/* LIBGIMP - The GIMP Library * Copyright (C) 1995-1997 Peter Mattis and Spencer Kimball * * gimpvector.c * * The gimp_vector* functions were taken from: * GCK - The General Convenience Kit * Copyright (C) 1996 Tom Bech * * This library is free software: you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library. If not, see * . */ /**********************************************/ /* A little collection of useful vector stuff */ /**********************************************/ #include "config.h" #include #include "gimpmath.h" /** * SECTION: gimpvector * @title: GimpVector * @short_description: Utilities to set up and manipulate vectors. * @see_also: #GimpMatrix2, #GimpMatrix3, #GimpMatrix4 * * Utilities to set up and manipulate vectors. **/ /*************************/ /* Some useful constants */ /*************************/ static const GimpVector2 gimp_vector2_zero = { 0.0, 0.0 }; #if 0 static const GimpVector2 gimp_vector2_unit_x = { 1.0, 0.0 }; static const GimpVector2 gimp_vector2_unit_y = { 0.0, 1.0 }; #endif static const GimpVector3 gimp_vector3_zero = { 0.0, 0.0, 0.0 }; #if 0 static const GimpVector3 gimp_vector3_unit_x = { 1.0, 0.0, 0.0 }; static const GimpVector3 gimp_vector3_unit_y = { 0.0, 1.0, 0.0 }; static const GimpVector3 gimp_vector3_unit_z = { 0.0, 0.0, 1.0 }; #endif /**************************************/ /* Two dimensional vector functions */ /**************************************/ /** * gimp_vector2_new: * @x: the X coordinate. * @y: the Y coordinate. * * Creates a #GimpVector2 of coordinates @x and @y. * * Returns: the resulting #GimpVector2. **/ GimpVector2 gimp_vector2_new (gdouble x, gdouble y) { GimpVector2 vector; vector.x = x; vector.y = y; return vector; } /** * gimp_vector2_set: * @vector: a pointer to a #GimpVector2. * @x: the X coordinate. * @y: the Y coordinate. * * Sets the X and Y coordinates of @vector to @x and @y. **/ void gimp_vector2_set (GimpVector2 *vector, gdouble x, gdouble y) { vector->x = x; vector->y = y; } /** * gimp_vector2_length: * @vector: a pointer to a #GimpVector2. * * Computes the length of a 2D vector. * * Returns: the length of @vector (a positive gdouble). **/ gdouble gimp_vector2_length (const GimpVector2 *vector) { return (sqrt (vector->x * vector->x + vector->y * vector->y)); } /** * gimp_vector2_length_val: * @vector: a #GimpVector2. * * This function is identical to gimp_vector2_length() but the * vector is passed by value rather than by reference. * * Returns: the length of @vector (a positive gdouble). **/ gdouble gimp_vector2_length_val (GimpVector2 vector) { return (sqrt (vector.x * vector.x + vector.y * vector.y)); } /** * gimp_vector2_mul: * @vector: a pointer to a #GimpVector2. * @factor: a scalar. * * Multiplies each component of the @vector by @factor. Note that this * is equivalent to multiplying the vectors length by @factor. **/ void gimp_vector2_mul (GimpVector2 *vector, gdouble factor) { vector->x *= factor; vector->y *= factor; } /** * gimp_vector2_mul_val: * @vector: a #GimpVector2. * @factor: a scalar. * * This function is identical to gimp_vector2_mul() but the vector is * passed by value rather than by reference. * * Returns: the resulting #GimpVector2. **/ GimpVector2 gimp_vector2_mul_val (GimpVector2 vector, gdouble factor) { GimpVector2 result; result.x = vector.x * factor; result.y = vector.y * factor; return result; } /** * gimp_vector2_normalize: * @vector: a pointer to a #GimpVector2. * * Normalizes the @vector so the length of the @vector is 1.0. The nul * vector will not be changed. **/ void gimp_vector2_normalize (GimpVector2 *vector) { gdouble len; len = gimp_vector2_length (vector); if (len != 0.0) { len = 1.0 / len; vector->x *= len; vector->y *= len; } else { *vector = gimp_vector2_zero; } } /** * gimp_vector2_normalize_val: * @vector: a #GimpVector2. * * This function is identical to gimp_vector2_normalize() but the * vector is passed by value rather than by reference. * * Returns: a #GimpVector2 parallel to @vector, pointing in the same * direction but with a length of 1.0. **/ GimpVector2 gimp_vector2_normalize_val (GimpVector2 vector) { GimpVector2 normalized; gdouble len; len = gimp_vector2_length_val (vector); if (len != 0.0) { len = 1.0 / len; normalized.x = vector.x * len; normalized.y = vector.y * len; return normalized; } else { return gimp_vector2_zero; } } /** * gimp_vector2_neg: * @vector: a pointer to a #GimpVector2. * * Negates the @vector (i.e. negate all its coordinates). **/ void gimp_vector2_neg (GimpVector2 *vector) { vector->x *= -1.0; vector->y *= -1.0; } /** * gimp_vector2_neg_val: * @vector: a #GimpVector2. * * This function is identical to gimp_vector2_neg() but the vector * is passed by value rather than by reference. * * Returns: the negated #GimpVector2. **/ GimpVector2 gimp_vector2_neg_val (GimpVector2 vector) { GimpVector2 result; result.x = vector.x * -1.0; result.y = vector.y * -1.0; return result; } /** * gimp_vector2_add: * @result: destination for the resulting #GimpVector2. * @vector1: a pointer to the first #GimpVector2. * @vector2: a pointer to the second #GimpVector2. * * Computes the sum of two 2D vectors. The resulting #GimpVector2 is * stored in @result. **/ void gimp_vector2_add (GimpVector2 *result, const GimpVector2 *vector1, const GimpVector2 *vector2) { result->x = vector1->x + vector2->x; result->y = vector1->y + vector2->y; } /** * gimp_vector2_add_val: * @vector1: the first #GimpVector2. * @vector2: the second #GimpVector2. * * This function is identical to gimp_vector2_add() but the vectors * are passed by value rather than by reference. * * Returns: the resulting #GimpVector2. **/ GimpVector2 gimp_vector2_add_val (GimpVector2 vector1, GimpVector2 vector2) { GimpVector2 result; result.x = vector1.x + vector2.x; result.y = vector1.y + vector2.y; return result; } /** * gimp_vector2_sub: * @result: the destination for the resulting #GimpVector2. * @vector1: a pointer to the first #GimpVector2. * @vector2: a pointer to the second #GimpVector2. * * Computes the difference of two 2D vectors (@vector1 minus @vector2). * The resulting #GimpVector2 is stored in @result. **/ void gimp_vector2_sub (GimpVector2 *result, const GimpVector2 *vector1, const GimpVector2 *vector2) { result->x = vector1->x - vector2->x; result->y = vector1->y - vector2->y; } /** * gimp_vector2_sub_val: * @vector1: the first #GimpVector2. * @vector2: the second #GimpVector2. * * This function is identical to gimp_vector2_sub() but the vectors * are passed by value rather than by reference. * * Returns: the resulting #GimpVector2. **/ GimpVector2 gimp_vector2_sub_val (GimpVector2 vector1, GimpVector2 vector2) { GimpVector2 result; result.x = vector1.x - vector2.x; result.y = vector1.y - vector2.y; return result; } /** * gimp_vector2_inner_product: * @vector1: a pointer to the first #GimpVector2. * @vector2: a pointer to the second #GimpVector2. * * Computes the inner (dot) product of two 2D vectors. * This product is zero if and only if the two vectors are orthognal. * * Returns: The inner product. **/ gdouble gimp_vector2_inner_product (const GimpVector2 *vector1, const GimpVector2 *vector2) { return (vector1->x * vector2->x + vector1->y * vector2->y); } /** * gimp_vector2_inner_product_val: * @vector1: the first #GimpVector2. * @vector2: the second #GimpVector2. * * This function is identical to gimp_vector2_inner_product() but the * vectors are passed by value rather than by reference. * * Returns: The inner product. **/ gdouble gimp_vector2_inner_product_val (GimpVector2 vector1, GimpVector2 vector2) { return (vector1.x * vector2.x + vector1.y * vector2.y); } /** * gimp_vector2_cross_product: * @vector1: a pointer to the first #GimpVector2. * @vector2: a pointer to the second #GimpVector2. * * Compute the cross product of two vectors. The result is a * #GimpVector2 which is orthognal to both @vector1 and @vector2. If * @vector1 and @vector2 are parallel, the result will be the nul * vector. * * Note that in 2D, this function is useful to test if two vectors are * parallel or not, or to compute the area spawned by two vectors. * * Returns: The cross product. **/ GimpVector2 gimp_vector2_cross_product (const GimpVector2 *vector1, const GimpVector2 *vector2) { GimpVector2 normal; normal.x = vector1->x * vector2->y - vector1->y * vector2->x; normal.y = vector1->y * vector2->x - vector1->x * vector2->y; return normal; } /** * gimp_vector2_cross_product_val: * @vector1: the first #GimpVector2. * @vector2: the second #GimpVector2. * * This function is identical to gimp_vector2_cross_product() but the * vectors are passed by value rather than by reference. * * Returns: The cross product. **/ GimpVector2 gimp_vector2_cross_product_val (GimpVector2 vector1, GimpVector2 vector2) { GimpVector2 normal; normal.x = vector1.x * vector2.y - vector1.y * vector2.x; normal.y = vector1.y * vector2.x - vector1.x * vector2.y; return normal; } /** * gimp_vector2_rotate: * @vector: a pointer to a #GimpVector2. * @alpha: an angle (in radians). * * Rotates the @vector counterclockwise by @alpha radians. **/ void gimp_vector2_rotate (GimpVector2 *vector, gdouble alpha) { GimpVector2 result; result.x = cos (alpha) * vector->x + sin (alpha) * vector->y; result.y = cos (alpha) * vector->y - sin (alpha) * vector->x; *vector = result; } /** * gimp_vector2_rotate_val: * @vector: a #GimpVector2. * @alpha: an angle (in radians). * * This function is identical to gimp_vector2_rotate() but the vector * is passed by value rather than by reference. * * Returns: a #GimpVector2 representing @vector rotated by @alpha * radians. **/ GimpVector2 gimp_vector2_rotate_val (GimpVector2 vector, gdouble alpha) { GimpVector2 result; result.x = cos (alpha) * vector.x + sin (alpha) * vector.y; result.y = cos (alpha) * vector.y - sin (alpha) * vector.x; return result; } /** * gimp_vector2_normal: * @vector: a pointer to a #GimpVector2. * * Compute a normalized perpendicular vector to @vector * * Returns: a #GimpVector2 perpendicular to @vector, with a length of 1.0. * * Since: 2.8 **/ GimpVector2 gimp_vector2_normal (GimpVector2 *vector) { GimpVector2 result; result.x = - vector->y; result.y = vector->x; gimp_vector2_normalize (&result); return result; } /** * gimp_vector2_normal_val: * @vector: a #GimpVector2. * * This function is identical to gimp_vector2_normal() but the vector * is passed by value rather than by reference. * * Returns: a #GimpVector2 perpendicular to @vector, with a length of 1.0. * * Since: 2.8 **/ GimpVector2 gimp_vector2_normal_val (GimpVector2 vector) { GimpVector2 result; result.x = - vector.y; result.y = vector.x; gimp_vector2_normalize (&result); return result; } /**************************************/ /* Three dimensional vector functions */ /**************************************/ /** * gimp_vector3_new: * @x: the X coordinate. * @y: the Y coordinate. * @z: the Z coordinate. * * Creates a #GimpVector3 of coordinate @x, @y and @z. * * Returns: the resulting #GimpVector3. **/ GimpVector3 gimp_vector3_new (gdouble x, gdouble y, gdouble z) { GimpVector3 vector; vector.x = x; vector.y = y; vector.z = z; return vector; } /** * gimp_vector3_set: * @vector: a pointer to a #GimpVector3. * @x: the X coordinate. * @y: the Y coordinate. * @z: the Z coordinate. * * Sets the X, Y and Z coordinates of @vector to @x, @y and @z. **/ void gimp_vector3_set (GimpVector3 *vector, gdouble x, gdouble y, gdouble z) { vector->x = x; vector->y = y; vector->z = z; } /** * gimp_vector3_length: * @vector: a pointer to a #GimpVector3. * * Computes the length of a 3D vector. * * Returns: the length of @vector (a positive gdouble). **/ gdouble gimp_vector3_length (const GimpVector3 *vector) { return (sqrt (vector->x * vector->x + vector->y * vector->y + vector->z * vector->z)); } /** * gimp_vector3_length_val: * @vector: a #GimpVector3. * * This function is identical to gimp_vector3_length() but the vector * is passed by value rather than by reference. * * Returns: the length of @vector (a positive gdouble). **/ gdouble gimp_vector3_length_val (GimpVector3 vector) { return (sqrt (vector.x * vector.x + vector.y * vector.y + vector.z * vector.z)); } /** * gimp_vector3_mul: * @vector: a pointer to a #GimpVector3. * @factor: a scalar. * * Multiplies each component of the @vector by @factor. Note that * this is equivalent to multiplying the vectors length by @factor. **/ void gimp_vector3_mul (GimpVector3 *vector, gdouble factor) { vector->x *= factor; vector->y *= factor; vector->z *= factor; } /** * gimp_vector3_mul_val: * @vector: a #GimpVector3. * @factor: a scalar. * * This function is identical to gimp_vector3_mul() but the vector is * passed by value rather than by reference. * * Returns: the resulting #GimpVector3. **/ GimpVector3 gimp_vector3_mul_val (GimpVector3 vector, gdouble factor) { GimpVector3 result; result.x = vector.x * factor; result.y = vector.y * factor; result.z = vector.z * factor; return result; } /** * gimp_vector3_normalize: * @vector: a pointer to a #GimpVector3. * * Normalizes the @vector so the length of the @vector is 1.0. The nul * vector will not be changed. **/ void gimp_vector3_normalize (GimpVector3 *vector) { gdouble len; len = gimp_vector3_length (vector); if (len != 0.0) { len = 1.0 / len; vector->x *= len; vector->y *= len; vector->z *= len; } else { *vector = gimp_vector3_zero; } } /** * gimp_vector3_normalize_val: * @vector: a #GimpVector3. * * This function is identical to gimp_vector3_normalize() but the * vector is passed by value rather than by reference. * * Returns: a #GimpVector3 parallel to @vector, pointing in the same * direction but with a length of 1.0. **/ GimpVector3 gimp_vector3_normalize_val (GimpVector3 vector) { GimpVector3 result; gdouble len; len = gimp_vector3_length_val (vector); if (len != 0.0) { len = 1.0 / len; result.x = vector.x * len; result.y = vector.y * len; result.z = vector.z * len; return result; } else { return gimp_vector3_zero; } } /** * gimp_vector3_neg: * @vector: a pointer to a #GimpVector3. * * Negates the @vector (i.e. negate all its coordinates). **/ void gimp_vector3_neg (GimpVector3 *vector) { vector->x *= -1.0; vector->y *= -1.0; vector->z *= -1.0; } /** * gimp_vector3_neg_val: * @vector: a #GimpVector3. * * This function is identical to gimp_vector3_neg() but the vector * is passed by value rather than by reference. * * Returns: the negated #GimpVector3. **/ GimpVector3 gimp_vector3_neg_val (GimpVector3 vector) { GimpVector3 result; result.x = vector.x * -1.0; result.y = vector.y * -1.0; result.z = vector.z * -1.0; return result; } /** * gimp_vector3_add: * @result: destination for the resulting #GimpVector3. * @vector1: a pointer to the first #GimpVector3. * @vector2: a pointer to the second #GimpVector3. * * Computes the sum of two 3D vectors. The resulting #GimpVector3 is * stored in @result. **/ void gimp_vector3_add (GimpVector3 *result, const GimpVector3 *vector1, const GimpVector3 *vector2) { result->x = vector1->x + vector2->x; result->y = vector1->y + vector2->y; result->z = vector1->z + vector2->z; } /** * gimp_vector3_add_val: * @vector1: a #GimpVector3. * @vector2: a #GimpVector3. * * This function is identical to gimp_vector3_add() but the vectors * are passed by value rather than by reference. * * Returns: the resulting #GimpVector3. **/ GimpVector3 gimp_vector3_add_val (GimpVector3 vector1, GimpVector3 vector2) { GimpVector3 result; result.x = vector1.x + vector2.x; result.y = vector1.y + vector2.y; result.z = vector1.z + vector2.z; return result; } /** * gimp_vector3_sub: * @result: the destination for the resulting #GimpVector3. * @vector1: a pointer to the first #GimpVector3. * @vector2: a pointer to the second #GimpVector3. * * Computes the difference of two 3D vectors (@vector1 minus @vector2). * The resulting #GimpVector3 is stored in @result. **/ void gimp_vector3_sub (GimpVector3 *result, const GimpVector3 *vector1, const GimpVector3 *vector2) { result->x = vector1->x - vector2->x; result->y = vector1->y - vector2->y; result->z = vector1->z - vector2->z; } /** * gimp_vector3_sub_val: * @vector1: a #GimpVector3. * @vector2: a #GimpVector3. * * This function is identical to gimp_vector3_sub() but the vectors * are passed by value rather than by reference. * * Returns: the resulting #GimpVector3. **/ GimpVector3 gimp_vector3_sub_val (GimpVector3 vector1, GimpVector3 vector2) { GimpVector3 result; result.x = vector1.x - vector2.x; result.y = vector1.y - vector2.y; result.z = vector1.z - vector2.z; return result; } /** * gimp_vector3_inner_product: * @vector1: a pointer to the first #GimpVector3. * @vector2: a pointer to the second #GimpVector3. * * Computes the inner (dot) product of two 3D vectors. This product * is zero if and only if the two vectors are orthognal. * * Returns: The inner product. **/ gdouble gimp_vector3_inner_product (const GimpVector3 *vector1, const GimpVector3 *vector2) { return (vector1->x * vector2->x + vector1->y * vector2->y + vector1->z * vector2->z); } /** * gimp_vector3_inner_product_val: * @vector1: the first #GimpVector3. * @vector2: the second #GimpVector3. * * This function is identical to gimp_vector3_inner_product() but the * vectors are passed by value rather than by reference. * * Returns: The inner product. **/ gdouble gimp_vector3_inner_product_val (GimpVector3 vector1, GimpVector3 vector2) { return (vector1.x * vector2.x + vector1.y * vector2.y + vector1.z * vector2.z); } /** * gimp_vector3_cross_product: * @vector1: a pointer to the first #GimpVector3. * @vector2: a pointer to the second #GimpVector3. * * Compute the cross product of two vectors. The result is a * #GimpVector3 which is orthognal to both @vector1 and @vector2. If * @vector1 and @vector2 and parallel, the result will be the nul * vector. * * This function can be used to compute the normal of the plane * defined by @vector1 and @vector2. * * Returns: The cross product. **/ GimpVector3 gimp_vector3_cross_product (const GimpVector3 *vector1, const GimpVector3 *vector2) { GimpVector3 normal; normal.x = vector1->y * vector2->z - vector1->z * vector2->y; normal.y = vector1->z * vector2->x - vector1->x * vector2->z; normal.z = vector1->x * vector2->y - vector1->y * vector2->x; return normal; } /** * gimp_vector3_cross_product_val: * @vector1: the first #GimpVector3. * @vector2: the second #GimpVector3. * * This function is identical to gimp_vector3_cross_product() but the * vectors are passed by value rather than by reference. * * Returns: The cross product. **/ GimpVector3 gimp_vector3_cross_product_val (GimpVector3 vector1, GimpVector3 vector2) { GimpVector3 normal; normal.x = vector1.y * vector2.z - vector1.z * vector2.y; normal.y = vector1.z * vector2.x - vector1.x * vector2.z; normal.z = vector1.x * vector2.y - vector1.y * vector2.x; return normal; } /** * gimp_vector3_rotate: * @vector: a pointer to a #GimpVector3. * @alpha: the angle (in radian) of rotation around the Z axis. * @beta: the angle (in radian) of rotation around the Y axis. * @gamma: the angle (in radian) of rotation around the X axis. * * Rotates the @vector around the three axis (Z, Y, and X) by @alpha, * @beta and @gamma, respectively. * * Note that the order of the rotation is very important. If you * expect a vector to be rotated around X, and then around Y, you will * have to call this function twice. Also, it is often wise to call * this function with only one of @alpha, @beta and @gamma non-zero. **/ void gimp_vector3_rotate (GimpVector3 *vector, gdouble alpha, gdouble beta, gdouble gamma) { GimpVector3 s, t; /* First we rotate it around the Z axis (XY plane).. */ /* ================================================= */ s.x = cos (alpha) * vector->x + sin (alpha) * vector->y; s.y = cos (alpha) * vector->y - sin (alpha) * vector->x; /* ..then around the Y axis (XZ plane).. */ /* ===================================== */ t = s; vector->x = cos (beta) *t.x + sin (beta) * vector->z; s.z = cos (beta) *vector->z - sin (beta) * t.x; /* ..and at last around the X axis (YZ plane) */ /* ========================================== */ vector->y = cos (gamma) * t.y + sin (gamma) * s.z; vector->z = cos (gamma) * s.z - sin (gamma) * t.y; } /** * gimp_vector3_rotate_val: * @vector: a #GimpVector3. * @alpha: the angle (in radian) of rotation around the Z axis. * @beta: the angle (in radian) of rotation around the Y axis. * @gamma: the angle (in radian) of rotation around the X axis. * * This function is identical to gimp_vector3_rotate() but the vectors * are passed by value rather than by reference. * * Returns: the rotated vector. **/ GimpVector3 gimp_vector3_rotate_val (GimpVector3 vector, gdouble alpha, gdouble beta, gdouble gamma) { GimpVector3 s, t, result; /* First we rotate it around the Z axis (XY plane).. */ /* ================================================= */ s.x = cos (alpha) * vector.x + sin (alpha) * vector.y; s.y = cos (alpha) * vector.y - sin (alpha) * vector.x; /* ..then around the Y axis (XZ plane).. */ /* ===================================== */ t = s; result.x = cos (beta) *t.x + sin (beta) * vector.z; s.z = cos (beta) *vector.z - sin (beta) * t.x; /* ..and at last around the X axis (YZ plane) */ /* ========================================== */ result.y = cos (gamma) * t.y + sin (gamma) * s.z; result.z = cos (gamma) * s.z - sin (gamma) * t.y; return result; } /** * gimp_vector_2d_to_3d: * @sx: the abscissa of the upper-left screen rectangle. * @sy: the ordinate of the upper-left screen rectangle. * @w: the width of the screen rectangle. * @h: the height of the screen rectangle. * @x: the abscissa of the point in the screen rectangle to map. * @y: the ordinate of the point in the screen rectangle to map. * @vp: the position of the observer. * @p: the resulting point. * * \"Compute screen (sx, sy) - (sx + w, sy + h) to 3D unit square * mapping. The plane to map to is given in the z field of p. The * observer is located at position vp (vp->z != 0.0).\" * * In other words, this computes the projection of the point (@x, @y) * to the plane z = @p->z (parallel to XY), from the @vp point of view * through the screen (@sx, @sy)->(@sx + @w, @sy + @h) **/ void gimp_vector_2d_to_3d (gint sx, gint sy, gint w, gint h, gint x, gint y, const GimpVector3 *vp, GimpVector3 *p) { gdouble t = 0.0; if (vp->x != 0.0) t = (p->z - vp->z) / vp->z; if (t != 0.0) { p->x = vp->x + t * (vp->x - ((gdouble) (x - sx) / (gdouble) w)); p->y = vp->y + t * (vp->y - ((gdouble) (y - sy) / (gdouble) h)); } else { p->x = (gdouble) (x - sx) / (gdouble) w; p->y = (gdouble) (y - sy) / (gdouble) h; } } /** * gimp_vector_2d_to_3d_val: * @sx: the abscissa of the upper-left screen rectangle. * @sy: the ordinate of the upper-left screen rectangle. * @w: the width of the screen rectangle. * @h: the height of the screen rectangle. * @x: the abscissa of the point in the screen rectangle to map. * @y: the ordinate of the point in the screen rectangle to map. * @vp: position of the observer. * @p: the resulting point. * * This function is identical to gimp_vector_2d_to_3d() but the * position of the @observer and the resulting point @p are passed by * value rather than by reference. * * Returns: the computed #GimpVector3 point. **/ GimpVector3 gimp_vector_2d_to_3d_val (gint sx, gint sy, gint w, gint h, gint x, gint y, GimpVector3 vp, GimpVector3 p) { GimpVector3 result; gdouble t = 0.0; if (vp.x != 0.0) t = (p.z - vp.z) / vp.z; if (t != 0.0) { result.x = vp.x + t * (vp.x - ((gdouble) (x - sx) / (gdouble) w)); result.y = vp.y + t * (vp.y - ((gdouble) (y - sy) / (gdouble) h)); } else { result.x = (gdouble) (x - sx) / (gdouble) w; result.y = (gdouble) (y - sy) / (gdouble) h; } result.z = 0; return result; } /** * gimp_vector_3d_to_2d: * @sx: the abscissa of the upper-left screen rectangle. * @sy: the ordinate of the upper-left screen rectangle. * @w: the width of the screen rectangle. * @h: the height of the screen rectangle. * @x: the abscissa of the point in the screen rectangle to map (return value). * @y: the ordinate of the point in the screen rectangle to map (return value). * @vp: position of the observer. * @p: the 3D point to project to the plane. * * Convert the given 3D point to 2D (project it onto the viewing * plane, (sx, sy, 0) - (sx + w, sy + h, 0). The input is assumed to * be in the unit square (0, 0, z) - (1, 1, z). The viewpoint of the * observer is passed in vp. * * This is basically the opposite of gimp_vector_2d_to_3d(). **/ void gimp_vector_3d_to_2d (gint sx, gint sy, gint w, gint h, gdouble *x, gdouble *y, const GimpVector3 *vp, const GimpVector3 *p) { gdouble t; GimpVector3 dir; gimp_vector3_sub (&dir, p, vp); gimp_vector3_normalize (&dir); if (dir.z != 0.0) { t = (-1.0 * vp->z) / dir.z; *x = (gdouble) sx + ((vp->x + t * dir.x) * (gdouble) w); *y = (gdouble) sy + ((vp->y + t * dir.y) * (gdouble) h); } else { *x = (gdouble) sx + (p->x * (gdouble) w); *y = (gdouble) sy + (p->y * (gdouble) h); } }