/* spline.h: manipulate the spline representation. Copyright (C) 1992 Free Software Foundation, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #ifndef SPLINE_H #define SPLINE_H #include #include "bounding-box.h" #include "types.h" /* Third degree is the highest we deal with. */ typedef enum { LINEAR = 1, QUADRATIC = 2, CUBIC = 3 } polynomial_degree; /* A Bezier spline can be represented as four points in the real plane: a starting point, ending point, and two control points. The curve always lies in the convex hull defined by the four points. It is also convenient to save the divergence of the spline from the straight line defined by the endpoints. */ typedef struct { real_coordinate_type v[4]; /* The control points. */ polynomial_degree degree; real linearity; } spline_type; #define START_POINT(spl) ((spl).v[0]) #define CONTROL1(spl) ((spl).v[1]) #define CONTROL2(spl) ((spl).v[2]) #define END_POINT(spl) ((spl).v[3]) #define SPLINE_DEGREE(spl) ((spl).degree) #define SPLINE_LINEARITY(spl) ((spl).linearity) /* Return a spline structure. */ extern spline_type new_spline (void); /* Print a spline on the given file. */ extern void print_spline (FILE *, spline_type); /* Evaluate SPLINE at the given T value. */ extern real_coordinate_type evaluate_spline (spline_type spline, real t); /* Each outline in a character is typically represented by many splines. So, here is a list structure for that: */ typedef struct { spline_type *data; unsigned length; } spline_list_type; /* An empty list will have length zero (and null data). */ #define SPLINE_LIST_LENGTH(s_l) ((s_l).length) /* The address of the beginning of the array of data. */ #define SPLINE_LIST_DATA(s_l) ((s_l).data) /* The element INDEX in S_L. */ #define SPLINE_LIST_ELT(s_l, index) (SPLINE_LIST_DATA (s_l)[index]) /* The last element in S_L. */ #define LAST_SPLINE_LIST_ELT(s_l) \ (SPLINE_LIST_DATA (s_l)[SPLINE_LIST_LENGTH (s_l) - 1]) /* The previous and next elements to INDEX in S_L. */ #define NEXT_SPLINE_LIST_ELT(s_l, index) \ SPLINE_LIST_ELT (s_l, ((index) + 1) % SPLINE_LIST_LENGTH (s_l)) #define PREV_SPLINE_LIST_ELT(s_l, index) \ SPLINE_LIST_ELT (s_l, index == 0 \ ? SPLINE_LIST_LENGTH (s_l) - 1 \ : index - 1) /* Construct and destroy new `spline_list_type' objects. */ extern spline_list_type *new_spline_list (void); extern spline_list_type *init_spline_list (spline_type); extern void free_spline_list (spline_list_type *); /* Append the spline S to the list S_LIST. */ extern void append_spline (spline_list_type *s_list, spline_type s); /* Append the elements in list S2 to S1, changing S1. */ extern void concat_spline_lists (spline_list_type *s1, spline_list_type s2); /* Each character is in general made up of many outlines. So here is one more list structure. */ typedef struct { spline_list_type *data; unsigned length; } spline_list_array_type; /* Turns out we can use the same definitions for lists of lists as for just lists. But we define the usual names, just in case. */ #define SPLINE_LIST_ARRAY_LENGTH SPLINE_LIST_LENGTH #define SPLINE_LIST_ARRAY_DATA SPLINE_LIST_DATA #define SPLINE_LIST_ARRAY_ELT SPLINE_LIST_ELT #define LAST_SPLINE_LIST_ARRAY_ELT LAST_SPLINE_LIST_ELT /* The usual routines. */ extern spline_list_array_type new_spline_list_array (void); extern void free_spline_list_array (spline_list_array_type *); extern void append_spline_list (spline_list_array_type *, spline_list_type); #endif /* not SPLINE_H */