = (affect[b] ?
INT_BLEND (src2[b], src1[b], new_alpha, t1) :
src1[b]);
src1 += bytes;
src2 += src2_bytes;
dest += bytes;
}
}
}
}
#define alphify(src2_alpha,new_alpha) \
if (src2_alpha != 0 && new_alpha != 0) \
{ \
b = alpha; \
if (src2_alpha == new_alpha){ \
do { \
b--; dest [b] = affect [b] ? src2 [b] : src1 [b];} while (b); \
} else { \
ratio = (float) src2_alpha / new_alpha; \
compl_ratio = 1.0 - ratio; \
\
do { b--; \
dest[b] = affect[b] ? \
(guchar) (src2[b] * ratio + src1[b] * compl_ratio + EPSILON) : src1[b];\
} while (b); \
} \
}
void
combine_inten_a_and_inten_pixels (const guchar *src1,
const guchar *src2,
guchar *dest,
const guchar *mask,
const guint opacity,
const gboolean *affect,
const gboolean mode_affect, /* how does the combination mode affect alpha? */
guint length,
const guint bytes) /* 4 or 2 depending on RGBA or GRAYA */
{
const gint src2_bytes = bytes - 1;
const gint alpha = bytes - 1;
gint b;
gfloat ratio;
gfloat compl_ratio;
if (mask)
{
const guchar *m = mask;
if (opacity == OPAQUE_OPACITY) /* HAS MASK, FULL OPACITY */
{
while (length--)
{
register gulong tmp;
guchar src2_alpha = *m;
guchar new_alpha =
src1[alpha] + INT_MULT ((255 - src1[alpha]), src2_alpha, tmp);
alphify (src2_alpha, new_alpha);
if (mode_affect)
{
dest[alpha] = (affect[alpha]) ? new_alpha : src1[alpha];
}
else
{
dest[alpha] = (src1[alpha]) ? src1[alpha] :
(affect[alpha] ? new_alpha : src1[alpha]);
}
m++;
src1 += bytes;
src2 += src2_bytes;
dest += bytes;
}
}
else /* HAS MASK, SEMI-OPACITY */
{
while (length--)
{
register gulong tmp;
guchar src2_alpha = INT_MULT (*m, opacity, tmp);
guchar new_alpha =
src1[alpha] + INT_MULT ((255 - src1[alpha]), src2_alpha, tmp);
alphify (src2_alpha, new_alpha);
if (mode_affect)
{
dest[alpha] = (affect[alpha]) ? new_alpha : src1[alpha];
}
else
{
dest[alpha] = (src1[alpha] ?
src1[alpha] : (affect[alpha] ?
new_alpha : src1[alpha]));
}
m++;
src1 += bytes;
src2 += src2_bytes;
dest += bytes;
}
}
}
else /* NO MASK */
{
while (length --)
{
register gulong tmp;
guchar src2_alpha = opacity;
guchar new_alpha =
src1[alpha] + INT_MULT ((255 - src1[alpha]), src2_alpha, tmp);
alphify (src2_alpha, new_alpha);
if (mode_affect)
dest[alpha] = (affect[alpha]) ? new_alpha : src1[alpha];
else
dest[alpha] = (src1[alpha] ?
src1[alpha] : (affect[alpha] ?
new_alpha : src1[alpha]));
src1 += bytes;
src2 += src2_bytes;
dest += bytes;
}
}
}
void
combine_inten_a_and_inten_a_pixels (const guchar *src1,
const guchar *src2,
guchar *dest,
const guchar *mask,
const guint opacity,
const gboolean *affect,
const gboolean mode_affect, /* how does the combination mode affect alpha? */
guint length,
const guint bytes) /* 4 or 2 depending on RGBA or GRAYA */
{
const guint alpha = bytes - 1;
guint b;
gfloat ratio;
gfloat compl_ratio;
if (mask)
{
const guchar *m = mask;
if (opacity == OPAQUE_OPACITY) /* HAS MASK, FULL OPACITY */
{
const gint *mask_ip;
gint i, j;
if (length >= sizeof (gint))
{
/* HEAD */
i = (GPOINTER_TO_INT(m) & (sizeof (gint) - 1));
if (i != 0)
{
i = sizeof (gint) - i;
length -= i;
while (i--)
{
/* GUTS */
register gulong tmp;
guchar src2_alpha = INT_MULT (src2[alpha], *m, tmp);
guchar new_alpha =
src1[alpha] +
INT_MULT ((255 - src1[alpha]), src2_alpha, tmp);
alphify (src2_alpha, new_alpha);
if (mode_affect)
{
dest[alpha] = (affect[alpha] ?
new_alpha : src1[alpha]);
}
else
{
dest[alpha] = (src1[alpha] ?
src1[alpha] : (affect[alpha] ?
new_alpha : src1[alpha]));
}
m++;
src1 += bytes;
src2 += bytes;
dest += bytes;
/* GUTS END */
}
}
/* BODY */
mask_ip = (const gint *) m;
i = length / sizeof (gint);
length %= sizeof (gint);
while (i--)
{
if (*mask_ip)
{
m = (const guchar *) mask_ip;
j = sizeof (gint);
while (j--)
{
/* GUTS */
register gulong tmp;
guchar src2_alpha = INT_MULT (src2[alpha], *m, tmp);
guchar new_alpha =
src1[alpha] +
INT_MULT ((255 - src1[alpha]), src2_alpha, tmp);
alphify (src2_alpha, new_alpha);
if (mode_affect)
{
dest[alpha] = (affect[alpha] ?
new_alpha : src1[alpha]);
}
else
{
dest[alpha] = (src1[alpha] ?
src1[alpha] : (affect[alpha] ?
new_alpha : src1[alpha]));
}
m++;
src1 += bytes;
src2 += bytes;
dest += bytes;
/* GUTS END */
}
}
else
{
j = bytes * sizeof (gint);
src2 += j;
while (j--)
{
*(dest++) = *(src1++);
}
}
mask_ip++;
}
m = (const guchar *) mask_ip;
}
/* TAIL */
while (length--)
{
/* GUTS */
register gulong tmp;
guchar src2_alpha = INT_MULT (src2[alpha], *m, tmp);
guchar new_alpha =
src1[alpha] + INT_MULT ((255 - src1[alpha]), src2_alpha, tmp);
alphify (src2_alpha, new_alpha);
if (mode_affect)
{
dest[alpha] = affect[alpha] ? new_alpha : src1[alpha];
}
else
{
dest[alpha] = (src1[alpha] ?
src1[alpha] : (affect[alpha] ?
new_alpha : src1[alpha]));
}
m++;
src1 += bytes;
src2 += bytes;
dest += bytes;
/* GUTS END */
}
}
else /* HAS MASK, SEMI-OPACITY */
{
const gint *mask_ip;
gint i,j;
if (length >= sizeof (gint))
{
/* HEAD */
i = (GPOINTER_TO_INT(m) & (sizeof (gint) - 1));
if (i != 0)
{
i = sizeof (gint) - i;
length -= i;
while (i--)
{
/* GUTS */
register gulong tmp;
guchar src2_alpha = INT_MULT3 (src2[alpha], *m, opacity,
tmp);
guchar new_alpha =
src1[alpha] +
INT_MULT ((255 - src1[alpha]), src2_alpha, tmp);
alphify (src2_alpha, new_alpha);
if (mode_affect)
{
dest[alpha] = (affect[alpha] ?
new_alpha : src1[alpha]);
}
else
{
dest[alpha] = (src1[alpha] ?
src1[alpha] : (affect[alpha] ?
new_alpha : src1[alpha]));
}
m++;
src1 += bytes;
src2 += bytes;
dest += bytes;
/* GUTS END */
}
}
/* BODY */
mask_ip = (const gint *) m;
i = length / sizeof (gint);
length %= sizeof(gint);
while (i--)
{
if (*mask_ip)
{
m = (const guchar *) mask_ip;
j = sizeof (gint);
while (j--)
{
/* GUTS */
register gulong tmp;
guchar src2_alpha = INT_MULT3 (src2[alpha],
*m, opacity, tmp);
guchar new_alpha =
src1[alpha] +
INT_MULT ((255 - src1[alpha]), src2_alpha, tmp);
alphify (src2_alpha, new_alpha);
if (mode_affect)
{
dest[alpha] = (affect[alpha] ?
new_alpha : src1[alpha]);
}
else
{
dest[alpha] = (src1[alpha] ?
src1[alpha] : (affect[alpha] ?
new_alpha : src1[alpha]));
}
m++;
src1 += bytes;
src2 += bytes;
dest += bytes;
/* GUTS END */
}
}
else
{
j = bytes * sizeof (gint);
src2 += j;
while (j--)
{
*(dest++) = *(src1++);
}
}
mask_ip++;
}
m = (const guchar *) mask_ip;
}
/* TAIL */
while (length--)
{
/* GUTS */
register gulong tmp;
guchar src2_alpha = INT_MULT3 (src2[alpha], *m, opacity, tmp);
guchar new_alpha =
src1[alpha] +
INT_MULT ((255 - src1[alpha]), src2_alpha, tmp);
alphify (src2_alpha, new_alpha);
if (mode_affect)
{
dest[alpha] = affect[alpha] ? new_alpha : src1[alpha];
}
else
{
dest[alpha] = (src1[alpha] ?
src1[alpha] : (affect[alpha] ?
new_alpha : src1[alpha]));
}
m++;
src1 += bytes;
src2 += bytes;
dest += bytes;
/* GUTS END */
}
}
}
else
{
if (opacity == OPAQUE_OPACITY) /* NO MASK, FULL OPACITY */
{
while (length --)
{
register gulong tmp;
guchar src2_alpha = src2[alpha];
guchar new_alpha =
src1[alpha] +
INT_MULT ((255 - src1[alpha]), src2_alpha, tmp);
alphify (src2_alpha, new_alpha);
if (mode_affect)
{
dest[alpha] = affect[alpha] ? new_alpha : src1[alpha];
}
else
{
dest[alpha] = (src1[alpha] ?
src1[alpha] : (affect[alpha] ?
new_alpha : src1[alpha]));
}
src1 += bytes;
src2 += bytes;
dest += bytes;
}
}
else /* NO MASK, SEMI OPACITY */
{
while (length --)
{
register gulong tmp;
guchar src2_alpha = INT_MULT (src2[alpha], opacity, tmp);
guchar new_alpha =
src1[alpha] + INT_MULT ((255 - src1[alpha]), src2_alpha, tmp);
alphify (src2_alpha, new_alpha);
if (mode_affect)
{
dest[alpha] = affect[alpha] ? new_alpha : src1[alpha];
}
else
{
dest[alpha] = (src1[alpha] ?
src1[alpha] : (affect[alpha] ?
new_alpha : src1[alpha]));
}
src1 += bytes;
src2 += bytes;
dest += bytes;
}
}
}
}
#undef alphify
void
combine_inten_a_and_channel_mask_pixels (const guchar *src,
const guchar *channel,
guchar *dest,
const guchar *col,
const guint opacity,
guint length,
const guint bytes)
{
const gint alpha = bytes - 1;
while (length --)
{
register gulong t;
guchar channel_alpha = INT_MULT (255 - *channel, opacity, t);
if (channel_alpha)
{
register gulong s;
const guchar new_alpha =
src[alpha] + INT_MULT ((255 - src[alpha]), channel_alpha, t);
guchar compl_alpha;
guint b;
if (new_alpha != 255)
channel_alpha = (channel_alpha * 255) / new_alpha;
compl_alpha = 255 - channel_alpha;
for (b = 0; b < alpha; b++)
dest[b] = INT_MULT (col[b], channel_alpha, t) +
INT_MULT (src[b], compl_alpha, s);
dest[b] = new_alpha;
}
else
{
memcpy(dest, src, bytes);
}
/* advance pointers */
src += bytes;
dest += bytes;
channel++;
}
}
void
combine_inten_a_and_channel_selection_pixels (const guchar *src,
const guchar *channel,
guchar *dest,
const guchar *col,
const guint opacity,
guint length,
const guint bytes)
{
const gint alpha = bytes - 1;
while (length --)
{
register gulong t;
guchar channel_alpha = INT_MULT (*channel, opacity, t);
if (channel_alpha)
{
register gulong s;
const guchar new_alpha =
src[alpha] + INT_MULT ((255 - src[alpha]), channel_alpha, t);
guchar compl_alpha;
guint b;
if (new_alpha != 255)
channel_alpha = (channel_alpha * 255) / new_alpha;
compl_alpha = 255 - channel_alpha;
for (b = 0; b < alpha; b++)
dest[b] = INT_MULT (col[b], channel_alpha, t) +
INT_MULT (src[b], compl_alpha, s);
dest[b] = new_alpha;
}
else
{
memcpy (dest, src, bytes);
}
/* advance pointers */
src += bytes;
dest += bytes;
channel++;
}
}
/* paint "behind" the existing pixel row.
* This is similar in appearance to painting on a layer below
* the existing pixels.
*/
static inline void
behind_inten_pixels (const guchar *src1,
const guchar *src2,
guchar *dest,
const guchar *mask,
guint opacity,
const gboolean *affect,
guint length,
guint bytes1,
guint bytes2)
{
const guint alpha = bytes1 - 1;
const guchar *m = mask ? mask : &no_mask;
guint b;
gfloat ratio;
gfloat compl_ratio;
glong tmp;
while (length --)
{
guchar src1_alpha = src1[alpha];
guchar src2_alpha = INT_MULT3 (src2[alpha], *m, opacity, tmp);
guchar new_alpha =
src2_alpha + INT_MULT ((255 - src2_alpha), src1_alpha, tmp);
if (new_alpha)
ratio = (float) src1_alpha / new_alpha;
else
ratio = 0.0;
compl_ratio = 1.0 - ratio;
for (b = 0; b < alpha; b++)
dest[b] = (affect[b]) ?
(guchar) (src1[b] * ratio + src2[b] * compl_ratio + EPSILON) :
src1[b];
dest[alpha] = (affect[alpha]) ? new_alpha : src1[alpha];
if (mask)
m++;
src1 += bytes1;
src2 += bytes2;
dest += bytes1;
}
}
/* paint "behind" the existing pixel row (for indexed images).
* This is similar in appearance to painting on a layer below
* the existing pixels.
*/
static inline void
behind_indexed_pixels (const guchar *src1,
const guchar *src2,
guchar *dest,
const guchar *mask,
guint opacity,
const gboolean *affect,
guint length,
guint bytes1,
guint bytes2)
{
const guint alpha = bytes1 - 1;
const guchar *m = mask ? mask : &no_mask;
guint b;
glong tmp;
/* the alpha channel */
while (length --)
{
guchar src1_alpha = src1[alpha];
guchar src2_alpha = INT_MULT3 (src2[alpha], *m, opacity, tmp);
guchar new_alpha =
(src2_alpha > 127) ? OPAQUE_OPACITY : TRANSPARENT_OPACITY;
for (b = 0; b < bytes1; b++)
dest[b] =
(affect[b] && new_alpha == OPAQUE_OPACITY && (src1_alpha > 127)) ?
src2[b] : src1[b];
if (mask)
m++;
src1 += bytes1;
src2 += bytes2;
dest += bytes1;
}
}
/* replace the contents of one pixel row with the other
* The operation is still bounded by mask/opacity constraints
*/
#define INT_DIV(a, b) ((a)/(b) + (((a) % (b)) > ((b) / 2)))
static inline void
replace_inten_pixels (const guchar *src1,
const guchar *src2,
guchar *dest,
const guchar *mask,
guint opacity,
const gboolean *affect,
guint length,
guint bytes1,
guint bytes2)
{
const guint has_alpha1 = HAS_ALPHA (bytes1);
const guint has_alpha2 = HAS_ALPHA (bytes2);
const guint alpha = bytes1 - has_alpha1;
const guint alpha2 = bytes2 - has_alpha2;
const guchar *m = mask ? mask : &no_mask;
guint b;
gint tmp;
while (length --)
{
guchar src1_alpha = has_alpha1 ? src1[alpha] : 255;
guchar src2_alpha = has_alpha2 ? src2[alpha2] : 255;
guchar new_alpha = INT_BLEND (src2_alpha, src1_alpha,
INT_MULT (*m, opacity, tmp), tmp);
if (new_alpha)
{
guint ratio = *m * opacity;
ratio = ratio / 255 * src2_alpha;
ratio = INT_DIV (ratio, new_alpha);
for (b = 0; b < alpha; b++)
{
if (! affect[b])
{
dest[b] = src1[b];
}
else if (src2[b] > src1[b])
{
guint t = (src2[b] - src1[b]) * ratio;
dest[b] = src1[b] + INT_DIV (t, 255);
}
else
{
guint t = (src1[b] - src2[b]) * ratio;
dest[b] = src1[b] - INT_DIV (t, 255);
}
}
}
else
{
for (b = 0; b < alpha; b++)
dest[b] = src1[b];
}
if (has_alpha1)
dest[alpha] = affect[alpha] ? new_alpha : src1[alpha];
if (mask)
m++;
src1 += bytes1;
src2 += bytes2;
dest += bytes1;
}
}
/* replace the contents of one pixel row with the other
* The operation is still bounded by mask/opacity constraints
*/
static inline void
replace_indexed_pixels (const guchar *src1,
const guchar *src2,
guchar *dest,
const guchar *mask,
guint opacity,
const gboolean *affect,
guint length,
guint bytes1,
guint bytes2)
{
const guint has_alpha1 = HAS_ALPHA (bytes1);
const guint has_alpha2 = HAS_ALPHA (bytes2);
const guint bytes = MIN (bytes1, bytes2);
const guchar *m = mask ? mask : &no_mask;
guint b;
gint tmp;
while (length --)
{
guchar mask_alpha = INT_MULT (*m, opacity, tmp);
for (b = 0; b < bytes; b++)
dest[b] = (affect[b] && mask_alpha) ? src2[b] : src1[b];
if (has_alpha1 && !has_alpha2)
dest[b] = src1[b];
if (mask)
m++;
src1 += bytes1;
src2 += bytes2;
dest += bytes1;
}
}
/* apply source 2 to source 1, but in a non-additive way,
* multiplying alpha channels (works for intensity)
*/
static inline void
erase_inten_pixels (const guchar *src1,
const guchar *src2,
guchar *dest,
const guchar *mask,
guint opacity,
const gboolean *affect,
guint length,
guint bytes)
{
const guint alpha = bytes - 1;
guint b;
guchar src2_alpha;
glong tmp;
if (mask)
{
const guchar *m = mask;
while (length --)
{
for (b = 0; b < alpha; b++)
dest[b] = src1[b];
src2_alpha = INT_MULT3 (src2[alpha], *m, opacity, tmp);
dest[alpha] = src1[alpha] - INT_MULT (src1[alpha], src2_alpha, tmp);
m++;
src1 += bytes;
src2 += bytes;
dest += bytes;
}
}
else
{
const guchar *m = &no_mask;
while (length --)
{
for (b = 0; b < alpha; b++)
dest[b] = src1[b];
src2_alpha = INT_MULT3 (src2[alpha], *m, opacity, tmp);
dest[alpha] = src1[alpha] - INT_MULT (src1[alpha], src2_alpha, tmp);
src1 += bytes;
src2 += bytes;
dest += bytes;
}
}
}
/* apply source 2 to source 1, but in a non-additive way,
* multiplying alpha channels (works for indexed)
*/
static inline void
erase_indexed_pixels (const guchar *src1,
const guchar *src2,
guchar *dest,
const guchar *mask,
guint opacity,
const gboolean *affect,
guint length,
guint bytes)
{
const guint alpha = bytes - 1;
const guchar *m = mask ? mask : &no_mask;
guchar src2_alpha;
guint b;
glong tmp;
while (length --)
{
for (b = 0; b < alpha; b++)
dest[b] = src1[b];
src2_alpha = INT_MULT3 (src2[alpha], *m, opacity, tmp);
dest[alpha] = (src2_alpha > 127) ? TRANSPARENT_OPACITY : src1[alpha];
if (mask)
m++;
src1 += bytes;
src2 += bytes;
dest += bytes;
}
}
static inline void
anti_erase_inten_pixels (const guchar *src1,
const guchar *src2,
guchar *dest,
const guchar *mask,
guint opacity,
const gboolean *affect,
guint length,
guint bytes)
{
const gint alpha = bytes - 1;
const guchar *m = mask ? mask : &no_mask;
gint b;
guchar src2_alpha;
glong tmp;
while (length --)
{
for (b = 0; b < alpha; b++)
dest[b] = src1[b];
src2_alpha = INT_MULT3 (src2[alpha], *m, opacity, tmp);
dest[alpha] =
src1[alpha] + INT_MULT ((255 - src1[alpha]), src2_alpha, tmp);
if (mask)
m++;
src1 += bytes;
src2 += bytes;
dest += bytes;
}
}
static inline void
anti_erase_indexed_pixels (const guchar *src1,
const guchar *src2,
guchar *dest,
const guchar *mask,
guint opacity,
const gboolean *affect,
guint length,
guint bytes)
{
const guint alpha = bytes - 1;
const guchar *m = mask ? mask : &no_mask;
gint b;
guchar src2_alpha;
glong tmp;
while (length --)
{
for (b = 0; b < alpha; b++)
dest[b] = src1[b];
src2_alpha = INT_MULT3 (src2[alpha], *m, opacity, tmp);
dest[alpha] = (src2_alpha > 127) ? OPAQUE_OPACITY : src1[alpha];
if (mask)
m++;
src1 += bytes;
src2 += bytes;
dest += bytes;
}
}
void
paint_funcs_color_erase_helper (GimpRGB *src,
const GimpRGB *color)
{
GimpRGB alpha;
alpha.a = src->a;
if (color->r < 0.0001)
alpha.r = src->r;
else if ( src->r > color->r )
alpha.r = (src->r - color->r) / (1.0 - color->r);
else if (src->r < color->r)
alpha.r = (color->r - src->r) / color->r;
else alpha.r = 0.0;
if (color->g < 0.0001)
alpha.g = src->g;
else if ( src->g > color->g )
alpha.g = (src->g - color->g) / (1.0 - color->g);
else if ( src->g < color->g )
alpha.g = (color->g - src->g) / (color->g);
else alpha.g = 0.0;
if (color->b < 0.0001)
alpha.b = src->b;
else if ( src->b > color->b )
alpha.b = (src->b - color->b) / (1.0 - color->b);
else if ( src->b < color->b )
alpha.b = (color->b - src->b) / (color->b);
else alpha.b = 0.0;
if ( alpha.r > alpha.g )
{
if ( alpha.r > alpha.b )
{
src->a = alpha.r;
}
else
{
src->a = alpha.b;
}
}
else if ( alpha.g > alpha.b )
{
src->a = alpha.g;
}
else
{
src->a = alpha.b;
}
src->a = (1.0 - color->a) + (src->a * color->a);
if (src->a < 0.0001)
return;
src->r = (src->r - color->r) / src->a + color->r;
src->g = (src->g - color->g) / src->a + color->g;
src->b = (src->b - color->b) / src->a + color->b;
src->a *= alpha.a;
}
static inline void
color_erase_inten_pixels (const guchar *src1,
const guchar *src2,
guchar *dest,
const guchar *mask,
guint opacity,
const gboolean *affect,
guint length,
guint bytes)
{
const guchar *m = mask ? mask : &no_mask;
guchar src2_alpha;
glong tmp;
GimpRGB bgcolor, color;
while (length --)
{
switch (bytes)
{
case 2:
src2_alpha = INT_MULT3 (src2[1], *m, opacity, tmp);
gimp_rgba_set_uchar (&color,
src1[0], src1[0], src1[0], src1[1]);
gimp_rgba_set_uchar (&bgcolor,
src2[0], src2[0], src2[0], src2_alpha);
paint_funcs_color_erase_helper (&color, &bgcolor);
gimp_rgba_get_uchar (&color, dest, NULL, NULL, dest + 1);
break;
case 4:
src2_alpha = INT_MULT3 (src2[3], *m, opacity, tmp);
gimp_rgba_set_uchar (&color,
src1[0], src1[1], src1[2], src1[3]);
gimp_rgba_set_uchar (&bgcolor,
src2[0], src2[1], src2[2], src2_alpha);
paint_funcs_color_erase_helper (&color, &bgcolor);
gimp_rgba_get_uchar (&color, dest, dest + 1, dest + 2, dest + 3);
break;
}
if (mask)
m++;
src1 += bytes;
src2 += bytes;
dest += bytes;
}
}
void
extract_from_inten_pixels (guchar *src,
guchar *dest,
const guchar *mask,
const guchar *bg,
gboolean cut,
guint length,
guint src_bytes,
guint dest_bytes)
{
const gint alpha = HAS_ALPHA (src_bytes) ? src_bytes - 1 : src_bytes;
const guchar *m = mask ? mask : &no_mask;
gint b;
gint tmp;
while (length --)
{
for (b = 0; b < alpha; b++)
dest[b] = src[b];
if (HAS_ALPHA (src_bytes))
{
dest[alpha] = INT_MULT (*m, src[alpha], tmp);
if (cut)
src[alpha] = INT_MULT ((255 - *m), src[alpha], tmp);
}
else
{
if (HAS_ALPHA (dest_bytes))
dest[alpha] = *m;
if (cut)
for (b = 0; b < src_bytes; b++)
src[b] = INT_BLEND (bg[b], src[b], *m, tmp);
}
if (mask)
m++;
src += src_bytes;
dest += dest_bytes;
}
}
void
extract_from_indexed_pixels (guchar *src,
guchar *dest,
const guchar *mask,
const guchar *cmap,
const guchar *bg,
gboolean cut,
guint length,
guint src_bytes,
guint dest_bytes)
{
const guchar *m = mask ? mask : &no_mask;
gint b;
gint t;
while (length --)
{
gint index = src[0] * 3;
for (b = 0; b < 3; b++)
dest[b] = cmap[index + b];
if (HAS_ALPHA (src_bytes))
{
dest[3] = INT_MULT (*m, src[1], t);
if (cut)
src[1] = INT_MULT ((255 - *m), src[1], t);
}
else
{
if (HAS_ALPHA (dest_bytes))
dest[3] = *m;
if (cut)
src[0] = (*m > 127) ? bg[0] : src[0];
}
if (mask)
m++;
src += src_bytes;
dest += dest_bytes;
}
}
/**************************************************/
/* REGION FUNCTIONS */
/**************************************************/
void
clear_region (PixelRegion *dest)
{
gpointer pr;
for (pr = pixel_regions_register (1, dest);
pr != NULL;
pr = pixel_regions_process (pr))
{
if (dest->w * dest->bytes == dest->rowstride)
{
memset (dest->data, 0, dest->w * dest->h * dest->bytes);
}
else
{
guchar *d = dest->data;
gint h = dest->h;
while (h--)
{
memset (d, 0, dest->w * dest->bytes);
d += dest->rowstride;
}
}
}
}
void
color_region (PixelRegion *dest,
const guchar *col)
{
gpointer pr;
for (pr = pixel_regions_register (1, dest);
pr != NULL;
pr = pixel_regions_process (pr))
{
guchar *s = dest->data;
gint h = dest->h;
if (dest->w * dest->bytes == dest->rowstride)
{
/* do it all in one function call if we can
* this hasn't been tested to see if it is a
* signifigant speed gain yet
*/
color_pixels (s, col, dest->w * h, dest->bytes);
}
else
{
while (h--)
{
color_pixels (s, col, dest->w, dest->bytes);
s += dest->rowstride;
}
}
}
}
void
color_region_mask (PixelRegion *dest,
PixelRegion *mask,
const guchar *col)
{
gpointer pr;
for (pr = pixel_regions_register (2, dest, mask);
pr != NULL;
pr = pixel_regions_process (pr))
{
guchar *d = dest->data;
const guchar *m = mask->data;
gint h = dest->h;
if (dest->w * dest->bytes == dest->rowstride &&
mask->w * mask->bytes == mask->rowstride)
{
/* do it all in one function call if we can
* this hasn't been tested to see if it is a
* signifigant speed gain yet
*/
color_pixels_mask (d, m, col, dest->w * h, dest->bytes);
}
else
{
while (h--)
{
color_pixels_mask (d, m, col, dest->w, dest->bytes);
d += dest->rowstride;
m += mask->rowstride;
}
}
}
}
void
pattern_region (PixelRegion *dest,
PixelRegion *mask,
TempBuf *pattern,
gint off_x,
gint off_y)
{
gpointer pr;
for (pr = pixel_regions_register (2, dest, mask);
pr != NULL;
pr = pixel_regions_process (pr))
{
guchar *d = dest->data;
const guchar *m = mask ? mask->data : NULL;
gint y;
for (y = 0; y < dest->h; y++)
{
pattern_pixels_mask (d, m, pattern, dest->w, dest->bytes,
off_x + dest->x,
off_y + dest->y + y);
d += dest->rowstride;
if (mask)
m += mask->rowstride;
}
}
}
void
blend_region (PixelRegion *src1,
PixelRegion *src2,
PixelRegion *dest,
guchar blend)
{
gpointer pr;
for (pr = pixel_regions_register (3, src1, src2, dest);
pr != NULL;
pr = pixel_regions_process (pr))
{
const guchar *s1 = src1->data;
const guchar *s2 = src2->data;
guchar *d = dest->data;
gint h = src1->h;
while (h --)
{
blend_pixels (s1, s2, d, blend, src1->w, src1->bytes);
s1 += src1->rowstride;
s2 += src2->rowstride;
d += dest->rowstride;
}
}
}
void
shade_region (PixelRegion *src,
PixelRegion *dest,
guchar *color,
guchar blend)
{
const guchar *s = src->data;
guchar *d = dest->data;
gint h = src->h;
while (h --)
{
blend_pixels (s, d, color, blend, src->w, src->bytes);
s += src->rowstride;
d += dest->rowstride;
}
}
void
copy_region (PixelRegion *src,
PixelRegion *dest)
{
gpointer pr;
#ifdef COWSHOW
fputc ('[',stderr);
#endif
for (pr = pixel_regions_register (2, src, dest);
pr != NULL;
pr = pixel_regions_process (pr))
{
if (src->tiles && dest->tiles &&
src->curtile && dest->curtile &&
src->offx == 0 && dest->offx == 0 &&
src->offy == 0 && dest->offy == 0 &&
src->w == tile_ewidth (src->curtile) &&
dest->w == tile_ewidth (dest->curtile) &&
src->h == tile_eheight (src->curtile) &&
dest->h == tile_eheight (dest->curtile))
{
#ifdef COWSHOW
fputc('!',stderr);
#endif
tile_manager_map_over_tile (dest->tiles,
dest->curtile, src->curtile);
}
else
{
const guchar *s = src->data;
guchar *d = dest->data;
gint h = src->h;
gint pixels = src->w * src->bytes;
#ifdef COWSHOW
fputc ('.',stderr);
#endif
while (h --)
{
memcpy (d, s, pixels);
s += src->rowstride;
d += dest->rowstride;
}
}
}
#ifdef COWSHOW
fputc (']',stderr);
fputc ('\n',stderr);
#endif
}
void
copy_region_nocow (PixelRegion *src,
PixelRegion *dest)
{
gpointer pr;
for (pr = pixel_regions_register (2, src, dest);
pr != NULL;
pr = pixel_regions_process (pr))
{
const guchar *s = src->data;
guchar *d = dest->data;
gint pixels = src->w * src->bytes;
gint h = src->h;
while (h --)
{
memcpy (d, s, pixels);
s += src->rowstride;
d += dest->rowstride;
}
}
}
void
add_alpha_region (PixelRegion *src,
PixelRegion *dest)
{
gpointer pr;
for (pr = pixel_regions_register (2, src, dest);
pr != NULL;
pr = pixel_regions_process (pr))
{
const guchar *s = src->data;
guchar *d = dest->data;
gint h = src->h;
while (h --)
{
add_alpha_pixels (s, d, src->w, src->bytes);
s += src->rowstride;
d += dest->rowstride;
}
}
}
void
flatten_region (PixelRegion *src,
PixelRegion *dest,
guchar *bg)
{
gpointer pr;
for (pr = pixel_regions_register (2, src, dest);
pr != NULL;
pr = pixel_regions_process (pr))
{
const guchar *s = src->data;
guchar *d = dest->data;
gint h = src->h;
while (h --)
{
flatten_pixels (s, d, bg, src->w, src->bytes);
s += src->rowstride;
d += dest->rowstride;
}
}
}
void
extract_alpha_region (PixelRegion *src,
PixelRegion *mask,
PixelRegion *dest)
{
gpointer pr;
for (pr = pixel_regions_register (3, src, mask, dest);
pr != NULL;
pr = pixel_regions_process (pr))
{
const guchar *m = mask ? mask->data : NULL;
const guchar *s = src->data;
guchar *d = dest->data;
gint h = src->h;
while (h --)
{
extract_alpha_pixels (s, m, d, src->w, src->bytes);
s += src->rowstride;
d += dest->rowstride;
if (mask)
m += mask->rowstride;
}
}
}
void
extract_from_region (PixelRegion *src,
PixelRegion *dest,
PixelRegion *mask,
const guchar *cmap,
const guchar *bg,
GimpImageBaseType type,
gboolean cut)
{
gpointer pr;
for (pr = pixel_regions_register (3, src, dest, mask);
pr != NULL;
pr = pixel_regions_process (pr))
{
const guchar *m = mask ? mask->data : NULL;
guchar *s = src->data;
guchar *d = dest->data;
gint h = src->h;
while (h --)
{
switch (type)
{
case GIMP_RGB:
case GIMP_GRAY:
extract_from_inten_pixels (s, d, m, bg, cut, src->w,
src->bytes, dest->bytes);
break;
case GIMP_INDEXED:
extract_from_indexed_pixels (s, d, m, cmap, bg, cut, src->w,
src->bytes, dest->bytes);
break;
}
s += src->rowstride;
d += dest->rowstride;
if (mask)
m += mask->rowstride;
}
}
}
void
convolve_region (PixelRegion *srcR,
PixelRegion *destR,
const gfloat *matrix,
gint size,
gdouble divisor,
GimpConvolutionType mode,
gboolean alpha_weighting)
{
/* Convolve the src image using the convolution matrix, writing to dest */
/* Convolve is not tile-enabled--use accordingly */
const guchar *src = srcR->data;
guchar *dest = destR->data;
const gint bytes = srcR->bytes;
const gint a_byte = bytes - 1;
const gint rowstride = srcR->rowstride;
const gint margin = size / 2;
const gint x1 = srcR->x;
const gint y1 = srcR->y;
const gint x2 = srcR->x + srcR->w - 1;
const gint y2 = srcR->y + srcR->h - 1;
gint x, y;
gint offset;
/* If the mode is NEGATIVE_CONVOL, the offset should be 128 */
if (mode == GIMP_NEGATIVE_CONVOL)
{
offset = 128;
mode = GIMP_NORMAL_CONVOL;
}
else
{
offset = 0;
}
for (y = 0; y < destR->h; y++)
{
guchar *d = dest;
if (alpha_weighting)
{
for (x = 0; x < destR->w; x++)
{
const gfloat *m = matrix;
gdouble total[4] = { 0.0, 0.0, 0.0, 0.0 };
gdouble weighted_divisor = 0.0;
gint i, j, b;
for (j = y - margin; j <= y + margin; j++)
{
for (i = x - margin; i <= x + margin; i++, m++)
{
gint xx = CLAMP (i, x1, x2);
gint yy = CLAMP (j, y1, y2);
const guchar *s = src + yy * rowstride + xx * bytes;
const guchar a = s[a_byte];
if (a)
{
gdouble mult_alpha = *m * a;
weighted_divisor += mult_alpha;
for (b = 0; b < a_byte; b++)
total[b] += mult_alpha * s[b];
total[a_byte] += mult_alpha;
}
}
}
if (weighted_divisor == 0.0)
weighted_divisor = divisor;
for (b = 0; b < a_byte; b++)
total[b] /= weighted_divisor;
total[a_byte] /= divisor;
for (b = 0; b < bytes; b++)
{
total[b] += offset;
if (mode != GIMP_NORMAL_CONVOL && total[b] < 0.0)
total[b] = - total[b];
if (total[b] < 0.0)
*d++ = 0;
else
*d++ = (total[b] > 255.0) ? 255 : (guchar) ROUND (total[b]);
}
}
}
else
{
for (x = 0; x < destR->w; x++)
{
const gfloat *m = matrix;
gdouble total[4] = { 0.0, 0.0, 0.0, 0.0 };
gint i, j, b;
for (j = y - margin; j <= y + margin; j++)
{
for (i = x - margin; i <= x + margin; i++, m++)
{
gint xx = CLAMP (i, x1, x2);
gint yy = CLAMP (j, y1, y2);
const guchar *s = src + yy * rowstride + xx * bytes;
for (b = 0; b < bytes; b++)
total[b] += *m * s[b];
}
}
for (b = 0; b < bytes; b++)
{
total[b] = total[b] / divisor + offset;
if (mode != GIMP_NORMAL_CONVOL && total[b] < 0.0)
total[b] = - total[b];
if (total[b] < 0.0)
*d++ = 0.0;
else
*d++ = (total[b] > 255.0) ? 255 : (guchar) ROUND (total[b]);
}
}
}
dest += destR->rowstride;
}
}
/* Convert from separated alpha to premultiplied alpha. Only works on
non-tiled regions! */
void
multiply_alpha_region (PixelRegion *srcR)
{
guchar *src, *s;
gint x, y;
gint width, height;
gint b, bytes;
gdouble alpha_val;
width = srcR->w;
height = srcR->h;
bytes = srcR->bytes;
src = srcR->data;
for (y = 0; y < height; y++)
{
s = src;
for (x = 0; x < width; x++)
{
alpha_val = s[bytes - 1] * (1.0 / 255.0);
for (b = 0; b < bytes - 1; b++)
s[b] = 0.5 + s[b] * alpha_val;
s += bytes;
}
src += srcR->rowstride;
}
}
/* Convert from premultiplied alpha to separated alpha. Only works on
non-tiled regions! */
void
separate_alpha_region (PixelRegion *srcR)
{
guchar *src, *s;
gint x, y;
gint width, height;
gint b, bytes;
gdouble alpha_recip;
gint new_val;
width = srcR->w;
height = srcR->h;
bytes = srcR->bytes;
src = srcR->data;
for (y = 0; y < height; y++)
{
s = src;
for (x = 0; x < width; x++)
{
/* predicate is equivalent to:
(((s[bytes - 1] - 1) & 255) + 2) & 256
*/
if (s[bytes - 1] != 0 && s[bytes - 1] != 255)
{
alpha_recip = 255.0 / s[bytes - 1];
for (b = 0; b < bytes - 1; b++)
{
new_val = 0.5 + s[b] * alpha_recip;
new_val = MIN (new_val, 255);
s[b] = new_val;
}
}
s += bytes;
}
src += srcR->rowstride;
}
}
void
gaussian_blur_region (PixelRegion *srcR,
gdouble radius_x,
gdouble radius_y)
{
glong width, height;
guint bytes;
guchar *src, *sp;
guchar *dest, *dp;
guchar *data;
guint *buf, *b;
gint pixels;
gint total;
gint i, row, col;
gint start, end;
gint *curve;
gint *sum;
gint val;
gint length;
gint alpha;
gint initial_p;
gint initial_m;
if (radius_x == 0.0 && radius_y == 0.0)
return;
/* allocate the result buffer */
length = MAX (srcR->w, srcR->h) * srcR->bytes;
data = g_new (guchar, length * 2);
src = data;
dest = data + length;
width = srcR->w;
height = srcR->h;
bytes = srcR->bytes;
alpha = bytes - 1;
buf = g_new (guint, MAX (width, height) * 2);
if (radius_y != 0.0)
{
curve = make_curve (- SQR (radius_y) / (2 * LOG_1_255), &length);
sum = g_new (gint, 2 * length + 1);
sum[0] = 0;
for (i = 1; i <= length * 2; i++)
sum[i] = curve[i - length - 1] + sum[i - 1];
sum += length;
total = sum[length] - sum[-length];
for (col = 0; col < width; col++)
{
pixel_region_get_col (srcR, col + srcR->x, srcR->y, height, src, 1);
sp = src + alpha;
initial_p = sp[0];
initial_m = sp[(height - 1) * bytes];
/* Determine a run-length encoded version of the column */
run_length_encode (sp, buf, height, bytes);
for (row = 0; row < height; row++)
{
start = (row < length) ? -row : -length;
end = (height <= (row + length)) ? (height - row - 1) : length;
val = total / 2;
i = start;
b = buf + (row + i) * 2;
if (start != -length)
val += initial_p * (sum[start] - sum[-length]);
while (i < end)
{
pixels = b[0];
i += pixels;
if (i > end)
i = end;
val += b[1] * (sum[i] - sum[start]);
b += (pixels * 2);
start = i;
}
if (end != length)
val += initial_m * (sum[length] - sum[end]);
sp[row * bytes] = val / total;
}
pixel_region_set_col (srcR, col + srcR->x, srcR->y, height, src);
}
g_free (sum - length);
g_free (curve - length);
}
if (radius_x != 0.0)
{
curve = make_curve (- SQR (radius_x) / (2 * LOG_1_255), &length);
sum = g_new (gint, 2 * length + 1);
sum[0] = 0;
for (i = 1; i <= length * 2; i++)
sum[i] = curve[i - length - 1] + sum[i - 1];
sum += length;
total = sum[length] - sum[-length];
for (row = 0; row < height; row++)
{
pixel_region_get_row (srcR, srcR->x, row + srcR->y, width, src, 1);
sp = src + alpha;
dp = dest + alpha;
initial_p = sp[0];
initial_m = sp[(width - 1) * bytes];
/* Determine a run-length encoded version of the row */
run_length_encode (sp, buf, width, bytes);
for (col = 0; col < width; col++)
{
start = (col < length) ? -col : -length;
end = (width <= (col + length)) ? (width - col - 1) : length;
val = total / 2;
i = start;
b = buf + (col + i) * 2;
if (start != -length)
val += initial_p * (sum[start] - sum[-length]);
while (i < end)
{
pixels = b[0];
i += pixels;
if (i > end)
i = end;
val += b[1] * (sum[i] - sum[start]);
b += (pixels * 2);
start = i;
}
if (end != length)
val += initial_m * (sum[length] - sum[end]);
val = val / total;
dp[col * bytes] = val;
}
pixel_region_set_row (srcR, srcR->x, row + srcR->y, width, dest);
}
g_free (sum - length);
g_free (curve - length);
}
g_free (data);
g_free (buf);
}
static inline void
rotate_pointers (guchar **p,
guint32 n)
{
guint32 i;
guchar *tmp;
tmp = p[0];
for (i = 0; i < n - 1; i++)
p[i] = p[i + 1];
p[i] = tmp;
}
gfloat
shapeburst_region (PixelRegion *srcPR,
PixelRegion *distPR,
GimpProgressFunc progress_callback,
gpointer progress_data)
{
Tile *tile;
guchar *tile_data;
gfloat max_iterations = 0.0;
gfloat *distp_cur;
gfloat *distp_prev;
gfloat *memory;
gfloat *tmp;
gfloat min_prev;
gfloat float_tmp;
gint min;
gint min_left;
gint length;
gint i, j, k;
gint fraction;
gint prev_frac;
gint x, y;
gint end;
gint boundary;
gint inc;
gint src = 0;
gint max_progress = srcPR->w * srcPR->h;
gint progress = 0;
length = distPR->w + 1;
memory = g_new (gfloat, length * 2);
distp_prev = memory;
for (i = 0; i < length; i++)
distp_prev[i] = 0.0;
distp_prev += 1;
distp_cur = distp_prev + length;
for (i = 0; i < srcPR->h; i++)
{
/* set the current dist row to 0's */
memset (distp_cur - 1, 0, sizeof (gfloat) * (length - 1));
for (j = 0; j < srcPR->w; j++)
{
min_prev = MIN (distp_cur[j-1], distp_prev[j]);
min_left = MIN ((srcPR->w - j - 1), (srcPR->h - i - 1));
min = (gint) MIN (min_left, min_prev);
fraction = 255;
/* This might need to be changed to 0
instead of k = (min) ? (min - 1) : 0 */
for (k = (min) ? (min - 1) : 0; k <= min; k++)
{
x = j;
y = i + k;
end = y - k;
while (y >= end)
{
gint width;
tile = tile_manager_get_tile (srcPR->tiles,
x, y, TRUE, FALSE);
tile_data = tile_data_pointer (tile, x, y);
width = tile_ewidth (tile);
boundary = MIN (y % TILE_HEIGHT,
width - (x % TILE_WIDTH) - 1);
boundary = MIN (boundary, y - end) + 1;
inc = 1 - width;
while (boundary--)
{
src = *tile_data;
if (src == 0)
{
min = k;
y = -1;
break;
}
if (src < fraction)
fraction = src;
x++;
y--;
tile_data += inc;
}
tile_release (tile, FALSE);
}
}
if (src != 0)
{
/* If min_left != min_prev use the previous fraction
* if it is less than the one found
*/
if (min_left != min)
{
prev_frac = (int) (255 * (min_prev - min));
if (prev_frac == 255)
prev_frac = 0;
fraction = MIN (fraction, prev_frac);
}
min++;
}
float_tmp = distp_cur[j] = min + fraction / 256.0;
if (float_tmp > max_iterations)
max_iterations = float_tmp;
}
/* set the dist row */
pixel_region_set_row (distPR,
distPR->x, distPR->y + i, distPR->w,
(guchar *) distp_cur);
/* swap pointers around */
tmp = distp_prev;
distp_prev = distp_cur;
distp_cur = tmp;
if (progress_callback)
{
progress += srcPR->h;
(* progress_callback) (0, max_progress, progress, progress_data);
}
}
g_free (memory);
return max_iterations;
}
static void
compute_border (gint16 *circ,
guint16 xradius,
guint16 yradius)
{
gint32 i;
gint32 diameter = xradius * 2 + 1;
gdouble tmp;
for (i = 0; i < diameter; i++)
{
if (i > xradius)
tmp = (i - xradius) - 0.5;
else if (i < xradius)
tmp = (xradius - i) - 0.5;
else
tmp = 0.0;
circ[i] = RINT (yradius /
(gdouble) xradius * sqrt (SQR (xradius) - SQR (tmp)));
}
}
void
fatten_region (PixelRegion *region,
gint16 xradius,
gint16 yradius)
{
/*
Any bugs in this fuction are probably also in thin_region
Blame all bugs in this function on jaycox@gimp.org
*/
register gint32 i, j, x, y;
guchar **buf; /* caches the region's pixel data */
guchar *out; /* holds the new scan line we are computing */
guchar **max; /* caches the largest values for each column */
gint16 *circ; /* holds the y coords of the filter's mask */
gint16 last_max, last_index;
guchar *buffer;
if (xradius <= 0 || yradius <= 0)
return;
max = g_new (guchar *, region->w + 2 * xradius);
buf = g_new (guchar *, yradius + 1);
for (i = 0; i < yradius + 1; i++)
buf[i] = g_new (guchar, region->w);
buffer = g_new (guchar, (region->w + 2 * xradius) * (yradius + 1));
for (i = 0; i < region->w + 2 * xradius; i++)
{
if (i < xradius)
max[i] = buffer;
else if (i < region->w + xradius)
max[i] = &buffer[(yradius + 1) * (i - xradius)];
else
max[i] = &buffer[(yradius + 1) * (region->w + xradius - 1)];
for (j = 0; j < xradius + 1; j++)
max[i][j] = 0;
}
/* offset the max pointer by xradius so the range of the array
is [-xradius] to [region->w + xradius] */
max += xradius;
out = g_new (guchar, region->w);
circ = g_new (gint16, 2 * xradius + 1);
compute_border (circ, xradius, yradius);
/* offset the circ pointer by xradius so the range of the array
is [-xradius] to [xradius] */
circ += xradius;
memset (buf[0], 0, region->w);
for (i = 0; i < yradius && i < region->h; i++) /* load top of image */
pixel_region_get_row (region,
region->x, region->y + i, region->w, buf[i + 1], 1);
for (x = 0; x < region->w; x++) /* set up max for top of image */
{
max[x][0] = 0; /* buf[0][x] is always 0 */
max[x][1] = buf[1][x]; /* MAX (buf[1][x], max[x][0]) always = buf[1][x]*/
for (j = 2; j < yradius + 1; j++)
max[x][j] = MAX(buf[j][x], max[x][j-1]);
}
for (y = 0; y < region->h; y++)
{
rotate_pointers (buf, yradius + 1);
if (y < region->h - (yradius))
pixel_region_get_row (region,
region->x, region->y + y + yradius, region->w,
buf[yradius], 1);
else
memset (buf[yradius], 0, region->w);
for (x = 0; x < region->w; x++) /* update max array */
{
for (i = yradius; i > 0; i--)
max[x][i] = MAX (MAX (max[x][i - 1], buf[i - 1][x]), buf[i][x]);
max[x][0] = buf[0][x];
}
last_max = max[0][circ[-1]];
last_index = 1;
for (x = 0; x < region->w; x++) /* render scan line */
{
last_index--;
if (last_index >= 0)
{
if (last_max == 255)
{
out[x] = 255;
}
else
{
last_max = 0;
for (i = xradius; i >= 0; i--)
if (last_max < max[x + i][circ[i]])
{
last_max = max[x + i][circ[i]];
last_index = i;
}
out[x] = last_max;
}
}
else
{
last_index = xradius;
last_max = max[x + xradius][circ[xradius]];
for (i = xradius - 1; i >= -xradius; i--)
if (last_max < max[x + i][circ[i]])
{
last_max = max[x + i][circ[i]];
last_index = i;
}
out[x] = last_max;
}
}
pixel_region_set_row (region, region->x, region->y + y, region->w, out);
}
/* undo the offsets to the pointers so we can free the malloced memmory */
circ -= xradius;
max -= xradius;
g_free (circ);
g_free (buffer);
g_free (max);
for (i = 0; i < yradius + 1; i++)
g_free (buf[i]);
g_free (buf);
g_free (out);
}
void
thin_region (PixelRegion *region,
gint16 xradius,
gint16 yradius,
gboolean edge_lock)
{
/*
pretty much the same as fatten_region only different
blame all bugs in this function on jaycox@gimp.org
*/
/* If edge_lock is true we assume that pixels outside the region
we are passed are identical to the edge pixels.
If edge_lock is false, we assume that pixels outside the region are 0
*/
register gint32 i, j, x, y;
guchar **buf; /* caches the the region's pixels */
guchar *out; /* holds the new scan line we are computing */
guchar **max; /* caches the smallest values for each column */
gint16 *circ; /* holds the y coords of the filter's mask */
gint16 last_max, last_index;
guchar *buffer;
gint buffer_size;
if (xradius <= 0 || yradius <= 0)
return;
max = g_new (guchar *, region->w + 2 * xradius);
buf = g_new (guchar *, yradius + 1);
for (i = 0; i < yradius + 1; i++)
buf[i] = g_new (guchar, region->w);
buffer_size = (region->w + 2 * xradius + 1) * (yradius + 1);
buffer = g_new (guchar, buffer_size);
if (edge_lock)
memset(buffer, 255, buffer_size);
else
memset(buffer, 0, buffer_size);
for (i = 0; i < region->w + 2 * xradius; i++)
{
if (i < xradius)
{
if (edge_lock)
max[i] = buffer;
else
max[i] = &buffer[(yradius + 1) * (region->w + xradius)];
}
else if (i < region->w + xradius)
{
max[i] = &buffer[(yradius + 1) * (i - xradius)];
}
else
{
if (edge_lock)
max[i] = &buffer[(yradius + 1) * (region->w + xradius - 1)];
else
max[i] = &buffer[(yradius + 1) * (region->w + xradius)];
}
}
if (! edge_lock)
for (j = 0 ; j < xradius + 1; j++)
max[0][j] = 0;
/* offset the max pointer by xradius so the range of the array
is [-xradius] to [region->w + xradius] */
max += xradius;
out = g_new (guchar, region->w);
circ = g_new (gint16, 2 * xradius + 1);
compute_border (circ, xradius, yradius);
/* offset the circ pointer by xradius so the range of the array
is [-xradius] to [xradius] */
circ += xradius;
for (i = 0; i < yradius && i < region->h; i++) /* load top of image */
pixel_region_get_row (region,
region->x, region->y + i, region->w, buf[i + 1], 1);
if (edge_lock)
memcpy (buf[0], buf[1], region->w);
else
memset (buf[0], 0, region->w);
for (x = 0; x < region->w; x++) /* set up max for top of image */
{
max[x][0] = buf[0][x];
for (j = 1; j < yradius + 1; j++)
max[x][j] = MIN(buf[j][x], max[x][j-1]);
}
for (y = 0; y < region->h; y++)
{
rotate_pointers (buf, yradius + 1);
if (y < region->h - yradius)
pixel_region_get_row (region,
region->x, region->y + y + yradius, region->w,
buf[yradius], 1);
else if (edge_lock)
memcpy (buf[yradius], buf[yradius - 1], region->w);
else
memset (buf[yradius], 0, region->w);
for (x = 0 ; x < region->w; x++) /* update max array */
{
for (i = yradius; i > 0; i--)
max[x][i] = MIN (MIN (max[x][i - 1], buf[i - 1][x]), buf[i][x]);
max[x][0] = buf[0][x];
}
last_max = max[0][circ[-1]];
last_index = 0;
for (x = 0 ; x < region->w; x++) /* render scan line */
{
last_index--;
if (last_index >= 0)
{
if (last_max == 0)
{
out[x] = 0;
}
else
{
last_max = 255;
for (i = xradius; i >= 0; i--)
if (last_max > max[x + i][circ[i]])
{
last_max = max[x + i][circ[i]];
last_index = i;
}
out[x] = last_max;
}
}
else
{
last_index = xradius;
last_max = max[x + xradius][circ[xradius]];
for (i = xradius - 1; i >= -xradius; i--)
if (last_max > max[x + i][circ[i]])
{
last_max = max[x + i][circ[i]];
last_index = i;
}
out[x] = last_max;
}
}
pixel_region_set_row (region, region->x, region->y + y, region->w, out);
}
/* undo the offsets to the pointers so we can free the malloced memmory */
circ -= xradius;
max -= xradius;
/* free the memmory */
g_free (circ);
g_free (buffer);
g_free (max);
for (i = 0; i < yradius + 1; i++)
g_free (buf[i]);
g_free (buf);
g_free (out);
}
/* Simple convolution filter to smooth a mask (1bpp). */
void
smooth_region (PixelRegion *region)
{
gint x, y;
gint width;
gint i;
guchar *buf[3];
guchar *out;
width = region->w;
for (i = 0; i < 3; i++)
buf[i] = g_new (guchar, width + 2);
out = g_new (guchar, width);
/* load top of image */
pixel_region_get_row (region, region->x, region->y, width, buf[0] + 1, 1);
buf[0][0] = buf[0][1];
buf[0][width + 1] = buf[0][width];
memcpy (buf[1], buf[0], width + 2);
for (y = 0; y < region->h; y++)
{
if (y + 1 < region->h)
{
pixel_region_get_row (region, region->x, region->y + y + 1, width,
buf[2] + 1, 1);
buf[2][0] = buf[2][1];
buf[2][width + 1] = buf[2][width];
}
else
{
memcpy (buf[2], buf[1], width + 2);
}
for (x = 0 ; x < width; x++)
{
gint value = (buf[0][x] + buf[0][x+1] + buf[0][x+2] +
buf[1][x] + buf[2][x+1] + buf[1][x+2] +
buf[2][x] + buf[1][x+1] + buf[2][x+2]);
out[x] = value / 9;
}
pixel_region_set_row (region, region->x, region->y + y, width, out);
rotate_pointers (buf, 3);
}
for (i = 0; i < 3; i++)
g_free (buf[i]);
g_free (out);
}
/* Erode (radius 1 pixel) a mask (1bpp). */
void
erode_region (PixelRegion *region)
{
gint x, y;
gint width;
gint i;
guchar *buf[3];
guchar *out;
width = region->w;
for (i = 0; i < 3; i++)
buf[i] = g_new (guchar, width + 2);
out = g_new (guchar, width);
/* load top of image */
pixel_region_get_row (region, region->x, region->y, width, buf[0] + 1, 1);
buf[0][0] = buf[0][1];
buf[0][width + 1] = buf[0][width];
memcpy (buf[1], buf[0], width + 2);
for (y = 0; y < region->h; y++)
{
if (y + 1 < region->h)
{
pixel_region_get_row (region, region->x, region->y + y + 1, width,
buf[2] + 1, 1);
buf[2][0] = buf[2][1];
buf[2][width + 1] = buf[2][width];
}
else
{
memcpy (buf[2], buf[1], width + 2);
}
for (x = 0 ; x < width; x++)
{
gint min = 255;
if (buf[0][x+1] < min) min = buf[0][x+1];
if (buf[1][x] < min) min = buf[1][x];
if (buf[1][x+1] < min) min = buf[1][x+1];
if (buf[1][x+2] < min) min = buf[1][x+2];
if (buf[2][x+1] < min) min = buf[2][x+1];
out[x] = min;
}
pixel_region_set_row (region, region->x, region->y + y, width, out);
rotate_pointers (buf, 3);
}
for (i = 0; i < 3; i++)
g_free (buf[i]);
g_free (out);
}
/* Dilate (radius 1 pixel) a mask (1bpp). */
void
dilate_region (PixelRegion *region)
{
gint x, y;
gint width;
gint i;
guchar *buf[3];
guchar *out;
width = region->w;
for (i = 0; i < 3; i++)
buf[i] = g_new (guchar, width + 2);
out = g_new (guchar, width);
/* load top of image */
pixel_region_get_row (region, region->x, region->y, width, buf[0] + 1, 1);
buf[0][0] = buf[0][1];
buf[0][width + 1] = buf[0][width];
memcpy (buf[1], buf[0], width + 2);
for (y = 0; y < region->h; y++)
{
if (y + 1 < region->h)
{
pixel_region_get_row (region, region->x, region->y + y + 1, width,
buf[2] + 1, 1);
buf[2][0] = buf[2][1];
buf[2][width + 1] = buf[2][width];
}
else
{
memcpy (buf[2], buf[1], width + 2);
}
for (x = 0 ; x < width; x++)
{
gint max = 0;
if (buf[0][x+1] > max) max = buf[0][x+1];
if (buf[1][x] > max) max = buf[1][x];
if (buf[1][x+1] > max) max = buf[1][x+1];
if (buf[1][x+2] > max) max = buf[1][x+2];
if (buf[2][x+1] > max) max = buf[2][x+1];
out[x] = max;
}
pixel_region_set_row (region, region->x, region->y + y, width, out);
rotate_pointers (buf, 3);
}
for (i = 0; i < 3; i++)
g_free (buf[i]);
g_free (out);
}
/* Computes whether pixels in `buf[1]', if they are selected, have neighbouring
pixels that are unselected. Put result in `transition'. */
static void
compute_transition (guchar *transition,
guchar **buf,
gint32 width,
gboolean edge_lock)
{
register gint32 x = 0;
if (width == 1)
{
if (buf[1][0] > 127 && (buf[0][0] < 128 || buf[2][0] < 128))
transition[0] = 255;
else
transition[0] = 0;
return;
}
if (buf[1][0] > 127 && edge_lock)
{
/* The pixel to the left (outside of the canvas) is considered selected,
so we check if there are any unselected pixels in neighbouring pixels
_on_ the canvas. */
if (buf[0][x] < 128 || buf[0][x + 1] < 128 ||
buf[1][x + 1] < 128 ||
buf[2][x] < 128 || buf[2][x + 1] < 128 )
{
transition[x] = 255;
}
else
{
transition[x] = 0;
}
}
else if (buf[1][0] > 127 && !edge_lock)
{
/* We must not care about neighbouring pixels on the image canvas since
there always are unselected pixels to the left (which is outside of
the image canvas). */
transition[x] = 255;
}
else
{
transition[x] = 0;
}
for (x = 1; x < width - 1; x++)
{
if (buf[1][x] >= 128)
{
if (buf[0][x - 1] < 128 || buf[0][x] < 128 || buf[0][x + 1] < 128 ||
buf[1][x - 1] < 128 || buf[1][x + 1] < 128 ||
buf[2][x - 1] < 128 || buf[2][x] < 128 || buf[2][x + 1] < 128)
transition[x] = 255;
else
transition[x] = 0;
}
else
{
transition[x] = 0;
}
}
if (buf[1][width - 1] >= 128 && edge_lock)
{
/* The pixel to the right (outside of the canvas) is considered selected,
so we check if there are any unselected pixels in neighbouring pixels
_on_ the canvas. */
if ( buf[0][x - 1] < 128 || buf[0][x] < 128 ||
buf[1][x - 1] < 128 ||
buf[2][x - 1] < 128 || buf[2][x] < 128)
{
transition[width - 1] = 255;
}
else
{
transition[width - 1] = 0;
}
}
else if (buf[1][width - 1] >= 128 && !edge_lock)
{
/* We must not care about neighbouring pixels on the image canvas since
there always are unselected pixels to the right (which is outside of
the image canvas). */
transition[width - 1] = 255;
}
else
{
transition[width - 1] = 0;
}
}
void
border_region (PixelRegion *src,
gint16 xradius,
gint16 yradius,
gboolean feather,
gboolean edge_lock)
{
/*
This function has no bugs, but if you imagine some you can
blame them on jaycox@gimp.org
*/
register gint32 i, j, x, y;
/* A cache used in the algorithm as it works its way down. `buf[1]' is the
current row. Thus, at algorithm initialization, `buf[0]' represents the
row 'above' the first row of the region. */
guchar *buf[3];
/* The resulting selection is calculated row by row, and this buffer holds the
output for each individual row, on each iteration. */
guchar *out;
/* Keeps track of transitional pixels (pixels that are selected and have
unselected neighbouring pixels). */
guchar **transition;
/* TODO: Figure out role clearly in algorithm. */
gint16 *max;
/* TODO: Figure out role clearly in algorithm. */
guchar **density;
guchar last_max;
gint16 last_index;
if (xradius < 0 || yradius < 0)
{
g_warning ("border_region: negative radius specified.");
return;
}
/* A border without a width is no border at all; return an empty region. */
if (xradius == 0 || yradius == 0)
{
guchar color[] = "\0\0\0\0";
color_region (src, color);
return;
}
/* optimize this case specifically */
if (xradius == 1 && yradius == 1)
{
guchar *transition;
guchar *source[3];
for (i = 0; i < 3; i++)
source[i] = g_new (guchar, src->w);
transition = g_new (guchar, src->w);
/* With `edge_lock', initialize row above image as selected, otherwise,
initialize as unselected. */
memset (source[0], edge_lock ? 255 : 0, src->w);
pixel_region_get_row (src, src->x, src->y + 0, src->w, source[1], 1);
if (src->h > 1)
pixel_region_get_row (src, src->x, src->y + 1, src->w, source[2], 1);
else
memcpy (source[2], source[1], src->w);
compute_transition (transition, source, src->w, edge_lock);
pixel_region_set_row (src, src->x, src->y , src->w, transition);
for (y = 1; y < src->h; y++)
{
rotate_pointers (source, 3);
if (y + 1 < src->h)
{
pixel_region_get_row (src, src->x, src->y + y + 1, src->w,
source[2], 1);
}
else
{
/* Depending on `edge_lock', set the row below the image as either
selected or non-selected. */
memset(source[2], edge_lock ? 255 : 0, src->w);
}
compute_transition (transition, source, src->w, edge_lock);
pixel_region_set_row (src, src->x, src->y + y, src->w, transition);
}
for (i = 0; i < 3; i++)
g_free (source[i]);
g_free (transition);
/* Finnished handling the radius = 1 special case, return here. */
return;
}
max = g_new (gint16, src->w + 2 * xradius);
for (i = 0; i < (src->w + 2 * xradius); i++)
max[i] = yradius + 2;
max += xradius;
for (i = 0; i < 3; i++)
buf[i] = g_new (guchar, src->w);
transition = g_new (guchar *, yradius + 1);
for (i = 0; i < yradius + 1; i++)
{
transition[i] = g_new (guchar, src->w + 2 * xradius);
memset(transition[i], 0, src->w + 2 * xradius);
transition[i] += xradius;
}
out = g_new (guchar, src->w);
density = g_new (guchar *, 2 * xradius + 1);
density += xradius;
/* allocate density[][] */
for (x = 0; x < (xradius + 1); x++)
{
density[ x] = g_new (guchar, 2 * yradius + 1);
density[ x] += yradius;
density[-x] = density[x];
}
/* compute density[][] */
for (x = 0; x < (xradius + 1); x++)
{
register gdouble tmpx, tmpy, dist;
guchar a;
if (x > 0)
tmpx = x - 0.5;
else if (x < 0)
tmpx = x + 0.5;
else
tmpx = 0.0;
for (y = 0; y < (yradius + 1); y++)
{
if (y > 0)
tmpy = y - 0.5;
else if (y < 0)
tmpy = y + 0.5;
else
tmpy = 0.0;
dist = ((tmpy * tmpy) / (yradius * yradius) +
(tmpx * tmpx) / (xradius * xradius));
if (dist < 1.0)
{
if (feather)
a = 255 * (1.0 - sqrt (dist));
else
a = 255;
}
else
{
a = 0;
}
density[ x][ y] = a;
density[ x][-y] = a;
density[-x][ y] = a;
density[-x][-y] = a;
}
}
/* Since the algorithm considerers `buf[0]' to be 'over' the row currently
calculated, we must start with `buf[0]' as non-selected if there is no
`edge_lock. If there is an 'edge_lock', initialize the first row to
'selected'. Refer to bug #350009. */
memset (buf[0], edge_lock ? 255 : 0, src->w);
pixel_region_get_row (src, src->x, src->y + 0, src->w, buf[1], 1);
if (src->h > 1)
pixel_region_get_row (src, src->x, src->y + 1, src->w, buf[2], 1);
else
memcpy (buf[2], buf[1], src->w);
compute_transition (transition[1], buf, src->w, edge_lock);
/* set up top of image */
for (y = 1; y < yradius && y + 1 < src->h; y++)
{
rotate_pointers (buf, 3);
pixel_region_get_row (src, src->x, src->y + y + 1, src->w, buf[2], 1);
compute_transition (transition[y + 1], buf, src->w, edge_lock);
}
/* set up max[] for top of image */
for (x = 0; x < src->w; x++)
{
max[x] = -(yradius + 7);
for (j = 1; j < yradius + 1; j++)
if (transition[j][x])
{
max[x] = j;
break;
}
}
/* main calculation loop */
for (y = 0; y < src->h; y++)
{
rotate_pointers (buf, 3);
rotate_pointers (transition, yradius + 1);
if (y < src->h - (yradius + 1))
{
pixel_region_get_row (src, src->x, src->y + y + yradius + 1, src->w,
buf[2], 1);
compute_transition (transition[yradius], buf, src->w, edge_lock);
}
else
{
if (edge_lock)
{
memcpy (transition[yradius], transition[yradius - 1], src->w);
}
else
{
/* No edge lock, set everything 'below canvas' as seen from the
algorithm as unselected. */
memset (buf[2], 0, src->w);
compute_transition (transition[yradius], buf, src->w, edge_lock);
}
}
/* update max array */
for (x = 0; x < src->w; x++)
{
if (max[x] < 1)
{
if (max[x] <= -yradius)
{
if (transition[yradius][x])
max[x] = yradius;
else
max[x]--;
}
else
{
if (transition[-max[x]][x])
max[x] = -max[x];
else if (transition[-max[x] + 1][x])
max[x] = -max[x] + 1;
else
max[x]--;
}
}
else
{
max[x]--;
}
if (max[x] < -yradius - 1)
max[x] = -yradius - 1;
}
last_max = max[0][density[-1]];
last_index = 1;
/* render scan line */
for (x = 0 ; x < src->w; x++)
{
last_index--;
if (last_index >= 0)
{
last_max = 0;
for (i = xradius; i >= 0; i--)
if (max[x + i] <= yradius && max[x + i] >= -yradius &&
density[i][max[x+i]] > last_max)
{
last_max = density[i][max[x + i]];
last_index = i;
}
out[x] = last_max;
}
else
{
last_max = 0;
for (i = xradius; i >= -xradius; i--)
if (max[x + i] <= yradius && max[x + i] >= -yradius &&
density[i][max[x + i]] > last_max)
{
last_max = density[i][max[x + i]];
last_index = i;
}
out[x] = last_max;
}
if (last_max == 0)
{
for (i = x + 1; i < src->w; i++)
{
if (max[i] >= -yradius)
break;
}
if (i - x > xradius)
{
for (; x < i - xradius; x++)
out[x] = 0;
x--;
}
last_index = xradius;
}
}
pixel_region_set_row (src, src->x, src->y + y, src->w, out);
}
g_free (out);
for (i = 0; i < 3; i++)
g_free (buf[i]);
max -= xradius;
g_free (max);
for (i = 0; i < yradius + 1; i++)
{
transition[i] -= xradius;
g_free (transition[i]);
}
g_free (transition);
for (i = 0; i < xradius + 1 ; i++)
{
density[i] -= yradius;
g_free (density[i]);
}
density -= xradius;
g_free (density);
}
void
swap_region (PixelRegion *src,
PixelRegion *dest)
{
gpointer pr;
for (pr = pixel_regions_register (2, src, dest);
pr != NULL;
pr = pixel_regions_process (pr))
{
guchar *s = src->data;
guchar *d = dest->data;
gint pixels = src->w * src->bytes;
gint h = src->h;
while (h--)
{
swap_pixels (s, d, pixels);
s += src->rowstride;
d += dest->rowstride;
}
}
}
/* Computes whether pixels in `buf[1]' have neighbouring pixels that are
unselected. Put result in `transition'. */
static void
apply_mask_to_sub_region (gint *opacityp,
PixelRegion *src,
PixelRegion *mask)
{
guchar *s = src->data;
const guchar *m = mask->data;
gint h = src->h;
guint opacity = *opacityp;
while (h--)
{
apply_mask_to_alpha_channel (s, m, opacity, src->w, src->bytes);
s += src->rowstride;
m += mask->rowstride;
}
}
void
apply_mask_to_region (PixelRegion *src,
PixelRegion *mask,
guint opacity)
{
pixel_regions_process_parallel ((PixelProcessorFunc)
apply_mask_to_sub_region,
&opacity, 2, src, mask);
}
static void
combine_mask_and_sub_region_stipple (gint *opacityp,
PixelRegion *src,
PixelRegion *mask)
{
guchar *s = src->data;
const guchar *m = mask->data;
gint h = src->h;
guint opacity = *opacityp;
while (h--)
{
combine_mask_and_alpha_channel_stipple (s, m, opacity,
src->w, src->bytes);
s += src->rowstride;
m += mask->rowstride;
}
}
static void
combine_mask_and_sub_region_stroke (gint *opacityp,
PixelRegion *src,
PixelRegion *mask)
{
guchar *s = src->data;
const guchar *m = mask->data;
gint h = src->h;
guint opacity = *opacityp;
while (h--)
{
combine_mask_and_alpha_channel_stroke (s, m, opacity, src->w, src->bytes);
s += src->rowstride;
m += mask->rowstride;
}
}
void
combine_mask_and_region (PixelRegion *src,
PixelRegion *mask,
guint opacity,
gboolean stipple)
{
if (stipple)
pixel_regions_process_parallel ((PixelProcessorFunc)
combine_mask_and_sub_region_stipple,
&opacity, 2, src, mask);
else
pixel_regions_process_parallel ((PixelProcessorFunc)
combine_mask_and_sub_region_stroke,
&opacity, 2, src, mask);
}
void
copy_gray_to_region (PixelRegion *src,
PixelRegion *dest)
{
gpointer pr;
for (pr = pixel_regions_register (2, src, dest);
pr != NULL;
pr = pixel_regions_process (pr))
{
const guchar *s = src->data;
guchar *d = dest->data;
gint h = src->h;
while (h--)
{
copy_gray_to_inten_a_pixels (s, d, src->w, dest->bytes);
s += src->rowstride;
d += dest->rowstride;
}
}
}
void
copy_component (PixelRegion *src,
PixelRegion *dest,
guint pixel)
{
gpointer pr;
for (pr = pixel_regions_register (2, src, dest);
pr != NULL;
pr = pixel_regions_process (pr))
{
const guchar *s = src->data;
guchar *d = dest->data;
gint h = src->h;
while (h--)
{
copy_component_pixels (s, d, src->w, src->bytes, pixel);
s += src->rowstride;
d += dest->rowstride;
}
}
}
void
copy_color (PixelRegion *src,
PixelRegion *dest)
{
gpointer pr;
for (pr = pixel_regions_register (2, src, dest);
pr != NULL;
pr = pixel_regions_process (pr))
{
const guchar *s = src->data;
guchar *d = dest->data;
gint h = src->h;
while (h--)
{
copy_color_pixels (s, d, src->w, src->bytes);
s += src->rowstride;
d += dest->rowstride;
}
}
}
struct initial_regions_struct
{
guint opacity;
GimpLayerModeEffects mode;
const gboolean *affect;
InitialMode type;
const guchar *data;
};
static void
initial_sub_region (struct initial_regions_struct *st,
PixelRegion *src,
PixelRegion *dest,
PixelRegion *mask)
{
gint h;
guchar *s, *d, *m;
guchar *buf;
const guchar *data;
guint opacity;
GimpLayerModeEffects mode;
const gboolean *affect;
InitialMode type;
/* use src->bytes + 1 since DISSOLVE always needs a buffer with alpha */
buf = g_alloca (MAX (src->w * (src->bytes + 1),
dest->w * dest->bytes));
data = st->data;
opacity = st->opacity;
mode = st->mode;
affect = st->affect;
type = st->type;
s = src->data;
d = dest->data;
m = mask ? mask->data : NULL;
for (h = 0; h < src->h; h++)
{
/* based on the type of the initial image... */
switch (type)
{
case INITIAL_CHANNEL_MASK:
case INITIAL_CHANNEL_SELECTION:
initial_channel_pixels (s, d, src->w, dest->bytes);
break;
case INITIAL_INDEXED:
initial_indexed_pixels (s, d, data, src->w);
break;
case INITIAL_INDEXED_ALPHA:
initial_indexed_a_pixels (s, d, m, &no_mask, data, opacity, src->w);
break;
case INITIAL_INTENSITY:
if (mode == GIMP_DISSOLVE_MODE)
{
if (gimp_composite_options.bits & GIMP_COMPOSITE_OPTION_USE)
{
GimpCompositeContext ctx;
ctx.A = NULL;
ctx.pixelformat_A = GIMP_PIXELFORMAT_RGBA8;
ctx.B = s;
ctx.pixelformat_B = (src->bytes == 1 ? GIMP_PIXELFORMAT_V8
: src->bytes == 2 ? GIMP_PIXELFORMAT_VA8
: src->bytes == 3 ? GIMP_PIXELFORMAT_RGB8
: src->bytes == 4 ? GIMP_PIXELFORMAT_RGBA8
: GIMP_PIXELFORMAT_ANY);
ctx.D = buf;
ctx.pixelformat_D = ctx.pixelformat_B;
ctx.M = m;
ctx.n_pixels = src->w;
ctx.op = GIMP_COMPOSITE_DISSOLVE;
ctx.dissolve.x = src->x;
ctx.dissolve.y = src->y + h;
ctx.dissolve.opacity = opacity;
gimp_composite_dispatch (&ctx);
}
else
{
dissolve_pixels (s, m, buf, src->x, src->y + h,
opacity, src->w,
src->bytes, src->bytes + 1,
FALSE);
}
initial_inten_a_pixels (buf, d, NULL, OPAQUE_OPACITY, affect,
src->w, src->bytes + 1);
}
else
{
initial_inten_pixels (s, d, m, &no_mask, opacity, affect,
src->w, src->bytes);
}
break;
case INITIAL_INTENSITY_ALPHA:
if (mode == GIMP_DISSOLVE_MODE)
{
if (gimp_composite_options.bits & GIMP_COMPOSITE_OPTION_USE)
{
GimpCompositeContext ctx;
ctx.A = NULL;
ctx.pixelformat_A = GIMP_PIXELFORMAT_RGBA8;
ctx.B = s;
ctx.pixelformat_B = (src->bytes == 1 ? GIMP_PIXELFORMAT_V8
: src->bytes == 2 ? GIMP_PIXELFORMAT_VA8
: src->bytes == 3 ? GIMP_PIXELFORMAT_RGB8
: src->bytes == 4 ? GIMP_PIXELFORMAT_RGBA8
: GIMP_PIXELFORMAT_ANY);
ctx.D = buf;
ctx.pixelformat_D = ctx.pixelformat_B;
ctx.M = m;
ctx.n_pixels = src->w;
ctx.op = GIMP_COMPOSITE_DISSOLVE;
ctx.dissolve.x = src->x;
ctx.dissolve.y = src->y + h;
ctx.dissolve.opacity = opacity;
gimp_composite_dispatch (&ctx);
}
else
{
dissolve_pixels (s, m, buf, src->x, src->y + h,
opacity, src->w,
src->bytes, src->bytes,
TRUE);
}
initial_inten_a_pixels (buf, d, NULL, OPAQUE_OPACITY, affect,
src->w, src->bytes);
}
else
{
initial_inten_a_pixels (s, d, m,
opacity, affect, src->w, src->bytes);
}
break;
}
s += src->rowstride;
d += dest->rowstride;
if (mask)
m += mask->rowstride;
}
}
void
initial_region (PixelRegion *src,
PixelRegion *dest,
PixelRegion *mask,
const guchar *data,
guint opacity,
GimpLayerModeEffects mode,
const gboolean *affect,
InitialMode type)
{
struct initial_regions_struct st;
st.opacity = opacity;
st.mode = mode;
st.affect = affect;
st.type = type;
st.data = data;
pixel_regions_process_parallel ((PixelProcessorFunc) initial_sub_region,
&st, 3, src, dest, mask);
}
struct combine_regions_struct
{
guint opacity;
GimpLayerModeEffects mode;
const gboolean *affect;
CombinationMode type;
const guchar *data;
gboolean opacity_quickskip_possible;
gboolean transparency_quickskip_possible;
};
static inline CombinationMode
apply_indexed_layer_mode (guchar *src1,
guchar *src2,
guchar **dest,
GimpLayerModeEffects mode,
CombinationMode cmode)
{
/* assumes we're applying src2 TO src1 */
switch (mode)
{
case GIMP_REPLACE_MODE:
*dest = src2;
cmode = REPLACE_INDEXED;
break;
case GIMP_BEHIND_MODE:
*dest = src2;
if (cmode == COMBINE_INDEXED_A_INDEXED_A)
cmode = BEHIND_INDEXED;
else
cmode = NO_COMBINATION;
break;
case GIMP_ERASE_MODE:
*dest = src2;
/* If both sources have alpha channels, call erase function.
* Otherwise, just combine in the normal manner
*/
cmode = (cmode == COMBINE_INDEXED_A_INDEXED_A) ? ERASE_INDEXED : cmode;
break;
default:
break;
}
return cmode;
}
static void
combine_sub_region (struct combine_regions_struct *st,
PixelRegion *src1,
PixelRegion *src2,
PixelRegion *dest,
PixelRegion *mask)
{
const guchar *data;
guint opacity;
guint layer_mode_opacity;
const guchar *layer_mode_mask;
GimpLayerModeEffects mode;
const gboolean *affect;
guint h;
CombinationMode combine = NO_COMBINATION;
CombinationMode type;
gboolean mode_affect = FALSE;
guchar *s, *s1, *s2;
guchar *d;
const guchar *m;
guchar *buf;
gboolean opacity_quickskip_possible;
gboolean transparency_quickskip_possible;
TileRowHint hint;
/* use src2->bytes + 1 since DISSOLVE always needs a buffer with alpha */
buf = g_alloca (MAX (MAX (src1->w * src1->bytes,
src2->w * (src2->bytes + 1)),
dest->w * dest->bytes));
opacity = st->opacity;
mode = st->mode;
affect = st->affect;
type = st->type;
data = st->data;
opacity_quickskip_possible = (st->opacity_quickskip_possible &&
src2->tiles);
transparency_quickskip_possible = (st->transparency_quickskip_possible &&
src2->tiles);
s1 = src1->data;
s2 = src2->data;
d = dest->data;
m = mask ? mask->data : NULL;
if (transparency_quickskip_possible || opacity_quickskip_possible)
{
#ifdef HINTS_SANITY
if (src1->h != src2->h)
g_error("HEIGHTS SUCK!!");
if (src1->offy != dest->offy)
g_error("SRC1 OFFSET != DEST OFFSET");
#endif
tile_update_rowhints (src2->curtile, src2->offy, src1->h);
}
/* else it's probably a brush-composite */
/* use separate variables for the combining opacity and the opacity
* the layer mode is applied with since DISSLOVE_MODE "consumes"
* all opacity and wants to be applied OPAQUE
*/
layer_mode_opacity = opacity;
layer_mode_mask = m;
if (mode == GIMP_DISSOLVE_MODE)
{
opacity = OPAQUE_OPACITY;
m = NULL;
}
for (h = 0; h < src1->h; h++)
{
hint = TILEROWHINT_UNDEFINED;
if (transparency_quickskip_possible)
{
hint = tile_get_rowhint (src2->curtile, (src2->offy + h));
if (hint == TILEROWHINT_TRANSPARENT)
{
goto next_row;
}
}
else
{
if (opacity_quickskip_possible)
{
hint = tile_get_rowhint (src2->curtile, (src2->offy + h));
}
}
s = buf;
/* apply the paint mode based on the combination type & mode */
switch (type)
{
case COMBINE_INTEN_A_INDEXED:
case COMBINE_INTEN_A_INDEXED_A:
case COMBINE_INTEN_A_CHANNEL_MASK:
case COMBINE_INTEN_A_CHANNEL_SELECTION:
combine = type;
break;
case COMBINE_INDEXED_INDEXED:
case COMBINE_INDEXED_INDEXED_A:
case COMBINE_INDEXED_A_INDEXED_A:
/* Now, apply the paint mode--for indexed images */
combine = apply_indexed_layer_mode (s1, s2, &s, mode, type);
break;
case COMBINE_INTEN_INTEN_A:
case COMBINE_INTEN_A_INTEN:
case COMBINE_INTEN_INTEN:
case COMBINE_INTEN_A_INTEN_A:
{
/* Now, apply the paint mode */
if (gimp_composite_options.bits & GIMP_COMPOSITE_OPTION_USE)
{
GimpCompositeContext ctx;
ctx.A = s1;
ctx.pixelformat_A = (src1->bytes == 1 ? GIMP_PIXELFORMAT_V8 :
src1->bytes == 2 ? GIMP_PIXELFORMAT_VA8 :
src1->bytes == 3 ? GIMP_PIXELFORMAT_RGB8 :
src1->bytes == 4 ? GIMP_PIXELFORMAT_RGBA8 :
GIMP_PIXELFORMAT_ANY);
ctx.B = s2;
ctx.pixelformat_B = (src2->bytes == 1 ? GIMP_PIXELFORMAT_V8 :
src2->bytes == 2 ? GIMP_PIXELFORMAT_VA8 :
src2->bytes == 3 ? GIMP_PIXELFORMAT_RGB8 :
src2->bytes == 4 ? GIMP_PIXELFORMAT_RGBA8 :
GIMP_PIXELFORMAT_ANY);
ctx.D = s;
ctx.pixelformat_D = ctx.pixelformat_A;
ctx.M = layer_mode_mask;
ctx.pixelformat_M = GIMP_PIXELFORMAT_ANY;
ctx.n_pixels = src1->w;
ctx.combine = combine;
ctx.op = mode;
ctx.dissolve.x = src1->x;
ctx.dissolve.y = src1->y + h;
ctx.dissolve.opacity = layer_mode_opacity;
mode_affect =
gimp_composite_operation_effects[mode].affect_opacity;
gimp_composite_dispatch (&ctx);
s = ctx.D;
combine = (ctx.combine == NO_COMBINATION) ? type : ctx.combine;
}
else
{
struct apply_layer_mode_struct alms;
alms.src1 = s1;
alms.src2 = s2;
alms.mask = layer_mode_mask;
alms.dest = &s;
alms.x = src1->x;
alms.y = src1->y + h;
alms.opacity = layer_mode_opacity;
alms.combine = combine;
alms.length = src1->w;
alms.bytes1 = src1->bytes;
alms.bytes2 = src2->bytes;
/* Determine whether the alpha channel of the destination
* can be affected by the specified mode. -- This keeps
* consistency with varying opacities.
*/
mode_affect = layer_modes[mode].affect_alpha;
layer_mode_funcs[mode] (&alms);
combine = (alms.combine == NO_COMBINATION ?
type : alms.combine);
}
}
break;
default:
g_warning ("combine_sub_region: unhandled combine-type.");
break;
}
/* based on the type of the initial image... */
switch (combine)
{
case COMBINE_INDEXED_INDEXED:
combine_indexed_and_indexed_pixels (s1, s2, d, m, opacity,
affect, src1->w,
src1->bytes);
break;
case COMBINE_INDEXED_INDEXED_A:
combine_indexed_and_indexed_a_pixels (s1, s2, d, m, opacity,
affect, src1->w,
src1->bytes);
break;
case COMBINE_INDEXED_A_INDEXED_A:
combine_indexed_a_and_indexed_a_pixels (s1, s2, d, m, opacity,
affect, src1->w,
src1->bytes);
break;
case COMBINE_INTEN_A_INDEXED:
/* assume the data passed to this procedure is the
* indexed layer's colormap
*/
combine_inten_a_and_indexed_pixels (s1, s2, d, m, data, opacity,
src1->w, dest->bytes);
break;
case COMBINE_INTEN_A_INDEXED_A:
/* assume the data passed to this procedure is the
* indexed layer's colormap
*/
combine_inten_a_and_indexed_a_pixels (s1, s2, d, m, data, opacity,
src1->w, dest->bytes);
break;
case COMBINE_INTEN_A_CHANNEL_MASK:
/* assume the data passed to this procedure is the
* indexed layer's colormap
*/
combine_inten_a_and_channel_mask_pixels (s1, s2, d, data, opacity,
src1->w, dest->bytes);
break;
case COMBINE_INTEN_A_CHANNEL_SELECTION:
combine_inten_a_and_channel_selection_pixels (s1, s2, d, data,
opacity,
src1->w,
src1->bytes);
break;
case COMBINE_INTEN_INTEN:
if ((hint == TILEROWHINT_OPAQUE) &&
opacity_quickskip_possible)
{
memcpy (d, s, dest->w * dest->bytes);
}
else
combine_inten_and_inten_pixels (s1, s, d, m, opacity,
affect, src1->w, src1->bytes);
break;
case COMBINE_INTEN_INTEN_A:
combine_inten_and_inten_a_pixels (s1, s, d, m, opacity,
affect, src1->w, src1->bytes);
break;
case COMBINE_INTEN_A_INTEN:
combine_inten_a_and_inten_pixels (s1, s, d, m, opacity,
affect, mode_affect, src1->w,
src1->bytes);
break;
case COMBINE_INTEN_A_INTEN_A:
if ((hint == TILEROWHINT_OPAQUE) &&
opacity_quickskip_possible)
{
memcpy (d, s, dest->w * dest->bytes);
}
else
combine_inten_a_and_inten_a_pixels (s1, s, d, m, opacity,
affect, mode_affect,
src1->w, src1->bytes);
break;
case BEHIND_INTEN:
behind_inten_pixels (s1, s, d, m, opacity,
affect, src1->w, src1->bytes,
src2->bytes);
break;
case BEHIND_INDEXED:
behind_indexed_pixels (s1, s, d, m, opacity,
affect, src1->w, src1->bytes,
src2->bytes);
break;
case REPLACE_INTEN:
replace_inten_pixels (s1, s, d, m, opacity,
affect, src1->w, src1->bytes,
src2->bytes);
break;
case REPLACE_INDEXED:
replace_indexed_pixels (s1, s, d, m, opacity,
affect, src1->w, src1->bytes,
src2->bytes);
break;
case ERASE_INTEN:
erase_inten_pixels (s1, s, d, m, opacity,
affect, src1->w, src1->bytes);
break;
case ERASE_INDEXED:
erase_indexed_pixels (s1, s, d, m, opacity,
affect, src1->w, src1->bytes);
break;
case ANTI_ERASE_INTEN:
anti_erase_inten_pixels (s1, s, d, m, opacity,
affect, src1->w, src1->bytes);
break;
case ANTI_ERASE_INDEXED:
anti_erase_indexed_pixels (s1, s, d, m, opacity,
affect, src1->w, src1->bytes);
break;
case COLOR_ERASE_INTEN:
color_erase_inten_pixels (s1, s, d, m, opacity,
affect, src1->w, src1->bytes);
break;
case NO_COMBINATION:
g_warning("NO_COMBINATION");
break;
default:
g_warning("UNKNOWN COMBINATION: %d", combine);
break;
}
next_row:
s1 += src1->rowstride;
s2 += src2->rowstride;
d += dest->rowstride;
if (mask)
{
layer_mode_mask += mask->rowstride;
if (m)
m += mask->rowstride;
}
}
}
void
combine_regions (PixelRegion *src1,
PixelRegion *src2,
PixelRegion *dest,
PixelRegion *mask,
const guchar *data,
guint opacity,
GimpLayerModeEffects mode,
const gboolean *affect,
CombinationMode type)
{
gboolean has_alpha1, has_alpha2;
guint i;
struct combine_regions_struct st;
/* Determine which sources have alpha channels */
switch (type)
{
case COMBINE_INTEN_INTEN:
case COMBINE_INDEXED_INDEXED:
has_alpha1 = has_alpha2 = FALSE;
break;
case COMBINE_INTEN_A_INTEN:
case COMBINE_INTEN_A_INDEXED:
has_alpha1 = TRUE;
has_alpha2 = FALSE;
break;
case COMBINE_INTEN_INTEN_A:
case COMBINE_INDEXED_INDEXED_A:
has_alpha1 = FALSE;
has_alpha2 = TRUE;
break;
case COMBINE_INTEN_A_INTEN_A:
case COMBINE_INDEXED_A_INDEXED_A:
has_alpha1 = has_alpha2 = TRUE;
break;
default:
has_alpha1 = has_alpha2 = FALSE;
}
st.opacity = opacity;
st.mode = mode;
st.affect = affect;
st.type = type;
st.data = data;
/* cheap and easy when the row of src2 is completely opaque/transparent
and the wind is otherwise blowing in the right direction.
*/
/* First check - we can't do an opacity quickskip if the drawable
has a mask, or non-full opacity, or the layer mode dictates
that we might gain transparency.
*/
st.opacity_quickskip_possible = ((!mask) &&
(opacity == 255) &&
(!layer_modes[mode].decrease_opacity) &&
(layer_modes[mode].affect_alpha &&
has_alpha1 &&
affect[src1->bytes - 1]));
/* Second check - if any single colour channel can't be affected,
we can't use the opacity quickskip.
*/
if (st.opacity_quickskip_possible)
{
for (i = 0; i < src1->bytes - 1; i++)
{
if (!affect[i])
{
st.opacity_quickskip_possible = FALSE;
break;
}
}
}
/* transparency quickskip is only possible if the layer mode
dictates that we cannot possibly gain opacity, or the 'overall'
opacity of the layer is set to zero anyway.
*/
st.transparency_quickskip_possible = ((!layer_modes[mode].increase_opacity)
|| (opacity==0));
/* Start the actual processing.
*/
pixel_regions_process_parallel ((PixelProcessorFunc) combine_sub_region,
&st, 4, src1, src2, dest, mask);
}
void
combine_regions_replace (PixelRegion *src1,
PixelRegion *src2,
PixelRegion *dest,
PixelRegion *mask,
const guchar *data,
guint opacity,
const gboolean *affect,
CombinationMode type)
{
gpointer pr;
for (pr = pixel_regions_register (4, src1, src2, dest, mask);
pr != NULL;
pr = pixel_regions_process (pr))
{
const guchar *s1 = src1->data;
const guchar *s2 = src2->data;
guchar *d = dest->data;
const guchar *m = mask->data;
guint h;
for (h = 0; h < src1->h; h++)
{
/* Now, apply the paint mode */
apply_layer_mode_replace (s1, s2, d, m, src1->x, src1->y + h,
opacity, src1->w,
src1->bytes, src2->bytes, affect);
s1 += src1->rowstride;
s2 += src2->rowstride;
d += dest->rowstride;
m += mask->rowstride;
}
}
}
static void
apply_layer_mode_replace (const guchar *src1,
const guchar *src2,
guchar *dest,
const guchar *mask,
gint x,
gint y,
guint opacity,
guint length,
guint bytes1,
guint bytes2,
const gboolean *affect)
{
replace_pixels (src1, src2, dest, mask, length,
opacity, affect, bytes1, bytes2);
}