1997-11-25 06:05:25 +08:00
|
|
|
/*
|
|
|
|
flame - cosmic recursive fractal flames
|
|
|
|
Copyright (C) 1992 Scott Draves <spot@cs.cmu.edu>
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program; if not, write to the Free Software
|
1998-04-13 13:44:11 +08:00
|
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
1997-11-25 06:05:25 +08:00
|
|
|
*/
|
|
|
|
|
|
|
|
|
1998-06-09 19:41:13 +08:00
|
|
|
#include <math.h>
|
1997-11-25 06:05:25 +08:00
|
|
|
#include <ctype.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
|
|
|
#include "libifs.h"
|
|
|
|
|
1998-04-07 11:41:22 +08:00
|
|
|
#include "config.h"
|
|
|
|
|
1998-03-19 07:40:52 +08:00
|
|
|
#ifndef M_PI
|
|
|
|
#define M_PI 3.14159265358979323846
|
|
|
|
#endif /* M_PI */
|
|
|
|
|
1997-11-25 06:05:25 +08:00
|
|
|
#define CHOOSE_XFORM_GRAIN 100
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* run the function system described by CP forward N generations.
|
|
|
|
* store the n resulting 3 vectors in POINTS. the initial point is passed
|
|
|
|
* in POINTS[0]. ignore the first FUSE iterations.
|
|
|
|
*/
|
|
|
|
|
|
|
|
void iterate(cp, n, fuse, points)
|
|
|
|
control_point *cp;
|
|
|
|
int n;
|
|
|
|
int fuse;
|
|
|
|
point *points;
|
|
|
|
{
|
|
|
|
int i, j, count_large = 0, count_nan = 0;
|
|
|
|
int xform_distrib[CHOOSE_XFORM_GRAIN];
|
|
|
|
double p[3], t, r, dr;
|
|
|
|
p[0] = points[0][0];
|
|
|
|
p[1] = points[0][1];
|
|
|
|
p[2] = points[0][2];
|
|
|
|
|
|
|
|
/*
|
|
|
|
* first, set up xform, which is an array that converts a uniform random
|
|
|
|
* variable into one with the distribution dictated by the density
|
|
|
|
* fields
|
|
|
|
*/
|
|
|
|
dr = 0.0;
|
|
|
|
for (i = 0; i < NXFORMS; i++)
|
|
|
|
dr += cp->xform[i].density;
|
|
|
|
dr = dr / CHOOSE_XFORM_GRAIN;
|
|
|
|
|
|
|
|
j = 0;
|
|
|
|
t = cp->xform[0].density;
|
|
|
|
r = 0.0;
|
|
|
|
for (i = 0; i < CHOOSE_XFORM_GRAIN; i++) {
|
|
|
|
while (r >= t) {
|
|
|
|
j++;
|
|
|
|
t += cp->xform[j].density;
|
|
|
|
}
|
|
|
|
xform_distrib[i] = j;
|
|
|
|
r += dr;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = -fuse; i < n; i++) {
|
1998-04-07 11:41:22 +08:00
|
|
|
int fn = xform_distrib[RAND_FUNC () % CHOOSE_XFORM_GRAIN];
|
1997-11-25 06:05:25 +08:00
|
|
|
double tx, ty, v;
|
|
|
|
|
|
|
|
if (p[0] > 100.0 || p[0] < -100.0 ||
|
|
|
|
p[1] > 100.0 || p[1] < -100.0)
|
|
|
|
count_large++;
|
|
|
|
if (p[0] != p[0])
|
|
|
|
count_nan++;
|
|
|
|
|
|
|
|
#define coef cp->xform[fn].c
|
|
|
|
#define vari cp->xform[fn].var
|
|
|
|
|
|
|
|
/* first compute the color coord */
|
|
|
|
p[2] = (p[2] + cp->xform[fn].color) / 2.0;
|
|
|
|
|
|
|
|
/* then apply the affine part of the function */
|
|
|
|
tx = coef[0][0] * p[0] + coef[1][0] * p[1] + coef[2][0];
|
|
|
|
ty = coef[0][1] * p[0] + coef[1][1] * p[1] + coef[2][1];
|
|
|
|
|
|
|
|
p[0] = p[1] = 0.0;
|
|
|
|
/* then add in proportional amounts of each of the variations */
|
|
|
|
v = vari[0];
|
|
|
|
if (v > 0.0) {
|
|
|
|
/* linear */
|
|
|
|
double nx, ny;
|
|
|
|
nx = tx;
|
|
|
|
ny = ty;
|
|
|
|
p[0] += v * nx;
|
|
|
|
p[1] += v * ny;
|
|
|
|
}
|
|
|
|
|
|
|
|
v = vari[1];
|
|
|
|
if (v > 0.0) {
|
|
|
|
/* sinusoidal */
|
|
|
|
double nx, ny;
|
|
|
|
nx = sin(tx);
|
|
|
|
ny = sin(ty);
|
|
|
|
p[0] += v * nx;
|
|
|
|
p[1] += v * ny;
|
|
|
|
}
|
|
|
|
|
|
|
|
v = vari[2];
|
|
|
|
if (v > 0.0) {
|
|
|
|
/* complex */
|
|
|
|
double nx, ny;
|
|
|
|
double r2 = tx * tx + ty * ty + 1e-6;
|
|
|
|
nx = tx / r2;
|
|
|
|
ny = ty / r2;
|
|
|
|
p[0] += v * nx;
|
|
|
|
p[1] += v * ny;
|
|
|
|
}
|
|
|
|
|
|
|
|
v = vari[3];
|
|
|
|
if (v > 0.0) {
|
|
|
|
/* swirl */
|
|
|
|
double r2 = tx * tx + ty * ty; /* /k here is fun */
|
|
|
|
double c1 = sin(r2);
|
|
|
|
double c2 = cos(r2);
|
|
|
|
double nx = c1 * tx - c2 * ty;
|
|
|
|
double ny = c2 * tx + c1 * ty;
|
|
|
|
p[0] += v * nx;
|
|
|
|
p[1] += v * ny;
|
|
|
|
}
|
|
|
|
|
|
|
|
v = vari[4];
|
|
|
|
if (v > 0.0) {
|
|
|
|
/* horseshoe */
|
|
|
|
double a, c1, c2, nx, ny;
|
|
|
|
if (tx < -EPS || tx > EPS ||
|
|
|
|
ty < -EPS || ty > EPS)
|
|
|
|
a = atan2(tx, ty); /* times k here is fun */
|
|
|
|
else
|
|
|
|
a = 0.0;
|
|
|
|
c1 = sin(a);
|
|
|
|
c2 = cos(a);
|
|
|
|
nx = c1 * tx - c2 * ty;
|
|
|
|
ny = c2 * tx + c1 * ty;
|
|
|
|
p[0] += v * nx;
|
|
|
|
p[1] += v * ny;
|
|
|
|
}
|
|
|
|
|
|
|
|
v = vari[5];
|
|
|
|
if (v > 0.0) {
|
|
|
|
double nx, ny;
|
|
|
|
if (tx < -EPS || tx > EPS ||
|
|
|
|
ty < -EPS || ty > EPS)
|
|
|
|
nx = atan2(tx, ty) / M_PI;
|
|
|
|
else
|
|
|
|
nx = 0.0;
|
|
|
|
|
|
|
|
ny = sqrt(tx * tx + ty * ty) - 1.0;
|
|
|
|
p[0] += v * nx;
|
|
|
|
p[1] += v * ny;
|
|
|
|
}
|
|
|
|
|
|
|
|
v = vari[6];
|
|
|
|
if (v > 0.0) {
|
|
|
|
/* bent */
|
|
|
|
double nx, ny;
|
|
|
|
nx = tx;
|
|
|
|
ny = ty;
|
|
|
|
if (nx < 0.0) nx = nx * 2.0;
|
|
|
|
if (ny < 0.0) ny = ny / 2.0;
|
|
|
|
p[0] += v * nx;
|
|
|
|
p[1] += v * ny;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* if fuse over, store it */
|
|
|
|
if (i >= 0) {
|
|
|
|
points[i][0] = p[0];
|
|
|
|
points[i][1] = p[1];
|
|
|
|
points[i][2] = p[2];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#if 0
|
|
|
|
if ((count_large > 10 || count_nan > 10)
|
|
|
|
&& !getenv("PVM_ARCH"))
|
|
|
|
fprintf(stderr, "large = %d nan = %d\n", count_large, count_nan);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/* args must be non-overlapping */
|
|
|
|
void mult_matrix(s1, s2, d)
|
|
|
|
double s1[2][2];
|
|
|
|
double s2[2][2];
|
|
|
|
double d[2][2];
|
|
|
|
{
|
|
|
|
d[0][0] = s1[0][0] * s2[0][0] + s1[1][0] * s2[0][1];
|
|
|
|
d[1][0] = s1[0][0] * s2[1][0] + s1[1][0] * s2[1][1];
|
|
|
|
d[0][1] = s1[0][1] * s2[0][0] + s1[1][1] * s2[0][1];
|
|
|
|
d[1][1] = s1[0][1] * s2[1][0] + s1[1][1] * s2[1][1];
|
|
|
|
}
|
|
|
|
|
|
|
|
double det_matrix(s)
|
|
|
|
double s[2][2];
|
|
|
|
{
|
|
|
|
return s[0][0] * s[1][1] - s[0][1] * s[1][0];
|
|
|
|
}
|
|
|
|
|
|
|
|
void flip_matrix(m, h)
|
|
|
|
double m[2][2];
|
|
|
|
int h;
|
|
|
|
{
|
|
|
|
double s, t;
|
|
|
|
if (h) {
|
|
|
|
/* flip on horizontal axis */
|
|
|
|
s = m[0][0];
|
|
|
|
t = m[0][1];
|
|
|
|
m[0][0] = m[1][0];
|
|
|
|
m[0][1] = m[1][1];
|
|
|
|
m[1][0] = s;
|
|
|
|
m[1][1] = t;
|
|
|
|
} else {
|
|
|
|
/* flip on vertical axis */
|
|
|
|
s = m[0][0];
|
|
|
|
t = m[1][0];
|
|
|
|
m[0][0] = m[0][1];
|
|
|
|
m[1][0] = m[1][1];
|
|
|
|
m[0][1] = s;
|
|
|
|
m[1][1] = t;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void transpose_matrix(m)
|
|
|
|
double m[2][2];
|
|
|
|
{
|
|
|
|
double t;
|
|
|
|
t = m[0][1];
|
|
|
|
m[0][1] = m[1][0];
|
|
|
|
m[1][0] = t;
|
|
|
|
}
|
|
|
|
|
|
|
|
void choose_evector(m, r, v)
|
|
|
|
double m[3][2], r;
|
|
|
|
double v[2];
|
|
|
|
{
|
|
|
|
double b = m[0][1];
|
|
|
|
double d = m[1][1];
|
|
|
|
double x = r - d;
|
|
|
|
if (b > EPS) {
|
|
|
|
v[0] = x;
|
|
|
|
v[1] = b;
|
|
|
|
} else if (b < -EPS) {
|
|
|
|
v[0] = -x;
|
|
|
|
v[1] = -b;
|
|
|
|
} else {
|
|
|
|
/* XXX */
|
|
|
|
v[0] = 1.0;
|
|
|
|
v[1] = 0.0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* diagonalize the linear part of a 3x2 matrix. the evalues are returned
|
|
|
|
in r as either reals on the diagonal, or a complex pair. the evectors
|
|
|
|
are returned as a change of coords matrix. does not handle shearing
|
|
|
|
transforms.
|
|
|
|
*/
|
|
|
|
|
|
|
|
void diagonalize_matrix(m, r, v)
|
|
|
|
double m[3][2];
|
|
|
|
double r[2][2];
|
|
|
|
double v[2][2];
|
|
|
|
{
|
|
|
|
double b, c, d;
|
|
|
|
double m00, m10, m01, m11;
|
|
|
|
m00 = m[0][0];
|
|
|
|
m10 = m[1][0];
|
|
|
|
m01 = m[0][1];
|
|
|
|
m11 = m[1][1];
|
|
|
|
b = -m00 - m11;
|
|
|
|
c = (m00 * m11) - (m01 * m10);
|
|
|
|
d = b * b - 4 * c;
|
|
|
|
/* should use better formula, see numerical recipes */
|
|
|
|
if (d > EPS) {
|
|
|
|
double r0 = (-b + sqrt(d)) / 2.0;
|
|
|
|
double r1 = (-b - sqrt(d)) / 2.0;
|
|
|
|
r[0][0] = r0;
|
|
|
|
r[1][1] = r1;
|
|
|
|
r[0][1] = 0.0;
|
|
|
|
r[1][0] = 0.0;
|
|
|
|
|
|
|
|
choose_evector(m, r0, v + 0);
|
|
|
|
choose_evector(m, r1, v + 1);
|
|
|
|
} else if (d < -EPS) {
|
|
|
|
double uu = -b / 2.0;
|
|
|
|
double vv = sqrt(-d) / 2.0;
|
|
|
|
double w1r, w1i, w2r, w2i;
|
|
|
|
r[0][0] = uu;
|
|
|
|
r[0][1] = vv;
|
|
|
|
r[1][0] = -vv;
|
|
|
|
r[1][1] = uu;
|
|
|
|
|
|
|
|
if (m01 > EPS) {
|
|
|
|
w1r = uu - m11;
|
|
|
|
w1i = vv;
|
|
|
|
w2r = m01;
|
|
|
|
w2i = 0.0;
|
|
|
|
} else if (m01 < -EPS) {
|
|
|
|
w1r = m11 - uu;
|
|
|
|
w1i = -vv;
|
|
|
|
w2r = -m01;
|
|
|
|
w2i = 0.0;
|
|
|
|
} else {
|
|
|
|
/* XXX */
|
|
|
|
w1r = 0.0;
|
|
|
|
w1i = 1.0;
|
|
|
|
w2r = 1.0;
|
|
|
|
w2i = 0.0;
|
|
|
|
}
|
|
|
|
v[0][0] = w1i;
|
|
|
|
v[0][1] = w2i;
|
|
|
|
v[1][0] = w1r;
|
|
|
|
v[1][1] = w2r;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
double rr = -b / 2.0;
|
|
|
|
r[0][0] = rr;
|
|
|
|
r[1][1] = rr;
|
|
|
|
r[0][1] = 0.0;
|
|
|
|
r[1][0] = 0.0;
|
|
|
|
|
|
|
|
v[0][0] = 1.0;
|
|
|
|
v[0][1] = 0.0;
|
|
|
|
v[1][0] = 0.0;
|
|
|
|
v[1][1] = 1.0;
|
|
|
|
}
|
|
|
|
/* order the values so that the evector matrix has is positively
|
|
|
|
oriented. this is so that evectors never have to cross when we
|
|
|
|
interpolate them. it might mean that the values cross zero when they
|
|
|
|
wouldn't have otherwise (if they had different signs) but this is the
|
|
|
|
lesser of two evils */
|
|
|
|
if (det_matrix(v) < 0.0) {
|
|
|
|
flip_matrix(v, 1);
|
|
|
|
flip_matrix(r, 0);
|
|
|
|
flip_matrix(r, 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void undiagonalize_matrix(r, v, m)
|
|
|
|
double r[2][2];
|
|
|
|
double v[2][2];
|
|
|
|
double m[3][2];
|
|
|
|
{
|
|
|
|
double v_inv[2][2];
|
|
|
|
double t1[2][2];
|
|
|
|
double t2[2][2];
|
|
|
|
double t;
|
|
|
|
/* the unfortunate truth is that given we are using row vectors
|
|
|
|
the evectors should be stacked horizontally, but the complex
|
|
|
|
interpolation functions only work on rows, so we fix things here */
|
|
|
|
transpose_matrix(v);
|
|
|
|
mult_matrix(r, v, t1);
|
|
|
|
|
|
|
|
t = 1.0 / det_matrix(v);
|
|
|
|
v_inv[0][0] = t * v[1][1];
|
|
|
|
v_inv[1][1] = t * v[0][0];
|
|
|
|
v_inv[1][0] = t * -v[1][0];
|
|
|
|
v_inv[0][1] = t * -v[0][1];
|
|
|
|
|
|
|
|
mult_matrix(v_inv, t1, t2);
|
|
|
|
|
|
|
|
/* the unforunate truth is that i have no idea why this is needed. sigh. */
|
|
|
|
transpose_matrix(t2);
|
|
|
|
|
|
|
|
/* switch v back to how it was */
|
|
|
|
transpose_matrix(v);
|
|
|
|
|
|
|
|
m[0][0] = t2[0][0];
|
|
|
|
m[0][1] = t2[0][1];
|
|
|
|
m[1][0] = t2[1][0];
|
|
|
|
m[1][1] = t2[1][1];
|
|
|
|
}
|
|
|
|
|
|
|
|
void interpolate_angle(t, s, v1, v2, v3, tie, cross)
|
|
|
|
double t, s;
|
|
|
|
double *v1, *v2, *v3;
|
|
|
|
int tie;
|
|
|
|
{
|
|
|
|
double x = *v1;
|
|
|
|
double y = *v2;
|
|
|
|
double d;
|
|
|
|
static double lastx, lasty;
|
|
|
|
|
|
|
|
/* take the shorter way around the circle... */
|
|
|
|
if (x > y) {
|
|
|
|
d = x - y;
|
|
|
|
if (d > M_PI + EPS ||
|
|
|
|
(d > M_PI - EPS && tie))
|
|
|
|
y += 2*M_PI;
|
|
|
|
} else {
|
|
|
|
d = y - x;
|
|
|
|
if (d > M_PI + EPS ||
|
|
|
|
(d > M_PI - EPS && tie))
|
|
|
|
x += 2*M_PI;
|
|
|
|
}
|
|
|
|
/* unless we are supposed to avoid crossing */
|
|
|
|
if (cross) {
|
|
|
|
if (lastx > x) {
|
|
|
|
if (lasty < y)
|
|
|
|
y -= 2*M_PI;
|
|
|
|
} else {
|
|
|
|
if (lasty > y)
|
|
|
|
y += 2*M_PI;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
lastx = x;
|
|
|
|
lasty = y;
|
|
|
|
}
|
|
|
|
|
|
|
|
*v3 = s * x + t * y;
|
|
|
|
}
|
|
|
|
|
|
|
|
void interpolate_complex(t, s, r1, r2, r3, flip, tie, cross)
|
|
|
|
double t, s;
|
|
|
|
double r1[2], r2[2], r3[2];
|
|
|
|
int flip, tie, cross;
|
|
|
|
{
|
|
|
|
double c1[2], c2[2], c3[2];
|
|
|
|
double a1, a2, a3, d1, d2, d3;
|
|
|
|
|
|
|
|
c1[0] = r1[0];
|
|
|
|
c1[1] = r1[1];
|
|
|
|
c2[0] = r2[0];
|
|
|
|
c2[1] = r2[1];
|
|
|
|
if (flip) {
|
|
|
|
double t = c1[0];
|
|
|
|
c1[0] = c1[1];
|
|
|
|
c1[1] = t;
|
|
|
|
t = c2[0];
|
|
|
|
c2[0] = c2[1];
|
|
|
|
c2[1] = t;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* convert to log space */
|
|
|
|
a1 = atan2(c1[1], c1[0]);
|
|
|
|
a2 = atan2(c2[1], c2[0]);
|
|
|
|
d1 = 0.5 * log(c1[0] * c1[0] + c1[1] * c1[1]);
|
|
|
|
d2 = 0.5 * log(c2[0] * c2[0] + c2[1] * c2[1]);
|
|
|
|
|
|
|
|
/* interpolate linearly */
|
|
|
|
interpolate_angle(t, s, &a1, &a2, &a3, tie, cross);
|
|
|
|
d3 = s * d1 + t * d2;
|
|
|
|
|
|
|
|
/* convert back */
|
|
|
|
d3 = exp(d3);
|
|
|
|
c3[0] = cos(a3) * d3;
|
|
|
|
c3[1] = sin(a3) * d3;
|
|
|
|
|
|
|
|
if (flip) {
|
|
|
|
r3[1] = c3[0];
|
|
|
|
r3[0] = c3[1];
|
|
|
|
} else {
|
|
|
|
r3[0] = c3[0];
|
|
|
|
r3[1] = c3[1];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void interpolate_matrix(t, m1, m2, m3)
|
|
|
|
double m1[3][2], m2[3][2], m3[3][2];
|
|
|
|
double t;
|
|
|
|
{
|
|
|
|
double s = 1.0 - t;
|
|
|
|
#if 0
|
|
|
|
double r1[2][2], r2[2][2], r3[2][2];
|
|
|
|
double v1[2][2], v2[2][2], v3[2][2];
|
|
|
|
diagonalize_matrix(m1, r1, v1);
|
|
|
|
diagonalize_matrix(m2, r2, v2);
|
|
|
|
|
|
|
|
/* handle the evectors */
|
|
|
|
interpolate_complex(t, s, v1 + 0, v2 + 0, v3 + 0, 0, 0, 0);
|
|
|
|
interpolate_complex(t, s, v1 + 1, v2 + 1, v3 + 1, 0, 0, 1);
|
|
|
|
|
|
|
|
/* handle the evalues */
|
|
|
|
interpolate_complex(t, s, r1 + 0, r2 + 0, r3 + 0, 0, 0, 0);
|
|
|
|
interpolate_complex(t, s, r1 + 1, r2 + 1, r3 + 1, 1, 1, 0);
|
|
|
|
|
|
|
|
undiagonalize_matrix(r3, v3, m3);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
interpolate_complex(t, s, m1 + 0, m2 + 0, m3 + 0, 0, 0, 0);
|
|
|
|
interpolate_complex(t, s, m1 + 1, m2 + 1, m3 + 1, 1, 1, 0);
|
|
|
|
|
|
|
|
/* handle the translation part of the xform linearly */
|
|
|
|
m3[2][0] = s * m1[2][0] + t * m2[2][0];
|
|
|
|
m3[2][1] = s * m1[2][1] + t * m2[2][1];
|
|
|
|
}
|
|
|
|
|
|
|
|
#define INTERP(x) result->x = c0 * cps[i1].x + c1 * cps[i2].x
|
|
|
|
|
|
|
|
/*
|
|
|
|
* create a control point that interpolates between the control points
|
|
|
|
* passed in CPS. for now just do linear. in the future, add control
|
|
|
|
* point types and other things to the cps. CPS must be sorted by time.
|
|
|
|
*/
|
|
|
|
void interpolate(cps, ncps, time, result)
|
|
|
|
control_point cps[];
|
|
|
|
int ncps;
|
|
|
|
double time;
|
|
|
|
control_point *result;
|
|
|
|
{
|
|
|
|
int i, j, i1, i2;
|
|
|
|
double c0, c1, t;
|
|
|
|
|
|
|
|
if (1 == ncps) {
|
|
|
|
*result = cps[0];
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (cps[0].time >= time) {
|
|
|
|
i1 = 0;
|
|
|
|
i2 = 1;
|
|
|
|
} else if (cps[ncps - 1].time <= time) {
|
|
|
|
i1 = ncps - 2;
|
|
|
|
i2 = ncps - 1;
|
|
|
|
} else {
|
|
|
|
i1 = 0;
|
|
|
|
while (cps[i1].time < time)
|
|
|
|
i1++;
|
|
|
|
i1--;
|
|
|
|
i2 = i1 + 1;
|
|
|
|
if (time - cps[i1].time > -1e-7 &&
|
|
|
|
time - cps[i1].time < 1e-7) {
|
|
|
|
*result = cps[i1];
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
c0 = (cps[i2].time - time) / (cps[i2].time - cps[i1].time);
|
|
|
|
c1 = 1.0 - c0;
|
|
|
|
|
|
|
|
result->time = time;
|
|
|
|
|
|
|
|
if (cps[i1].cmap_inter) {
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
|
|
double spread = 0.15;
|
|
|
|
double d0, d1, e0, e1, c = 2 * M_PI * i / 256.0;
|
|
|
|
c = cos(c * cps[i1].cmap_inter) + 4.0 * c1 - 2.0;
|
|
|
|
if (c > spread) c = spread;
|
|
|
|
if (c < -spread) c = -spread;
|
|
|
|
d1 = (c + spread) * 0.5 / spread;
|
|
|
|
d0 = 1.0 - d1;
|
|
|
|
e0 = (d0 < 0.5) ? (d0 * 2) : (d1 * 2);
|
|
|
|
e1 = 1.0 - e0;
|
|
|
|
for (j = 0; j < 3; j++) {
|
|
|
|
result->cmap[i][j] = (d0 * cps[i1].cmap[i][j] +
|
|
|
|
d1 * cps[i2].cmap[i][j]);
|
|
|
|
#define bright_peak 2.0
|
|
|
|
#if 0
|
|
|
|
if (d0 < 0.5)
|
|
|
|
result->cmap[i][j] *= 1.0 + bright_peak * d0;
|
|
|
|
else
|
|
|
|
result->cmap[i][j] *= 1.0 + bright_peak * d1;
|
|
|
|
#else
|
|
|
|
result->cmap[i][j] = (e1 * result->cmap[i][j] +
|
|
|
|
e0 * 1.0);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
|
|
double t[3], s[3];
|
|
|
|
rgb2hsv(cps[i1].cmap[i], s);
|
|
|
|
rgb2hsv(cps[i2].cmap[i], t);
|
|
|
|
for (j = 0; j < 3; j++)
|
|
|
|
t[j] = c0 * s[j] + c1 * t[j];
|
|
|
|
hsv2rgb(t, result->cmap[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
result->cmap_index = -1;
|
|
|
|
INTERP(brightness);
|
|
|
|
INTERP(contrast);
|
|
|
|
INTERP(gamma);
|
|
|
|
INTERP(width);
|
|
|
|
INTERP(height);
|
|
|
|
INTERP(spatial_oversample);
|
|
|
|
INTERP(center[0]);
|
|
|
|
INTERP(center[1]);
|
|
|
|
INTERP(pixels_per_unit);
|
|
|
|
INTERP(spatial_filter_radius);
|
|
|
|
INTERP(sample_density);
|
|
|
|
INTERP(zoom);
|
|
|
|
INTERP(nbatches);
|
|
|
|
INTERP(white_level);
|
|
|
|
for (i = 0; i < 2; i++)
|
|
|
|
for (j = 0; j < 2; j++) {
|
|
|
|
INTERP(pulse[i][j]);
|
|
|
|
INTERP(wiggle[i][j]);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < NXFORMS; i++) {
|
|
|
|
double r;
|
|
|
|
INTERP(xform[i].density);
|
|
|
|
if (result->xform[i].density > 0)
|
|
|
|
result->xform[i].density = 1.0;
|
|
|
|
INTERP(xform[i].color);
|
|
|
|
for (j = 0; j < NVARS; j++)
|
|
|
|
INTERP(xform[i].var[j]);
|
|
|
|
t = 0.0;
|
|
|
|
for (j = 0; j < NVARS; j++)
|
|
|
|
t += result->xform[i].var[j];
|
|
|
|
t = 1.0 / t;
|
|
|
|
for (j = 0; j < NVARS; j++)
|
|
|
|
result->xform[i].var[j] *= t;
|
|
|
|
|
|
|
|
interpolate_matrix(c1, cps[i1].xform[i].c, cps[i2].xform[i].c,
|
|
|
|
result->xform[i].c);
|
|
|
|
|
|
|
|
if (1) {
|
|
|
|
double rh_time = time * 2*M_PI / (60.0 * 30.0);
|
|
|
|
|
|
|
|
/* apply pulse factor. */
|
|
|
|
r = 1.0;
|
|
|
|
for (j = 0; j < 2; j++)
|
|
|
|
r += result->pulse[j][0] * sin(result->pulse[j][1] * rh_time);
|
|
|
|
for (j = 0; j < 3; j++) {
|
|
|
|
result->xform[i].c[j][0] *= r;
|
|
|
|
result->xform[i].c[j][1] *= r;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* apply wiggle factor */
|
|
|
|
r = 0.0;
|
|
|
|
for (j = 0; j < 2; j++) {
|
|
|
|
double tt = result->wiggle[j][1] * rh_time;
|
|
|
|
double m = result->wiggle[j][0];
|
|
|
|
result->xform[i].c[0][0] += m * cos(tt);
|
|
|
|
result->xform[i].c[1][0] += m * -sin(tt);
|
|
|
|
result->xform[i].c[0][1] += m * sin(tt);
|
|
|
|
result->xform[i].c[1][1] += m * cos(tt);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} /* for i */
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* split a string passed in ss into tokens on whitespace.
|
|
|
|
* # comments to end of line. ; terminates the record
|
|
|
|
*/
|
|
|
|
void tokenize(ss, argv, argc)
|
|
|
|
char **ss;
|
|
|
|
char *argv[];
|
|
|
|
int *argc;
|
|
|
|
{
|
|
|
|
char *s = *ss;
|
|
|
|
int i = 0, state = 0;
|
|
|
|
|
|
|
|
while (*s != ';') {
|
|
|
|
char c = *s;
|
|
|
|
switch (state) {
|
|
|
|
case 0:
|
|
|
|
if ('#' == c)
|
|
|
|
state = 2;
|
|
|
|
else if (!isspace(c)) {
|
|
|
|
argv[i] = s;
|
|
|
|
i++;
|
|
|
|
state = 1;
|
|
|
|
}
|
|
|
|
case 1:
|
|
|
|
if (isspace(c)) {
|
|
|
|
*s = 0;
|
|
|
|
state = 0;
|
|
|
|
}
|
|
|
|
case 2:
|
|
|
|
if ('\n' == c)
|
|
|
|
state = 0;
|
|
|
|
}
|
|
|
|
s++;
|
|
|
|
}
|
|
|
|
*s = 0;
|
|
|
|
*ss = s+1;
|
|
|
|
*argc = i;
|
|
|
|
}
|
|
|
|
|
|
|
|
int compare_xforms(a, b)
|
|
|
|
xform *a, *b;
|
|
|
|
{
|
|
|
|
double aa[2][2];
|
|
|
|
double bb[2][2];
|
|
|
|
double ad, bd;
|
|
|
|
|
|
|
|
aa[0][0] = a->c[0][0];
|
|
|
|
aa[0][1] = a->c[0][1];
|
|
|
|
aa[1][0] = a->c[1][0];
|
|
|
|
aa[1][1] = a->c[1][1];
|
|
|
|
bb[0][0] = b->c[0][0];
|
|
|
|
bb[0][1] = b->c[0][1];
|
|
|
|
bb[1][0] = b->c[1][0];
|
|
|
|
bb[1][1] = b->c[1][1];
|
|
|
|
ad = det_matrix(aa);
|
|
|
|
bd = det_matrix(bb);
|
|
|
|
if (ad < bd) return -1;
|
|
|
|
if (ad > bd) return 1;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define MAXARGS 1000
|
|
|
|
#define streql(x,y) (!strcmp(x,y))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* given a pointer to a string SS, fill fields of a control point CP.
|
|
|
|
* return a pointer to the first unused char in SS. totally barfucious,
|
|
|
|
* must integrate with tcl soon...
|
|
|
|
*/
|
|
|
|
|
|
|
|
void parse_control_point(ss, cp)
|
|
|
|
char **ss;
|
|
|
|
control_point *cp;
|
|
|
|
{
|
|
|
|
char *argv[MAXARGS];
|
|
|
|
int argc, i, j;
|
|
|
|
int set_cm = 0, set_image_size = 0, set_nbatches = 0, set_white_level = 0, set_cmap_inter = 0;
|
|
|
|
int set_spatial_oversample = 0;
|
|
|
|
double *slot, xf, cm, t, nbatches, white_level, spatial_oversample, cmap_inter;
|
|
|
|
double image_size[2];
|
|
|
|
|
|
|
|
for (i = 0; i < NXFORMS; i++) {
|
|
|
|
cp->xform[i].density = 0.0;
|
|
|
|
cp->xform[i].color = (i == 0);
|
|
|
|
cp->xform[i].var[0] = 1.0;
|
|
|
|
for (j = 1; j < NVARS; j++)
|
|
|
|
cp->xform[i].var[j] = 0.0;
|
|
|
|
cp->xform[i].c[0][0] = 1.0;
|
|
|
|
cp->xform[i].c[0][1] = 0.0;
|
|
|
|
cp->xform[i].c[1][0] = 0.0;
|
|
|
|
cp->xform[i].c[1][1] = 1.0;
|
|
|
|
cp->xform[i].c[2][0] = 0.0;
|
|
|
|
cp->xform[i].c[2][1] = 0.0;
|
|
|
|
}
|
|
|
|
for (j = 0; j < 2; j++) {
|
|
|
|
cp->pulse[j][0] = 0.0;
|
|
|
|
cp->pulse[j][1] = 60.0;
|
|
|
|
cp->wiggle[j][0] = 0.0;
|
|
|
|
cp->wiggle[j][1] = 60.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
tokenize(ss, argv, &argc);
|
|
|
|
for (i = 0; i < argc; i++) {
|
|
|
|
if (streql("xform", argv[i]))
|
|
|
|
slot = &xf;
|
|
|
|
else if (streql("time", argv[i]))
|
|
|
|
slot = &cp->time;
|
|
|
|
else if (streql("brightness", argv[i]))
|
|
|
|
slot = &cp->brightness;
|
|
|
|
else if (streql("contrast", argv[i]))
|
|
|
|
slot = &cp->contrast;
|
|
|
|
else if (streql("gamma", argv[i]))
|
|
|
|
slot = &cp->gamma;
|
|
|
|
else if (streql("zoom", argv[i]))
|
|
|
|
slot = &cp->zoom;
|
|
|
|
else if (streql("image_size", argv[i])) {
|
|
|
|
slot = image_size;
|
|
|
|
set_image_size = 1;
|
|
|
|
} else if (streql("center", argv[i]))
|
|
|
|
slot = cp->center;
|
|
|
|
else if (streql("pulse", argv[i]))
|
|
|
|
slot = (double *) cp->pulse;
|
|
|
|
else if (streql("wiggle", argv[i]))
|
|
|
|
slot = (double *) cp->wiggle;
|
|
|
|
else if (streql("pixels_per_unit", argv[i]))
|
|
|
|
slot = &cp->pixels_per_unit;
|
|
|
|
else if (streql("spatial_filter_radius", argv[i]))
|
|
|
|
slot = &cp->spatial_filter_radius;
|
|
|
|
else if (streql("sample_density", argv[i]))
|
|
|
|
slot = &cp->sample_density;
|
|
|
|
else if (streql("nbatches", argv[i])) {
|
|
|
|
slot = &nbatches;
|
|
|
|
set_nbatches = 1;
|
|
|
|
} else if (streql("white_level", argv[i])) {
|
|
|
|
slot = &white_level;
|
|
|
|
set_white_level = 1;
|
|
|
|
} else if (streql("spatial_oversample", argv[i])) {
|
|
|
|
slot = &spatial_oversample;
|
|
|
|
set_spatial_oversample = 1;
|
|
|
|
} else if (streql("cmap", argv[i])) {
|
|
|
|
slot = &cm;
|
|
|
|
set_cm = 1;
|
|
|
|
} else if (streql("density", argv[i]))
|
|
|
|
slot = &cp->xform[(int)xf].density;
|
|
|
|
else if (streql("color", argv[i]))
|
|
|
|
slot = &cp->xform[(int)xf].color;
|
|
|
|
else if (streql("coefs", argv[i])) {
|
|
|
|
slot = cp->xform[(int)xf].c[0];
|
|
|
|
cp->xform[(int)xf].density = 1.0;
|
|
|
|
} else if (streql("var", argv[i]))
|
|
|
|
slot = cp->xform[(int)xf].var;
|
|
|
|
else if (streql("cmap_inter", argv[i])) {
|
|
|
|
slot = &cmap_inter;
|
|
|
|
set_cmap_inter = 1;
|
|
|
|
} else
|
|
|
|
*slot++ = atof(argv[i]);
|
|
|
|
}
|
|
|
|
if (set_cm) {
|
|
|
|
cp->cmap_index = (int) cm;
|
|
|
|
get_cmap(cp->cmap_index, cp->cmap, 256);
|
|
|
|
}
|
|
|
|
if (set_image_size) {
|
|
|
|
cp->width = (int) image_size[0];
|
|
|
|
cp->height = (int) image_size[1];
|
|
|
|
}
|
|
|
|
if (set_cmap_inter)
|
|
|
|
cp->cmap_inter = (int) cmap_inter;
|
|
|
|
if (set_nbatches)
|
|
|
|
cp->nbatches = (int) nbatches;
|
|
|
|
if (set_spatial_oversample)
|
|
|
|
cp->spatial_oversample = (int) spatial_oversample;
|
|
|
|
if (set_white_level)
|
|
|
|
cp->white_level = (int) white_level;
|
|
|
|
for (i = 0; i < NXFORMS; i++) {
|
|
|
|
t = 0.0;
|
|
|
|
for (j = 0; j < NVARS; j++)
|
|
|
|
t += cp->xform[i].var[j];
|
|
|
|
t = 1.0 / t;
|
|
|
|
for (j = 0; j < NVARS; j++)
|
|
|
|
cp->xform[i].var[j] *= t;
|
|
|
|
}
|
|
|
|
qsort((char *) cp->xform, NXFORMS, sizeof(xform), compare_xforms);
|
|
|
|
}
|
|
|
|
|
|
|
|
void print_control_point(f, cp, quote)
|
|
|
|
FILE *f;
|
|
|
|
control_point *cp;
|
|
|
|
{
|
|
|
|
int i, j;
|
|
|
|
char *q = quote ? "# " : "";
|
|
|
|
fprintf(f, "%stime %g\n", q, cp->time);
|
|
|
|
if (-1 != cp->cmap_index)
|
|
|
|
fprintf(f, "%scmap %d\n", q, cp->cmap_index);
|
|
|
|
fprintf(f, "%simage_size %d %d center %g %g pixels_per_unit %g\n",
|
|
|
|
q, cp->width, cp->height, cp->center[0], cp->center[1],
|
|
|
|
cp->pixels_per_unit);
|
|
|
|
fprintf(f, "%sspatial_oversample %d spatial_filter_radius %g",
|
|
|
|
q, cp->spatial_oversample, cp->spatial_filter_radius);
|
|
|
|
fprintf(f, " sample_density %g\n", cp->sample_density);
|
|
|
|
fprintf(f, "%snbatches %d white_level %d\n",
|
|
|
|
q, cp->nbatches, cp->white_level);
|
|
|
|
fprintf(f, "%sbrightness %g gamma %g cmap_inter %d\n",
|
|
|
|
q, cp->brightness, cp->gamma, cp->cmap_inter);
|
|
|
|
|
|
|
|
for (i = 0; i < NXFORMS; i++)
|
|
|
|
if (cp->xform[i].density > 0.0) {
|
|
|
|
fprintf(f, "%sxform %d density %g color %g\n",
|
|
|
|
q, i, cp->xform[i].density, cp->xform[i].color);
|
|
|
|
fprintf(f, "%svar", q);
|
|
|
|
for (j = 0; j < NVARS; j++)
|
|
|
|
fprintf(f, " %g", cp->xform[i].var[j]);
|
|
|
|
fprintf(f, "\n%scoefs", q);
|
|
|
|
for (j = 0; j < 3; j++)
|
|
|
|
fprintf(f, " %g %g", cp->xform[i].c[j][0], cp->xform[i].c[j][1]);
|
|
|
|
fprintf(f, "\n");
|
|
|
|
}
|
|
|
|
fprintf(f, "%s;\n", q);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* returns a uniform variable from 0 to 1 */
|
|
|
|
double random_uniform01() {
|
1998-04-07 11:41:22 +08:00
|
|
|
return (RAND_FUNC () & 0xfffffff) / (double) 0xfffffff;
|
1997-11-25 06:05:25 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
double random_uniform11() {
|
1998-04-07 11:41:22 +08:00
|
|
|
return ((RAND_FUNC () & 0xfffffff) - 0x7ffffff) / (double) 0x7ffffff;
|
1997-11-25 06:05:25 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* returns a mean 0 variance 1 random variable
|
|
|
|
see numerical recipies p 217 */
|
|
|
|
double random_gaussian() {
|
|
|
|
static int iset = 0;
|
|
|
|
static double gset;
|
|
|
|
double fac, r, v1, v2;
|
|
|
|
|
|
|
|
if (0 == iset) {
|
|
|
|
do {
|
|
|
|
v1 = random_uniform11();
|
|
|
|
v2 = random_uniform11();
|
|
|
|
r = v1 * v1 + v2 * v2;
|
|
|
|
} while (r >= 1.0 || r == 0.0);
|
|
|
|
fac = sqrt(-2.0 * log(r)/r);
|
|
|
|
gset = v1 * fac;
|
|
|
|
iset = 1;
|
|
|
|
return v2 * fac;
|
|
|
|
}
|
|
|
|
iset = 0;
|
|
|
|
return gset;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
copy_variation(control_point *cp0, control_point *cp1) {
|
|
|
|
int i, j;
|
|
|
|
for (i = 0; i < NXFORMS; i++) {
|
|
|
|
for (j = 0; j < NVARS; j++)
|
|
|
|
cp0->xform[i].var[j] =
|
|
|
|
cp1->xform[i].var[j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
1998-04-07 11:41:22 +08:00
|
|
|
#define random_distrib(v) ((v)[RAND_FUNC ()%vlen(v)])
|
1997-11-25 06:05:25 +08:00
|
|
|
|
|
|
|
void random_control_point(cp, ivar)
|
|
|
|
control_point *cp;
|
|
|
|
int ivar;
|
|
|
|
{
|
|
|
|
int i, nxforms, var;
|
|
|
|
static int xform_distrib[] = {
|
|
|
|
2, 2, 2,
|
|
|
|
3, 3, 3,
|
|
|
|
4, 4,
|
|
|
|
5};
|
|
|
|
static int var_distrib[] = {
|
|
|
|
-1, -1, -1,
|
|
|
|
0, 0, 0, 0,
|
|
|
|
1, 1, 1,
|
|
|
|
2, 2, 2,
|
|
|
|
3, 3,
|
|
|
|
4, 4,
|
|
|
|
5};
|
|
|
|
|
|
|
|
static int mixed_var_distrib[] = {
|
|
|
|
0, 0, 0,
|
|
|
|
1, 1, 1,
|
|
|
|
2, 2, 2,
|
|
|
|
3, 3,
|
|
|
|
4, 4,
|
|
|
|
5, 5};
|
|
|
|
|
|
|
|
get_cmap(cmap_random, cp->cmap, 256);
|
|
|
|
cp->time = 0.0;
|
|
|
|
nxforms = random_distrib(xform_distrib);
|
|
|
|
var = (0 > ivar) ?
|
|
|
|
random_distrib(var_distrib) :
|
|
|
|
ivar;
|
|
|
|
for (i = 0; i < nxforms; i++) {
|
|
|
|
int j, k;
|
|
|
|
cp->xform[i].density = 1.0 / nxforms;
|
|
|
|
cp->xform[i].color = i == 0;
|
|
|
|
for (j = 0; j < 3; j++)
|
|
|
|
for (k = 0; k < 2; k++)
|
|
|
|
cp->xform[i].c[j][k] = random_uniform11();
|
|
|
|
for (j = 0; j < NVARS; j++)
|
|
|
|
cp->xform[i].var[j] = 0.0;
|
|
|
|
if (var >= 0)
|
|
|
|
cp->xform[i].var[var] = 1.0;
|
|
|
|
else
|
|
|
|
cp->xform[i].var[random_distrib(mixed_var_distrib)] = 1.0;
|
|
|
|
|
|
|
|
}
|
|
|
|
for (; i < NXFORMS; i++)
|
|
|
|
cp->xform[i].density = 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* find a 2d bounding box that does not enclose eps of the fractal density
|
|
|
|
* in each compass direction. works by binary search.
|
|
|
|
* this is stupid, it shouldjust use the find nth smallest algorithm.
|
|
|
|
*/
|
|
|
|
void estimate_bounding_box(cp, eps, bmin, bmax)
|
|
|
|
control_point *cp;
|
|
|
|
double eps;
|
|
|
|
double *bmin;
|
|
|
|
double *bmax;
|
|
|
|
{
|
|
|
|
int i, j, batch = (eps == 0.0) ? 10000 : 10.0/eps;
|
|
|
|
int low_target = batch * eps;
|
|
|
|
int high_target = batch - low_target;
|
|
|
|
point min, max, delta;
|
|
|
|
point *points = (point *) malloc(sizeof(point) * batch);
|
|
|
|
iterate(cp, batch, 20, points);
|
|
|
|
|
|
|
|
min[0] = min[1] = 1e10;
|
|
|
|
max[0] = max[1] = -1e10;
|
|
|
|
|
|
|
|
for (i = 0; i < batch; i++) {
|
|
|
|
if (points[i][0] < min[0]) min[0] = points[i][0];
|
|
|
|
if (points[i][1] < min[1]) min[1] = points[i][1];
|
|
|
|
if (points[i][0] > max[0]) max[0] = points[i][0];
|
|
|
|
if (points[i][1] > max[1]) max[1] = points[i][1];
|
|
|
|
}
|
|
|
|
|
|
|
|
if (low_target == 0) {
|
|
|
|
bmin[0] = min[0];
|
|
|
|
bmin[1] = min[1];
|
|
|
|
bmax[0] = max[0];
|
|
|
|
bmax[1] = max[1];
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
delta[0] = (max[0] - min[0]) * 0.25;
|
|
|
|
delta[1] = (max[1] - min[1]) * 0.25;
|
|
|
|
|
|
|
|
bmax[0] = bmin[0] = min[0] + 2.0 * delta[0];
|
|
|
|
bmax[1] = bmin[1] = min[1] + 2.0 * delta[1];
|
|
|
|
|
|
|
|
for (i = 0; i < 14; i++) {
|
|
|
|
int n, s, e, w;
|
|
|
|
n = s = e = w = 0;
|
|
|
|
for (j = 0; j < batch; j++) {
|
|
|
|
if (points[j][0] < bmin[0]) n++;
|
|
|
|
if (points[j][0] > bmax[0]) s++;
|
|
|
|
if (points[j][1] < bmin[1]) w++;
|
|
|
|
if (points[j][1] > bmax[1]) e++;
|
|
|
|
}
|
|
|
|
bmin[0] += (n < low_target) ? delta[0] : -delta[0];
|
|
|
|
bmax[0] += (s < high_target) ? delta[0] : -delta[0];
|
|
|
|
bmin[1] += (w < low_target) ? delta[1] : -delta[1];
|
|
|
|
bmax[1] += (e < high_target) ? delta[1] : -delta[1];
|
|
|
|
delta[0] = delta[0] / 2.0;
|
|
|
|
delta[1] = delta[1] / 2.0;
|
|
|
|
/*
|
|
|
|
fprintf(stderr, "%g %g %g %g\n", bmin[0], bmin[1], bmax[0], bmax[1]);
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
fprintf(stderr, "%g %g %g %g\n", min[0], min[1], max[0], max[1]);
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
|
|
|
|
/* use hill climberer to find smooth ordering of control points
|
|
|
|
this is untested */
|
|
|
|
|
|
|
|
void sort_control_points(cps, ncps, metric)
|
|
|
|
control_point *cps;
|
|
|
|
int ncps;
|
|
|
|
double (*metric)();
|
|
|
|
{
|
|
|
|
int niter = ncps * 1000;
|
|
|
|
int i, n, m;
|
|
|
|
double same, swap;
|
|
|
|
for (i = 0; i < niter; i++) {
|
|
|
|
/* consider switching points with indexes n and m */
|
1998-04-07 11:41:22 +08:00
|
|
|
n = RAND_FUNC () % ncps;
|
|
|
|
m = RAND_FUNC () % ncps;
|
1997-11-25 06:05:25 +08:00
|
|
|
|
|
|
|
same = (metric(cps + n, cps + (n - 1) % ncps) +
|
|
|
|
metric(cps + n, cps + (n + 1) % ncps) +
|
|
|
|
metric(cps + m, cps + (m - 1) % ncps) +
|
|
|
|
metric(cps + m, cps + (m + 1) % ncps));
|
|
|
|
|
|
|
|
swap = (metric(cps + n, cps + (m - 1) % ncps) +
|
|
|
|
metric(cps + n, cps + (m + 1) % ncps) +
|
|
|
|
metric(cps + m, cps + (n - 1) % ncps) +
|
|
|
|
metric(cps + m, cps + (n + 1) % ncps));
|
|
|
|
|
|
|
|
if (swap < same) {
|
|
|
|
control_point t;
|
|
|
|
t = cps[n];
|
|
|
|
cps[n] = cps[m];
|
|
|
|
cps[m] = t;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* this has serious flaws in it */
|
|
|
|
|
|
|
|
double standard_metric(cp1, cp2)
|
|
|
|
control_point *cp1, *cp2;
|
|
|
|
{
|
|
|
|
int i, j, k;
|
|
|
|
double t;
|
|
|
|
|
|
|
|
double dist = 0.0;
|
|
|
|
for (i = 0; i < NXFORMS; i++) {
|
|
|
|
double var_dist = 0.0;
|
|
|
|
double coef_dist = 0.0;
|
|
|
|
for (j = 0; j < NVARS; j++) {
|
|
|
|
t = cp1->xform[i].var[j] - cp2->xform[i].var[j];
|
|
|
|
var_dist += t * t;
|
|
|
|
}
|
|
|
|
for (j = 0; j < 3; j++)
|
|
|
|
for (k = 0; k < 2; k++) {
|
|
|
|
t = cp1->xform[i].c[j][k] - cp2->xform[i].c[j][k];
|
|
|
|
coef_dist += t *t;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* weight them equally for now. */
|
|
|
|
dist += var_dist + coef_dist;
|
|
|
|
}
|
|
|
|
return dist;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
stat_matrix(f, m)
|
|
|
|
FILE *f;
|
|
|
|
double m[3][2];
|
|
|
|
{
|
|
|
|
double r[2][2];
|
|
|
|
double v[2][2];
|
|
|
|
double a;
|
|
|
|
|
|
|
|
diagonalize_matrix(m, r, v);
|
|
|
|
fprintf(f, "entries = % 10f % 10f % 10f % 10f\n",
|
|
|
|
m[0][0], m[0][1], m[1][0], m[1][1]);
|
|
|
|
fprintf(f, "evalues = % 10f % 10f % 10f % 10f\n",
|
|
|
|
r[0][0], r[0][1], r[1][0], r[1][1]);
|
|
|
|
fprintf(f, "evectors = % 10f % 10f % 10f % 10f\n",
|
|
|
|
v[0][0], v[0][1], v[1][0], v[1][1]);
|
|
|
|
a = (v[0][0] * v[1][0] + v[0][1] * v[1][1]) /
|
|
|
|
sqrt((v[0][0] * v[0][0] + v[0][1] * v[0][1]) *
|
|
|
|
(v[1][0] * v[1][0] + v[1][1] * v[1][1]));
|
|
|
|
fprintf(f, "theta = %g det = %g\n", a,
|
|
|
|
m[0][0] * m[1][1] - m[0][1] * m[1][0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
main()
|
|
|
|
{
|
|
|
|
#if 0
|
|
|
|
double m1[3][2] = {-0.633344, -0.269064, 0.0676171, 0.590923, 0, 0};
|
|
|
|
double m2[3][2] = {-0.844863, 0.0270297, -0.905294, 0.413218, 0, 0};
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
double m1[3][2] = {-0.347001, -0.15219, 0.927161, 0.908305, 0, 0};
|
|
|
|
double m2[3][2] = {-0.577884, 0.653803, 0.664982, -0.734136, 0, 0};
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
double m1[3][2] = {1, 0, 0, 1, 0, 0};
|
|
|
|
double m2[3][2] = {0, -1, 1, 0, 0, 0};
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if 1
|
|
|
|
double m1[3][2] = {1, 0, 0, 1, 0, 0};
|
|
|
|
double m2[3][2] = {-1, 0, 0, -1, 0, 0};
|
|
|
|
#endif
|
|
|
|
|
|
|
|
double m3[3][2];
|
|
|
|
double t;
|
|
|
|
int i = 0;
|
|
|
|
|
|
|
|
for (t = 0.0; t <= 1.0; t += 1.0/15.0) {
|
|
|
|
int x, y;
|
|
|
|
fprintf(stderr, "%g--\n", t);
|
|
|
|
interpolate_matrix(t, m1, m2, m3);
|
|
|
|
/* stat_matrix(stderr, m3); */
|
|
|
|
x = (i % 4) * 100 + 100;
|
|
|
|
y = (i / 4) * 100 + 100;
|
|
|
|
printf("newpath ");
|
|
|
|
printf("%d %d %d %d %d arc ", x, y, 30, 0, 360);
|
|
|
|
printf("%d %d moveto ", x, y);
|
|
|
|
printf("%g %g rlineto ", m3[0][0] * 30, m3[0][1] * 30);
|
|
|
|
printf("%d %d moveto ", x, y);
|
|
|
|
printf("%g %g rlineto ", m3[1][0] * 30, m3[1][1] * 30);
|
|
|
|
printf("stroke \n");
|
|
|
|
printf("newpath ");
|
|
|
|
printf("%g %g %d %d %d arc ", x + m3[0][0] * 30, y + m3[0][1] * 30, 3, 0, 360);
|
|
|
|
printf("stroke \n");
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|