mirror of https://github.com/GNOME/gimp.git
app: move the handle transform matrix calculation to gimp-transform-utils.[ch]
This commit is contained in:
parent
430c31b798
commit
6cd91f1fde
|
@ -328,6 +328,193 @@ gimp_transform_matrix_perspective (GimpMatrix3 *matrix,
|
|||
gimp_matrix3_mult (&trafo, matrix);
|
||||
}
|
||||
|
||||
/* modified gaussian algorithm
|
||||
* solves a system of linear equations
|
||||
*
|
||||
* Example:
|
||||
* 1x + 2y + 4z = 25
|
||||
* 2x + 1y = 4
|
||||
* 3x + 5y + 2z = 23
|
||||
* Solution: x=1, y=2, z=5
|
||||
*
|
||||
* Input:
|
||||
* matrix = { 1,2,4,25,2,1,0,4,3,5,2,23 }
|
||||
* s = 3 (Number of variables)
|
||||
* Output:
|
||||
* return value == TRUE (TRUE, if there is a single unique solution)
|
||||
* solution == { 1,2,5 } (if the return value is FALSE, the content
|
||||
* of solution is of no use)
|
||||
*/
|
||||
static gboolean
|
||||
mod_gauss (gdouble matrix[],
|
||||
gdouble solution[],
|
||||
gint s)
|
||||
{
|
||||
gint p[s]; /* row permutation */
|
||||
gint i, j, r, temp;
|
||||
gdouble q;
|
||||
gint t = s + 1;
|
||||
|
||||
for (i = 0; i < s; i++)
|
||||
{
|
||||
p[i] = i;
|
||||
}
|
||||
|
||||
for (r = 0; r < s; r++)
|
||||
{
|
||||
/* make sure that (r,r) is not 0 */
|
||||
if (matrix[p[r] * t + r] == 0.0)
|
||||
{
|
||||
/* we need to permutate rows */
|
||||
for (i = r + 1; i <= s; i++)
|
||||
{
|
||||
if (i == s)
|
||||
{
|
||||
/* if this happens, the linear system has zero or
|
||||
* more than one solutions.
|
||||
*/
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
if (matrix[p[i] * t + r] != 0.0)
|
||||
break;
|
||||
}
|
||||
|
||||
temp = p[r];
|
||||
p[r] = p[i];
|
||||
p[i] = temp;
|
||||
}
|
||||
|
||||
/* make (r,r) == 1 */
|
||||
q = 1.0 / matrix[p[r] * t + r];
|
||||
matrix[p[r] * t + r] = 1.0;
|
||||
|
||||
for (j = r + 1; j < t; j++)
|
||||
{
|
||||
matrix[p[r] * t + j] *= q;
|
||||
}
|
||||
|
||||
/* make that all entries in column r are 0 (except (r,r)) */
|
||||
for (i = 0; i < s; i++)
|
||||
{
|
||||
if (i == r)
|
||||
continue;
|
||||
|
||||
for (j = r + 1; j < t ; j++)
|
||||
{
|
||||
matrix[p[i] * t + j] -= matrix[p[r] * t + j] * matrix[p[i] * t + r];
|
||||
}
|
||||
|
||||
/* we don't need to execute the following line
|
||||
* since we won't access this element again:
|
||||
*
|
||||
* matrix[p[i] * t + r] = 0.0;
|
||||
*/
|
||||
}
|
||||
}
|
||||
|
||||
for (i = 0; i < s; i++)
|
||||
{
|
||||
solution[i] = matrix[p[i] * t + s];
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
void
|
||||
gimp_transform_matrix_handles (GimpMatrix3 *matrix,
|
||||
gdouble x1,
|
||||
gdouble y1,
|
||||
gdouble x2,
|
||||
gdouble y2,
|
||||
gdouble x3,
|
||||
gdouble y3,
|
||||
gdouble x4,
|
||||
gdouble y4,
|
||||
gdouble t_x1,
|
||||
gdouble t_y1,
|
||||
gdouble t_x2,
|
||||
gdouble t_y2,
|
||||
gdouble t_x3,
|
||||
gdouble t_y3,
|
||||
gdouble t_x4,
|
||||
gdouble t_y4)
|
||||
{
|
||||
GimpMatrix3 trafo;
|
||||
gdouble opos_x[4];
|
||||
gdouble opos_y[4];
|
||||
gdouble pos_x[4];
|
||||
gdouble pos_y[4];
|
||||
gdouble coeff[8 * 9];
|
||||
gdouble sol[8];
|
||||
gint i;
|
||||
|
||||
g_return_if_fail (matrix != NULL);
|
||||
|
||||
opos_x[0] = x1;
|
||||
opos_y[0] = y1;
|
||||
opos_x[1] = x2;
|
||||
opos_y[1] = y2;
|
||||
opos_x[2] = x3;
|
||||
opos_y[2] = y3;
|
||||
opos_x[3] = x4;
|
||||
opos_y[3] = y4;
|
||||
|
||||
pos_x[0] = t_x1;
|
||||
pos_y[0] = t_y1;
|
||||
pos_x[1] = t_x2;
|
||||
pos_y[1] = t_y2;
|
||||
pos_x[2] = t_x3;
|
||||
pos_y[2] = t_y3;
|
||||
pos_x[3] = t_x4;
|
||||
pos_y[3] = t_y4;
|
||||
|
||||
for (i = 0; i < 4; i++)
|
||||
{
|
||||
coeff[i * 9 + 0] = opos_x[i];
|
||||
coeff[i * 9 + 1] = opos_y[i];
|
||||
coeff[i * 9 + 2] = 1;
|
||||
coeff[i * 9 + 3] = 0;
|
||||
coeff[i * 9 + 4] = 0;
|
||||
coeff[i * 9 + 5] = 0;
|
||||
coeff[i * 9 + 6] = -opos_x[i] * pos_x[i];
|
||||
coeff[i * 9 + 7] = -opos_y[i] * pos_x[i];
|
||||
coeff[i * 9 + 8] = pos_x[i];
|
||||
|
||||
coeff[(i + 4) * 9 + 0] = 0;
|
||||
coeff[(i + 4) * 9 + 1] = 0;
|
||||
coeff[(i + 4) * 9 + 2] = 0;
|
||||
coeff[(i + 4) * 9 + 3] = opos_x[i];
|
||||
coeff[(i + 4) * 9 + 4] = opos_y[i];
|
||||
coeff[(i + 4) * 9 + 5] = 1;
|
||||
coeff[(i + 4) * 9 + 6] = -opos_x[i] * pos_y[i];
|
||||
coeff[(i + 4) * 9 + 7] = -opos_y[i] * pos_y[i];
|
||||
coeff[(i + 4) * 9 + 8] = pos_y[i];
|
||||
}
|
||||
|
||||
if (mod_gauss (coeff, sol, 8))
|
||||
{
|
||||
trafo.coeff[0][0] = sol[0];
|
||||
trafo.coeff[0][1] = sol[1];
|
||||
trafo.coeff[0][2] = sol[2];
|
||||
trafo.coeff[1][0] = sol[3];
|
||||
trafo.coeff[1][1] = sol[4];
|
||||
trafo.coeff[1][2] = sol[5];
|
||||
trafo.coeff[2][0] = sol[6];
|
||||
trafo.coeff[2][1] = sol[7];
|
||||
trafo.coeff[2][2] = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* this should not happen reset the matrix so the user sees that
|
||||
* something went wrong
|
||||
*/
|
||||
gimp_matrix3_identity (&trafo);
|
||||
}
|
||||
|
||||
gimp_matrix3_mult (&trafo, matrix);
|
||||
}
|
||||
|
||||
gboolean
|
||||
gimp_transform_polygon_is_convex (gdouble x1,
|
||||
gdouble y1,
|
||||
|
|
|
@ -85,6 +85,23 @@ void gimp_transform_matrix_perspective (GimpMatrix3 *matrix,
|
|||
gdouble t_y3,
|
||||
gdouble t_x4,
|
||||
gdouble t_y4);
|
||||
void gimp_transform_matrix_handles (GimpMatrix3 *matrix,
|
||||
gdouble x1,
|
||||
gdouble y1,
|
||||
gdouble x2,
|
||||
gdouble y2,
|
||||
gdouble x3,
|
||||
gdouble y3,
|
||||
gdouble x4,
|
||||
gdouble y4,
|
||||
gdouble t_x1,
|
||||
gdouble t_y1,
|
||||
gdouble t_x2,
|
||||
gdouble t_y2,
|
||||
gdouble t_x3,
|
||||
gdouble t_y3,
|
||||
gdouble t_x4,
|
||||
gdouble t_y4);
|
||||
|
||||
gboolean gimp_transform_polygon_is_convex (gdouble x1,
|
||||
gdouble y1,
|
||||
|
|
|
@ -30,6 +30,7 @@
|
|||
#include "config/gimpguiconfig.h" /* playground */
|
||||
|
||||
#include "core/gimp.h" /* playground */
|
||||
#include "core/gimp-transform-utils.h"
|
||||
|
||||
#include "widgets/gimphelp-ids.h"
|
||||
#include "widgets/gimpwidgets-utils.h"
|
||||
|
@ -136,9 +137,6 @@ static inline gdouble calc_lineintersect_ratio (gdouble p1x,
|
|||
gdouble q1y,
|
||||
gdouble q2x,
|
||||
gdouble q2y);
|
||||
static gboolean mod_gauss (gdouble matrix[],
|
||||
gdouble solution[],
|
||||
gint s);
|
||||
|
||||
|
||||
G_DEFINE_TYPE (GimpHandleTransformTool, gimp_handle_transform_tool,
|
||||
|
@ -609,66 +607,27 @@ gimp_handle_transform_tool_recalc_matrix (GimpTransformTool *tr_tool,
|
|||
GimpToolWidget *widget)
|
||||
{
|
||||
GimpHandleTransformTool *ht_tool = GIMP_HANDLE_TRANSFORM_TOOL (tr_tool);
|
||||
gdouble coeff[8 * 9];
|
||||
gdouble sol[8];
|
||||
gdouble opos_x[4];
|
||||
gdouble opos_y[4];
|
||||
gdouble pos_x[4];
|
||||
gdouble pos_y[4];
|
||||
gint i;
|
||||
|
||||
if (ht_tool->matrix_recalculation)
|
||||
{
|
||||
for (i = 0; i < 4; i++)
|
||||
{
|
||||
pos_x[i] = tr_tool->trans_info[X0 + i * 2];
|
||||
pos_y[i] = tr_tool->trans_info[Y0 + i * 2];
|
||||
opos_x[i] = tr_tool->trans_info[OX0 + i * 2];
|
||||
opos_y[i] = tr_tool->trans_info[OY0 + i * 2];
|
||||
}
|
||||
|
||||
for (i = 0; i < 4; i++)
|
||||
{
|
||||
coeff[i * 9 + 0] = opos_x[i];
|
||||
coeff[i * 9 + 1] = opos_y[i];
|
||||
coeff[i * 9 + 2] = 1;
|
||||
coeff[i * 9 + 3] = 0;
|
||||
coeff[i * 9 + 4] = 0;
|
||||
coeff[i * 9 + 5] = 0;
|
||||
coeff[i * 9 + 6] = -opos_x[i] * pos_x[i];
|
||||
coeff[i * 9 + 7] = -opos_y[i] * pos_x[i];
|
||||
coeff[i * 9 + 8] = pos_x[i];
|
||||
|
||||
coeff[(i + 4) * 9 + 0] = 0;
|
||||
coeff[(i + 4) * 9 + 1] = 0;
|
||||
coeff[(i + 4) * 9 + 2] = 0;
|
||||
coeff[(i + 4) * 9 + 3] = opos_x[i];
|
||||
coeff[(i + 4) * 9 + 4] = opos_y[i];
|
||||
coeff[(i + 4) * 9 + 5] = 1;
|
||||
coeff[(i + 4) * 9 + 6] = -opos_x[i] * pos_y[i];
|
||||
coeff[(i + 4) * 9 + 7] = -opos_y[i] * pos_y[i];
|
||||
coeff[(i + 4) * 9 + 8] = pos_y[i];
|
||||
}
|
||||
|
||||
if (mod_gauss (coeff, sol, 8))
|
||||
{
|
||||
tr_tool->transform.coeff[0][0] = sol[0];
|
||||
tr_tool->transform.coeff[0][1] = sol[1];
|
||||
tr_tool->transform.coeff[0][2] = sol[2];
|
||||
tr_tool->transform.coeff[1][0] = sol[3];
|
||||
tr_tool->transform.coeff[1][1] = sol[4];
|
||||
tr_tool->transform.coeff[1][2] = sol[5];
|
||||
tr_tool->transform.coeff[2][0] = sol[6];
|
||||
tr_tool->transform.coeff[2][1] = sol[7];
|
||||
tr_tool->transform.coeff[2][2] = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* this should not happen reset the matrix so the user sees
|
||||
* that something went wrong
|
||||
*/
|
||||
gimp_matrix3_identity (&tr_tool->transform);
|
||||
}
|
||||
gimp_matrix3_identity (&tr_tool->transform);
|
||||
gimp_transform_matrix_handles (&tr_tool->transform,
|
||||
tr_tool->trans_info[OX0],
|
||||
tr_tool->trans_info[OY0],
|
||||
tr_tool->trans_info[OX1],
|
||||
tr_tool->trans_info[OY1],
|
||||
tr_tool->trans_info[OX2],
|
||||
tr_tool->trans_info[OY2],
|
||||
tr_tool->trans_info[OX3],
|
||||
tr_tool->trans_info[OY3],
|
||||
tr_tool->trans_info[X0],
|
||||
tr_tool->trans_info[Y0],
|
||||
tr_tool->trans_info[X1],
|
||||
tr_tool->trans_info[Y1],
|
||||
tr_tool->trans_info[X2],
|
||||
tr_tool->trans_info[Y2],
|
||||
tr_tool->trans_info[X3],
|
||||
tr_tool->trans_info[Y3]);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -928,97 +887,3 @@ calc_lineintersect_ratio (gdouble p1x, gdouble p1y,
|
|||
|
||||
return u / (u - 1);
|
||||
}
|
||||
|
||||
|
||||
/* modified gaussian algorithm
|
||||
* solves a system of linear equations
|
||||
*
|
||||
* Example:
|
||||
* 1x + 2y + 4z = 25
|
||||
* 2x + 1y = 4
|
||||
* 3x + 5y + 2z = 23
|
||||
* Solution: x=1, y=2, z=5
|
||||
*
|
||||
* Input:
|
||||
* matrix = { 1,2,4,25,2,1,0,4,3,5,2,23 }
|
||||
* s = 3 (Number of variables)
|
||||
* Output:
|
||||
* return value == TRUE (TRUE, if there is a single unique solution)
|
||||
* solution == { 1,2,5 } (if the return value is FALSE, the content
|
||||
* of solution is of no use)
|
||||
*/
|
||||
static gboolean
|
||||
mod_gauss (gdouble matrix[],
|
||||
gdouble solution[],
|
||||
gint s)
|
||||
{
|
||||
gint p[s]; /* row permutation */
|
||||
gint i, j, r, temp;
|
||||
gdouble q;
|
||||
gint t = s + 1;
|
||||
|
||||
for (i = 0; i < s; i++)
|
||||
{
|
||||
p[i] = i;
|
||||
}
|
||||
|
||||
for (r = 0; r < s; r++)
|
||||
{
|
||||
/* make sure that (r,r) is not 0 */
|
||||
if (matrix[p[r] * t + r] == 0.0)
|
||||
{
|
||||
/* we need to permutate rows */
|
||||
for (i = r + 1; i <= s; i++)
|
||||
{
|
||||
if (i == s)
|
||||
{
|
||||
/* if this happens, the linear system has zero or
|
||||
* more than one solutions.
|
||||
*/
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
if (matrix[p[i] * t + r] != 0.0)
|
||||
break;
|
||||
}
|
||||
|
||||
temp = p[r];
|
||||
p[r] = p[i];
|
||||
p[i] = temp;
|
||||
}
|
||||
|
||||
/* make (r,r) == 1 */
|
||||
q = 1.0 / matrix[p[r] * t + r];
|
||||
matrix[p[r] * t + r] = 1.0;
|
||||
|
||||
for (j = r + 1; j < t; j++)
|
||||
{
|
||||
matrix[p[r] * t + j] *= q;
|
||||
}
|
||||
|
||||
/* make that all entries in column r are 0 (except (r,r)) */
|
||||
for (i = 0; i < s; i++)
|
||||
{
|
||||
if (i == r)
|
||||
continue;
|
||||
|
||||
for (j = r + 1; j < t ; j++)
|
||||
{
|
||||
matrix[p[i] * t + j] -= matrix[p[r] * t + j] * matrix[p[i] * t + r];
|
||||
}
|
||||
|
||||
/* we don't need to execute the following line
|
||||
* since we won't access this element again:
|
||||
*
|
||||
* matrix[p[i] * t + r] = 0.0;
|
||||
*/
|
||||
}
|
||||
}
|
||||
|
||||
for (i = 0; i < s; i++)
|
||||
{
|
||||
solution[i] = matrix[p[i] * t + s];
|
||||
}
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue