1997-11-25 06:05:25 +08:00
|
|
|
/*
|
|
|
|
* file: hot/hot.c
|
|
|
|
*
|
|
|
|
* $Id$
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* hot.c - Scan an image for pixels with RGB values that will give
|
|
|
|
* "unsafe" values of chrominance signal or composite signal
|
|
|
|
* amplitude when encoded into an NTSC or PAL colour signal.
|
|
|
|
* (This happens for certain high-intensity high-saturation colours
|
|
|
|
* that are rare in real scenes, but can easily be present
|
|
|
|
* in synthetic images.)
|
|
|
|
*
|
|
|
|
* Such pixels can be flagged so the user may then choose other
|
|
|
|
* colours. Or, the offending pixels can be made "safe"
|
|
|
|
* in a manner that preserves hue.
|
|
|
|
*
|
|
|
|
* There are two reasonable ways to make a pixel "safe":
|
|
|
|
* We can reduce its intensity (luminance) while leaving
|
|
|
|
* hue and saturation the same. Or, we can reduce saturation
|
|
|
|
* while leaving hue and luminance the same. A #define selects
|
|
|
|
* which strategy to use.
|
|
|
|
*
|
|
|
|
* Note to the user: You must add your own read_pixel() and write_pixel()
|
|
|
|
* routines. You may have to modify pix_decode() and pix_encode().
|
|
|
|
* MAXPIX, WID, and HGT are likely to need modification.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Originally written as "ikNTSC.c" by Alan Wm Paeth,
|
|
|
|
* University of Waterloo, August, 1985
|
|
|
|
* Updated by Dave Martindale, Imax Systems Corp., December 1990
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Compile time options:
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* CHROMA_LIM is the limit (in IRE units) of the overall
|
|
|
|
* chrominance amplitude; it should be 50 or perhaps
|
|
|
|
* very slightly higher.
|
|
|
|
*
|
|
|
|
* COMPOS_LIM is the maximum amplitude (in IRE units) allowed for
|
|
|
|
* the composite signal. A value of 100 is the maximum
|
|
|
|
* monochrome white, and is always safe. 120 is the absolute
|
|
|
|
* limit for NTSC broadcasting, since the transmitter's carrier
|
|
|
|
* goes to zero with 120 IRE input signal. Generally, 110
|
|
|
|
* is a good compromise - it allows somewhat brighter colours
|
|
|
|
* than 100, while staying safely away from the hard limit.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* run-time options:
|
|
|
|
*
|
|
|
|
* Define either NTSC or PAL as 1 to select the colour system.
|
|
|
|
* Define the other one as zero, or leave it undefined.
|
|
|
|
*
|
|
|
|
* Define FLAG_HOT as 1 if you want "hot" pixels set to black
|
|
|
|
* to identify them. Otherwise they will be made safe.
|
|
|
|
*
|
|
|
|
* Define REDUCE_SAT as 1 if you want hot pixels to be repaired by
|
|
|
|
* reducing their saturation. By default, luminance is reduced.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
#include <math.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <libgimp/gimp.h>
|
|
|
|
#include <gtk/gtk.h>
|
|
|
|
#include <plug-ins/megawidget/megawidget.h>
|
|
|
|
|
|
|
|
struct Grgb {
|
|
|
|
guint8 red;
|
|
|
|
guint8 green;
|
|
|
|
guint8 blue;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct GRegion {
|
|
|
|
gint32 x;
|
|
|
|
gint32 y;
|
|
|
|
gint32 width;
|
|
|
|
gint32 height;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct piArgs {
|
|
|
|
gint32 image;
|
|
|
|
gint32 drawable;
|
|
|
|
gint32 mode;
|
|
|
|
gint32 action;
|
|
|
|
gint32 new_layerp;
|
|
|
|
};
|
|
|
|
|
|
|
|
typedef enum {
|
|
|
|
act_lredux = 0,
|
|
|
|
act_sredux = 1,
|
|
|
|
act_flag = 2,
|
|
|
|
} hotAction;
|
|
|
|
|
|
|
|
typedef enum {
|
|
|
|
mode_ntsc = 0,
|
|
|
|
mode_pal = 1,
|
|
|
|
} hotModes;
|
|
|
|
|
|
|
|
#define CHROMA_LIM 50.0 /* chroma amplitude limit */
|
|
|
|
#define COMPOS_LIM 110.0 /* max IRE amplitude */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* RGB to YIQ encoding matrix.
|
|
|
|
*/
|
|
|
|
|
|
|
|
struct {
|
|
|
|
double pedestal;
|
|
|
|
double gamma;
|
|
|
|
double code[3][3];
|
|
|
|
} mode[2] = {
|
|
|
|
{
|
|
|
|
7.5,
|
|
|
|
2.2,
|
|
|
|
{
|
|
|
|
{ 0.2989, 0.5866, 0.1144 },
|
|
|
|
{ 0.5959, -0.2741, -0.3218 },
|
|
|
|
{ 0.2113, -0.5227, 0.3113 }
|
|
|
|
}
|
|
|
|
},
|
|
|
|
{
|
|
|
|
0.0,
|
|
|
|
2.8,
|
|
|
|
{
|
|
|
|
{ 0.2989, 0.5866, 0.1144 },
|
|
|
|
{ -0.1473, -0.2891, 0.4364 },
|
|
|
|
{ 0.6149, -0.5145, -0.1004 }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
#define SCALE 8192 /* scale factor: do floats with int math */
|
|
|
|
#define MAXPIX 255 /* white value */
|
|
|
|
|
|
|
|
int tab[3][3][MAXPIX+1]; /* multiply lookup table */
|
|
|
|
double chroma_lim; /* chroma limit */
|
|
|
|
double compos_lim; /* composite amplitude limit */
|
|
|
|
long ichroma_lim2; /* chroma limit squared (scaled integer) */
|
|
|
|
int icompos_lim; /* composite amplitude limit (scaled integer) */
|
|
|
|
|
|
|
|
static void query(void);
|
|
|
|
static void run(char *name, int nparam, GParam *param,
|
|
|
|
int *nretvals, GParam **retvals);
|
|
|
|
|
|
|
|
gint pluginCore(struct piArgs *argp);
|
|
|
|
gint pluginCoreIA(struct piArgs *argp);
|
|
|
|
static gint hotp(register guint8 r, register guint8 g, register guint8 b);
|
|
|
|
static void build_tab(int m);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* gc: apply the gamma correction specified for this video standard.
|
|
|
|
* inv_gc: inverse function of gc.
|
|
|
|
*
|
|
|
|
* These are generally just a call to pow(), but be careful!
|
|
|
|
* Future standards may use more complex functions.
|
|
|
|
* (e.g. SMPTE 240M's "electro-optic transfer characteristic").
|
|
|
|
*/
|
|
|
|
#define gc(x,m) pow(x, 1.0 / mode[m].gamma)
|
|
|
|
#define inv_gc(x,m) pow(x, mode[m].gamma)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* pix_decode: decode an integer pixel value into a floating-point
|
|
|
|
* intensity in the range [0, 1].
|
|
|
|
*
|
|
|
|
* pix_encode: encode a floating-point intensity into an integer
|
|
|
|
* pixel value.
|
|
|
|
*
|
|
|
|
* The code given here assumes simple linear encoding; you must change
|
|
|
|
* these routines if you use a different pixel encoding technique.
|
|
|
|
*/
|
|
|
|
#define pix_decode(v) ((double)v / (double)MAXPIX)
|
|
|
|
#define pix_encode(v) ((int)(v * (double)MAXPIX + 0.5))
|
|
|
|
|
|
|
|
GPlugInInfo PLUG_IN_INFO = {
|
|
|
|
NULL, /* init */
|
|
|
|
NULL, /* quit */
|
|
|
|
query, /* query */
|
|
|
|
run, /* run */
|
|
|
|
};
|
|
|
|
|
|
|
|
MAIN()
|
|
|
|
|
|
|
|
static void
|
|
|
|
query(void){
|
|
|
|
static GParamDef args[] = {
|
|
|
|
{ PARAM_INT32, "run_mode", "Interactive, non-interactive" },
|
|
|
|
{ PARAM_IMAGE, "image", "The Image" },
|
|
|
|
{ PARAM_DRAWABLE, "drawable", "The Drawable" },
|
|
|
|
{ PARAM_INT32, "mode", "Mode -- NTSC/PAL" },
|
|
|
|
{ PARAM_INT32, "action", "The action to perform" },
|
|
|
|
{ PARAM_INT32, "new_layerp", "Create a new layer iff True" },
|
|
|
|
};
|
1998-01-31 00:54:44 +08:00
|
|
|
static gint nargs = sizeof (args) / sizeof (args[0]);
|
1997-11-25 06:05:25 +08:00
|
|
|
|
|
|
|
static GParamDef *rets = NULL;
|
|
|
|
static int nrets = 0;
|
|
|
|
|
|
|
|
gimp_install_procedure("plug_in_hot",
|
|
|
|
"Look for hot NTSC or PAL pixels ",
|
|
|
|
"hot scans an image for pixels that will give "
|
|
|
|
"unsave values of chrominance or composite "
|
|
|
|
"signale amplitude when encoded into an NTSC "
|
|
|
|
"or PAL signal. Three actions can be performed on these ``hot'' "
|
|
|
|
"pixels. (0) reduce luminance, (1) reduce saturation, or (2) Blacken.",
|
|
|
|
"Eric L. Hernes, Alan Wm Paeth",
|
|
|
|
"Eric L. Hernes",
|
|
|
|
"1997",
|
1998-01-25 10:18:54 +08:00
|
|
|
"<Image>/Filters/Colors/Hot",
|
1997-11-25 06:05:25 +08:00
|
|
|
"RGB",
|
|
|
|
PROC_PLUG_IN,
|
|
|
|
nargs, nrets,
|
|
|
|
args, rets);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
run(char *name, int nparam, GParam *param,
|
|
|
|
int *nretvals, GParam **retvals){
|
|
|
|
static GParam rvals[1];
|
|
|
|
|
|
|
|
struct piArgs args;
|
|
|
|
|
|
|
|
*nretvals = 1;
|
|
|
|
*retvals = rvals;
|
|
|
|
|
|
|
|
/* bzero(&args, sizeof(struct piArgs)); */
|
|
|
|
memset(&args,(int)0,sizeof(struct piArgs));
|
|
|
|
args.mode=-1;
|
|
|
|
|
|
|
|
gimp_get_data("plug_in_hot", &args);
|
|
|
|
|
1997-12-09 09:29:39 +08:00
|
|
|
args.image = param[1].data.d_image;
|
|
|
|
args.drawable = param[2].data.d_drawable;
|
|
|
|
|
1997-11-25 06:05:25 +08:00
|
|
|
rvals[0].type = PARAM_STATUS;
|
|
|
|
rvals[0].data.d_status = STATUS_SUCCESS;
|
|
|
|
switch (param[0].data.d_int32) {
|
|
|
|
case RUN_INTERACTIVE:
|
|
|
|
/* XXX: add code here for interactive running */
|
|
|
|
if(args.mode == -1) {
|
|
|
|
args.mode = mode_ntsc;
|
|
|
|
args.action = act_lredux;
|
|
|
|
args.new_layerp = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (pluginCoreIA(&args)==-1) {
|
|
|
|
rvals[0].data.d_status = STATUS_EXECUTION_ERROR;
|
|
|
|
}
|
|
|
|
gimp_set_data("plug_in_hot", &args, sizeof(struct piArgs));
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
case RUN_NONINTERACTIVE:
|
|
|
|
/* XXX: add code here for non-interactive running */
|
1998-01-31 00:54:44 +08:00
|
|
|
if (nparam != 6) {
|
1997-11-25 06:05:25 +08:00
|
|
|
rvals[0].data.d_status = STATUS_CALLING_ERROR;
|
|
|
|
break;
|
|
|
|
}
|
1998-01-31 00:54:44 +08:00
|
|
|
args.mode = param[3].data.d_int32;
|
|
|
|
args.action = param[4].data.d_int32;
|
|
|
|
args.new_layerp = param[5].data.d_int32;
|
1997-11-25 06:05:25 +08:00
|
|
|
|
|
|
|
if (pluginCore(&args)==-1) {
|
|
|
|
rvals[0].data.d_status = STATUS_EXECUTION_ERROR;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case RUN_WITH_LAST_VALS:
|
|
|
|
/* XXX: add code here for last-values running */
|
|
|
|
if (pluginCore(&args)==-1) {
|
|
|
|
rvals[0].data.d_status = STATUS_EXECUTION_ERROR;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
gint
|
|
|
|
pluginCore(struct piArgs *argp) {
|
|
|
|
GDrawable *drw, *ndrw=NULL;
|
|
|
|
GPixelRgn srcPr, dstPr;
|
|
|
|
gint retval = 0;
|
|
|
|
gint nl=0;
|
|
|
|
gint y, x, i;
|
|
|
|
gint Y, I, Q;
|
|
|
|
guint width, height, Bpp;
|
|
|
|
gint prog_interval;
|
|
|
|
guchar *src, *s, *dst, *d;
|
|
|
|
guchar r, prev_r=0, new_r=0;
|
|
|
|
guchar g, prev_g=0, new_g=0;
|
|
|
|
guchar b, prev_b=0, new_b=0;
|
|
|
|
gdouble fy, fc, t, scale;
|
|
|
|
gdouble pr, pg, pb;
|
|
|
|
gdouble py;
|
|
|
|
|
|
|
|
drw = gimp_drawable_get(argp->drawable);
|
|
|
|
|
|
|
|
width = drw->width;
|
|
|
|
height = drw->height;
|
|
|
|
Bpp = drw->bpp;
|
|
|
|
if(argp->new_layerp) {
|
|
|
|
char name[40];
|
|
|
|
char *mode_names[] = {
|
|
|
|
"ntsc",
|
|
|
|
"pal",
|
|
|
|
};
|
|
|
|
char *action_names[] = {
|
|
|
|
"lum redux",
|
|
|
|
"sat redux",
|
|
|
|
"flag",
|
|
|
|
};
|
|
|
|
|
|
|
|
sprintf(name, "hot mask (%s, %s)", mode_names[argp->mode],
|
|
|
|
action_names[argp->action]);
|
|
|
|
|
|
|
|
nl=gimp_layer_new(argp->image, name, width, height,
|
|
|
|
RGBA_IMAGE, (gdouble)100, NORMAL_MODE);
|
|
|
|
ndrw = gimp_drawable_get(nl);
|
|
|
|
gimp_drawable_fill(nl, TRANS_IMAGE_FILL);
|
|
|
|
gimp_image_add_layer(argp->image, nl, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
src = (guchar*)malloc(width*height*Bpp);
|
|
|
|
dst = (guchar*)malloc(width*height*4);
|
|
|
|
gimp_pixel_rgn_init (&srcPr, drw, 0, 0, width, height, FALSE, FALSE);
|
|
|
|
if (argp->new_layerp) {
|
|
|
|
gimp_pixel_rgn_init (&dstPr, ndrw, 0, 0, width, height, FALSE, FALSE);
|
|
|
|
} else {
|
|
|
|
gimp_pixel_rgn_init (&dstPr, drw, 0, 0, width, height, TRUE, TRUE);
|
|
|
|
}
|
|
|
|
|
|
|
|
gimp_pixel_rgn_get_rect(&srcPr, src, 0, 0, width, height);
|
|
|
|
|
|
|
|
s=src;
|
|
|
|
d=dst;
|
|
|
|
|
|
|
|
build_tab(argp->mode);
|
|
|
|
|
|
|
|
gimp_progress_init("Hot");
|
|
|
|
prog_interval=height/10;
|
|
|
|
|
|
|
|
for(y=0;y<height;y++) {
|
|
|
|
if (y % prog_interval == 0) gimp_progress_update((double)y/(double)height);
|
|
|
|
for(x=0;x<width;x++) {
|
|
|
|
if (hotp(r=*(s+0),g=*(s+1),b=*(s+2))) {
|
|
|
|
if (argp->action == act_flag) {
|
|
|
|
for(i=0;i<3;i++)
|
|
|
|
*d++=0;
|
|
|
|
s+=3;
|
|
|
|
if (Bpp==4) *d++=*s++; else if (argp->new_layerp) *d++=255;
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* Optimization: cache the last-computed hot pixel.
|
|
|
|
*/
|
|
|
|
if (r == prev_r && g == prev_g && b == prev_b) {
|
|
|
|
*d++ = new_r;
|
|
|
|
*d++ = new_g;
|
|
|
|
*d++ = new_b;
|
|
|
|
s+=3;
|
|
|
|
if (Bpp==4) *d++=*s++; else if (argp->new_layerp) *d++=255;
|
|
|
|
} else {
|
|
|
|
|
|
|
|
Y = tab[0][0][r] + tab[0][1][g] + tab[0][2][b];
|
|
|
|
I = tab[1][0][r] + tab[1][1][g] + tab[1][2][b];
|
|
|
|
Q = tab[2][0][r] + tab[2][1][g] + tab[2][2][b];
|
|
|
|
|
|
|
|
prev_r = r;
|
|
|
|
prev_g = g;
|
|
|
|
prev_b = b;
|
|
|
|
/*
|
|
|
|
* Get Y and chroma amplitudes in floating point.
|
|
|
|
*
|
|
|
|
* If your C library doesn't have hypot(), just use
|
|
|
|
* hypot(a,b) = sqrt(a*a, b*b);
|
|
|
|
*
|
|
|
|
* Then extract linear (un-gamma-corrected)
|
|
|
|
* floating-point pixel RGB values.
|
|
|
|
*/
|
|
|
|
fy = (double)Y / (double)SCALE;
|
|
|
|
fc = hypot((double)I / (double)SCALE,
|
|
|
|
(double)Q / (double)SCALE);
|
|
|
|
|
|
|
|
pr = (double)pix_decode(r);
|
|
|
|
pg = (double)pix_decode(g);
|
|
|
|
pb = (double)pix_decode(b);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Reducing overall pixel intensity by scaling R,
|
|
|
|
* G, and B reduces Y, I, and Q by the same factor.
|
|
|
|
* This changes luminance but not saturation, since
|
|
|
|
* saturation is determined by the chroma/luminance
|
|
|
|
* ratio.
|
|
|
|
*
|
|
|
|
* On the other hand, by linearly interpolating
|
|
|
|
* between the original pixel value and a grey
|
|
|
|
* pixel with the same luminance (R=G=B=Y), we
|
|
|
|
* change saturation without affecting luminance.
|
|
|
|
*/
|
|
|
|
if(argp->action == act_lredux) {
|
|
|
|
/*
|
|
|
|
* Calculate a scale factor that will bring the pixel
|
|
|
|
* within both chroma and composite limits, if we scale
|
|
|
|
* luminance and chroma simultaneously.
|
|
|
|
*
|
|
|
|
* The calculated chrominance reduction applies
|
|
|
|
* to the gamma-corrected RGB values that are
|
|
|
|
* the input to the RGB-to-YIQ operation.
|
|
|
|
* Multiplying the original un-gamma-corrected
|
|
|
|
* pixel values by the scaling factor raised to
|
|
|
|
* the "gamma" power is equivalent, and avoids
|
|
|
|
* calling gc() and inv_gc() three times each. */
|
|
|
|
scale = chroma_lim / fc;
|
|
|
|
t = compos_lim / (fy + fc);
|
|
|
|
if (t < scale)
|
|
|
|
scale = t;
|
|
|
|
scale = pow(scale, mode[argp->mode].gamma);
|
|
|
|
|
|
|
|
|
|
|
|
r = (guint8)pix_encode(scale * pr);
|
|
|
|
g = (guint8)pix_encode(scale * pg);
|
|
|
|
b = (guint8)pix_encode(scale * pb);
|
|
|
|
|
|
|
|
} else { /* act_sredux hopefully */
|
|
|
|
/*
|
|
|
|
* Calculate a scale factor that will bring the
|
|
|
|
* pixel within both chroma and composite
|
|
|
|
* limits, if we scale chroma while leaving
|
|
|
|
* luminance unchanged.
|
|
|
|
*
|
|
|
|
* We have to interpolate gamma-corrected RGB
|
|
|
|
* values, so we must convert from linear to
|
|
|
|
* gamma-corrected before interpolation and then
|
|
|
|
* back to linear afterwards.
|
|
|
|
*/
|
|
|
|
scale = chroma_lim / fc;
|
|
|
|
t = (compos_lim - fy) / fc;
|
|
|
|
if (t < scale)
|
|
|
|
scale = t;
|
|
|
|
|
|
|
|
pr = gc(pr,argp->mode);
|
|
|
|
pg = gc(pg,argp->mode);
|
|
|
|
pb = gc(pb,argp->mode);
|
|
|
|
py = pr * mode[argp->mode].code[0][0] + pg *
|
|
|
|
mode[argp->mode].code[0][1] + pb *
|
|
|
|
mode[argp->mode].code[0][2];
|
|
|
|
r = pix_encode(inv_gc(py + scale * (pr - py), argp->mode));
|
|
|
|
g = pix_encode(inv_gc(py + scale * (pg - py), argp->mode));
|
|
|
|
b = pix_encode(inv_gc(py + scale * (pb - py), argp->mode));
|
|
|
|
}
|
|
|
|
*d++ = new_r = r;
|
|
|
|
*d++ = new_g = g;
|
|
|
|
*d++ = new_b = b;
|
|
|
|
s+=3;
|
|
|
|
if (Bpp==4) *d++=*s++; else if (argp->new_layerp) *d++=255;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (!argp->new_layerp) {
|
|
|
|
for(i=0;i<Bpp;i++)
|
|
|
|
*d++=*s++;
|
|
|
|
} else {
|
|
|
|
s+=Bpp;
|
|
|
|
d+=4;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
gimp_pixel_rgn_set_rect(&dstPr, dst, 0, 0, width, height);
|
|
|
|
|
|
|
|
free(src);
|
|
|
|
free(dst);
|
|
|
|
|
|
|
|
if(argp->new_layerp) {
|
|
|
|
gimp_drawable_flush(ndrw);
|
|
|
|
gimp_drawable_update(nl, 0, 0, width, height);
|
|
|
|
} else {
|
|
|
|
gimp_drawable_flush(drw);
|
|
|
|
gimp_drawable_merge_shadow (drw->id, TRUE);
|
|
|
|
gimp_drawable_update(drw->id, 0, 0, width, height);
|
|
|
|
}
|
|
|
|
|
|
|
|
gimp_displays_flush();
|
|
|
|
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
gint
|
|
|
|
pluginCoreIA(struct piArgs *argp) {
|
|
|
|
GtkWidget *dlg;
|
|
|
|
GtkWidget *hbox;
|
|
|
|
GtkWidget *vbox;
|
|
|
|
gint runp;
|
|
|
|
struct mwRadioGroup modes[] = {
|
|
|
|
{ "NTSC", 1 },
|
|
|
|
{ "PAL", 0 },
|
|
|
|
{ NULL, 0 }
|
|
|
|
};
|
|
|
|
struct mwRadioGroup actions[] = {
|
|
|
|
{ "Reduce Luminance", 0 },
|
|
|
|
{ "Reduce Saturation", 0 },
|
|
|
|
{ "Blacken (flag)", 0 },
|
|
|
|
{ NULL, 0}
|
|
|
|
};
|
|
|
|
gchar **argv;
|
|
|
|
gint argc;
|
|
|
|
|
|
|
|
/* Set args */
|
|
|
|
argc = 1;
|
|
|
|
argv = g_new(gchar *, 1);
|
|
|
|
argv[0] = g_strdup("hot");
|
|
|
|
gtk_init(&argc, &argv);
|
|
|
|
gtk_rc_parse(gimp_gtkrc());
|
|
|
|
|
|
|
|
actions[argp->action].var = 1;
|
|
|
|
|
|
|
|
dlg = mw_app_new("plug_in_hot", "Hot", &runp);
|
|
|
|
hbox = gtk_hbox_new(FALSE, 5);
|
|
|
|
gtk_container_border_width(GTK_CONTAINER(hbox), 5);
|
|
|
|
gtk_box_pack_start(GTK_BOX(GTK_DIALOG(dlg)->vbox), hbox, TRUE, TRUE, 0);
|
|
|
|
gtk_widget_show(hbox);
|
|
|
|
|
|
|
|
vbox = gtk_vbox_new(FALSE, 5);
|
|
|
|
gtk_box_pack_start(GTK_BOX(hbox), vbox, TRUE, TRUE, 0);
|
|
|
|
gtk_widget_show(vbox);
|
|
|
|
|
|
|
|
mw_toggle_button_new(vbox, NULL, "Create New Layer", &argp->new_layerp);
|
|
|
|
mw_radio_group_new(vbox, "Mode", modes);
|
|
|
|
|
|
|
|
mw_radio_group_new(hbox, "Action", actions);
|
|
|
|
|
|
|
|
gtk_widget_show(dlg);
|
|
|
|
gtk_main();
|
|
|
|
gdk_flush();
|
|
|
|
|
|
|
|
argp->mode = mw_radio_result(modes);
|
|
|
|
argp->action = mw_radio_result(actions);
|
|
|
|
|
|
|
|
if (runp) {
|
|
|
|
return pluginCore(argp);
|
|
|
|
} else {
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* build_tab: Build multiply lookup table.
|
|
|
|
*
|
|
|
|
* For each possible pixel value, decode value into floating-point
|
|
|
|
* intensity. Then do gamma correction required by the video
|
|
|
|
* standard. Scale the result by our fixed-point scale factor.
|
|
|
|
* Then calculate 9 lookup table entries for this pixel value.
|
|
|
|
*
|
|
|
|
* We also calculate floating-point and scaled integer versions
|
|
|
|
* of our limits here. This prevents evaluating expressions every pixel
|
|
|
|
* when the compiler is too stupid to evaluate constant-valued
|
|
|
|
* floating-point expressions at compile time.
|
|
|
|
*
|
|
|
|
* For convenience, the limits are #defined using IRE units.
|
|
|
|
* We must convert them here into the units in which YIQ
|
|
|
|
* are measured. The conversion from IRE to internal units
|
|
|
|
* depends on the pedestal level in use, since as Y goes from
|
|
|
|
* 0 to 1, the signal goes from the pedestal level to 100 IRE.
|
|
|
|
* Chroma is always scaled to remain consistent with Y.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
build_tab(int m) {
|
|
|
|
register double f;
|
|
|
|
register int pv;
|
|
|
|
|
|
|
|
for (pv = 0; pv <= MAXPIX; pv++) {
|
|
|
|
f = (double)SCALE * (double)gc((double)pix_decode(pv),m);
|
|
|
|
tab[0][0][pv] = (int)(f * mode[m].code[0][0] + 0.5);
|
|
|
|
tab[0][1][pv] = (int)(f * mode[m].code[0][1] + 0.5);
|
|
|
|
tab[0][2][pv] = (int)(f * mode[m].code[0][2] + 0.5);
|
|
|
|
tab[1][0][pv] = (int)(f * mode[m].code[1][0] + 0.5);
|
|
|
|
tab[1][1][pv] = (int)(f * mode[m].code[1][1] + 0.5);
|
|
|
|
tab[1][2][pv] = (int)(f * mode[m].code[1][2] + 0.5);
|
|
|
|
tab[2][0][pv] = (int)(f * mode[m].code[2][0] + 0.5);
|
|
|
|
tab[2][1][pv] = (int)(f * mode[m].code[2][1] + 0.5);
|
|
|
|
tab[2][2][pv] = (int)(f * mode[m].code[2][2] + 0.5);
|
|
|
|
}
|
|
|
|
|
|
|
|
chroma_lim = (double)CHROMA_LIM / (100.0 - mode[m].pedestal);
|
|
|
|
compos_lim = ((double)COMPOS_LIM - mode[m].pedestal) /
|
|
|
|
(100.0 - mode[m].pedestal);
|
|
|
|
|
|
|
|
ichroma_lim2 = (int)(chroma_lim * SCALE + 0.5);
|
|
|
|
ichroma_lim2 *= ichroma_lim2;
|
|
|
|
icompos_lim = (int)(compos_lim * SCALE + 0.5);
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
hotp(register guint8 r, register guint8 g, register guint8 b) {
|
|
|
|
register int y, i, q;
|
|
|
|
register long y2, c2;
|
|
|
|
|
|
|
|
/* fprintf(stderr, "\tr: %d, g: %d, b: %d\n", r, g, b);*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Pixel decoding, gamma correction, and matrix multiplication
|
|
|
|
* all done by lookup table.
|
|
|
|
*
|
|
|
|
* "i" and "q" are the two chrominance components;
|
|
|
|
* they are I and Q for NTSC.
|
|
|
|
* For PAL, "i" is U (scaled B-Y) and "q" is V (scaled R-Y).
|
|
|
|
* Since we only care about the length of the chroma vector,
|
|
|
|
* not its angle, we don't care which is which.
|
|
|
|
*/
|
|
|
|
y = tab[0][0][r] + tab[0][1][g] + tab[0][2][b];
|
|
|
|
i = tab[1][0][r] + tab[1][1][g] + tab[1][2][b];
|
|
|
|
q = tab[2][0][r] + tab[2][1][g] + tab[2][2][b];
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check to see if the chrominance vector is too long or the
|
|
|
|
* composite waveform amplitude is too large.
|
|
|
|
*
|
|
|
|
* Chrominance is too large if
|
|
|
|
*
|
|
|
|
* sqrt(i^2, q^2) > chroma_lim.
|
|
|
|
*
|
|
|
|
* The composite signal amplitude is too large if
|
|
|
|
*
|
|
|
|
* y + sqrt(i^2, q^2) > compos_lim.
|
|
|
|
*
|
|
|
|
* We avoid doing the sqrt by checking
|
|
|
|
*
|
|
|
|
* i^2 + q^2 > chroma_lim^2
|
|
|
|
* and
|
|
|
|
* y + sqrt(i^2 + q^2) > compos_lim
|
|
|
|
* sqrt(i^2 + q^2) > compos_lim - y
|
|
|
|
* i^2 + q^2 > (compos_lim - y)^2
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
c2 = (long)i * i + (long)q * q;
|
|
|
|
y2 = (long)icompos_lim - y;
|
|
|
|
y2 *= y2;
|
|
|
|
/* fprintf(stderr, "hotp: c2: %d; ichroma_lim2: %d; y2: %d; ",
|
|
|
|
c2, ichroma_lim2, y2);*/
|
|
|
|
|
|
|
|
if (c2 <= ichroma_lim2 && c2 <= y2) { /* no problems */
|
|
|
|
/* fprintf(stderr, "nope\n");*/
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* fprintf(stderr, "yup\n");*/
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Local Variables:
|
|
|
|
* mode: C
|
|
|
|
* End:
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* end of file: hot/hot.c */
|